
Machinery for Elaborating Action {

Preliminary Report

Eyal Amir

Department of Computer Science,

Gates Building, 2A wing

Stanford University, Stanford, CA 94305-9020, USA

eyala@cs.stanford.edu

April 15, 1997

Abstract

We present the problem of Elaborating Action as a sub-problem of

Elaboration Tolerance, and demonstrate a proposed solution. Knowl-

edge Representations have the Elaboration Tolerance Problem, i.e.,

that slight variations of the knowledge result in signi�cant changes to

the original representation. Action Elaboration is a proposed direc-

tion in the theories of action scope. The problem of Elaborating Ac-

tion is that of modifying properties of actions (such as preconditions

and e�ects). Action Elaboration rei�es the elaboration (the change),

and introduces a new action for every elaboration that we add. The

reasoning about the properties of the new action is then done using

Elaboration Axioms.

1 Introduction

Our long term program deals with the Elaboration Tolerance of formalisms of

knowledge. Elaboration Tolerance is a term coined by McCarthy in [McC93a]

and used ever since in describing one of the more fundamental problems that

AI and Computer Science research faces.

1



1 INTRODUCTION

The motivation of Elaboration Tolerance is that small changes in one's

knowledge/problem, should result in small changes to the representation of

that knowledge/problem. One direction that we consider promising is the

pursuit of formalisms that allow elaboration without the need for manual

amendments/retraction of axioms/facts. The notion of Elaboration in this

context is admittedly vague, but we found the current work to contribute to

clearing it a bit.

An Elaboration of Action is any change in properties of a given action,

that we can put explicitly in the system. Such properties are not necessarily

exhibited as values of functions over that action, but rather as generic axioms

including that action. In this paper, whenever we refer to adding/dropping

preconditions/e�ects of an action we turn to the possibility of doing so using

only the addition of formulas (no retraction/modi�cation is allowed). We

will use the nonmonotonic property of circumscription ([McC86]) to allow

for changes in such fasion.

The current work is motivated by a developed formalization of the Mis-

sionaries and Cannibals Problem (MCP) presented in [MA96a], [MA96b],

and [Ami97]. We begin with an exerpt from these works, and describe what

kinds of elaborations we require. We then show how existing techniques let

us absorb some elaborations but not others, and then proceed to describe

our proposed formalism.

In our proposed formalism, instead of adding axioms regarding the action

on which we wish to elaborate, we create a new action that inherits properties

from the original action. We can then specify any change that we wish with

regard to that new action. The technique we apply uses Rei�ed Elaborations

and Elaboration Axioms to reason about the properties of the new action.

The last complication we consider is related to our initial motivation: In the

MCP, we wish to prove that under some conditions (namely four missionaries

and four cannibals), the problem is not solvable. For that we need to ignore

the original action (the one before the elaboration), and we deal with that

problem in some length.

Recently, [Cos97] argued that there is a tradeo� between the ability to

add preconditions and to drop them, and a similar tradeo� with regard to

adding and dropping e�ects.

Another somewhat related topic is Reiter's theory of primitive actions

(cf [Rei91] ). Roughly speaking, an action is primitive if it is not de�ned in

terms of other actions. Our approach has something of that 
avor of relations

between actions, but in a di�erent manner. We deal with basic actions as



2 THE MISSIONARIES AND CANNIBALS PROBLEM

those that have no further generalization (i.e., they are not elaborations to

any other action), while Reiter refers to primitive actions as actions that

cannot be divided into sub-actions.

We take the convension that whenever we refer to objects in our model,

upper case english letters denote constant object symbols, and lower case

english letters denote object variables. For background material on situation

calculus and theories of Action, the reader is refered to [Lif93], [McC90] and

[SS94].

2 The Missionaries and Cannibals Problem

The missionaries and cannibals problem (abbreviated MCP) is stated as fol-

lows:

Three missionaries and three cannibals come to a river

and �nd a boat that holds two. If the cannibals ever out-

number the missionaries on either bank, the missionaries

will be eaten.

How shall they cross?

