
1

An Abductive Event Calculus Planner

Murray Shanahan

Department of Electrical and Electronic Engineering,
Imperial College,

Exhibition Road, London SW7 2BT,
England.

m.shanahan@ic.ac.uk

May 1998
Revised April 1999

2nd revision September 1999

Abstract
In 1969 Cordell Green presented his seminal description of planning as theorem
proving with the situation calculus. The most pleasing feature of Green's account was
the negligible gap between high-level logical specification and practical
implementation. This paper attempts to reinstate the ideal of planning via theorem
proving in a modern guise. In particular, the paper shows that if we adopt the event
calculus as our logical formalism and employ abductive logic programming as our
theorem proving technique, then the computation performed mirrors closely that of a
hand-coded partial-order planning algorithm. Soundness and completeness results for
this logic programming implementation are given. Finally the paper shows that, if we
extend the event calculus in a natural way to accommodate compound actions, then
using the same abductive theorem proving techniques we can obtain a hierarchical
planner.

Introduction
In 1969, Green offered a logical characterisation of planning couched in terms of the
situation calculus, in addition to an implementation based on a resolution theorem
prover [Green, 1969]. What makes Green’s treatment so attractive is the close
correspondence between implementation and specification. The very same axioms that
feature in the formal description of the planning task form the basis of the
representation deployed by the implemented planner, and each computation step
performed by the planner is a step in the construction of a proof that a suitable plan
exists.

However, Green’s seminal work, though much admired, has had little impact on
subsequent work in planning, owing to the widespread belief that a theorem prover
cannot form the basis of a practical planning system. The following quote from
[Russell & Norvig, 1995] exemplifies the widely held belief that planning via theorem
proving is impractical.

Unfortunately a good theoretical solution does not guarantee a good practical solution.
. . . To make planning practical we need to do two things: (1) Restrict the language with
which we define problems. . . . (2) Use a special purpose algorithm . . . rather than a
general-purpose theorem prover to search for a solution. The two go hand in hand:
every time we define a new problem-description language, we need a new planning
algorithm to process the language. . . . The idea is that the algorithm can be designed to
process the restricted language more efficiently than a resolution theorem prover.
[Russell & Norvig, 1995, page 342]

2

The aim of the present paper is to demonstrate that a good theoretical solution can
indeed co-exist with a good practical solution, through the provision of a logical
account of partial-order and hierarchical planning in the spirit of Green’s work.
However, where Green’s account was based on the formalism of the situation calculus,
the present paper adopts the event calculus [Kowalski & Sergot, 1986], [Shanahan,
1997a]. Furthermore, while Green regarded planning as a deductive process, planning
with the event calculus is most naturally considered as an abductive process. When
event calculus formulae are submitted to a suitably tailored resolution based abductive
theorem prover, the result is a sound and complete purely logical planning system
whose computations mirror closely those of a hand-coded planning algorithm.

The paper is organised as follows. Section 1 presents the event calculus using full
first-order predicate calculus with circumscription. Section 2 presents a logical
definition of event calculus planning. Section 3 describes a number of techniques for
rendering this specification into a logic programming implementation via an abductive
meta-interpreter, and draws attention to the correspondences to existing partial-order
planning algorithms. Section 4 offers soundness and completeness results for a simple
version of the planner. Section 5 shows how the preceding material can be extended to
cover hierarchical planning. Finally Section 7 addresses efficiency issues and presents
some benchmark results. A shorter version of this paper was presented in [Shanahan,
1997b].

1 A Circumscriptive Event Calculus
The formalism for reasoning about action used in this paper is derived originally from
Kowalski and Sergot’s event calculus [Kowalski & Sergot, 1986], but is based on
many-sorted first-order predicate calculus augmented with circumscription [Shanahan,
1997a]. This section presents the bare outlines of the formalism.1 An example of the
use of the formalism, which should make things clearer to those unfamiliar with it,
appears in the next section. For a more thorough treatment, consult [Shanahan,
1997a].

Table 1 presents the essentials of the language of the calculus, which includes sorts for
fluents, actions (events), and time points.

We have the following axioms, whose conjunction is denoted EC.2

HoldsAt(f,t) ← InitiallyP(f) ∧ ¬ Clipped(0,f,t) (EC1)

HoldsAt(f,t3) ← (EC2)
Happens(a,t1,t2) ∧ Initiates(a,f,t1) ∧

t2 < t3 ∧ ¬ Clipped(t1,f,t3)

Clipped(t1,f,t4) ↔ (EC3)
∃ a,t2,t3 [Happens(a,t2,t3) ∧ t1 < t3 ∧ t2 < t4 ∧

[Terminates(a,f,t2) ∨ Releases(a,f,t2)]]

¬ HoldsAt(f,t) ← InitiallyN(f) ∧ ¬ Declipped(0,f,t) (EC4)

1 [Shanahan, 1997a] shows how the calculus can be used to handle domain constraints,
continuous change, and non-deterministic effects. Indeed, the planner described in this
paper can handle many types of domain constraint without further modification.
2 Variables begin with lower-case letters, while function and predicate symbols begin with
upper-case letters. All variables are universally quantified with maximum possible scope
unless otherwise indicated.

3

¬ HoldsAt(f,t3) ← (EC5)
Happens(a,t1,t2) ∧ Terminates(a,f,t1) ∧

t2 < t3 ∧ ¬ Declipped(t1,f,t3)

Declipped(t1,f,t4) ↔ (EC6)
∃ a,t2,t3 [Happens(a,t2,t3) ∧ t1 < t3 ∧ t2 < t4 ∧

[Initiates(a,f,t2) ∨ Releases(a,f,t2)]]

Happens(a,t1,t2) → t1 ≤ t2 (EC7)

A two-argument version of Happens is defined as follows.

Happens(a,t) ≡def Happens(a,t,t)

Formula Meaning

Initiates(α,β,τ) Fluent β holds after action α at time τ
Terminates(α,β,τ) Fluent β does not hold after action α at time τ
Releases(α,β,τ) Fluent β is not subject to the common sense law of inertia

after action α at time τ
InitiallyP(β) Fluent β holds from time 0

InitiallyN(β) Fluent β does not hold from time 0

Happens(α,τ1,τ2) Action α starts at time τ1 and ends at time τ2

HoldsAt(β,τ) Fluent β holds at time τ
Clipped(τ1,β,τ2) Fluent β is terminated between times τ1 and τ2
Declipped(τ1,β,τ2) Fluent β is initiated between times τ1 and τ2

Table 1: The Language of the Event Calculus

The frame problem is overcome through circumscription. Given a conjunction Σ of
Initiates, Terminates, and Releases formulae describing the effects of actions (a domain
description), a conjunction ∆ of InitiallyP, InitiallyN, Happens and temporal ordering
formulae describing a narrative of actions and events, and a conjunction Ω of
uniqueness-of-names axioms for actions and fluents, we’re interested in,

CIRC[Σ ; Initiates, Terminates, Releases] ∧ CIRC[∆ ; Happens] ∧ EC ∧ Ω.

By minimising Initiates, Terminates and Releases we assume that actions have no
unexpected effects, and by minimising Happens we assume that there are no
unexpected event occurrences. In most of the cases we’re interested in, Σ and ∆ will be
conjunctions of Horn clauses, and the circumscriptions will reduce to predicate
completions [Lifschitz, 1994]. This result will come in handy when we come to
implement the event calculus as a logic program.

2 Planning as Abduction
Planning can be thought of as the inverse operation to temporal projection, and
temporal projection in the event calculus is naturally cast as a deductive task. Given Σ,
Ω and ∆ as above, we’re interested in HoldsAt formulae Γ such that,

CIRC[Σ ; Initiates, Terminates, Releases] ∧ CIRC[∆ ; Happens] ∧ EC ∧ Ω ª Γ.

4

Conversely, as first pointed out by Eshghi [1988], planning in the event calculus can
be considered as an abductive task. In terms of the circumscriptive event calculus, this
task can be precisely characterised as follows.

Definition 2 .1 . A domain description is a finite conjunction of formulae of the
form,

Initiates(α,β,t) ← Π
or,

Terminates(α,β,t) ← Π
or,

Releases(α,β,t) ← Π
where Π is of the form,

(¬) HoldsAt(β1,t) ∧ . . . ∧ (¬) HoldsAt(βn,t),

α is a ground action term, and β and β1 to βn are ground fluent terms. �

Definition 2.2. An initial situation is a finite conjunction of formulae of the form,

InitiallyN(β)

or,

InitiallyP(β)

where β is a ground fluent term, in which each fluent name occurs at most once. �

Definition 2.3. A goal is a finite conjunction of formulae of the form,

(¬) HoldsAt(β,τ)

where β is a ground fluent term, and τ is a ground time point term. �

Definition 2.4. A narrative is a finite conjunction of formulae of the form,

Happens(α,τ)

or,

τ1 < τ2

where α is a ground action term, and τ1 and τ2 are time points. �

Definition 2.5. Let Γ be a goal, let Σ be a domain description, let ∆0 be an initial
situation, and let Ω be the conjunction of a pair of uniqueness-of-names axioms for
the actions and fluents mentioned in Σ. A plan for Γ is a narrative ∆ such that,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆0 ∧ ∆ ; Happens] ∧ EC ∧ Ω ª Γ

where,

CIRC[Σ ; Initiates, Terminates, Releases] ∧ CIRC[∆0 ∧ ∆ ; Happens] ∧ EC ∧ Ω
is consistent. �

The consistency condition is guaranteed if the domain description does not permit a
fluent to be both initiated and terminated at the same time.

Definition 2 .6 . A domain description Σ is conflict free if, for every pair of
formulae in Σ of the form,

Initiates(α,β,t) ← Π1

and,

Terminates(α,β,t) ← Π2,

we have,

5

ª ¬ [Π2 ∧ Π1] �

Lemma 2 .7 . Let Σ be a conflict free domain description, let ∆0 be an initial
situation, let ∆ be a totally ordered narrative, and let Ω be the conjunction of a pair of
uniqueness-of-names axioms for the actions and fluents mentioned in Σ. The formula,

CIRC[Σ ; Initiates, Terminates, Releases] ∧ CIRC[∆0 ∧ ∆ ; Happens] ∧ EC ∧ Ω
is consistent.

