
Event Calculus for Run-Time reasoning (RTEC)
Manual

Alexander Artikis and Christos Vlassopoulos
NCSR “Demokritos”

cer.iit.demokritos.gr

September 20, 2016

1 Introduction

The Event Calculus for Run-Time reasoning (RTEC) is a logic programming implementation of
the Event Calculus [6], designed to compute continuous queries on data streams [3]. RTEC has
been successfully used for composite event recognition (‘event pattern matching’). Composite
event (CE) recognition systems accept as input a stream of time-stamped simple, derived events
(SDE)s. A SDE is the result of applying a computational derivation process to some other event,
such as an event coming from a sensor [7]. Using SDEs as input, event recognition systems
identify CEs of interest—collections of events that satisfy some pattern. The ‘definition’ of a CE
imposes temporal and, possibly, atemporal constraints on its subevents, i.e. SDEs or other CEs.
Below are a few CE recognition applications in which RTEC has been used:

• Public space surveillance [3].

• City transport & traffic management [3, 4, 5].

• Maritime monitoring [8, 1].

The novelty of RTEC lies in the following implementation techniques:

1. Caching, that helps in avoiding unnecessary re-computations.

2. Interval manipulation, that helps in expressing succinctly complex temporal phenomena.

3. Indexing, that makes RTEC robust to data streams that are irrelevant to the queries we
want to compute.

4. Windowing, that supports real-time query computation.

1.1 Software requirements & installation

RTEC is cross-platform. The only software requirement is a Prolog implementation. RTEC has
been tested in YAP1 and SWI2 Prolog. In the case of Linux, to install YAP or SWI Prolog type

$ sudo apt-get install yap

or

$ sudo apt-get install swi-prolog

To use RTEC in YAP, simply download it from https://github.com/aartikis/RTEC.
The file RTEC/README.txt contains some general information about the use of RTEC.

1http://www.dcc.fc.up.pt/~vsc/Yap/downloads.html
2http://www.swi-prolog.org/Download.html

1

1.2 A simple example

We begin with a simple example briefly illustrating the functionality of RTEC. In the following
sections we will have a closer look at the expressivity and reasoning algorithms of RTEC.

Suppose that Chris is having an all but ordinary day. He goes to work in the morning and
in the afternoon he finds out that he has won the lottery. In the evening he goes to the pub,
but loses his wallet. Ultimately, he goes home at night. We want to know whether Chris is
happy or not, as these actions take place. Our story has three events, “go_to”, “lose_wallet” and
“win_lottery”, and three properties, “happy”, “location” and “rich”. The basic concept of RTEC
lies in events taking place and modifying the values of the properties. In the RTEC terminology,
these properties are called “fluents”.

We would like to specify the conditions that make Chris happy in our tiny world. Being rich is
such a condition. Another condition could be being at the pub. Therefore, the ‘union’ of these
two conditions can meet the needs of a happy man in our example. Winning the lottery makes
someone rich. For the sake of the example, let’s assume that losing your wallet causes you to
stop being rich.

Now that we have designed the rules that describe our example, we are ready to express them
into the logic programming language of RTEC. Use a text editor and create a new file, say
“toy_rules.prolog”, and paste the following:

1 initiatedAt(rich(X)=true, T) :-
2 happensAt(win_lottery(X), T).
3
4 terminatedAt(rich(X)=true, T) :-
5 happensAt(lose_wallet(X), T).
6
7 initiatedAt(location(X)=Y, T) :-
8 happensAt(go_to(X,Y), T).
9

10 holdsFor(happy(X)=true, I) :-
11 holdsFor(rich(X)=true, I1),
12 holdsFor(location(X)=pub, I2),
13 union_all([I1,I2], I).

Listing 1: Event description in RTEC.

Following Prolog’s convention, variables start with an upper-case letter, while predicates and
constants start with a lower-case letter. To test the formalization above, create a new file,
“toy_declarations.prolog”, containing the following:

1 % Information about all our events and fluents.
2 % - Is each entity an event or a fluent?
3 % - Is it an input or an output entity?
4 % - Choose an argument to be used as index for quicker access.
5
6 event(go_to(_,_)).
7 inputEntity(go_to(_,_)).
8 index(go_to(Person,_), Person).
9

10 event(lose_wallet(_)).
11 inputEntity(lose_wallet(_)).
12 index(lose_wallet(Person), Person).
13
14 event(win_lottery(_)).
15 inputEntity(win_lottery(_)).
16 index(win_lottery(Person), Person).
17
18 simpleFluent(location(_)=home).