The two problems that motivate us here, with regard to the MCP, are to

be able to prove that the MCP is solvable for three missionaries and three

cannibals (we denote it MCP (3; 3)), and is not solvable for the respective

groups being of cardinality four and four (denotedMCP (4; 4)). The �rst one

requires us to reason about e�ects of actions, while the second one requires

us to also reason about the possible actions at our disposal.

A compact formalism for the MCP is detailed in [Ami97] and a more

elaborate formalism with proofs is presented in [MA96b]. Here we repro-

duce some of the details that will serve us in understanding the di�culties

encountered with Elaboration Tolerance.

Our language will include (besides the constants of the above framework)

the following object constants: M , C, Boat, Banks, which are the sets of

Missionaries and Cannibals, the Boat, and the set of Banks, respectively.

For simpli�cation, we restrict ourselves to actions of the form

A(group; bank) = using tool(Boat; go(group; bank))



2 THE MISSIONARIES AND CANNIBALS PROBLEM

Notice that the Boat is �xed, and we therefore implicitly assume that the

boat is needed, that there is exactly one, and that there are no other actions

possible. We further restrict the set of actions to be

Actions(s) =

(

A(group; bank) j

bank 2 Banks ^

group � inhabitants(opp(bank); s)

)

(1)

Let A be a macro for A(group; bank). We list the preconditions and

e�ects of A.

Axioms related to going

:Abq(A; s)! Can(A; s)

Can(A; s)! A 2 Actions(s)

Can(A; s)! 0 < card(group)

Can(A; s)! (8p 2 group)(location(p; s) = opp(bank))

Can(A; s)! (8p 2 group)(location(p; Result(A; s)) = bank)

(2)

Axioms related to the boat

Can(A; s)! location(Boat; Result(A; s)) = bank

Can(A; s)! card(group) � capacity(Boat)

Can(A; s)! water-crosser(Boat)

Can(A; s)! available(Boat; group; s)

(3)

To demonstrate our contribution, the above details will su�ce, but for

clarity we will note that here we listed only some of factors in the story (for

example, we ignored the condition on the cannibals not outnumbering the

missionaries).

With this framework, we are able to show that theMCP (3; 3) is solvable

and that MCP (4; 4) is not (see [Ami97] or [MA96b] for details). The solv-

ability of the �rst is a simple exercise in using the quali�cation and frame

solutions (whichever one you take). For each situation we encounter we calcu-

late the exact locations of each of the missionaries and cannibals, satisfy the

preconditions for the next action, apply that action, and get a new situation

for which the process continues.

Proving that MCP (4; 4) is not solvable requires us to reason about the

possible actions. Since we explicitly limited our actions to those of the form



3 A POSSIBLE CONSIDERATION OF ELABORATION OF ACTIONS

A(group; bank), this is also a not-so-complicated result (see [MA96b]). We

reason on the accessible situations (by means of applying actions to get to

new situations) and their properties. Since we know exactly what are actions

may be, we can get a quite limited family of situations, grouped according

to their FrameFluent values. None of these groups has the required end

condition, and thus the proof follows.

3 A possible consideration of elaboration of

actions

In [Cos97] it is shown that some elaborations of actions can be viewed as

adding or weakening preconditions and e�ects. We call such elaborations

Direct Elaborations. It is argued in [Cos97] that there seem to be a tradeo�

between the ability to add and drop e�ects, and the same goes with the

ability to add and drop preconditions.

We divide Direct elaborations into four categories:

1. Adding (strengthening) preconditions. Example: oars are needed for

the operation of the boat.

2. Adding e�ects/postconditions. Example: Each cross of the river makes

the cannibals more hungry.

3. Weakening/removing preconditions. Example: Actually the boat does

not need oars, because it is a motorboat.

4. Weakening/removing e�ects/postconditions. Example: The action might

not succeed (undeterministic e�ects).