Proof. (Sketch) To construct a model of the formula, we have to assign a truth value
to every fluent for every time point. This can be done in a STRIPS like fashion,
starting at time zero and maintaining the set of fluents that hold after each action in ∆
is carried out. We begin by selecting an arbitrary set of fluents compatible with ∆0.
These hold in the interval up to the first action in ∆ . We then consider this first
action. The formulae in Σ effectively permit us to form an addlist (fluents that are
initiated) and a deletelist (fluents that are terminated or released) for the action. The
conflict free condition ensures that these lists are mutually exclusive. Using these
lists, we can construct the set of the fluents that hold in the interval between the first
and second actions. This process continues until the final action in ∆. �

As suggested by the title of Levesque’s Green-inspired paper, “What is planning in the
presence of sensing?” [Levesque, 1996], logical characterisations such as this aim to
settle the question of the underlying nature of one or other type of planning.
Levesque’s answer, echoing Green’s 1969 paper, is based on the situation calculus. In
the situation calculus, a plan is expressed using the Result function, which maps an
action and a situation onto a new situation. The Result function does not facilitate the
representation of narratives of events whose order is incompletely known. By contrast,
since the narrative of actions described by ∆ above doesn’t have to be totally ordered,
the event calculus seems a natural candidate for answering the question “What is
partial-order planning?”.

As an example, let’s formalise the shopping trip domain from [Russell & Norvig,
1995]. The domain comprises just two actions and three fluents. The term Go(x)
denotes the action of going to x, and the term Buy(x) denotes the action of buying x.
The fluent At(x) holds if the agent is at location x, the fluent Have(x) holds if the
agent possesses item x, and the fluent Sells(x,y) holds if shop x sells item y. Let Σ be
the conjunction of the following Initiates and Terminates formulae.

Initiates(Go(x),At(x),t)

Terminates(Go(x),At(y),t) ← x ≠ y

Initiates(Buy(x),Have(x),t) ← HoldsAt(At(y),t) ∧ HoldsAt(Sells(y,x),t)

Note that there is no distinction, in this formalism, between preconditions and
contextual conditions. Both are expressed using HoldsAt. Let ∆0 be the conjunction of
the following formulae describing the initial situation.

InitiallyP(Sells(DIYShop,Drill))

InitiallyP(Sells(Supermarket,Banana))

InitiallyP(Sells(Supermarket,Milk))

Let Ω be the conjunction of the following uniqueness-of-names axioms.

UNA[Go, Buy] UNA[At, Have, Sells]

Our desired goal state is to have a banana, some milk, and a drill. Let Γ be the
following conjunction of HoldsAt formulae.

HoldsAt(Have(Banana),T) ∧ HoldsAt(Have(Milk),T) ∧ HoldsAt(Have(Drill),T)

6

Let ∆ be the conjunction of the following Happens and temporal ordering formulae.

Happens(Go(Supermarket),T0) Happens(Buy(Banana),T1)

Happens(Buy(Milk),T2) Happens(Go(DIYShop),T3)

Happens(Buy(Drill),T4)

T0 < T1 T0 < T2

T1 < T3 T2 < T3

T3 < T4 T4 < T

Note that ∆ is not committed to any particular ordering of the Buy(Banana) and
Buy(Milk) actions. As we would expect, according to the definition above, ∆ is indeed
a plan for Γ. In other words, we have,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆0 ∧ ∆ ; Happens] ∧ EC ∧ Ω ª Γ.

The above definition of a plan can easily be extended to encompass domains that
include domain constraints or state constraints, which give rise to actions with
indirect effects.

Definition 2.8. A state constraint is a formula of the form,

HoldsAt(β,t) ← (¬) HoldsAt(β1,t) ∧ . . . ∧ (¬) HoldsAt(βn,t)

where β and β1 to βn are ground fluent terms. �

The circumscriptive solution to the frame problem adopted here accommodates the
inclusion of state constraints (see [Shanahan, 1997a]), so long as they are conjoined to
the theory outside the scope of any circumscription. This gives rise to the following
definition.

Definition 2.9. Let Γ be a goal, let Σ be a domain description, let ∆0 be an initial
situation, let Ω be the conjunction of a pair of uniqueness-of-names axioms for the
actions and fluents mentioned in Σ, and let Ψ be a finite conjunction of state
constraints. A plan for Γ is a narrative ∆ such that,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆0 ∧ ∆ ; Happens] ∧ Ψ ∧ EC ∧ Ω ª Γ. �

Here’s an example involving state constraints. The goal will be to make a chemical
plant safe, where plant safety is defined through the following state constraint.

HoldsAt(PlantSafe,t) ←
HoldsAt(TankEmpty,t) ∧ HoldsAt(TemperatureLow,t)

The tank can be emptied by draining it, as long as the pressure is normal. The plant’s
temperature can be brought down by cooling the tank.

Initiates(DrainTank,TankEmpty,t) ← HoldsAt(PressureNormal,t)

Initiates(CoolTank,TemperatureLow,t)

The pressure is normal if the valve is open or if the boiler is off. So we have two
more state constraints.

HoldsAt(PressureNormal,t) ← HoldsAt(ValveOpen,t)

HoldsAt(PressureNormal,t) ← HoldsAt(BoilerOff,t)

We have actions for opening the valve and turning off the boiler.

Initiates(OpenValve,ValveOpen,t)

Initiates(TurnOffBoiler,BoilerOff,t)

Finally we have the requisite uniqueness-of-names axioms.

7

UNA[PlantSafe, TankEmpty, TemperatureLow,
PressureNormal, ValveOpen, BoilerOff]

UNA[DrainTank, CoolTank, OpenValve, TurnBoilerOff]

Now suppose we have the following initial situation.

InitiallyN(PlantSafe) InitiallyN(TankEmpty)

InitiallyN(TemperatureLow) InitiallyN(PressureNormal)

InitiallyN(ValveOpen)InitiallyN(BoilerOff)

Let Σ be the conjunction of the above Initiates formulae, let ∆0 be the above initial
situation, let Ω be the conjunction of the two uniqueness-of-names axioms, and let Ψ
be the conjunction of the three state constraints. Now let Γ be,

HoldsAt(PlantSafe,T).

Finally let ∆ be the conjunction of the following formulae.

Happens(OpenValve,T0)

Happens(DrainTank,T1)

Happens(CoolTank,T2)

T0 < T1

T1 < T2

T2 < T

Now we have,

CIRC[Σ ; Initiates, Terminates, Releases] ∧
CIRC[∆0 ∧ ∆ ; Happens] ∧ Ψ ∧ EC ∧ Ω ª Γ.

In other words, ∆ is a plan for Γ.

The provision of a logical characterisation of the planning task is all very well. But for
a complete picture, and to address the issues raised in the Russell and Norvig quote in
the introduction, we need to look at computational matters. These are the focus of the
next section.

3 Partial Order Planning = Event Calculus + Abduction
The title of this section deliberately echoes Kowalski’s slogan “Algorithm = Logic +
Control” [Kowalski, 1974]. The aim of the section is to outline the use of logic
programming techniques which can be used to render the previous section’s logical
specification of partial-order planning into a practical implementation. The basis of
this implementation will be a resolution based abductive theorem prover, coded as a
Prolog meta-interpreter. This theorem prover is tailored for the event calculus by
compiling the event calculus axioms into the meta-level, resulting in an efficient
implementation.

Eshghi [1988] was the first author to show how abduction could be used to solve event
calculus planning problems. (The original event calculus of Kowalski and Sergot
[1986], which was the inspiration for the present formalism, was also expressed a
logic program. However, it cannot be executed directly as a Prolog program.) Other
early approaches along these lines include [Shanahan, 1989], [Missiaen, 1991], and
[Missiaen, et al., 1995].

As reported in [Missiaen et al. 95], these systems sometimes generated erroneous
partial plans, a problem that was solved in the system of [Denecker, et al., 1992] by
integrating abduction with constraint solving techniques. Denecker et al. also showed

8

how such a system could be used for reasoning in the presence of uncertainty about
actions. Later approaches that inorporated related ideas were presented in [Chleq, 1996]
and [Jung, 1996]. The latter extends the planning methods of [Denecker, et al., 1992]
in the context of an object oriented formalism. More recently, Kakas, et al. [1998]
have integrated an abductive solver and a finite domain CLP solver and applied them to
planning.

As pointed out by [Missiaen, et al., 1995], the event calculus axioms can be likened
to Chapman’s “modal truth criterion” (but stripped of the modalities) [Chapman,
1987]. The logic programming approach to planning advocated in this paper can be
thought of as directly executing the modal truth criterion. The event calculus Initiates,
Terminates and Releases formulae that constitute a purely logical description of the
effects of actions in a particular domain are used directly as the domain description in
the implemented planner.

Many of the computational concepts central to the literature on partial-order planning,
such as threats, protected links, promotions and demotions [Chapman, 1987],
[Penberthy & Weld, 1992], turn out to have direct counterparts in the theorem proving
process. It’s interesting to note that these features of the logic programming
implementation weren’t designed in. Rather, they are naturally arising features of the
theorem prover’s search for a proof. So our attempt to provide a mathematically
respectable answer to the question “What is partial-order planning?” inadvertently offers
similar answers to questions like “What are protected links?”. To see all this we need
to delve into the details of the meta-interpreter. In what follows, I will assume some
knowledge of logic programming concepts and terminology.

3.1 An Abductive Meta-Interpreter for the Event Calculus

Meta-interpreters are a standard part of the logic programmer’s toolkit. For example,
the following “vanilla” meta-interpreter, when executed by Prolog, will mimic
Prolog’s own execution strategy.3

demo([]).
demo([G|Gs1]) :-
axiom(G,Gs2), append(Gs2,Gs1,Gs3), demo(Gs3).

demo([not(G)|Gs]) :- not demo([G]), demo(Gs).

The formula demo(Gs) holds if Gs follows from the object-level program. If Π is a
list of Prolog literals [λ1, ..., λn], then the formula axiom(λ0,Π) holds if
there is a clause of the following form in the object-level program.

λ0 :- λ1, ..., λn
One of the tricks we’ll employ here is to compile object-level clauses into the meta-
level. For example, the above clause can be compiled into the definition of demo
through the addition of the following clause.

demo([λ0|Gs1]) :-
axiom(λ1,Gs2), append(Gs2,[λ2, ..., λn|Gs1],Gs3),
demo(Gs3).

3 Throughout the paper, I use standard Edinburgh syntax for Prolog. Variables begin with
upper-case letters, while predicate and function symbols with lower-case letters, which i s
the opposite convention to that used for predicate calculus.

9

The resulting behaviour is equivalent to that of the vanilla meta-interpreter with the
object-level clause. Now consider the following object-level clause, which corresponds
to Axiom (EC2) of Section 1.

holds_at(F,T3) :-
happens(A,T1,T2), T2 < T3, initiates(A,F,T1),
not clipped(T1,F,T2).