2

19 outputEntity(location(_)=home).
20 index(location(Person)=home, Person).
21
22 simpleFluent(location(_)=pub).
23 outputEntity(location(_)=pub).
24 index(location(Person)=pub, Person).
25
26 simpleFluent(location(_)=work).
27 outputEntity(location(_)=work).
28 index(location(Person)=work, Person).
29
30 simpleFluent(rich(_)=true).
31 outputEntity(rich(_)=true).
32 index(rich(Person)=true, Person).
33
34 simpleFluent(rich(_)=false).
35 outputEntity(rich(_)=false).
36 index(rich(Person)=false, Person).
37
38 sDFluent(happy(_)=true).
39 outputEntity(happy(_)=true).
40 index(happy(Person)=true, Person).
41
42 sDFluent(happy(_)=false).
43 outputEntity(happy(_)=false).
44 index(happy(Person)=false, Person).
45
46 % How are the fluents grounded?
47 % Define the domain of the variables.
48
49 grounding(location(Person)=Place) :- person(Person), place(Place).
50 grounding(rich(Person)=true) :- person(Person).
51 grounding(rich(Person)=false) :- person(Person).
52 grounding(happy(Person)=true) :- person(Person).
53 grounding(happy(Person)=false) :- person(Person).
54
55 % In what order will the output entities be processed by RTEC?
56
57 cachingOrder(location(_)=home).
58 cachingOrder(location(_)=pub).
59 cachingOrder(location(_)=work).
60 cachingOrder(rich(_)=true).
61 cachingOrder(rich(_)=false).
62 cachingOrder(happy(_)=true).
63 cachingOrder(happy(_)=false).

Listing 2: Event and fluent declarations.

The above declarations file is a companion to the rules file. It contains information about all
the events and fluents of our scenario. In the following section, we will describe the declarations
language in detail.

At this point, we need to compile the rules and declarations. To do this, open a terminal, go
to the RTEC/ directory, start Prolog by typing “yap” and pressing ENTER, and execute the
following query:

?- compileEventDescription('toy_declarations.prolog',
'toy_rules.prolog', 'toy_rules_compiled.prolog').

If Prolog responds with a message ending in “yes” or “true” (depending on your
Prolog implementation), compilation was successful. During compilation, a new file

3

“toy_rules_compiled.prolog” has been created. This file combines the information provided
in the rules and declarations files and is in a form ready for use by RTEC.

At the next step, we must provide the domain of each variable. Create another file, say
“toy_var_domain.prolog”, and put the following code in it:

1 % This is our variable domain
2
3 person(chris).
4
5 place(home).
6 place(pub).
7 place(work).

Listing 3: Variable domain.

The contents of this file are used for output entity (e.g. fluent) grounding (see Listing 2, lines
49-53). Finally, to test our event description, we need an event narrative, such as the following:

1 % This is our narrative of events, given as input.
2
3 updateSDE(story, 9, 21) :-
4 assert(happensAtIE(go_to(chris, work), 9)),
5 assert(happensAtIE(win_lottery(chris), 13)),
6 assert(happensAtIE(go_to(chris, pub), 17)),
7 assert(happensAtIE(lose_wallet(chris), 19)),
8 assert(happensAtIE(go_to(chris, home), 21)).

Listing 4: Event narrative.

We make a series of assertions about what happens at each time in our scenario. happensAtIE is
a compiled version of the happensAt predicate that expresses event occurrences. At 9:00 Chris
goes to work. Then, at 13:00 he finds out that he has won the lottery. Subsequently, at 17:00 he
goes to the pub. Afterwards, at 19:00 he loses his wallet, and finally at 21:00 he returns home.
We group these assertions under the auxiliary updateSDE predicate, so that whenever we want
to load this narrative we simply call this predicate.

Now we have all the necessary components for narrative assimilation—in this example, the
computation of the maximal intervals of the fluents. We simply need to combine the afore-
mentioned files and start the RTEC engine. This may be done by creating a Prolog script,
“toy_queries.prolog” that contains the following:

1
2 :-['toy_event_stream.prolog'].
3 :-['../../src/RTEC.prolog'].
4 :-['toy_var_domain.prolog'].
5 :-['toy_declarations.prolog'].
6 :-['toy_rules_compiled.prolog'].
7
8 performER :-
9 initialiseRecognition(unordered, nopreprocessing, 1),

10 updateSDE(story, 9, 21),
11 eventRecognition(21, 21).

Listing 5: Narrative assimilation script.

The code of Listing 5 accumulates the information contained in the files described above, and
combines it with the main file of RTEC, namely “RTEC.prolog”. Then, we define a predicate
“performER” to automate narrative assimilation. At first we initialize RTEC, by setting 3 pa-
rameters. In the first parameter we state whether the input facts are temporally sorted or not

4

(in our case they are not, therefore we use the value “unordered”). In the second parameter
we state whether our input data need preprocessing or not (this is not the case here, so we
used the value “nopreprocessing”). Finally, the last parameter is the distance between two
consecutive timepoints in our dataset, which is 1 time unit. Then we load the event narra-
tive using the “updateSDE” predicate we created in Listing 4, and finally we call the built-in
eventRecognition predicate of RTEC for narrative assimilation. We provide 2 parameters, the
current time of the query and how deep in the past will RTEC look for events and fluents in
order to calculate the composite events of interest. Here, since we have a small dataset that ends
at timepoint 21, we perform one query at time 21 and we take into account account all the input
events that took place within the last 21 timepoints, i.e. from the beginning.