Some formalizations of action (e.g., [LR94],[KL95]) support adding e�ects

and preconditions in an easy manner. For our example this is done as follows

(we use the same macro we used above for A):

Oars are needed for the operation of the boat

Can(A; s)! has oars(Boat)

Each cross of the river makes the cannibals more hungry

Can(A; s)! 8c 2 C hunger(c; Result(A; s)) > hunger(c; s)



4 ELABORATION OF ACTIONS

After such additions to the theory, the solutions to the Quali�cation and

Persistence problems remains the same, and thus the proof of MCP (3; 3)

and :MCP (4; 4)

1

is carried out using the same techniques.

The problem that we tackle is that, as shown in [Cos97], theories of action

allow for only one of the two in the add-drop tradeo�. Retracting or changing

previously asserted e�ects or preconditions, without actually pulling the right

part of the formula out, is impossible.

The rest of the paper is dedicated to showing that our proposed formalism

does allow for all the above kinds of elaborations of actions, and others.

4 Elaboration of actions

Let A

0

= go(group; bank) be the action of crossing the river (no boat is men-

tioned or assumed). We are motivated by the observation that the action

using tool(Boat; A

0

) is an elaboration of A

0

, and that we can have both ac-

tions (A

0

and its elaboration) as two separate actions in the same formalism.

Having that intuition in mind we can see how the idea proceeds: Before we

mentioned the elaboration of A

0

, we had a characterization of preconditions

and e�ects of A

0

, and after the elaboration there is no reason to change our

mind with regard to A

0

. On the other hand the action using tool(Boat; A

0

)

is a \fresh" action, on which we initially know nothing. Our task now will

be to show how we can reason about this new action's properties

2

.

4.1 Rei�ed elaborations

We take the approach of reifying the elaborations, i.e., that every elaboration

has a name. We then use a function called elaborate to map actions and

elaboration names to elaborated actions. The properties of the new action

are then derived from the original action and some other assertions, using

generic or special-purpose axioms. In this framework and henceforth we use

set theoretic notation, but refer to the corresponding high-order logic syntax.

1

i.e., proving that MCP (4; 4) is not solvable.

2

Notice that this elaboration does not seem to �t easily into one of the four categories

described above (e.g., adding preconditions and postconditions). On the other hand, it

seems to give a hint at the true nature of elaboration tolerance. In a sense it is a new

action, and thus we can say anything we want about it, preserving what was said previously

about the original action a.



4 ELABORATION OF ACTIONS 4.1 Rei�ed elaborations

De�nition 4.1 The set of elaboration names of an action a (these are the

only elaborations possible for it) is denoted by Elaborations(a). elaborate(a; e)

is a mapping from an action a and an elaboration e 2 Elaborations(a) to

the elaborated action elaborate(a; e).

We can equivalently de�ne elaborate(a; e) to be a partial function from

actions and elaborations to actions, setting

Elaborations(a) = fe j elaborate(a; e) is de�nedg

Example The object using-boat is an elaboration of go(group; bank).

The elaborated action is then elaborate(go(group; bank); using-boat).

Note that the elaborations of an action do not necessarily relate to the

set of combined elaborations for that action. The set of elaborations does not

represent the set of all possible successive elaborations to the given action

(one should keep in mind that after one elaboration is applied to an action,

we have a new, di�erent, action).

Example The following is a possible state of a�airs:

Elaborations(go(Group; Lb)) = fusing tool(Boat)g

Elaborations(elaborate(go(Group; Lb);

using tool(Boat))) = fusing tool(One-oar)g

A good question is, where do we get this set of elaborations from? Let A

have a new elaboration E. In that case, the following axiom is added

E 2 Elaborations(A)

and we then assume that the only elaboration available for an action, are

those that are mentioned, e.g., by applying the circumscription policy

Circ �ae elaborate(a; e) (4)

The bene�ts from reifying elaborations will be detailed in the following

sections. Notice that we sometimes write using tool(boat; go(group; bank))

for elaborate(go(group; bank); using tool(boat)), but remember that we refer

to the latter.