This can be compiled into the following meta-level clause, in which the predicate
before is used to represent temporal ordering.

demo([holds_at(F,T3)|Gs1]) :-
axiom(initiates(A,F,T1),Gs2), axiom(happens(A,T1,T2),Gs3),
axiom(before(T2,T3),[]), demo([not clipped(T1,F,T3)]),
append(Gs3,Gs2,Gs4), append(Gs4,Gs1,Gs5), demo(Gs5).

The Prolog execution of this meta-level clause doesn’t mimic precisely the Prolog
execution of the corresponding object-level clause. This is because we have taken
advantage of the extra degree of control available at the meta-level, and adjusted the
order in which the sub-goals of holds_at are solved. For example, although we
resolve on initiates immediately, we postpone further work on the sub-goals of
initiates until after we’ve resolved on happens and before. This manoeuvre
is required to prevent looping. Moreover, even if there were no looping problem,
tackling initiates before happens results in a smaller search space than would
be obtained if these sub-goals were tackled in the opposite order, since event
occurrences irrelevant to the fluent F are not considered. (A discussion of this and
related efficiency issues with respect to the event calculus can be found in [Chittaro &
Montanari, 1996].)

To represent Axiom (EC5), which isn’t in Horn clause form, we introduce the function
neg. Throughout our logic program, we replace the classical predicate calculus
formula ¬ HoldsAt(f,t) with holds_at(neg(F),T). (Using the neg function, we
retain some of the predicate calculus formalism’s ability to handle incomplete
information about which fluents hold. This would be lost if we used negation-as-
failure.) So we obtain the following object-level clause.

holds_at(neg(F),T3) :-
happens(A,T1,T2), T2 < T3, terminates(A,F,T1),
not declipped(T1,F,T2).

This compiles into the following meta-level clause.

demo([holds_at(neg(F),T3)|Gs1]) :-
axiom(terminates(A,F,T1),Gs2), axiom(happens(A,T1,T2),Gs3),
axiom(before(T2,T3),[]), demo([not declipped(T1,F,T3)]),
append(Gs3,Gs2,Gs4), append(Gs4,Gs1,Gs5), demo(Gs5).

The job of an abductive meta-interpreter is to construct a residue of abducible literals
that can’t be proved from the object-level program. In the case of the event calculus,
the abducibles will be happens and before literals. Here’s a “vanilla” abductive
meta-interpreter, without negation-as-failure.

abdemo([],R,R).
abdemo([G|Gs],R1,R2) :- abducible(G), abdemo(Gs,[G|R1],R2).
abdemo([G|Gs1],R1,R2) :-
axiom(G,Gs2), append(Gs2,Gs1,Gs3), abdemo(Gs3,R1,R2).

The formula abdemo(Gs,R1,R2) holds if Gs follows from the conjunction of R2
with the object-level program. (R1 is the input residue and R2 is the output residue.)

10

Abducible literals are declared via the abducible predicate. In top-level calls to
abdemo, the second argument will usually be [].

Things start to get tricky when we incorporate negation-as-failure. The difficulty here
is that when we add to the residue, previously proved negated goals may no longer be
provable. So negated goals have to be recorded and re-checked each time the residue is
modified. Here’s a version of abdemo which handles negation-as-failure.

abdemo([],R,R,N). (A1)

abdemo([G|Gs],R1,R3,N) :- (A2)
abducible(G), abdemo_nafs(N,[G|R1],R2), abdemo(Gs,R2,R3,N).

abdemo([G|Gs1],R1,R2,N) :- (A3)
axiom(G,Gs2), append(Gs2,Gs1,Gs3), abdemo(Gs3,R1,R2,N).

abdemo([not(G)|Gs],R1,R3,N) :- (A4)
abdemo_naf([G],R1,R2), abdemo(Gs,R2,R3,[[G]|N]).

The last argument of the abdemo predicate is a list of negated goal lists, which is
recorded for subsequent checking (in clause (A2)). If N =
[γ1,1...γ1,n1]...[γm,1...γm,nm]] is such a list, then its meaning, assuming
a completion semantics for our object-level logic program, is,

¬ (γ1,1 ∧ ... ∧ γ1,n1) ∧ ¬ (γm,1 ∧ ... ∧ γm,nm).

The formula abdemo_nafs(N,R1,R2) holds if the above formula is provable
from the (completion of the) conjunction of R2 with the object-level program. (In the
vanilla version, abdemo_nafs doesn’t add to the residue. However, we will
eventually require a version which does, as we’ll see shortly.)

abdemo_nafs(N,R1,R2) applies abdemo_naf to each list of goals in N.
abdemo_naf is defined in terms of Prolog’s findall, as follows.

abdemo_naf([G|Gs1],R,R) :- not resolve(G,R,Gs2).
abdemo_naf([G1|Gs1],R1,R2) :-
findall(Gs2,(resolve(G1,R1,Gs3),
append(Gs3,Gs1,Gs2)),Gss),

abdemo_nafs(Gss,R1,R2).
resolve(G,R,Gs) :- member(G,R).
resolve(G,R,Gs) :- axiom(G,Gs).

The logical justification for these clauses is as follows. In order to show, ¬ (γ1 ∧ ...
∧ γn), we have to show that, for every object-level clause λ :- λ1...λm which
resolves with γ1 , ¬ (λ1 ∧ ... ∧ λm, γ2 ∧ ... ∧ γn). If no clause resolves with γ1
then, under a completion semantics, ¬ γ1 follows, and therefore so does ¬ (γ1 ∧ ... ∧
γn).

However, in the context of incomplete information about a predicate we don’t wish to
assume that predicate’s completion, and we cannot therefore legitimately use negation-
as-failure to prove negated goals for that predicate. The way around this is to trap
negated goals for such predicates at the meta-level, and give them special treatment. In
general, if we know ¬ φ ← ψ, then in order to prove ¬ φ , it’s sufficient to prove ψ.
Similarly, if we know ¬ φ ↔ ψ, then in order to prove ¬ φ , it’s both necessary and
sufficient to prove ψ.

In the present case, we have incomplete information about the before predicate,
allowing partially ordered narratives of events to be represented. Accordingly, when the
meta-interpreter encounters a negated goal of the form before(X,Y), which it will
when it comes to prove a negated clipped goal, it attempts to prove

11

before(Y,X). One way to achieve this is to add before(Y,X) to the residue,
first checking that the resulting residue is consistent.

This approach to the before predicate correctly handles examples that have troubled
earlier abductive event calculus planners. Consider the following example, taken from
[Missiaen, et al., 1995].

initially(r).
initiates(e1,p,T).
initiates(e2,q,T).
terminates(e1,r,T) :- holds_at(q,T).
terminates(e2,r,T) :- holds_at(p,T).

Given the goal,

[holds_at(p,t),holds_at(q,t),holds_at(r,t)]

both the planner of [Shanahan, 1989] and the planner of [Missiaen, et al., 1995]
generate the following incorrect plan.

[happens(e1,t1), before(t1,t), happens(e2,t2), before(t2,t)]

The abductive event calculus planner presented in [Denecker, et al., 1992] does not
suffer from this problem, since it uses a dedicated constraint solver for checking the
satisfiability of temporal ordering formulae with respect to a theory of totally ordered
time points. The solution adopted in the present paper is very similar.

The before predicate is not the only source of incomplete information. Similar
considerations affect the treatment of the holds_at predicate, which inherits the
incompleteness of before. When the meta-interpreter encounters a not
holds_at(F,T) goal, where F is a ground term, it attempts to prove
holds_at(neg(F),T), and conversely, when it encounters not
holds_at(neg(F),T), it attempts to prove holds_at(F,T). In both cases,
this can result in further additions to the residue.

Note that these techniques for dealing with negation in the context of incomplete
information are general in scope. They are generic theorem proving techniques, and
their use isn’t confined to the event calculus. For further details of the implementation
of abdemo_naf, the reader should consult the appendix.

As with the demo predicate, we can compile the event calculus axioms into the
definition of abdemo and abdemo_naf via the addition of some extra clauses,
giving us a finer degree of control over the resolution process. Here’s an example.

abdemo([holds_at(F,T3)|Gs1],R1,R4,N) :- (A5)
axiom(initiates(A,F,T1),Gs2),
abdemo_nafs(N,[happens(A,T1,T2),before(T2,T3)|R1],R2),
abdemo_nafs([clipped(T1,F,T3)],R2,R3),
append(Gs2,Gs1,Gs3), demo(Gs3,R3,R4,[clipped(T1,F,T3)|N]).

Now, to solve a planning problem, we simply describe the effects of actions directly as
Prolog initiates, terminates and releases clauses, we present a list of
holds_at goals to abdemo, and the returned residue, comprising happens and
before literals, is a plan. Notice that, since the sub-goals of initiates are solved
abductively, actions with context-dependent effects are handled correctly, unlike the
implementation described in [Missiaen, et al., 1995]. Moreover, since holds_at
goals will resolve with clause (A3) as well as clause (A5), no further code is required
to handle examples with state constraints, such as that in Section 2.

A full listing of an implementation based on the techniques of this section is presented
in the appendix. But with this sketch, we’re already in a position to compare the

12

behaviour of an abductive theorem prover applied to the event calculus to that of a
conventional partial-order planning algorithm.

3.2 Protected Links, Threats, Promotions and Demotions

The algorithm below, which is very similar to UCPOP [Penberthy & Weld, 1992],
illustrates the style of algorithm commonly found in the literature on partial-order
planning. It constructs a partially ordered plan given a goal list. A goal list is a list of
pairs 〈F,T〉 where F is a fluent and T is a time point. A plan is a list of pairs 〈A,T〉
where A is an action (more properly called an operator in planning terminology) and T
is a time point.

1 while goal list non-empty
2 choose a goal <F1,T1> from goal list
3 choose an action <A,T2> whose effects include F1
4 for each precondition F2 of A add <F2,T2> to goal list
5 add <A,T2> to plan
6 add T2 < T1 to plan
7 add <T2,F1,T1> to protected links
8 for each <A,T3> in plan that threatens some <T4,F3,T5>

in protected links
9 choose either
10 promotion: add T3 < T4 to plan
11 demotion: add T5 < T3
12 end for
13 end while

The key idea in the algorithm is the maintenance of a list of protected links. This is a
list of triples 〈T1,F,T2〉, where T1 and T2 are time points and F is a fluent. The
purpose of this list is to ensure that, once a goal has been achieved by the addition of a
suitable action to the plan, that goal isn’t “clobbered” by a subsequent addition to the
plan. Accordingly, each addition to the plan is followed by a check to see whether it
constitutes a threat to any protected link. An action 〈A,T1〉 threatens a protected link
〈T2,F,T3〉 if the ordering constraint T2 < T1 < T3 is consistent with the plan and one
of the effects of A is to make F false. By promoting or demoting the new action, in
other words by constraining its time of occurrence to fall either before T2 or after T3,
we eliminate the threat.

