
PDDL | The Planning Domain De�nition Language

Draft 1.1

This manual was produced by the AIPS-98 Planning Competition Committee:

Malik Ghallab, Ecole Nationale Superieure D'ingenieur des

Constructions Aeronautiques

Adele Howe (Colorado State University)

Craig Knoblock, ISI

Drew McDermott (chair) (Yale University)

Ashwin Ram (Georgia Tech University)

Manuela Veloso (Carnegie Mellon University)

Daniel Weld (University of Washington)

David Wilkins (SRI)

It was based on the UCPOP language manual, written by the following

researchers from the University of Washington:

Anthony Barrett, Dave Christianson, Marc Friedman, Chung Kwok, Keith Golden,

Scott Penberthy, David E Smith, Ying Sun, & Daniel Weld

Contact Drew McDermott (mcdermott-drew@yale.edu) with comments on this draft.

April 3, 1998

Abstract

This manual describes the syntax of PDDL, the Planning Domain De�nition Language,

the problem-speci�cation language for the AIPS-98 planning competition. The language

has roughly the the expressiveness of Pednault's ADL [10] for propositions, and roughly

the expressiveness of UMCP [6] for actions. Our hope is to encourage empirical evaluation

of planner performance, and development of standard sets of problems all in comparable

notations.

1 Introduction

This manual describes the syntax, and, less formally, the semantics, of the Planning Domain

De�nition Language (PDDL). The language supports the following syntactic features:

� Basic STRIPS-style actions

� Conditional e�ects

� Universal quanti�cation over dynamic universes (i.e., object creation and destruction),

� Domain axioms over strati�ed theories,

� Speci�cation of safety constraints.

� Speci�cation of hierarchical actions composed of subactions and subgoals.

� Management of multiple problems in multiple domains using di�ering subsets of lan-

guage features (to support sharing of domains across di�erent planners that handle

varying levels of expressiveness).

PDDL is intended to express the \physics" of a domain, that is, what predicates there

are, what actions are possible, what the structure of compound actions is, and what the

e�ects of actions are. Most planners require in addition some kind of \advice," that is,

annotations about which actions to use in attaining which goals, or in carrying out which

compound actions, under which circumstances. We have endeavored to provide no advice

at all as part of the PDDL notation; that explains the almost perverse aura of neutrality

surrounding the notation at various places. As a result of this neutrality, almost all planners

will require extending the notation, but every planner will want to extend it in di�erent

ways.

Even with advice left out, we anticipate that few planners will handle the entire PDDL

language. Hence we have factored the language into subsets of features, called requirements.

Every domain de�ned using PDDL should declare which requirements it assumes. A plan-

ner that does not handle a given requirement can then skip over all de�nitions connected

with a domain that declares that requirement, and won't even have to cope with its syntax.

PDDL is descended from several forebears:

� ADL [10]

� The SIPE-2 formalism [12]

� The Prodigy-4.0 formalism [3]

� The UMCP formalism [6]

� The Unpop formalism [8]

� and, most directly, the UCPOP formalism [2]

Our hope is to encourage sharing of problems and algorithms, as well as to allow mean-

ingful comparison of the performance of planners on di�erent problems. A particular goal

is to provide a notation for problems to be used in the AIPS-98 planning contest.

1

2 A Simple Example

To give a avor of the language, consider Pednault's famous example [9] involving trans-

portation of objects between home and work using a briefcase whose e�ects involve both

universal quanti�cation (all objects are moved) and conditional e�ects (if they are inside

the briefcase when it is moved). The domain is described in terms of three action schemata

(shown below). We encapsulate these schemata by de�ning the domain and listing its

requirements.

(define (domain briefcase-world)

(:requirements :strips :equality :typing :conditional-effects)

(:types location physob)

(:constants (B - physob))

(:predicates (at ?x - physob ?l - location)

(in ?x ?y - physob))

...

A domain's set of requirements allow a planner to quickly tell if it is likely to be able

to handle the domain. For example, this version of the briefcase world requires conditional

e�ects, so a straight STRIPS-representation planner would not be able to handle it. A

keyword (symbol starting with a colon) used in a :requirements �eld is called a requirement

ag; the domain is said to declare a requirement for that ag.

All domains include a few built-in types, such as object (any object), and number.

Most domains de�ne further types, such as location and physob (\physical object") in

this domain.

A constant is a symbol that will have the same meaning in all problems in this domain.