4 ELABORATION OF ACTIONS 4.2 Elaboration Axioms

4.2 Elaboration Axioms

The following elaboration schema for an action a into an elaborated action

a

0

= elaborate(a; e) seems to give us some of the dynamics we need:

property(a

0

) � ((property(a) ^ ') _  ) (5)

where ' and  are formulas describing the change between the relative

propeties of a and a

0

.

Example Can(a

0

; s) � (Can(a; s) ^ ') _  with  = False and a

0

=

elaborate(a; using tool(boat)) ' = precond(using tool(boat)).

It serves us in three ways:

1. Elaborating action in the manner described above (i.e., adding/weakening

pre/postconditions), is done more simply, and explicitly.

2. Speci�cally distinguishing the �rst action a from its elaboration, by

saying that it is an elaboration. This way we get that an action is a

series of elaborations, each is adding its own changes ';  .

3. We can reason about the elaboration process itself, and the possible

elaborations of an action (e.g., the possible ways of transfering the

group to the other bank of the river).

For each possible elaboration, we form a set of axioms that de�nes the

new elaborated action, possibly in terms of the original action, or some other

features of the system. It also lets us create Common Sense Axioms about

the elaboration schemas (the elaborations with free variables). We describe

this issue brie
y, and leave most of it for later work.

The following is a list of examples of possible elaborations.

1. using tool(tool) - such as using the boat to cross the river.

2. when(time) - such as specifying the exact time for an action to com-

mence.

3. at(location) - specifying location for the action.

4. with-stages(stages) - breaking the action into stages (changing gran-

ularity).

5. while(action2) - concurrency statement.



4 ELABORATION OF ACTIONS 4.3 MCP (3; 3) is still solvable

Of course, some of the Common Sense Axioms here are di�cult to get at

(take for instance the concurrency of actions problem). It does, though, give

us a very expressive language for granularity control, and as we hope to show

in the future, a �ne mean for expressing relations between actions.

Let us develop some of the common sense axioms for the elaboration of

using a tool.

Can(elaborate(action; using tool(tool)); s) =) Can(action; s)

Can(elaborate(action; using tool(tool)); s) =)

accessible(tool; Actor(action); s)

location(tool; s) = location(actor; s) =) accessible(tool; actor; s)

Can(elaborate(a; using tool(tool)); s) =) usable(tool; s)

:abq

u

(tool; s) =) usable(tool; s)

Circ accessible

Circ abq

u

var usable

(6)

4.3 MCP (3; 3) is still solvable

Let us rewrite (2) and (3) with our new method.

Let A

0

; A be macros for go(group; bank); using(Boat; go(group; bank)) re-

spectively. We list the preconditions and e�ects of A

0

; A.

Axioms related to going

:Abq(A; s)! Can(A; s)

Can(A

0

; s)! A

0

2 Actions(s)

Can(A

0

; s)! 0 < card(group)

Can(A

0

; s)! (8p 2 group)(location(p; s) = opp(bank))

Can(A

0

; s)! (8p 2 group)(location(p; Result(A

0

; s)) = bank)

(7)

Axioms related to the boat

Can(A; s)! location(Boat; Result(A; s)) = bank

Can(A; s)! card(group) � capacity(Boat)

Can(A; s)! water-crosser(Boat)

Can(A; s)! available(Boat; group; s)

(8)



5 MCP (4; 4) IS STILL UNSOLVABLE

Elaboration related axioms

using tool(Boat) 2 Elaborations(A

0

)
(9)

Using these axioms and (6) we can prove MCP (3; 3). Notice that (6) is

used to have inheritance of preconditions from A

0

to A). Also notice that

the axioms (7) and (8) now refer to di�erent actions: some for the action

without the boat, and some to the action that includes the boat.

5 MCP (4; 4) is still unsolvable

This section is dedicated to the problem of restricting the set of actions

possible in our problem. This restriction is essential if we wish to prove

that MCP (4; 4) is not solvable. Coming back to our example with A

0

=

go(group; bank) and using tool(Boat; A

0

), we have two actions that we need

to consider: the original A

0

, and the elaboration using tool(Boat; A

0

). The

motivation that will lead us through this section is that we would like to

ignore A

0

when reasoning about the problem, since its elaboration should

take its place.