Since the algorithm is non-deterministic, it has to be combined with a suitable search
strategy. With some minor modifications, the algorithm can be turned into UCPOP,
which is both sound and complete, assuming a breadth-first or iterative deepening
search strategy [Penberthy & Weld, 1992]. Unlike the above algorithm, but like the
abductive meta-interpreter of the last section, UCPOP can also handle actions with
context-dependent effects.

The close correspondence between the behaviour of this algorithm and that of the
abductive theorem prover of the previous section can be established by inspection. In
particular, consider clause (A5). Line 3 of the algorithm (choosing an action)
corresponds to the first sub-goal of (A5) (resolving on initiates). Line 4 (adding
new preconditions to the goal list) corresponds to the fourth sub-goal. The effect of
Lines 5 and 6 (adding the new action to the plan) is achieved in (A5) by the second
sub-goal. Line 7 (adding the new protected link) and the for loop of Lines 8 to 12 are
matched by the third sub-goal of (A5), which adds a new clipped literal to the list
of negations. Promotion and demotion (Lines 11 and 12) are achieved in the theorem
prover by abdemo_nafs which, as explained in the previous section, will add further
before literals to the residue if necessary.

13

Like the non-deterministic hand-coded algorithm, the search space defined by clauses
(A1) to (A5) can be explored with a variety of strategies. If executed by Prolog, a
depth-first search strategy would result, but a breadth-first or iterative deepening
strategy is also possible.

To summarise, the concepts of a protected link, of a threat, and of promotion and
demotion, rather than being special to partial-order planning, turn out to be instances
of general concepts in theorem proving when applied to general purpose axioms for
representing the effects of actions. In particular,

• A protected link is a negated clipped goal which, like any negated goal in
abduction with negation-as-failure, is preserved for subsequent checking when new
literals are added to the residue,

• A threat is an addition to the residue which, without further additions, would
undermine the proof of a previously solved negated clipped goal.

• Promotion and demotion are additions to the residue which preserve the proof of a
previously solved negated clipped goal.

4 Soundness and Completeness
This section presents soundness and completeness results for a planner implemented
using the techniques described in the previous section. A full listing of the planner is
given in the appendix. This listing is also available electronically, and the URL is
given in the appendix. This very basic version of the planner is highly inefficient and
produces numerous duplicate solutions. An efficient, practical implementation based
on this planner is described in the Section 7.

Let AEC be the logic program in the appendix. Note that negation-as-failure is written
using the “\+” operator, and that equality and inequality are written in infix form.
We’ll assume a standard definition of SLDNF-refutation, such as that reproduced in
[Shanahan, 1997a, Chapter 11]. The task is to prove that AEC is a sound and
complete planner with respect to a certain class of event calculus theories. We begin
by pinning down the class of theories we’re interested in.

First, soundness and completeness are not guaranteed if there is incomplete knowledge
about the initial situation. Hence the following definition.

Definition 4.1. A complete initial situation ∆ is an initial situation such that for
any fluent β either ∆ ª InitiallyN(β) or ∆ ª InitiallyP(β). �

Furthermore, unsoundness and incompleteness can result if, at some point in its
computation, the planner calls clause 3 of abdemo_naf with a holds_at goal
with an unbound fluent argument. One way to ensure this never happens is to stick to
domain descriptions that are fluent range restricted, defined as follows.

Definition 4 .2 . A domain description Σ is fluent range restricted if, for every
Initiates, Terminates and Releases clause φ in Σ, every non-temporal variable that
occurs in φ also occurs in the fluent argument in the head of φ. �

Next we define a mapping from event calculus theories to logic programs. The
mapping is very straightforward, although the definitions are a little unwieldy.

Definition 4.3. The function TRANST trivially maps predicate calculus atoms and
terms onto corresponding logic program terms (inverting the case of the first letter of
each variable, constant, function and predicate symbol, and changing the font to
courier). �

In what follows, the trivial function TRANST will sometimes be omitted for clarity.

14

Definition 4.4. Let Π = ψ1 ∧ ... ∧ ψn be a conjunction where each ψi is of the
form,

(¬) HoldsAt(βi,t)

TRANSC(Π) is defined as,

[holds_at(σ1,T),...,holds_at(σn,T)]

where σi = TRANST(βi) if ψi is positive and σi = neg(TRANST(βi)) if ψi is
negative. �

Definition 4 .5 . Let Σ = φ1 ∧ ... ∧ φn be a domain description. TRANSD(Σ) is
defined as follows.

TRANSD(Σ) = {ψ1, ..., ψn}

where,

�

Definition 4 .6 . Let ∆ = φ1 ∧ ... ∧ φn be an initial situation. TRANSI(∆) is
defined as follows.

TRANSI(∆) = {ψ1, ..., ψn}

where ψi is,

axiom(initially(neg(TRANST(β))),[])

if φi = InitiallyN(β), and,

axiom(initially(TRANST(β)),[])

if φi = InitiallyP(β). �

A number of further definitons are required that remove impure elements from the logic
program AEC, namely findall and gensym. It should be clear that the resulting
transformations are meaning-preserving in an intuitive sense. First, we have a function
FDALL, which gives a pure version of findall tailored to the calls to findall in
AEC.

Definition 4.7. Let Σ be a domain description. FDALL(Σ) is the set of all clauses
of the form findall(Gs3,Ψ,Φ) such that Ψ is either,

(abresolve(terms_or_rels(A,F,T2),R1,Gs2,R1),
abresolve(happens(A,T2,T3),R1,[],R1),
append([before(T1,T3),before(T2,T4)|Gs2],Gs1,Gs3))

or,

(abresolve(inits_or_rels(A,F,T2),R1,Gs2,R1),
abresolve(happens(A,T2,T3),R1,[],R1),
append([before(T1,T3),before(T2,T4)|Gs2],Gs1,Gs3))

or,

(abresolve(G1,R1,Gs2,R1),append(Gs2,Gs1,Gs3))
and Φ is a list comprising all λ such that there is an SLDNF-refutation for the goal
clause :- Ψ given the logic program TRANSD(Σ) which generates the binding
Gs3=λ. �

Note that FDALL(Σ) is always finite.

ψ

σ φ σ
φ φi

TRANST TRANSC if i

TRANST i if i is an atomic formula
=

= ←

axiom

axiom

((), ()

((),[])

Π Π

15

TRANSD
+ ()Σ

TRANSD
+ ()Σ

Next we need to purify TRANSD(Σ) with respect to gensym. AEC uses gensym to
generate new skolem constants for the occurrence times of newly abduced events. The
following technique can be used to transform any logic program using gensym to an
equivalent pure logic program. Every predicate in the program is given two extra
arguments, to carry the gensym number. Each clause is modified accordingly. For
example, the clause,

p(X,Y) :- q(X,Y), r(X,Y).
becomes,

p(X,Y,M1,M3) :- q(X,Y,M1,M2), r(X,Y,M2,M3).
Then the following clause defining gensym is added.

gensym(t(M1),M1,s(M1)).
Goal clauses initialise the gensym number to 0. For example, the goal clause,

:- p(a,X), p(X,b).
becomes,

:- p(a,X,0,M1), p(X,b,M1,M2).
A sequence of ground terms of the form,

t(0), t(s(0)), t(s(s(0))), t(s(s(s(0)))), . . .
will then be generated by consecutive calls to gensym.

Definition 4.8. Let Σ be a domain description. is obtained from
TRANSD(Σ) by defining gensym as outlined above. �

Now we can define the final mapping.

Definition 4 .9 . Let Σ be a domain description and ∆ be an initial situation.
TRANSP(Σ,∆) is defined as follows.

TRANSP(Σ,∆) = AEC ∪ ∪ TRANSI(∆) ∪ FDALL(Σ) ∪ ϑ
where ϑ is a set of standard definitions for member, append, equality and inequality.

�

Now we can prove the soundness theorem. First we define a mapping from meta-level
logic program goal clauses to object-level predicate calculus formulae.

Definition 4 .10 . For any abdemo, abdemo_naf or abdemo_nafs literal φ ,
ML(φ) is defined as follows.

ML(abdemo([γ1, ..., γn],[ρ1, ..., ρm],R,[η1, ..., ηk],N) =

γ1 ∧ ... ∧ γn ∧ ρ1 ∧ ... ∧ ρm ∧ ¬ η1 ∧ ... ∧ ¬ ηk

ML(abdemo_naf([γ1, ..., γn],[ρ1, ..., ρm],R,[η1, ..., ηk],N) =

¬ (γ1 ∧ ... ∧ γn) ∧ ρ1 ∧ ... ∧ ρm ∧ ¬ η1 ∧ ... ∧ ¬ ηk

ML(abdemo_nafs([[γ1, ..., γn],...,,[λ1, ..., λj]],
[ρ1, ..., ρm],R,[η1, ..., ηk],N) =

¬ (γ1 ∧ ... ∧ γn) ∧ ... ∧ ¬ (λ1 ∧ ... ∧ λj) ∧
ρ1 ∧ ... ∧ ρm ∧ ¬ η1 ∧ ... ∧ ¬ ηk. �

Definition 4.11. Given a goal clause Ψ of the form,

:- φ1, φ2, ..., φn

let M(Ψ) be,

16

∧
∈φ

φ
Π

ML()

where Π is the set comprising every φi that is an abdemo, abdemo_naf or abdemo_nafs
literal. �

Theorem 4 .12 . (Soundness) For any complete initial situation ∆0, any conflict
free, fluent range restricted domain description Σ and any goal Γ, if there is an SLDNF-
refutation for the goal clause,

:- abdemo(TRANSC(Γ),[[],[]],R,[],N).

given the logic program TRANSP(Σ,∆0) which generates a binding R=TRANSC(∆)
for some ∆ then ∆ is a plan for Γ.

Proof. It suffices to show that there is an object-level proof that the goal follows
from the plan within the meta-level SLDNF-refutation. Let the sequence of goal
clauses Ψ1 ... Ψn be an SLDNF-refutation of the above description. By inspection of
AEC, we can see that, for 1 ≤ i ≤ n–1,

Σ ∧ M(Ψi+1) ª M(Ψi)

and therefore,

Σ ∧ M(Ψn) ª M(Ψ0) �

The completeness theorem relies on the following lemma.

Lemma 4.13. Let Σ be a domain description, let ∆0 be an initial situation, let ∆ be
a narrative, and let Ω be the conjunction of a pair of uniqueness-of-names axioms for
the actions and fluents mentioned in Σ. Let Φ be,

CIRC[Σ ; Initiates, Terminates, Releases] ∧ CIRC[∆0 ∧ ∆ ; Happens] ∧ EC ∧ Ω.