Back to Prolog now. Halt any open session with Prolog and start a new one. Then load the
Prolog script:

?- ['toy_queries.prolog'].

Again, if Prolog responds with a message ending in “yes” or “true”, then the file loading was
successful. We are now ready for narrative assimilation, by typing the command

?- performER.

If Prolog answers “yes” or “true”, that means RTEC has finished the computation of the maximal
intervals of fluents. Now we can ask RTEC anything about the processed fluents. For instance,
if we want to see when Chris is happy, typing “holdsFor(happy(chris)=true,I).” will give
us the answer:

I = [(14,22)]

This means that Chris is happy from time 14, right after he won the lottery, until time 22 (not
included), when he leaves the pub. A term of the form (Ts, Te) in RTEC represents the closed-
open interval [Ts ,Te). According to our example, one is happy if he is rich or at the pub. Thus,
this answer seems reasonable.

To see the maximal intervals of all fluent-value pairs that have been computed by RTEC, simply
type “holdsFor(F,I).” and press ENTER. You will receive an output that looks like this:

F = (location(chris)=home),
I = [(22,inf)] ? ;
F = (location(chris)=pub),
I = [(18,22)] ? ;
F = (location(chris)=work),
I = [(10,18)] ? ;
F = (rich(chris)=true),
I = [(14,20)] ? ;
F = (rich(chris)=false),
I = [] ? ;
F = (happy(chris)=true),
I = [(14,22)] ? ;
F = (happy(chris)=false),
I = []

In addition, we can ask what was true at a specific time-point. For instance if we ask
“holdsAt(F,16).” we will find out what was the situation like at time-point 16. RTEC will
respond:

F = (location(chris)=work) ? ;
F = (rich(chris)=true) ? ;
F = (happy(chris)=true)

So, RTEC says that at time-point 16 Chris is at work, rich, and happy.

Now that we have given a brief illustration of the basic functionality of RTEC, we can take a
closer look at its language and reasoning techniques.

5

Table 1: Main predicates of RTEC.

Predicate Meaning

happensAt(E, T) Event E occurs at time T
holdsAt(F=V, T) The value of fluent F is V at time T
holdsFor(F=V, I) I is the list of the maximal intervals

for which F=V holds continuously
initiatedAt(F=V, T) At time T a period of time for which

F=V is initiated
terminatedAt(F=V, T) At time T a period of time for which

F=V is terminated
union_all(L, I) I is the list of maximal intervals

produced by the union of the lists of
maximal intervals of list L

intersect_all(L, I) I is the list of maximal intervals
produced by the intersection of
the lists of maximal intervals of list L

relative_complement_all(I’, L, I) I is the list of maximal intervals produced
by the relative complement of the list
of maximal intervals I’ with respect to
every list of maximal intervals of list L

2 The RTEC language

The time model in RTEC is linear and includes integer time-points. Where F is a fluent—
a property that is allowed to have different values at different points in time—the term F=V

denotes that fluent F has value V. Boolean fluents are a special case in which the possible values
are true and false. holdsAt(F=V, T) represents that fluent F has value V at a particular
time-point T. holdsFor(F=V, I) represents that I is the list of the maximal intervals for which
F=V holds continuously. holdsAt and holdsFor are defined in such a way that, for any fluent
F, holdsAt(F=V, T) if and only if T belongs to one of the maximal intervals of I for which
holdsFor(F=V, I).

An event description in RTEC includes rules that define the event instances with the use of the
happensAt predicate, the effects of events with the use of the initiatedAt and terminatedAt

predicates, and the values of the fluents with the use of the holdsAt and holdsFor predicates,
as well as other, possibly atemporal, constraints. Table 1 summarises the RTEC predicates
available to the event description developer.

Fluents are either simple or statically determined. In brief, simple fluents are defined by means of
initiatedAt and terminatedAt rules, while statically determined fluents are defined by means
of application-dependent holdsFor rules. More details on this distinction will be given shortly.

An event description is a (locally) stratified logic program [9]. We restrict attention to hierarchical
event descriptions, those where it is possible to define a function level that maps all fluent-values
F=V and all events to the non-negative integers as follows. Events and statically determined
fluent-values F=V of level 0 are those whose definitions do not depend on any other events or
fluents. These represent the input entities. There are no fluent-values F=V of simple fluents F
in level 0. Events and simple fluent-values of level n (n > 0) are defined in terms of at least
one event or fluent-value of level n−1 and a possibly empty set of events and fluent-values from
levels lower than n−1. Statically determined fluent-values of level n are defined in terms of at
least one fluent-value of level n−1 and a possibly empty set of fluent-values from levels lower
than n−1. Events and fluent-values of level n are the output entities.

In the following sections we present in more detail the building blocks of RTEC.

6

2.1 Event Description

2.1.1 Events

Events in RTEC are instantaneous and represented with the use of the happensAt predicate.
Our simple example has three events: go_to, lose_wallet and win_lottery. Input events
are indicated as happensAt facts, i.e. they have an empty body. In contrast, output events are
defined by happensAt rules, i.e. rules with at least one body literal.