5.1 Preliminary observations

We can use the fact that the actions are ordered using the elaborate function,

to take the most elaborate as our chosen one.

De�nition 5.1 We de�ne the relation <

e

.

8e 2 Elaborations(a) (elaborate(a; e) <

e

a)

9a

3

(a

1

<

e

a

3

^ a

3

<

e

a

2

) =) a

1

<

e

a

2

(10)

Also, a

1

�

e

a

2

() a

1

= a

2

_ a

1

<

e

a

2

.

Notice that in order to complete <

e

we have to use the second order

circumscription formula to minimize <

e

with

Circ[�;<

e

] (11)

where � is the conjunction of (10), which forces <

e

be the transitive closure

of Elaborations. Otherwise, we will not be able to prove that the chosen

action (below) is the most elaborate one.



5 MCP (4; 4) IS STILL UNSOLVABLE 5.2 The most elaborate action

Example Let a

0

= elaborate(a; using tool(Boat)).

a

0

<

e

a

elaborate(a

0

; using tool(one-oar)) <

e

a

Figure 1 shows an example situation more clearly.

go(group, Lb)

< >

<

using(Boat, (go(group, Lb)))

using(one-oar, using(Boat, (go(group, Lb))))

using(Bridge, (go(group, Lb)))

Figure 1: di�erent levels of elaborations of an action

Some observations are straightforward from this de�nition. First, in the

case that only a single minimal (<

e

-wise) action exists, picking that one might

do. Also, if we have several minimal actions, they might all be available (e.g.,

elaborate(a; using tool(one-oar)) and elaborate(a; using tool(two-oars))). As

mentioned above, the situation is not that simple (although for now we will

assume so), and we discuss that in more length later.

5.2 The most elaborate action

Let us give the choice of a minimum action, with regard to <

e

, a formal

treatment.

De�nition 5.2 Let a 2 Actions. a is Basic, if it has no generalization

(according to <

e

).

Basic(a)

def

=
a 2 Actions ^ (:9a

0

2 Actions (a <

e

a

0

))

a is Minimal, if it has no elaboration.

Minimal(a)

def

= a 2 Actions ^ (8a

0

2 Actions):(a

0

<

e

a)



6 EMBEDDING CHOSEN IN THE SELECTED ACTION

FRAMEWORK

Example Figure 1 is an example of a singleBasic action go(group; Lb)

and twominimal actions using tool(one-oar; using tool(Boat; go(group; Lb)))

and using tool(Bridge; go(group; Lb)).

Finally, given an arbitrary action, we would like to say that there is a

set of chosen elaborations of it. This set de�nes the applicable actions for

a given situation. In this setting, we choose the set of minimal actions to

be that chosen set. Notice, though, that the rest of the treatment regarding

choice does not depend on the speci�c selection for its de�nition (we keep

chosen dependent on s for generality in future treatment).

chosen(a; s) () Minimal(a) (12)

6 Embedding chosen in the selected action

framework

6.1 Adding Elaboration Axioms

In a developed system (like the MCP in [MA96a]), there will be many variants

and elaborations of the same Basic action. In order to make sure that only

chosen actions are actually applicable, we need to apply some changes to

the action framework dealt with. In the framework of action detailed above,

the following general axioms describe the relations among actions and their

elaborations

can(elaborate(a; e); s) =) ((can(a; s) ^ '

Pre

a;e

(a; s)) _  

Pre

a;e

(a; s))

Applicable(a; s) () (chosen(a; s) ^ can(a; s))

Applicable(a; s) =) Postconds(a; s)

Postconds(elaborate(a; e); s) =)

(Postconds(a; s) ^ '

Post

a;e

(a; s)) _  

Post

a;e

(a; s))

(13)

The motivation behind these axioms is three-fold:

� We want to let only chosen actions have any possible e�ect, this way

neutralizing the others.