In this case B | the briefcase | is such a constant. (Although we could have a type

briefcase, we don't need it, because there's only one briefcase.)

Inside the scope of a domain declaration, one speci�es the action schemata for the

domain.

(:action mov-b

:parameters (?m ?l - location)

:precondition (and (at B ?m) (not (= ?m ?l)))

:effect (and (at b ?l) (not (at B ?m))

(forall (?z)

(when (and (in ?z) (not (= ?z B)))

(and (at ?z ?l) (not (at ?z ?m)))))))

This speci�es that the briefcase can be moved from location ?m to location ?l where the

symbols starting with question marks denote variables. The preconditions dictate that the

briefcase must initially be in the starting location for the action to be legal and that it is

illegal to try to move the briefcase to the place where it is initially. The e�ect equation says

that the briefcase moves to its destination, is no longer where it started, and everything

inside the briefcase is likewise moved.

2

(:action put-in

:parameters (?x - physob ?l - location)

:precondition (not (= ?x B))

:effect (when (and (at ?x ?l) (at B ?l))

(in ?x)))

This action de�nition speci�es the e�ect of putting something (not the briefcase (B)

itself!) inside the briefcase. If the action is attempted when the object is not at the same

place (?l) as the briefcase, then there is no e�ect.

(:action take-out)

:parameters (?x - physob)

:precondition (not (= ?x B))

:effect (not (in ?x)))

The �nal action provides a way to remove something from the briefcase.

Pednault's example problem supposed that at home one had a dictionary and a briefcase

with a paycheck inside it. Furthermore, suppose that we wished to have the dictionary and

briefcase at work, but wanted to keep the paycheck at home. We can specify the planning

problem as follows:

(define (problem get-paid)

(:domain briefcase-world)

(:init (place home) (place office)

(object p) (object d) (object b)

(at B home) (at P home) (at D home) (in P))

(:goal (and (at B office) (at D office) (at P home))))

One could then invoke a planner by typing something like (graph-plan 'get-paid).

The planner checks to see if it can handle the domain requirements and if so, plans.

3 Syntactic Notation

Our notation is an Extended BNF (EBNF) with the following conventions:

� Each rule is of the form <syntactic element> ::= expansion.

� Angle brackets delimit names of syntactic elements.

� Square brackets ([and]) surround optional material. When a square bracket has a

superscripted requirement ag, such as:

[(:types ...)]

(:typing)

it means that the material is includable only if the domain being de�ned has declared

a requirement for that ag. See Section 15.

3

� Similarly, the symbol ::= may be superscripted with a requirement ag, indicating

that the expansion is possible only if the domain has declared that ag.

� An asterisk (*) means \zero or more of"; a plus (+) means \one or more of."

� Some syntactic elements are parameterized. E.g., <list (symbol)> might denote a

list of symbols, where there is an EBNF de�nition for <list x> and a de�nition for

<symbol>. The former might look like

<list x> ::= (x*)

so that a list of symbols is just (<symbol>*).

� Ordinary parenthesis are an essential part of the syntax we are de�ning and have no

semantics in the EBNF meta language.

As we said in Section 1, PDDL is intended to express only the physics of a domain, and

will require extension to represent the search-control advice that most planners need. We

recommend that all such extensions obey the following convention: An extended PDDL

expression is an ordinary PDDL expression with some subexpressions of the form ("" e

a), where e is an unextended PDDL expression and a is some advice. The \""" notation

indicates that we are ascending to a \meta" level. The word \expression" here is interpreted

as \any part of a PDDL expression that is either a single symbol or an expression of the

form (...)." For instance, the de�nition of mov-b given above might be enhanced for a

particular planner thus:

(:action mov-b

:parameters (?m ?l - location)

:precondition (and (^^ (at B ?m)

(goal-type: achievable))

(^^ (not (= ?m ?l))

(goal-type: filter)))

:effect (and (at b ?l) (not (at B ?m))

(forall (?z)

(when (and (in ?z) (not (= ?z B)))

(and (^^ (at ?z ?l) :primary-effect)

(^^ (not (at ?z ?m)) :side-effect))))))

to indicate that

1. (:primary-effect vs. :side-effect): when the planner encounters a goal of the

form (at ?z ?l), it may introduce a mov-b action into a plan in order to achieve

that goal, but a goal of the form (not (at ?z ?m)), while it may be achieved by an

action of this form introduced for another reason, should not cause a mov-b action to

be created;

2. (di�erent goal-types): If an action such as (mov-b b1 place2 place2) arises, it

should be rejected immediately, rather than giving rise to a subgoal (not (= place2

place2)).