2.1.2 Fluents

As already mentioned, fluents are either simple or statically determined.

Simple Fluents. For a simple fluent F, F=V holds at a particular time-point T if F=V has been
initiated by an event that has occurred at some time-point earlier than T, and has not been
terminated at some other time-point in the meantime. This is an implementation of the law of
inertia. To compute the intervals I for which F=V, i.e. holdsFor(F=V, I), we find all time-points
Ts at which F=V is initiated, and then, for each Ts, we compute the first time-point Tf after Ts
at which F=V is terminated. The time-points at which F=V is initiated (respectively terminated)
are computed by means of domain-specific initiatedAt (resp. terminatedAt) rules.

In our example, rich is a simple fluent. The maximal intervals during which
rich(Person)=true holds continuously are computed using the domain-independent implemen-
tation of holdsFor from the initiatedAt and terminatedAt rules defining this fluent.

In addition to constraints on events, the bodies of initiatedAt and terminatedAt rules may
specify constraints on fluents by means of the holdsAt, initiatedAt and terminatedAt pred-
icates.

Statically Determined Fluents. Apart from the domain-independent definition of holdsFor,
an event description may include domain-specific holdsFor rules, used to define the values of
a fluent F in terms of the values of other fluents. We call such a fluent F statically determined.
holdsFor rules of this kind make use of interval manipulation constructs. RTEC provides three
such constructs: union_all, intersect_all and relative_complement_all(see the last three
items of Table 1). union_all(+L, -I) computes the list I of maximal intervals representing
the union of maximal intervals of the lists of list L. For instance:

union_all([[(5,20), (26,30)],[(28,35)]], [(5,20), (26,35)])

Recall that a term of the form (Ts, Te) in RTEC represents the closed-open interval [Ts,Te).
I in union_all(L, I) is a list of maximal intervals that includes each time-point that is part
of at least one list of L. See Figure 1(a) for a visual illustration.

intersect_all(+L, -I) computes the list I of maximal intervals such that I represents the
intersection of maximal intervals of the lists of list L, as, e.g.:

intersect_all([[(26,31)], [(21,26),(30,40)]], [(30,31)])

I in intersect_all(L, I) is a list of maximal intervals that includes each time-point that is
part of all lists of L (see Figure 1(b)).

relative_complement_all(+I’, +L, -I) computes the list I of maximal intervals such that
I represents the relative complements of the list of maximal intervals I’ with respect to the
maximal intervals of the lists of list L. Below is an example of relative_complement_all:

relative_complement_all([(5,20), (26,50)], [[(1,4),(18,22)],[(28,35)]],
[(5,18),(26,28),(35,50)])

I in relative_complement_all(I’, L, I) is a list of maximal intervals that includes each
time-point of I’ that is not part of any list of L (see Figure 1(c)).

7

time

I1
I2

(a) Union.

time

I1
I2

(b) Intersection.
time

I1
I2

(c) Relative Complement.

Figure 1: A visual illustration of the three interval manipulation constructs of RTEC. In this
example, there are two input fluent streams, I1 and I2. The output of each interval manipulation
construct is colored light blue.

In our example, happy is a statically determined fluent defined by means of union_all. However,
this is just one way of defining happiness. For example, we could have specified that a person
is happy when he is rich and at the pub. To specify happy in this way one should replace
union_all by intersect_all in the holdsFor rule of happy.

The interval manipulation constructs of RTEC support the following type of definition: for all
time-points T, F=V holds at T if and only if some Boolean combination of fluent-value pairs holds
at T. For a wide range of fluents, this is a much more concise definition than the traditional
style of Event Calculus representation, i.e. identifying the various conditions under which the
fluent is initiated and terminated so that maximal intervals can then be computed using the
domain-independent holdsFor. Compare, e.g. the statically determined fluent representation of
happy in Listing 1 and the simple fluent representation below:

initiatedAt(happy(X)=true, T) :-
initiatedAt(rich(X)=true, T).

initiatedAt(happy(X)=true, T) :-
initiatedAt(loc(X)=pub, T).

terminatedAt(happy(X)=true, T) :-
terminatedAt(rich(X)=true, T)
not holdsAt(loc(X)=pub, T).

terminatedAt(happy(X)=true, T) :-
terminatedAt(loc(X)=pub, T),
not holdsAt(rich(X)=true, T).

not is negation by failure. The interval manipulation constructs of RTEC can also lead to much
more efficient computation [3].

2.2 Declarations

The declarations of our example were presented in Listing 2. In the declarations of an event
description, we first need to denote the events, simple fluents and statically determined fluents.
This is done with the use of the event, simpleFluent and sDFluent predicates.

Each event and fluent must be declared as either inputEntity or outputEntity. As explained
earlier in the section (page 6), the input entities may be events and/or statically determined
fluents, while the output entities may be events, simple fluents and/or statically determined
fluents.

For each event and fluent, the user must also declare its index. In our example, Person is the
index of all events and fluents. The index allows for the fast retrieval from the memory of the
list of time-points, in the case of events, and maximal intervals, in the case of fluents.