For any fluent β and time point τ, if,

Φ ª HoldsAt(β,τ)

then either,

Φ ª Initially(β) ∧ ¬ Clipped(0,β,τ)

or,

Φ ª ∃ e,t [Happens(e,t) ∧ t < τ ∧ Initiates(e,β,t) ∧ ¬ Clipped(t,β,τ)].

Proof. The proof of this lemma appeals to the fact that event calculus theories
conform to the principle of directionality (see [Shanahan, 1997a]), which guarantees
that whether or not a fluent holds at any given time point depends only on what is true
before that time point. The details of the proof are omitted. �

This lemma is reminiscent of Chapman’s modal truth criterion [Chapman, 1987] or
Pednault’s causality theorem cited in [Penberthy & Weld, 1992].

The function Prog, defined next, progresses an initial situation ∆ by one action α . In
other words, it yields a theory whose initial situation is the result of performing action
α in initial situation ∆ . This function is the basis of the inductive proof of
completeness to follow.

Definition 4.14. Let Σ be a domain description, and let Ω be the conjunction of a
pair of uniqueness-of-names axioms for the actions and fluents mentioned in Σ. Let ∆
= φ1 ∧ ... ∧ φn be a complete initial situation, where each φi is either InitiallyP(βi) or
InitiallyN(βi). Let Φ be,

CIRC[Σ ; Initiates, Terminates, Releases] ∧ ∆ ∧ EC ∧ Ω.

17

Let α be any action. Prog(∆,Σ,α) is ψ1 ∧ ... ∧ ψn, where,

ψ
β

φ α β β α β
β

i

InitiallyP i if

Initiates i o InitiallyP i Ter ates i

InitiallyN i otherwise

= ∨ ∧ ¬

()

(, ,) [() min (, ,)]

()

ª 0

�

Theorem 4.15. (Completeness) For any complete initial situation ∆0, any conflict
free, fluent range restricted domain description Σ and any goal Γ, if there exists a
totally ordered plan P for Γ, then there is an SLDNF-refutation for the goal clause,

:- abdemo(TRANSC(Γ),[[],[]],R,[],N).

given the logic program TRANSP(Σ,∆0) which generates a binding R=TRANSC(∆)
for some ∆ such that P is a linearisation of a subset of ∆.

Proof. The proof uses induction over the length of plans.

Base case: In the case of a zero-length plan, there is a refutation that proceeds through
clause 3 of abdemo, then, after various trivial calls, to clause 2 of abdemo_naf,
which succeeds quickly since the residue is empty and there are no happens clauses
to resolve against.

Inductive case: Assume the theorem holds for plans of length ≤ n. We need to show
the theorem holds for plans of length ≤ n+1. If the length of P ≤ n, then the theorem
holds for P. Otherwise P has n+1 steps. Let α be the first action in plan P, and let P–
be a plan comprising the last n actions of P. Consider any SLDNF refutation for the
goal clause,

:- abdemo(TRANSC(Γ),[[],[]],R,[],N)

given the logic program TRANSP(Σ,Prog(∆0,Σ,α)) that yields a binding
R=TRANSC(∆–) for some ∆– such that P– is a linearisation of a subset of ∆–. It
suffices to show how such a refutation can be modified to give a refutation for the
same goal clause given the program TRANSP(Σ,∆0) which yields a binding
R=TRANSC(∆) for some ∆ such that P is a linearisation of a subset of ∆.

To obtain a suitably modified refutation, certain sub-refutations need to be updated,
namely those of the form,

:- abdemo([holds_at(β,τ), γ1, . . ., γm], R1,R2,N1,N2), Γ1, . . ., Γk

. . .

:- abdemo([γ1, . . ., γm], R3,R4,N3,N4), Γ1, . . ., Γk

whose the second clause is obtained by resolving with clause 3 or 5 of the program.
The rest of the refutation stays the same. Suppose β is positive. (The case for negative
fluents is symmetrical.) Suppose R1=TRANSC(∆†). There are three cases.

Case 1: Σ ∧ ∆† ª InitiallyP(β) ∧ ¬ Clipped(0,β,τ). (Modified initial situation and
residue makes no difference.)

Case 2: Σ ∧ ∆† ª InitiallyP(β), but Σ ∧ ∆† Ω ¬ Clipped(0,β,τ). (We need α to get the
¬ Clipped.)

Case 3: Σ ∧ ∆† Ω InitiallyP(β). (We need α to initiate β.)

For each case, we need to show how the old sub-refutation for holds_at(β,τ) from
TRANSP(Σ,Prog(∆0,Σ,α)) can be turned into a refutation for holds_at(β,τ) from
TRANSP(Σ,∆0).

Case 1. No modification is required.

18

Case 2. Since there exists a plan P comprising action α followed by plan P–, Lemma
4.13 tells us that the addition to ∆† of some combination of temporal ordering
constraints plus possibly a formula of the form Happens(α,τ') will yield a residue ∆
such that Σ ∧ ∆ ª ¬ Clipped(0,β,τ). The task now is to show that there is a refutation
for the goal clause,

:- abdemo([holds_at(β,τ)], R1,R2,N1,N2)
given the logic program TRANSP(Σ,∆0) that yields a binding R2=TRANSC(∆) for
such a ∆ . By inspecting AEC, we can see that such a refutation exists. This will
proceed through clause 3 of abdemo. After the calls to add_neg and
abdemo_nafs, the refutation proceeds through clause 1 of abdemo_naf. The
findall generates a terms_or_rels goal and two before goals for every
potential clipping event for the fluent β. When abdemo_nafs is called again with
these goals, the attempt to fail the terms_or_rels goal will lead, via clauses 3 and
4 of abdemo_naf, to the addition of happens(α,τ') to the residue, if necessary,
to block the precondition of an event threatening to clip β. The attempt to fail the
before goals will lead, via clauses 5 to 8 of abdemo_naf, to the addition of
before facts to the residue if necessary to promote or demote an event threatening to
clip β.

Case 3. The case is analogous to Case 2. The refutation proceeds via clause 4 of
abdemo. The second call to abresolve adds happens(α,τ') to the residue, and
the third call adds before(τ',τ). Then there are calls to add_neg and
abdemo_nafs, and the rest is the same as Case 2. �

Note that the program is guaranteed not to flounder, since the only uses of negation-as-
failure are in calls to demo_before or demo_beq which follow a call to
abresolve(happens(...)...) for the same temporal arguments. The call to
abresolve(happens(...)...) will always ground those arguments.

Note also that the completeness theorem excludes plans with concurrent actions, even
though they can be expressed in the event calculus. Moreover, the planner itself does
not attempt to find such plans, unlike the event calculus planner reported in [Denecker,
et al., 1992].

The soundness and completeness results in this section aren’t always useful as they
stand. The fluent range restricted condition excludes many typical planning problems,
including the shopping trip example as formulated in Section 2. However, the
offending variables in such domain descriptions can easily be removed by some simple
preprocessing which generates a separate clause for each of their ground instances.

Furthermore, the entire class of examples for which the planner is sound and complete
includes many which fall outside the scope of these results. Indeed, the implemented
planner works perfectly well on numerous domain descriptions that are not fluent range
restricted, including the unpreprocessed shopping trip example. It also works for many
examples that include state constraints, such as the plant safety example of Section 2.
In particular, if the set of state constraints is stratified, we should expect the above
soundness and completeness results to carry over without too much difficulty.

5 Hierarchical Planning
It’s a surprisingly straightforward matter to extend the foregoing logical treatment of
partial-order planning to planning via hierarchical decomposition.4 This is achieved

4 A hierarchical planner based on the event calculus is also presented in [Jung, 1998].

19

through the introduction of compound actions, which are quite naturally represented in
the event calculus. Here’s the formal definition.

Definition 5.1. A compound action description is a formula of the form,

Happens(α1,τ1,τ2) ← ψ1 ∧ . . . ∧ ψn

where α1 ia a ground action term, τ1 and τ2 are time point variables, and each ψi is of
the form,

(¬) HoldsAt(β,τ)

where β is a ground fluent term and τ is a time point variable, or,

Happens(α2,τ3,τ4)

where α2 is a ground action term and τ3 and τ4 are time point variables, or,

¬ Clipped(τ3,β,τ4)

where β is a ground fluent term and τ3 and τ4 are time point variables, or,

τ3 < τ4
where τ3 and τ4 are time point variables, such that, for every time point variable τ
occurring in ψi,

ψ1 ∧ . . . ∧ ψn ª τ1 ≤ τ ≤ τ2. �

Compound action descriptions are best illustrated by example. The following formulae
axiomatise a robot mail delivery domain.

First we formalise the effects of the primitive actions. The term Pickup(p) denotes the
action of picking up package p, the term PutDown(p) denotes the action of putting
down package p, and the term GoThrough(d) denotes the action of going through door
d. The fluent Got(p) holds if the robot is carrying the package p, the fluent In(r) holds
if the robot is in room r, and the fluent In(p,r) holds if package p is in room r. The
formula Connects(d,r1,r2) represents that door d connects rooms r1 and r2.

Initiates(Pickup(p),Got(p),t) ← HoldsAt(In(r),t) ∧ HoldsAt(In(p,r),t)

Releases(Pickup(p),In(p,r),t) ← HoldsAt(In(r),t) ∧ HoldsAt(In(p,r),t)

Initiates(PutDown(p),In(p,r),t) ← HoldsAt(Got(p),t) ∧ HoldsAt(In(r),t)

Initiates(GoThrough(d),In(r1),t) ← HoldsAt(In(r2),t) ∧ Connects(d,r2,r1)

Terminates(GoThrough(d),In(r),t) ← HoldsAt(In(r),t)

Now we have the first example of a compound action definition. Compound actions
have duration, while primitive actions will usually be represented as instantaneous.
The term ShiftPack(p,r1,r2,r3) denotes the action of retrieving package p from room r2
and delivering it to room r3, where the robot is initially in room r1. It comprises a
number of sub-actions: two GoToRoom actions, a Pickup action and a PutDown
action. The GoToRoom action is itself a compound action, to be defined shortly.

Happens(ShiftPack(p,r1,r2,r3),t1,t6) ←
Happens(GoToRoom(r1,r2),t1,t2) ∧ t2 < t3 ∧

¬ Clipped(t2,In(r2),t3) ∧ ¬ Clipped(t1,In(p,r2),t3) ∧
Happens(Pickup(p),t3) ∧ t3 < t4 ∧ Happens(GoToRoom(r2,r3),t4,t5) ∧

t5 < t6 ∧ ¬ Clipped(t3,Got(p),t6) ∧ ¬ Clipped(t5,In(r3),t6) ∧
Happens(PutDown(p),t6)

Initiates(ShiftPack(p,r1,r2,r3),In(p,r3),t) ← HoldsAt(In(r1),t) ∧ HoldsAt(In(p,r2),t)

The effects of compound actions should follow from the effects of their sub-actions, as
can be verified in this case by inspection. Note that it is up to the author of the

20

formulae to ensure that this is the case. Next we have the definition of a GoToRoom
action, where GoToRoom(r1,r2) denotes the action of going from room r1 to room r2.