4

Adopting this convention should improve the portability of plan-problem collections,

because a planner using PDDL can be written to ignore all advice in unexpected contexts.

In the future, we may introduce a more complex syntax for attaching advice to be used by

di�erent planners, but for now the only general principle is that an expression of the form

("" e a) can occur anywhere, and will mean exactly the same thing as e, as far as domain

physics are concerned.

Comments in PDDL begin with a semicolon (\;") and end with the next newline. Any

such string behaves like a single space.

4 Domains

We now describe the language more formally. The EBNF for de�ning a domain structure

is:

<domain> ::= (define (domain <name>)

[<extension-def>]

[<require-def>]

[<types-def>]

:typing

[<constants-def>]

[<domain-vars-def>]

:expression�evaluation

[<predicates-def>]

[<timeless-def>]

[<safety-def>]

:safety�constraints

<structure-def>

�

)

<extension-def> ::= (:extends <domain name>

+

)

<require-def> ::= (:requirements <require-key>

+

)

<require-key> ::= See Section 15

<types-def> ::= (:types <typed list (name)>)

<constants-def> ::= (:constants <typed list (name)>)

<domain-vars-def> ::= (:domain-variables

<typed list(domain-var-declaration)>)

<predicates-def> ::= (:predicates <atomic formula skeleton>

+

)

<atomic formula skeleton>

::= (<predicate> <typed list (variable)>)

<predicate> ::= <name>

<variable> ::= ?<name>

<timeless-def> ::= (:timeless <literal (name)>

+

)

<structure-def> ::= <action-def>

<structure-def> ::=

:domain�axioms

<axiom-def>

<structure-def> ::=

:action�expansions

<method-def>

Although we have indicated the arguments in a particular order, they may come in any

order, except for the (domain ...) itself.

Proviso: For the convenience of some implementers, we de�ne a \strict subset" of PDDL

that imposes the following additional restrictions:

5

1. All keyword arguments (for (define (domain ...)) and all similar constructs) must

appear in the order speci�ed in the manual. (An argument may be omitted.)

2. Just one PDDL de�nition (of a domain, problem, etc.) may appear per �le.

3. Addenda (see Section 11) are forbidden.

Names of domains, like other occurrences of syntactic category <name>, are strings of

characters beginning with a letter and containing letters, digits, hypens (\-"), and under-

scores (\ "). Case is not signi�cant.

If the :extends argument is present, then this domain inherits requirements, types,

constants, actions, axioms, and timelessly true propositions from the named domains, which

are called the ancestors of this domain.

The :requirements �eld is intended to formalize the fact that not all planners can

handle all problems statable in the PDDL notation. If the requirement is missing (and not

inherited from any ancestor domain), then it defaults to :strips. In general, a domain is

taken to declare every requirement that any ancestor declares. A description of all possible

requirements is found in Section 15.

The :types argument uses a syntax borrowed from Nisp [7] that is used elsewhere in

PDDL (but only if :typing is handled by the planner.

<typed list (x)> ::= x

�

<typed list (x)> ::=

:typing

x

+

- <type> <typed list(x)>

<type> ::= <name>

<type> ::= (either <type>

+

)

<type> ::=

:fluents

(fluent <type>)

A typed list is used to declare the types of a list of entities; the types are preceded by

a minus sign (\-"), and every other element of the list is declared to be of the �rst type

that follows it, or object if there are no types that follow it. An example of a <typed

list(name)> is

integer float - number physob

If this occurs as a :types argument to a domain, it declares three new types, integer,

float, and physob. The �rst two are subclasses of number, the last a subclass of object

(by default). That is, every integer is a number, every oat is a number, and every physical

object is an object.

An atomic type name is just a timeless unary predicate, and may be used wherever such

a predicate makes sense. In addition to atomic type names, there are two compound types.

(either t

1

...t

k

) is the union of types t

1

to t

k

. (fluent t) is the type of an object whose

value varies from situation to situation, and is always of type t. (See Section 12.)

The :domain-variables declaration is used for domains that declare the requirement

ag :expression-evaluation; this requirement, and the accompanying syntactic class

domain-var-declaration, are described in Section 12.

The :constants �eld has the same syntax as the :types �eld, but the semantics is

di�erent. Now the names are taken as new constants in this domain, whose types are given

as described above. E.g., the declaration

6

(:constants sahara - theater

division1 division2 - division)

indicates that in this domain there are three distinguished constants, sahara denoting a

theater and two symbols denoting divisions.