To perform query computation, RTEC grounds every output entity. This process is guided by
the grounding predicate of the declarations language of RTEC, that denotes the domain of the
variables of the output entities.

8

The final step in the declarations is to specify the cachingOrder, i.e. the order in which the
output entities will be processed. To take advantage of RTEC’s caching technique, the output
entities should be processed in a bottom-up manner. This way, when processing an output entity
U of level n, the time-points/intervals of all entities defining U—these will all be in levels below
n— will simply be retrieved from the cache.

Back to our example, if we look the rules, we will see that happy is defined in terms of location
and rich. Thus, location and rich must must be processed before happy. location and
rich are on the same level of the hierarchy and thus the order in which they are processed does
not matter.

3 Reasoning in RTEC

Reasoning has to be efficient enough to support real-time decision-making, and scale to very
large numbers of input and output entities. Input entities may not necessarily arrive at RTEC
in a timely manner, i.e. there may be a (variable) delay between the time at which input entities
take place and the time at which they arrive at RTEC. Moreover, input entities may be revised,
or even completely discarded in the future, as in the case where the parameters of an input entity
were originally computed erroneously and are subsequently revised, or in the case of retraction
of an input entity that was reported by mistake, and the mistake was realised later.

RTEC performs narrative assimilation by computing and storing the maximal intervals of output
entities, i.e. the intervals of fluents and the time-points in which events occur. Reasoning takes
place at specified query times Q1, Q2, At each Qi the input entities that fall within a specified
interval — the window ω — are taken into consideration. All input entities that took place before
or at Qi−ω are discarded. This is to make the cost of reasoning dependent only on ω and not
on the complete history. The size of ω and the temporal distance between two consecutive query
times — the slide step Qi−Qi−1 — are set by the user.

At Qi, the output entity maximal intervals computed by RTEC are those that can be derived
from the input entities that occurred in the interval (Qi−ω,Qi], as recorded at time Qi. When
ω is longer than the slide step, i.e., when Qi−ω<Qi−1<Qi, it is possible that an input entity
occurs in the interval (Qi−ω,Qi−1] but arrives at RTEC only after Qi−1; its effects are taken
into account at query time Qi. And similarly for input entities that took place in (Qi−ω,Qi−1]
and were subsequently revised after Qi−1. In the common case that input entities arrive at
RTEC with delays, or there is input entity revision, it is preferable therefore to make ω longer
than the slide step. Note that information may still be lost. Any input entities arriving or
revised between Qi−1 and Qi are discarded at Qi if they took place before or at Qi−ω. To
reduce the possibility of losing information, one may increase the size of ω. Doing so, however,
decreases recognition efficiency. In what follows we give an example and a detailed account of
the ‘windowing’ algorithm of RTEC.

Figure 2 illustrates windowing in RTEC. In this example we have ω>Qi−Qi−1. To avoid clutter,
Figure 2 shows streams of only five input entities. These are displayed below ω, with dots for
instantaneous input entities and lines for durative ones. For the sake of the example, we are
interested in just two fluents:

• A simple fluent Se. The maximal intervals of Se are displayed above ω in Figure 2.

• A statically determined fluent Std. For the example, the maximal intervals of Std are
defined to be the union of the maximal intervals of the two durative input entities in
Figure 2. The maximal intervals of Std are displayed above the Se intervals.

For simplicity, we assume that both Se and Std are defined only in terms of input entities,
i.e. they are not defined in terms of other output entities.

Figure 2 shows the steps that are followed at an arbitrary query time, say Q138. Figure 2(a)
shows the state of RTEC as computation begins at Q138. All input entities that took place before

9

time

Q136

ω

Q139Q138Q137Q135

time

Q136

ω

Q139Q138Q137Q135

time

Q136

(c)

ω

Q139Q138Q137Q135

(a)

(b)

Figure 2: Windowing in RTEC.

or at Q137−ω were retracted at Q137. The thick lines and dots represent the input entities that
arrived at RTEC between Q137 and Q138; some of them took place before Q137. Figure 2(a) also
shows the maximal intervals for the fluents Se and Std that were computed and stored at Q137.

Reasoning at Q138 considers the input entities that took place in (Q138−ω,Q138]. All input
entities that took place before or at Q138−ω are discarded, as shown in Figure 2(b). For durative
input entities that started before Q138−ω and ended after that time, RTEC retracts the sub-
interval up to and including Q138−ω. Figure 2(b) shows the interval of an input entity that is
partially retracted in this way.

Now consider output entity intervals. At Qi some of the maximal intervals computed at Qi−1

might have become invalid. This is because some input entities occurring in (Qi−ω,Qi−1] might
have arrived or been revised after Qi−1: their existence could not have been known at Qi−1.
Determining which output entity intervals should be (partly) retracted in these circumstances
can be computationally very expensive [3]. We find it simpler, and more efficient, to discard
all output entity intervals in (Qi−ω,Qi] and compute all intervals from scratch in that period.
Output entity intervals that have ended before or at Qi−ω are discarded. Depending on the
user requirements, these intervals may be stored in a database for retrospective inspection of the
activities of a system.