Happens(GoToRoom(r,r),t,t)

Happens(GoToRoom(r1,r3),t1,t3) ←
Connects(d,r1,r2) ∧ Happens(GoThrough(d),t1) ∧

Happens(GoToRoom(r2,r3),t2,t3) ∧ t1 < t2 ∧
¬ Clipped(t1,In(r2),t2)

Initiates(GoToRoom(r1,r2),In(r2),t) ← HoldsAt(In(r1),t)

This illustrates both conditional decomposition and recursive decomposition: a
compound action can decompose into different sequences of sub-actions depending on
what conditions hold, and a compound action can be decomposed into a sequence of
sub-actions that includes a compound action of the same type as itself. A consequence
of this is that the event calculus with compound actions is formally as powerful as any
programming language. In this respect, it can be used in the same way as GOLOG
[Levesque, et al., 1997], a programming language built on a different logic-based
action formalism, namely the situation calculus. Note, however, that we can freely
mix direct programming with planning from first principles.5

Once again, the effects of the compound action should follow from the effects of its
components. This property is made more precise below.

Let Ω denote the conjunction of the following uniqueness-of-names axioms.

UNA[Pickup, PutDown, GoThrough, ShiftPack, GoToRoom]

UNA[Got, In]

The definition of the planning task from Section 2 is unaffected by the inclusion of
compound events. However, it’s convenient to distinguish fully decomposed plans,
comprising only primitive actions, from those that include compound actions.

R1

R2

R3

D1 D2

P1

Robot

Figure 1: A Mail Delivery Domain

Now let’s take a look at a particular mail delivery task. Let Σp be the conjunction of
the above Initiates, Terminates and Releases formulae for primitive actions, and let Σc
be the conjunction of the above Initiates formulae for compound actions. Let ∆c be the
conjunction of the above compound event definitions.

The conjunction Φ of the following Connects formulae represents the layout of rooms
illustrated in Figure 1.

Connects(D1,R1,R2) Connects(D1,R2,R1)

Connects(D2,R2,R3) Connects(D2,R3,R2)

5 In practise, the definition of GoToRoom would benefit from the use of a heuristic to guide
the search.

21

Let ∆0 denote the conjunction of the following formulae representing the initial
situation depicted in Figure 1.

InitiallyP(In(R3)) InitiallyP(In(P1,R1))

Let Γ denote the following HoldsAt formula, which is our goal state.

HoldsAt(In(P1,R2),T)

Consider the following narrative of actions ∆p.

Happens(GoThrough(D2),T0) Happens(GoThrough(D1),T1)

Happens(Pickup(P1),T2) Happens(GoThrough(D1),T3)

Happens(PutDown(P1),T4)

T0 < T1 T1 < T2

T2 < T3 T3 < T4

T4 < T

Now we have, for example,

CIRC[Σp ∧ Σc ; Initiates, Terminates, Releases] ∧
CIRC[∆0 ∧ ∆p ∧ ∆c ; Happens] ∧ EC ∧ Ω ∧ Φ ª

Happens(ShiftPack(P1,R3,R1,R2),T0,T4).

We also have,

CIRC[Σp ∧ Σc ; Initiates, Terminates, Releases] ∧
CIRC[∆0 ∧ ∆p ∧ ∆c ; Happens] ∧ EC ∧ Ω ∧ Φ ª Γ.

So ∆p constitutes a plan.6 Furthermore, we have,

CIRC[Σp ; Initiates, Terminates, Releases] ∧
CIRC[∆0 ∧ ∆p ; Happens] ∧ EC ∧ Ω ∧ Φ ª Γ.

So ∆p constitutes a plan in the context of only the primitive actions. In general, if we
let ∆p be any narrative description comprising only primitive actions and Φ be any
conjunction of Connects formulae, we would like the following to hold. For any
fluent β and time point τ, HoldsAt(β,τ) follows from,

CIRC[Σp ∧ Σc ; Initiates, Terminates, Releases] ∧
CIRC[∆p ∧ ∆c ; Happens] ∧ EC ∧ Ω ∧ Φ

if and only if it follows from,

CIRC[Σp ; Initiates, Terminates, Releases] ∧
CIRC[∆p ; Happens] ∧ EC ∧ Ω ∧ Φ.

We should expect such a property to follow from any correctly formulated domain
description involving compound actions, since the (chief) purpose of compound
actions is to adjust the computation by cutting down on search, and not to increase the
set of consequences of the theory. However, the inclusion of compound actions in the
logical account gives meaning to partially decomposed plans, which are the
intermediate steps in this computation. This is an example of a logical innovation
which is highly suggestive of the form the computation should take.

6 The inclusion of compound actions violates the conditions under which the
circumscription of a narrative can be straightforwardly reduced to predicate completion,
making proofs of such propositions more complicated. Recursion makes matters
particularly tricky.

22

In general we will require our planner to find fully decomposed plans, although it’s
extremely useful to be able to suspend the planning process before a fully decomposed
plan has been found, and still to have a useful result in the form of a partially
decomposed plan. The suspension of planning can be achieved in a logic programming
implementation with a resource-bounded meta-interpreter such as that described by
Kowalski [1995]. Furthermore, the use of hierarchical decomposition facilitates the
generation of plans in progression order (first action first), as opposed to the regression
order (last action first) usually found in logic-based planners. The generation of plans
in regression order would rule out the possibility of suspending planning in mid-
execution and still receiving useful results. This issue is discussed in more depth in
[Shanahan, 1998].

This brings us to the issue of implementation. What modifications are required to the
abductive meta-interpreter of Section 3 to enable it to perform hierarchical
decomposition? In principle, the answer is almost none at all. When presented with
compound event definitions of the above form, it automatically performs hierarchical
decomposition. Whenever a happens goal is reached for a compound action, its
resolution yields further happens sub-goals, and this process continues until
primitive actions are reached, which are added to the residue.7 However, in a practical
planning system, it may be desirable to include special code for handling
decomposition.

Section 3 was entitled “Partial Order Planning = Event Calculus + Abduction”. Now
we’ve arrived at another instantiation of Kowalski’s equation. Hierarchical planning =
event calculus with compound events + abduction. Using the methodology of this
paper, all we have to do to obtain a hierarchical planner from a partial-order planner is
represent compound actions in the obvious way.

Let me conclude this section with a few words about soundness and completeness. As
far as soundness is concerned, Section 4’s simple proof requires negligible
modification to cover a suitably widened class of event calculus theories that permits
the definition of compound actions. The completeness proof is more subtle, but it
seems safe to conjecture that this too extends naturally to the same wider class of
theories. However, no formal proof is offered in the present paper.

6 Shortcomings
This section discusses three of the planner’s shortcomings.8

1. Unsoundness can result when a domain is not fluent range restricted.

2. Incompleteness can arise with incomplete information about the initial situation.

3. Unsoundness can result with some examples involving state constraints.

An example illustrating each shortcoming is given in turn. (It should be noted that
each of these examples is excluded by the conditions attached to the soundness and
completeness theorems of Section 4.)

7 Furthermore, if we make Connects abducible in the mail delivery example instead of
Happens, we can use exactly the same meta-interpreter to determine room connectivity
given a narrative of actions and a conjunction of formulae of the form
HoldsAt(In(Robot,ρ),τ). This further underlines the generic nature of the techniques being
applied here.
8 Generally speaking, conventional planners suffer from exactly the same limitations.

23

The following example shows how a domain description that is not fluent range
restricted can lead to unsoundness in the planner. When a person executes a sell
action, they become rich, but they lose possession of everything that the shop they’re
in will buy.

terminates(sell,have(X),T) :-
holds_at(have(X),T), holds_at(at(Y),T), buys(Y,X).

initiates(sell,rich,T).
buys(hws,drill).

The person is initially at the hardware shop, not at home, and has a drill.

initially(have(drill)).
initially(at(hws)).
initially(neg(at(home))).

Now consider the following query.

:- abdemo([holds_at(rich,t), holds_at(have(drill),t)],R).

Since the person cannot become rich without losing their drill, no plan exists for this
goal, so the query should fail. Unfortunately, the query succeeds, returning the
following trivial “plan”.

R = [[happens(sell, t2, t2)], [before(t2, t)]]

To see how the planner can arrive at this faulty answer, we have to examine the way it
processes the second goal. By the time it comes to solve the second goal, it has already
built the incorrect plan. Given the terminates clause at the top of the domain
description, the goal holds_at(have(drill),t) should fail. But the planner in
fact proceeds as follows. In its misguided attempt to make
terminates(sell,have(drill),t2) fail, the planner applies clause 3 of
abdemo_naf, which tries to make holds_at(at(Y),t2) fail. To do this, it’s
happy to find any Y such that holds_at(neg(at(Y)),t2), such as
Y = home.

The problem is that the quantifiers have been treated incorrectly in a way that is
directly analogous to floundering in negation-as-failure. Specifically, ¬ ∃ x P(x) has
been treated as ∃ x ¬ P(x). Enforcing the fluent range restricted condition ensures that
this problem cannot arise. An alternative approach would be to explicitly enumerate
the objects in the domain, and to prove ¬ P(x) for each such object x. Although this
solution would only work for domains with a finite number of objects, this would be a
useful future extension to the planner. It should also be noted that some of the other
abductive planners, such as [Missiaen, et al., 1995] and [Denecker, et al., 1992]),
solve this problem correctly.

Next we have an example, due to Rob Miller, that illustrates the need for more
sophisticated processing in the presence of incomplete information about the initial
situation. The domain comprises two actions vaccinate1, which immunises a
patient if they have blood type 1, and vaccinate2, which immunises a patient if
they have any other blood type.

initiates(vaccinate1,immune,T) :- holds_at(type1,T).
initiates(vaccinate2,immune,T) :- holds_at(neg(type1),T).

We know nothing about the initial situation, so we don’t know the patient’s blood
type. This uncertainty about the initial situation is represented simply by the absence
of an initially formula for the type1 fluent. However, it’s clear that the patient

24

will be immune after a vaccinate1 action followed by a vaccinate2 action,
whatever their blood type. But the query,

:- abdemo([holds_at(immune,t)],R)

produces no answer.

One method for tackling incompletely specified initial situations, which could be
adapted for the present planner, is outlined in [Miller, 1995]. This involves generating
each possible permutation of fluents consistent with what’s known about the initial
situation, and finding a plan that works for all of them.