� We want to use inheritance (the simple case), or (5) (the more com-

plicated case) in infering from an action's e�ects and preconditions, on



6 EMBEDDING CHOSEN IN THE SELECTED ACTION

FRAMEWORK 6.2 Examples

its elaboration's e�ects and preconditions. For that we use the ''s and

 's as inhibitors and conceders respectively.

� We want to keep the solution to the Frame Problem intact.

Notice that we changed the language to include Applicable, and that only

Applicable actions have results.

3

Now, we replace the e�ect axioms of the

form Can(a; s) =) F (Result(a; s)) with

Applicable(a; s) =) F (Result(a; s))

6.2 Examples

In the beginning of this paper we said that we have several types of Direct

elaborations. Let us see how we incorporate them in our new framework. For

each change we give an example and added sentences. Let A(group; bank) =

using tool(Boat; go(group; bank)).

Strengthening e�ects We could do that even with the original formalism.

Example: crossing the river makes the group happy.

Applicable(A(group; bank); s) =) Happy(group; Result(a; s))

Strengthening preconditions We could do that even with the original

formalism. Example: The boat needs oars for its operation.

using tool(Oars) 2 Elaborations(A(group; bank))

Can(using tool(Oars; A(group; bank)); s) =)

Can(A(group; bank); s) ^ in(Oars; Boat)

Weakening preconditions Example: The boat is actually a motorboat,

and does not require oars.

is-motorboat 2 Elaborations(A(group; bank))

3

In this schema, we are submitted to the inherent properties of the underlying action

formalism. In this framework, applying an action that is not applicable in a situation,

leads to a ghost-situation that is equivalent (in terms of 
uent values) to the original

situation.



7 DISCUSSION

Weakening/removing e�ects/postconditions Example: The boat has

a leak and therefore using it does not lead to the expected consequence

(of the passengers being on the other bank of the river).

broken(Boat) 2 Elaborations(A(group; bank))

That will do, because the new action does not have the previous e�ect

(of transfering the group to the other bank).

7 Discussion

We presented the problem of elaborating actions and proposed the method

of Action Elaboration as achieving more Elaboration Tolerance. We began

with a presentation of a simple formalization of the MCP. We then presented

the notion of a rei�ed elaboration, and showed that after elaborating in the

proposed method, we can still prove MCP (3; 3) and :MCP (4; 4).

With regard to the last paragraph, Fangzhen Lin noticed that the last

example hints on a need for a default elaboration axiom, something in the

form of (5). With such an axiom we can elaborate an action without changing

any of its characteristics (we can do it right now as well, but we have to say

that elaboration axiom explicitly). This is a new form of knowledge that we

can now embody in our formalism, due to the rei�cation of elaborations.

Lin also noticed that our Elaboration Axiom (5) is somewhat oriented

towards precondition elaboration than e�ects. It is our view that this lat-

ter point is much dependent on the exercised action formalism, but it is a

problem that must be addressed if we are to get Elaboration Tolerance.

The choice of chosen actions is dependent on the goal of our reasoning.

Sometimes we don't even have to \choose" a speci�c action/action level, but

rather change granularities dynamically (e.g., hierarchical planning).

Our motivation for selecting the most elaborate action to be chosen ,is

that our goal is to reason about the solvability of a problem. This is why

we have to make sure that unwanted actions are no Applicable (otherwise

we might be able to cross the river without using the boat). This choice

of ours relied on some implicit assumptions, and some quesions arise such

as: What happens if there is more than one minimal? What happens in

the situation where an internal node a is also a feasible solution? Should we

allow such a situation? Are there elaborations that are relevant/valid only

for some situations and some contexts? Do we obey speech acts, saying that



9 ACKNOWLEDGEMENTS

if something is mentioned (e.g., as an elaboration), it is of importance? Is

there any signi�cance to the order of elaborations?

One surprising bene�t from our approach is the ability to treat granularity

directly. It is easy to see how the granularity of actions can be varied accross

the theory without too complicated notations, using an elaboration such as

with-stages(stages).