In Figure 2(b), the earlier of the two maximal intervals computed for Std at Q137 is discarded
at Q138 since its endpoint is before Q138−ω. The later of the two intervals overlaps Q138−ω (an
interval ‘overlaps’ a time-point t if the interval starts before or at t and ends after or at that
time) and is partly retracted at Q138. Its starting point could not have been affected by input
entities arriving between Q138−ω and Q138 but its endpoint has to be recalculated. Accordingly,
the sub-interval from Q138−ω is retracted at Q138.

In this example, the maximal intervals of Std are determined by computing the union of the
maximal intervals of the two durative input entities shown in Figure 2. At Q138, only the input
entity intervals in (Q138−ω,Q138] are considered. In the example, there are two maximal intervals
for Std in this period as can be seen in Figure 2(c). The earlier of them has its start-point at
Q138−ω. Since that abuts the existing, partially retracted sub-interval for Std whose endpoint
is Q138−ω, those two intervals are amalgamated into one continuous maximal interval as shown
in Figure 2(c). In this way, the endpoint of the Std interval that overlapped Q138−ω at Q137

is recomputed to take account of input entities available at Q138. (In this particular example,

10

it happens that the endpoint of this interval is the same as that computed at Q137. That is
merely a feature of this particular example. Had Std been defined e.g. as the intersection of
the maximal intervals of the two durative input entities, then the intervals of Std would have
changed in (Q138−ω,Q137].)

Figure 2 also shows how the intervals of the simple fluent Se are computed at Q138. Arrows
facing upwards (downwards) denote the starting (ending) points of the intervals of Se. First, in
analogy with the treatment of statically determined fluents, the earlier of the two Se intervals in
Figure 2(a), and its start and endpoints, are retracted. They occur before Q138−ω. The later
of the two intervals overlaps Q138−ω. The interval is retracted, and only its starting point is
kept; its new endpoint, if any, will be recomputed at Q138. See Figure 2(b). For simple fluents,
it is simpler, and more efficient, to retract such intervals completely and reconstruct them later
from their start and endpoints by means of the domain-independent holdsFor rules, rather than
keeping the sub-interval that takes place before Q138−ω, and possibly amalgamating it later with
another interval, as we do for statically determined fluents.

The second step for Se at Q138 is to calculate its starting and ending points by evaluating
the relevant initiatedAt and terminatedAt rules. For this, we only consider input entities
that took place in (Q138−ω,Q138]. Figure 2(c) shows the starting and ending points of Se in
(Q138−ω,Q138]. The last ending point of Se that was computed at Q137 was invalidated in
the light of the new input entities that became available at Q138 (compare Figures 2(c)–(a)).
Moreover, another ending point was computed at an earlier time.

Finally, in order to process Se at Q138 we use the domain-independent holdsFor to calculate the
maximal intervals of Se given its starting and ending points. The later of the two Se intervals
computed at Q137 became shorter when re-computed at Q138. The second interval of Se at Q138

is open: given the input entities available at Q138, we say that Se holds since time t, where t is
the last starting point of Se.

The example used for illustration shows how RTEC performs reasoning. In the following section
we have a closer look at the operation of RTEC, discussing each of its modules.

4 Operation of RTEC

Figure 3 illustrates the architecture of RTEC. In this section, we examine the modules of this
architecture.

4.1 Offline Activities

Before the commencement of online activities, RTEC compiles the event description into a format
that allows for more efficient reasoning. This is an offline process which is transparent to the
user. The compiler is called via the predicate:

?- compileEventDescription(+EventDecription, +Declarations,
-CompiledEventDescription).

The input of this predicate is the event description file (such as Listing 1) and the declarations
file (e.g. Listing 2). The output of this predicate is the compiled event description file which is
subsequently used for online reasoning — see the bottom part (‘offline’) of Figure 3.

The aim of the compilation is to eliminate the number of unsuccessful evaluations of happensAt,
holdsFor and holdsAt, and to introduce additional indexing information. These atoms are
rewritten using specialised predicates, depending on whether they appear in the head or the
body of a rule, whether they concern a simple or a statically determined fluent, and whether
they host an input or an output entity.

11

Forget

Statically
Determined

Fluent
Processing

Input Stream

Compiled Event
Description

Output Stream

OFFLINE

ONLINE

Simple Fluent
Processing

Event
Processing

Forget

Compiler
Event

Description

Declarations

Output Entity Processing

Figure 3: The architecture of RTEC.

When a happensAt predicate appears in the head of a rule in the Event Description, it is con-
verted into happensAtEv. On the other hand, happensAt predicates that appear in the body of a
rule are converted into happensAtIE (for events that are input entities) or happensAtProcessed
(for events that are output entities).

Similarly, the holdsFor predicates appearing in the head of a domain-dependent rule,
i.e. a rule for computing the maximal intervals of statically determined fluents, are rewrit-
ten using the predicate holdsForSDFluent. holdsFor predicates appearing in the body
of a rule are translated into holdsForProcessedSimpleFluent, holdsForProcessedIE or
holdsForProcessedSDFluent predicates, according to the fluent type they concern: simple
fluents, input (statically determined) fluents, and output statically determined fluents, respec-
tively.