Finally, the following example shows how the careless inclusion of state constraints
can lead to unsoundness. First, we have the following state constraint.

holds_at(happy,T) :- holds_at(rich,T)

The domain’s only action is rob_bank, which initiates rich.

initiates(rob_bank,rich,T)

In the initial situation, we have neg(rich) and neg(happy).

initially(neg(rich))
initially(neg(happy))

Now, if we present the planner with the query,

:- abdemo([holds_at(happy,t)],R)

we get the answer,

R = [[happens(rob_bank, t2, t2)], [before(t2, t)]].

At first glance, this seems right. But in fact, the conjunction of this narrative R with
the domain description and event calculus axioms yields both
holds_at(happy,t) and holds_at(neg(happy),t), and the planner is
therefore not generally sound in the presence of state constraints. The source of the
problem is the formula initially(neg(happy)). Inspection of the event
calculus axioms reveals that, if a fluent is explicitly declared as initially false, then it
can only be initiated directly by an event, not indirectly by a state constraint.
Omission of this initially formula yields the desired behaviour.

A possible way to extend the soundness and completeness theorems of Section 4 to
encompass state constraints might be to enforce a partition of fluents into primitive
and derived. Only derived fluents would be permitted on the left-hand-side of a state
constraint, and only primitive fluents would be allowed as arguments to Initiates and
Terminates formule.

7 Implementation and Efficiency Issues
The planner in the appendix is very inefficient, and is only intended as a theoretically
elegant starting point for building a more practical system. A more efficient and usable
planner can be obtained from the elegant planner via the following steps.

• Numerous cuts can be inserted to eliminate redundant backtracking and duplicate
solutions.

• The transitive closure of temporal ordering constraints in the residue can be
maintained and passed as a parameter along with the residue itself, instead of being
computing by calls to demo_before. A number of experiments were carried out
which demonstrated that this enhancement considerably improves the performance of
the planner.

• When negated clipped and declipped lemmas are re-proved in response to
additions of actions to the residue, redundant computation can be reduced by

25

focusing on only the most recently added action, and by looking only at the
clipped and declipped lemmas that refer to intervals within which that event
falls.

A fully commented listing of the planner is available electronically, and the URL is
given in the appendix.

The performance of the efficient version of the planner was evaluated using two
benchmark problems. The aim here is not to compete with other planners in terms of
efficiency , but rather to demonstrate that the adoption of a theorem proving approach
hasn’t incurred any hidden exponential complexity. In Test A, the planner was run on
the shopping trip example from Section 2, with an increasing number of objects to be
bought. The results are given in Table 1. All the test were carried out using an Apple
Macintosh PowerBook 1400cs, running LPA MacProlog 32, with unoptimised code.
Timings are in seconds. The average of three runs is given to compensate for small
variations from run to run.

Objects 6 8 10 12 14 16

Time 0.44 0.84 1.52 2.22 3.69 5.52

Table 1: Test A Results

Actions in plans in Test A can be carried out in any order: the agent can choose any
order in which to buy the objects. In Test B, on the other hand, the planner was run on
an example involving a chain of preconditions, and generates totally ordered plans. The
performance of the planner was investigated as the number of preconditions increases.
The results are given in Table 2.

Preconds 6 8 10 12 14 16

Time 0.06 0.11 0.13 0.20 0.26 0.35

Table 2: Test B Results

In both tests, the planner’s performance is polynomial, and in Test B it is nearly
linear. This suggests that there is indeed no hidden exponential cost to adopting a
theorem proving approach to planning. However, the planner fares less well on
examples, such as the flat tyre problem, on which recent planners such as Satplan
[Kautz & Selman, 1996] and Graphplan [Blum & Furst, 1997] perform more
impressively. This is unsurprising, though, as partial-order planners like UCPOP also
compare unfavourably to these planners on such examples.

A further planner has been implemented, having the following features.

• If run directly in Prolog, the planner in the appendix inherits Prolog’s depth-first
search strategy. Completeness is then sacrificed, and many straightforward planning
problems give rise to looping. Accordingly, the practical implementation uses an
iterative deepening search strategy, where length of plan is used as the depth bound.

• With respect to hierarchical planning, rather than relying on the automatic
decomposition carried out by SLDNF-resolution as described in the last section, the
practical planner has special code for decomposing compound actions. This enables
decomposition and partial-order planning to be carefully interleaved in such a way
that useful partial results are obtained in the middle of the planning process. (See
[Shanahan, 1998].)

26

This planner can also be downloaded, via the URL given in the appendix.

Although it would be hard to construct a formal proof, the intention is that all of the
above described modifications to the basic planner in the appendix are meaning-
preserving in a sense that preserves soundness and completeness.

Concluding Remarks
This paper continues a line of work on event calculus planning begun in [Eshghi,
1988]. Eshghi’s techniques were simplified (and applied to temporal explanation) in
[Shanahan, 1989]. But neither of these papers described a practical planner. The first
usable event calculus planner was developed by Missiaen, et al. [1995], although that
planner deals incorrectly with certain problems, a drawback addressed by the planner of
[Denecker, et al., 1992]. Other abductive event calculus planners have been developed
by Chleq [1996] and Jung, et al. [1996]. All of these planners are based on similar
ideas to those presented in this paper: all use abductive logic programming techniques
to generate plans using a similar style of representation via initiates,
terminates and happens predicates.

The present paper goes beyond the work of its predecessors in several ways. First, it
tackles the issue of hierarchical planning. Second, the event calculus formalism used is
not just a logic program, but is specified in first-order predicate calculus augmented
with circumscription. Third, the paper exposes close correspondences with existing
planning algorithms. Since the planner is simply the result of applying general
purpose theorem proving techniques to a general purpose action formalism, it can be
argued that this illuminates the nature of several commonly deployed concepts in the
planning literature. Fourth, unlike the planners in [Missiaen, et al., 1995] and [Jung,
et al., 1996], the planner of the present paper can handle actions with context-
dependent effects. Finally, since it uses abduction to solve initiates and
terminates goals, the planner is both sound and complete, and, like the planner of
[Denecker, et al., 1992], performs correctly on the anomalous examples described in
[Missiaen, et al., 1995].

A number of general-purpose procedures for abductive logic programming exist, such
as SLDNFA [Denecker & De Schreye, 1998], ACLP [Kakas, et al., 1998], and the
IFF procedure [Fung & Kowalski, 1997], that can also been applied to planning or
reasoning about action. These procedures are more complex than the present abductive
planner, but soundness and completeness theorems have been developed for them
which cover a wider class of examples than the fluent range restrictedness condition
used here will allow. A detailed comparison of these procedures with the present
planner is highly desirable, but is beyond the scope of the present paper.

Recently, a resource-bounded version of the planner, alongside a similar
implementation of abductive sensor data assimilation, has been deployed on a
miniature mobile robot in a simple mail delivery domain [Shanahan, 1998]. Work
continues along these lines.

Acknowledgments
Thanks to Rob Miller, Marc Denecker, and two anonymous referees. This work was
carried out as part of the EPSRC funded project GR/L20023 “Cognitive Robotics”.

References
[Blum & Furst, 1997] A.L.Blum and M.L.Furst, Fast Planning Through Planning

Graph Analysis, Artificial Intelligence, vol. 90 (1997), pp. 281–300.

27

[Chapman, 1987] D.Chapman, Planning for Conjunctive Goals, Artificial
Intelligence, vol. 32 (1987), pp. 333–377.

[Chitaro & Montanari, 1996] L.Chittaro and A.Montanari, Efficient Temporal
Reasoning in the Cached Event Calculus, Computational Intelligence, vol.12, no.3
(1996), pp. 359–382.

[Chleq, 1996] N.Chleq, Constrained Resolution and Abductive Temporal Reasoning,
Computational Intelligence, vol.12, no.3 (1996), pp. 383–406.

[Denecker, et al., 1992] M.Denecker, L.Missiaen and M.Bruynooghe, Temporal
Reasoning with Abductive Event Calculus, Proceedings ECAI 92, pp. 384–388.

[Denecker & De Schreye, 1998] SLDNFA: An Abductive Procedure for Abductive
Logic Programs, Journal of Logic Programming, vol. 34, no. 2, pp. 111–167.

[Eshghi, 1988] K.Eshghi, Abductive Planning with Event Calculus, Proceedings of
the Fifth International Conference on Logic Programming (1988), pp. 562–579.

[Fung & Kowalski, 1997] T.H.Fung and R.A.Kowalski, The IFF Proof Procedure for
Abductive Logic Programming, Journal of Logic Programming, vol. 33, no. 2, pp.
151–165.

[Green 1969] C.Green, Applications of Theorem Proving to Problem Solving,
Proceedings IJCAI 69, pp. 219–240.

[Jung, 1998] C.G.Jung, Situated Abstraction Planning by Abductive Temporal
Reasoning, Proceedings ECAI 98, pp. 383–387.

[Jung, et al., 1996] C.G.Jung, K.Fischer and A.Burt, Multi-Agent Planning Using an
Abductive Event Calculus, DFKI Report RR-96-04 (1996), DFKI, Germany.

[Kakas, et al., 1998] A.C.Kakas, A.Michael and C.Mourlas, ACLP: A Case for Non-
Monotonic Reasoning, Proceedings of the 7th International Workshop on Non-
Monotonic Reasoning (NM 98).

[Kautz & Selman, 1996] H.Kautz and B.Selman, Pushing the Envelope: Planning,
Propositional Logic and Stochastic Search, Proceedings AAAI 96, pp. 1194–1201.

[Kowalski, 1979] R.A.Kowalski, Algorithm = Logic + Control, Communications of
the ACM, vol. 22, pp. 424–436.

[Kowalski, 1995] R.A.Kowalski, Using Meta-Logic to Reconcile Reactive with
Rational Agents, in Meta-Logics and Logic Programming, ed. K.R.Apt and
F.Turini, MIT Press (1995), pp. 227–242.

[Kowalski & Sergot, 1986] R.A.Kowalski and M.J.Sergot, A Logic-Based Calculus
of Events, New Generation Computing, vol 4 (1986), pp. 67–95.

[Levesque, 1996] H.Levesque, What Is Planning in the Presence of Sensing?
Proceedings AAAI 96, pp. 1139–1146.

[Levesque, et al., 1997] H.Levesque, R.Reiter, Y.Lespérance, F.Lin and R.B.Scherl,
GOLOG: A Logic Programming Language for Dynamic Domains, The Journal of
Logic Programming, vol. 31 (1997), pp. 59–83.