The techniques applied in this work resemble both theories of Context (cf

[McC93b]) and of Inheritance. In this preliminary work we do not explore

these relationships, but the use of our function elaborate is very similar to

the elaboration of contexts into other contexts, although here we deal with

it in a quite restricted scope. Inheritance is also clearly embodied in our

Elaboration Axioms, and we expect that Lin's note with regard to default

elaboration axiom will prove to be closely related with this issue.

8 Future Work

Many directions for further work are evident. The �rst is applying it to a

developed theory, and creating more common sense axioms. Applications of

context, attachments to the elaboration (such as the purpose of the elabora-

tion), and other chosen formula formalizations, are also immediate directions.

A lesson we drew from this work is that di�erent action formalisms realize

elaborations di�erently, and we expect to use this lesson in devising new

action formalisms that will be more elaboration tolerant. Our hope is that

this direction of research will lead to better understanding of Elaboration

Tolerance, and to development of its theory. This issue is our main goal.

9 Acknowledgements

John McCarthy, Tom Costello and Sasa Buvac came with the many examples

of elaborations. McCarthy also came up with the �rst formalization of the

missionaries and cannibals that we used as a basis for our work. We owe

special thanks to Vladimir Lifschitz, Avi Pfe�er and Fangzhen Lin for reading

and making some important comments on drafts of this paper. We also wish

to thank the anonymous referees for their many important notes and insights.

This research was supported by an ARPA (ONR) grant N00014-94-1-0775.



REFERENCES REFERENCES

References

[Ami97] Eyal Amir. Formalizing Action using Set Theory and Pointwise

Circumscription. In NRAC-97', 1997.

[Cos97] Tom Costello. Beyond minimizing change. In Proceedings of

AAAI-97, 1997.

[KL95] G. N. Kartha and V. Lifschitz. A simple formalization of actions

using circumscription. In Proceedings of the Fourteenth Interna-

tional Joint Conference on Arti�cial Intelligence, 1995.

[Lif93] Vladimir Lifschitz. Circumscription. In J.A.Robinson D.M. Gab-

bay, C.J.Hogger, editor, Handbook of Logic in Arti�cial Intelli-

gence and Logic Programming, Volume 3: Nonmonotonic Reason-

ing and Uncertain Reasoning. Oxford University Press, 1993.

[LR94] Fangzhen Lin and Raymond Reiter. State constraints revisited.

Journal of Logic and Computation, Special Issue on Actions and

Processes, 1994.

[MA96a] John McCarthy and Eyal Amir. Missionaries and Can-

nibals: Making it Elaboration Tolerant. http://www-

formal.stanford.edu/eyal/nmr/m4.ps, 1996.

[MA96b] John McCarthy and Eyal Amir. Working through the Missionaries

and Cannibals. http://www-formal.stanford.edu/eyal/nmr/m4-

nmr3.ps, 1996.

[McC86] John McCarthy. Applications of Circumscription to Formaliz-

ing Common Sense Knowledge. Arti�cial Intelligence, 28:89{116,

1986. Reprinted in [McC90].

[McC90] John McCarthy. Formalization of common sense, papers by John

McCarthy edited by V. Lifschitz. Ablex, 1990.

[McC93a] John McCarthy. History of circumscription. Arti�cial Intelligence,

59(1):23{26, 1993.

[McC93b] John McCarthy. Notes on Formalizing Context. In IJCAI-93,

1993. Available on http://www-formal.stanford.edu/jmc/.



REFERENCES REFERENCES

[Rei91] R. Reiter. The frame problem in the situation calculus: A simple

solution (sometimes) and a completeness result for goal regression.

In V. Lifschitz, editor, Arti�cial Intelligence and Mathematical

Theory of Computation, pages 359{380. Academic Press, 1991.

[SS94] Erik Sandewall and Yoav Shoham. Nonmonotonic Temporal Rea-

soning. In D.M. Gabbay, C.J.Hogger, and J.A.Robinson, editors,

Handbook of Logic in Arti�cial Intelligence and Logic Program-

ming, Volume 4: Epistemic and Temporal Reasoning. Oxford Uni-

versity Press, 1994.