In contrast to the happensAt and holdsFor predicates, holdsAt does not appear in the head of a
rule. However, it may appear in the body of initiatedAt and terminatedAt rules; in the case of
a simple fluent, the body holdsAt predicate is converted to a holdsAtProcessedSimpleFluent,
whereas in the case of input or output statically determined fluent, it is converted into a
holdsAtProcessedIE or a holdsAtProcessedSDFluent, respectively.

4.2 Online Activities

As already mentioned, reasoning is performed by means of continuous query processing, and
concerns the computation of the maximal intervals of output entities, i.e. the intervals of simple
and statically determined fluents, as well as the time-points in which events occur. At each query
time Qi, all input entities that took place before or at Qi−ω are discarded/‘forgotten’ (see the
‘forget’ box in Figure 3). Then, RTEC computes and stores the intervals of each output entity
(see ‘output entity processing’ in Figure 3). Recall that attention is restricted to hierarchical
event descriptions. The form of the hierarchy is specified by the event description developer in
the declarations using the cachingOrder predicate (see Section 2.2). RTEC adopts a caching
technique where the fluents and events of the event description are processed in a bottom-up
manner; this way, the intervals (resp. time-points) of the fluents (events) that are required for
the processing of a fluent (event) of level n will simply be fetched from the cache without the
need for re-computation. In the following sections we discuss the processes of ‘forgetting’, fluent

12

and event processing.

4.2.1 Forget Mechanism

At each query time Qi, RTEC first discards — ‘forgets’ — all input entities that end before or
on Qi−ω. For each input entity available at Qi, RTEC:

• Completely retracts the input entity if the interval attached to it ends before or onQi−WM .

• Partly retracts the interval of the input entity if it starts before or on Qi−WM and ends
after that time. More precisely, RTEC retracts the input entity interval (Start,End) and
asserts the interval (Qi−ω,End).

4.2.2 Statically Determined Fluent Processing

After ‘forgetting’ input entities, RTEC computes and stores the intervals of each output entity.
At the end of reasoning at each query time Qi, all computed fluent intervals are stored in the
computer memory as simpleFPList and sdFPList assertions. I in sdFPList(Index, std, I,

PE) (resp. simpleFPList(Index, se, I, PE)) represents the intervals of statically determined
fluent Std (simple fluent Se) starting in (Qi−ω,Qi], sorted in temporal order. PE stores the
interval, if any, ending at Qi−ω. The first argument in sdFPList (simpleFPList) is an index
that allows for the fast retrieval of stored intervals for a given fluent even in the presence of
very large numbers of fluents. When the user queries the maximal intervals of a fluent, RTEC
amalgamates PE with the intervals in I, producing a list of maximal intervals ending in [Qi−ω,Qi]
and, possibly, an open interval starting in [Qi−ω,Qi].

Algorithm 1 processSDFluent(Std, Qi−ω)
1: indexOf(Std, Index)

2: retract(sdFPList(Index, Std, OldI, OldPE))

3: amalgamate(OldPE, OldI, OldList)

4: if Start,End:[Start,End) ∈ OldList ∧ End>Qi−ω ∧ Start=< Qi−ω then
5: PE:=[(Start,Qi−ω+1)]
6: else
7: PE:=[]

8: end if
9: holdsFor(SF, I)

10: assert(sdFPList(Index, SF, I, PE))

Listing 1 shows the pseudo-code of processSDFluent, the procedure for computing and storing
the intervals of statically determined fluents. First, RTEC retrieves from sdFPList the maximal
intervals of a statically determined fluent Std computed at Qi−1 and checks if there is such
an interval that overlaps Qi−ω (lines 1–8). In Listing 1, OldI represents the intervals of Std
computed at Qi−1. These intervals are temporally sorted and start in (Qi−1−ω,Qi−1]. OldPE

stores the interval, if any, ending at Qi−1−ω. RTEC amalgamates OldPE with the intervals in
OldI, producing OldList (line 3). If there is an interval [Start,End) in OldList that overlaps
Qi−ω, then the sub-interval [Start,Qi−ω+1) is retained. See PE in Listing 1. All intervals in
OldList after Qi−ω are discarded.

At the second step of processSDFluent, RTEC evaluates holdsForSDFluent rules to com-
pute the Std intervals from input entities recorded as occurring in (Qi−ω,Qi] (line 9). Prior to
the run-time recognition process, RTEC has transformed holdsFor rules concerning statically
determined fluents into holdsForSDFluent rules, in order to avoid unnecessary holdsFor rule
evaluations (see Section 4.1 for the compilation stage). The intervals of Std computed at the pre-
vious query time Qi−1 are not taken into consideration in the evaluation of holdsForSDFluent
rules. The computed list of intervals I of Std, along with PE, are stored in sdFPList (line

13

10), replacing the intervals computed at Qi−1. (Recall that, when the user queries the maximal
intervals of a fluent, RTEC amalgamates PE with the intervals in I.)