[Lifschitz, 1994] V.Lifschitz, Circumscription, in The Handbook of Logic in
Artificial Intelligence and Logic Programming, Volume 3: Nonmonotonic Reasoning
and Uncertain Reasoning, ed. D.M.Gabbay, C.J.Hogger and J.A.Robinson, Oxford
University Press (1994), pp. 297–352.

[Miller, 1995] R.S.Miller, Situation Calculus Specifications for Event Calculus
Logic Programs, Proceedings of the Third International Conference on Logic

28

Programming and Non-Monotonic Reasoning, Lexington, KY, USA, Springer
Verlag, 1995, pp. 217–230.

[Missiaen, 1991] L.Missiaen, Localized abductive planning for robot assembly,
Proceedings 1991 IEEE Conference on Robotics and Automation, pp. 605–610.

[Missiaen, et al., 1995] L.Missiaen, M.Bruynooghe and M.Denecker, CHICA, A
Planning System Based on Event Calculus, The Journal of Logic and Computation,
vol. 5, no. 5 (1995), pp. 579–602.

[Penberthy & Weld, 1992] J.S.Penberthy and D.S.Weld, UCPOP: A Sound,
Complete, Partial Order Planner for ADL, Proceedings KR 92, pp. 103–114.

[Russell & Norvig, 1995] S.Russell and P.Norvig, Artificial Intelligence: A Modern
Approach, Prentice Hall International (1995).

[Shanahan, 1989] M.P.Shanahan, Prediction Is Deduction but Explanation Is
Abduction, Proceedings IJCAI 89, pp. 1055–1060.

[Shanahan, 1997a] M.P.Shanahan, Solving the Frame Problem: A Mathematical
Investigation of the Common Sense Law of Inertia, MIT Press (1997).

[Shanahan, 1997b] M.P.Shanahan, Event Calculus Planning Revisited, Proceedings
4th European Conference on Planning (ECP 97), Springer Lecture Notes in
Artificial Intelligence no. 1348 (1997), pp. 390–402.

[Shanahan, 1998] M.P.Shanahan, Reinventing Shakey, Working Notes of the 1998
AAAI Fall Symposium on Cognitive Robotics, pp. 125–135.

Appendix
A companion website to this paper can be accessed via
http://www.ee.ic.ac.uk/~mpsha/planners.html. This website contains the following.

• Version 4.2 of the planner. This is the bare, uncommented, pure but inefficient
version given below.

• Version 1.9a of the planner. This is the faster version that was used for the
benchmarks described in Section 6. It’s reasonably efficient at partial-order planning,
but doesn’t handle hierarchical planning well.

• Version 1.13 of the planner. This version of the planner uses an iterative deepening
search strategy, and has special code for hierarchical decomposition. It’s less
efficient for straight partial-order planning than Version 1.9a.

• Code for each of the examples given in the paper.

• Code for the two benchmark examples described in Section 6.

All the code is written in LPA MacProlog 32, but should be easy to port to other
Prolog systems.

There follows a complete listing, without comments, of the pure but inefficient
version of the planner used for the proofs in Section 6.

/*

 ABDUCTIVE EVENT CALCULUS

 MURRAY SHANAHAN

 Version 4.2

29

 Stripped down, cut-free version, without comments

*/

abdemo(Gs,R) :- init_gensym(t), abdemo(Gs,[[],[]],R,[],N).

abdemo([],R,R,N,N).

abdemo([holds_at(F1,T)|Gs1],R1,R3,N1,N4) :-
 F1 \= neg(F2), abresolve(initially(F1),R1,Gs2,R1),
 append(Gs2,Gs1,Gs3), add_neg([clipped(0,F1,T)],N1,N2),
 abdemo_naf([clipped(0,F1,T)],R1,R2,N2,N3),
 abdemo(Gs3,R2,R3,N3,N4).

abdemo([holds_at(F1,T3)|Gs1],R1,R5,N1,N4) :-
 F1 \= neg(F2), abresolve(initiates(A,F1,T1),R1,Gs2,R1),
 abresolve(happens(A,T1,T2),R1,[],R2),
 abresolve(before(T2,T3),R2,[],R3),
 append(Gs2,Gs1,Gs3),
 add_neg([clipped(T1,F1,T3)],N1,N2),
 abdemo_nafs(N2,R3,R4,N2,N3),
 abdemo(Gs3,R4,R5,N3,N4).

abdemo([holds_at(neg(F),T)|Gs1],R1,R3,N1,N4) :-
 abresolve(initially(neg(F)),R1,Gs2,R1),
 append(Gs2,Gs1,Gs3), add_neg([declipped(0,F,T)],N1,N2),
 abdemo_naf([declipped(0,F,T)],R1,R2,N2,N3),
 abdemo(Gs3,R2,R3,N3,N4).

abdemo([holds_at(neg(F),T3)|Gs1],R1,R5,N1,N4) :-
 abresolve(terminates(A,F,T1),R1,Gs2,R1),
 abresolve(happens(A,T1,T2),R1,[],R2),
 abresolve(before(T2,T3),R2,[],R3),
 append(Gs2,Gs1,Gs3),
 add_neg([declipped(T1,F,T3)],N1,N2),
 abdemo_nafs(N2,R3,R4,N2,N3),
 abdemo(Gs3,R4,R5,N3,N4).

abdemo([G|Gs1],R1,R3,N1,N2) :-
 abresolve(G,R1,Gs2,R2), append(Gs2,Gs1,Gs3),
 abdemo(Gs3,R2,R3,N1,N2).

abresolve(terms_or_rels(A,F,T),R,Gs,R) :- axiom(releases(A,F,T),Gs).

abresolve(terms_or_rels(A,F,T),R,Gs,R) :-
 axiom(terminates(A,F,T),Gs).

30

abresolve(inits_or_rels(A,F,T),R,Gs,R) :- axiom(releases(A,F,T),Gs).

abresolve(inits_or_rels(A,F,T),R,Gs,R) :- axiom(initiates(A,F,T),Gs).

abresolve(happens(A,T),R1,Gs,R2) :-
 abresolve(happens(A,T,T),R1,Gs,R2).

abresolve(happens(A,T1,T2),[HA,BA],[],[HA,BA]) :-
 member(happens(A,T1,T2),HA).

abresolve(happens(A,T,T),[HA,BA],[],[[happens(A,T,T)|HA],BA]) :-
 executable(A), skolemise(T).

abresolve(before(X,Y),R,[],R) :- demo_before(X,Y,R).

abresolve(before(X,Y),R1,[],R2) :-
 \+ demo_before(X,Y,R1), \+ demo_beq(Y,X,R1),
 add_before(X,Y,R1,R2).

abresolve(diff(X,Y),R,[],R) :- X \= Y.

abresolve(G,R,Gs,R) :- axiom(G,Gs).

abdemo_nafs([],R,R,N,N).

abdemo_nafs([N|Ns],R1,R3,N1,N3) :-
 abdemo_naf(N,R1,R2,N1,N2), abdemo_nafs(Ns,R2,R3,N2,N3).

abdemo_naf([clipped(T1,F,T4)|Gs1],R1,R2,N1,N2) :-
 findall(Gs3,
 (abresolve(terms_or_rels(A,F,T2),R1,Gs2,R1),
 abresolve(happens(A,T2,T3),R1,[],R1),
 append([before(T1,T3),before(T2,T4)|Gs2],Gs1,Gs3)),Gss),
 abdemo_nafs(Gss,R1,R2,N1,N2).

abdemo_naf([declipped(T1,F,T4)|Gs1],R1,R2,N1,N2) :-
 findall(Gs3,
 (abresolve(inits_or_rels(A,F,T2),R1,Gs2,R1),
 abresolve(happens(A,T2,T3),R1,[],R1),
 append([before(T1,T3),before(T2,T4)|Gs2],Gs1,Gs3)),Gss),
 abdemo_nafs(Gss,R1,R2,N1,N2).

abdemo_naf([holds_at(F1,T)|Gs],R1,R2,N1,N2) :-
 opposite(F1,F2), abdemo([holds_at(F2,T)],R1,R2,N1,N2).

31

abdemo_naf([holds_at(F,T)|Gs],R1,R2,N1,N2) :-
 abdemo_naf(Gs,R1,R2,N1,N2).

abdemo_naf([before(X,Y)|Gs],R,R,N,N) :- X = Y.

abdemo_naf([before(X,Y)|Gs],R,R,N,N) :- X \= Y, demo_before(Y,X,R).

abdemo_naf([before(X,Y)|Gs],R1,R2,N1,N2) :-
 X \= Y, \+ demo_before(Y,X,R1),
 abdemo_naf(Gs,R1,R2,N1,N2).

abdemo_naf([before(X,Y)|Gs],R1,R2,N,N) :-
 X \= Y, \+ demo_before(Y,X,R1),
 \+ demo_beq(X,Y,R1), add_before(Y,X,R1,R2).

abdemo_naf([G|Gs1],R,R,N,N) :-
 G \= clipped(T1,F,T2), G \= declipped(T1,F,T2),
 G \= holds_at(F,T), G \= before(X,Y),
 \+ abresolve(G,R,Gs2,R).

abdemo_naf([G1|Gs1],R1,R2,N1,N2) :-
 G1 \= clipped(T1,F,T2), G1 \= declipped(T1,F,T2),
 G1 \= holds_at(F,T), G1 \= before(X,Y),
 findall(Gs3,(abresolve(G1,R1,Gs2,R1),append(Gs2,Gs1,Gs3)),Gss),
 Gss \= [], abdemo_nafs(Gss,R1,R2,N1,N2).

demo_before(X,Y,[HA,BA]) :- demo_before(X,Y,BA,[]).

demo_before(0,Y,R,L) :- Y \= 0.

demo_before(X,Y,R,L) :- X \= 0, member(before(X,Y),R).

demo_before(X,Y,R,L) :-
 X \= 0, \+ member(before(X,Y),R), member(X,L).

demo_before(X,Y,R,L) :-
 X \= 0, \+ member(before(X,Y),R), \+ member(X,L),
 member(before(X,Z),R), demo_before(Z,Y,R,[X|L]).

demo_beq(X,X,R).

demo_beq(X,Y,R) :- X \= Y, demo_before(X,Y,R).

add_before(X,Y,[HA,BA]) :- member(before(X,Y),BA).

add_before(X,Y,[HA,BA],[HA,[before(X,Y)|BA]]) :-

32

 \+ member(before(X,Y),BA), \+ demo_beq(Y,X,[HA,BA]).

add_neg(N,Ns,Ns) :- member(N,Ns).

add_neg(N,Ns,[N|Ns]) :- \+ member(N,Ns).

skolemise(T) :- gensym(t,T).

opposite(neg(F),F).

opposite(F1,neg(F1)) :- F1 \= neg(F2).