4.2.3 Simple Fluent Processing

processSimpleFluent, the procedure for computing and storing simple fluent intervals, also has
two parts. First, RTEC checks if there is a maximal interval of the fluent Se that overlaps Qi−ω.
If there is such an interval then it will be discarded, while its starting point will be kept. Second,
RTEC computes the starting points of Se by evaluating initiatedAt rules, without considering
the starting points calculated at Qi−1. The starting points are given to holdsForSimpleFluent,
into which holdsFor calls computing the maximal intervals of simple fluents are translated at
compile time. This program is defined as follows:

holdsForSimpleFluent(SP, Se, I) :-
SP <> [],
computeEndingPoints(Se, EP),
makeintervals(SP, EP, I).

If the list of starting points is empty (first argument of holdsForSimpleFluent) then the empty
list of intervals is returned. Otherwise, holdsForSimpleFluent computes the ending points EP
of the fluent by evaluating terminatedAt rules, without considering the ending points calculated
at Qi−1, and then uses makeIntervals to compute its maximal intervals given its starting and
ending points.

time

0

Figure 4: Maximal interval computation for simple fluents.

Figure 4 illustrates the process of makeIntervals. The black lines and dots indicate streams
of durative and instantaneous input entities. The green dots denote starting/initiating points
while the red dots indicate ending/terminating points. Note that initiatedAt(F=V, T) does
not necessarily imply that F<>V at T. Similarly, terminatedAt(F=V, T) does not necessarily
imply that F=V at T. makeIntervals finds all time-points Ts at which the fluent Se is initiated,
and then, for each Ts, it computes the first time-point Tf after Ts at which Se is terminated.
Suppose, for example, that Se is initiated at time-points 10 and 20 and terminated at time-points
25 and 30 (and at no other time-points). In that case Se holds at all T such that 10 < T ≤ 25.

4.2.4 Event Processing

processEvents is the procedure for computing and storing the time-points in which output
events occur. In brief, processEvents first retracts all computed time-points of the output event
in (Qi−ω,Qi], and then evaluates happensAtEv rules into which domain-dependent happensAt
calls are translated at compile time.

5 Further Information

The repository of RTEC — https://github.com/aartikis/RTEC — includes event de-
scriptions of two application domains, activity recognition and event recognition for city trans-
port management, as well as datasets and execution scripts for experimentation.

14

References

[1] Elias Alevizos, Alexander Artikis, Kostas Patroumpas, Marios Vodas, Yannis Theodoridis,
and Nikos Pelekis. How not to drown in a sea of information: An event recognition approach.
In 2015 IEEE International Conference on Big Data, Big Data 2015, Santa Clara, CA, USA,
October 29 - November 1, 2015, pages 984–990, 2015.

[2] Alexander Artikis, Marek J. Sergot, and Georgios Paliouras. Run-time composite event
recognition. In Proceedings of the Sixth ACM International Conference on Distributed Event-
Based Systems, DEBS 2012, Berlin, Germany, July 16-20, 2012, pages 69–80, 2012.

[3] Alexander Artikis, Marek J. Sergot, and Georgios Paliouras. An event calculus for event
recognition. IEEE Trans. Knowl. Data Eng., 27(4):895–908, 2015.

[4] Alexander Artikis, Matthias Weidlich, Avigdor Gal, Vana Kalogeraki, and Dimitrios Gunop-
ulos. Self-adaptive event recognition for intelligent transport management. In Proceedings of
the 2013 IEEE International Conference on Big Data, 6-9 October 2013, Santa Clara, CA,
USA, pages 319–325, 2013.

[5] Alexander Artikis, Matthias Weidlich, François Schnitzler, Ioannis Boutsis, Thomas Liebig,
Nico Piatkowski, Christian Bockermann, Katharina Morik, Vana Kalogeraki, Jakub Marecek,
Avigdor Gal, Shie Mannor, Dimitrios Gunopulos, and Dermot Kinane. Heterogeneous stream
processing and crowdsourcing for urban traffic management. In Proceedings of the 17th
International Conference on Extending Database Technology, EDBT 2014, Athens, Greece,
March 24-28, 2014., pages 712–723, 2014.

[6] Robert A. Kowalski and Marek J. Sergot. A logic-based calculus of events. New Generation
Comput., 4(1):67–95, 1986.

[7] D. Luckham and R. Schulte. Event processing glossary — version 1.1. Event Processing
Technical Society, July 2008.

[8] Kostas Patroumpas, Alexander Artikis, Nikos Katzouris, Marios Vodas, Yannis Theodoridis,
and Nikos Pelekis. Event recognition for maritime surveillance. In Proceedings of the 18th
International Conference on Extending Database Technology, EDBT 2015, Brussels, Belgium,
March 23-27, 2015., pages 629–640, 2015.

[9] T. Przymusinski. On the declarative semantics of stratified deductive databases and logic
programs. In Foundations of Deductive Databases and Logic Programming. Morgan, 1987.

15