The :predicates �eld consists of a list of declarations of predicates, once again using

the typed-list syntax to declare the arguments of each one.

The :timeless �eld consists of a list of literals that are taken to be true at all times

in this domain. The syntax <literal(name)> will be de�ned in Section 6. It goes without

saying that the predicates used in the timeless propositions must be declared either here or

in an ancestor domain. (Built-in predicates such as \=" behave as if they were inherited from

an ancestor domain, although whether they actually are implemented this way depends on

the implementation.)

The remaining �elds de�ne actions and rules in the domain, and will be given their own

sections.

5 Actions

The EBNF for an action de�nition is:

<action-def> ::= (:action <action functor>

:parameters (<typed list (variable)>)

<action-def body>)

<action functor> ::= <name>

<action-def body> ::= [:vars (<typed list(variable)>)]

[:precondition <GD>]

[:expansion

<action spec>]

:action�expansions

[:expansion :methods]

:action�expansions

[:maintain <GD>]

:action�expansions

[:effect <effect>]

[:only-in-expansions <boolean>]

:action�expansions

The :parameters list is simply the list of variables on which the particular rule operates,

i.e., its arguments, using the typing syntax described above. The :vars list are locally

bound variables whose semantics are explained below.

The :precondition is an optional goal description (GD) that must be satis�ed before

the action is applied. As de�ned below (Section 6), PDDL goal descriptions are quite

expressive: an arbitrary function-free �rst-order logical sentence is allowed. If no precondi-

tions are speci�ed, then the action is always executable. E�ects list the changes which the

action imposes on the current state of the world. E�ects may be universally quanti�ed and

conditional, but full �rst order sentences (e.g., disjunction and Skolem functions) are not

allowed. Thus, it is important to realize that PDDL is asymmetric: action preconditions

are considerably more expressive than action e�ects.

The :effect describes the e�ects of the action. See Section 7.

7

If the domain declares requirement :action-expansions, then it is legitimate to include

an :expansion �eld for an action, which speci�es all the ways the action may be carried

out in terms of (presumably simpler) actions. It is also meaningful to impose a constraint

that a <GD> be maintained throughout the execution of an action. See Section 8.

An action de�nition must have an :effect or an :expansion, but not both.

Free variables are not allowed. All variables in an action de�nition (i.e., in its precon-

ditions, maintenance condition, expansion, or e�ects) must be included in the :parameter

or :vars list, or explicitly introduced with a quanti�er.

:vars is mainly a convenience. Variables appearing here behave as if bound existentially

in preconditions and universally in e�ects, except that it is an error if more than one instance

satis�es the existential precondition. So, for example, in the following de�nition

(:action spray-paint

:parameters (?c - color)

:vars (?x - location)

:precondition (at robot ?x)

:effect (forall (?y - physob)

(when (at ?y ?x)

(color ?y ?c))))

if the robot must be in at most one place to avoid an error.

All the variables occurring free in the :effect or :action �eld must be bound in the

:precondition �eld.

The optional argument :only-in-expansions is described in Section 8.

6 Goal Descriptions

A goal description is used to specify the desired goals in a planning problem and also

the preconditions for an action. Function-free �rst-order predicate logic (including nested

quanti�ers) is allowed.

<GD> ::= <atomic formula(term)>

<GD> ::= (and <GD>

�

)

<GD> ::= <literal(term)>

<GD> ::=

:disjunctive�preconditions

(or <GD>

�

)

<GD> ::=

:disjunctive�preconditions

(not <GD>)

<GD> ::=

:disjunctive�preconditions

(imply <GD> <GD>)

<GD> ::=

:existential�preconditions

(exists (<typed list(variable)>

�

) <GD>)

<GD> ::=

:universal�preconditions

(forall (<typed list(variable)>

�

) <GD>)

<literal(t)> ::= <atomic formula(t)>

<literal(t)> ::= (not <atomic formula(t)>)

<atomic formula(t)> ::= (<predicate> t

�

)

<term> ::= <name>

<term> ::= <variable>

8

where, of course, an occurrence of a <predicate> should agree with its declaration in terms

of number and, when applicable, types of arguments.

Hopefully the semantics of these expresssions is obvious.

7 E�ects

PDDL allows both conditional and universally quanti�ed e�ects. The description is

straightforward:

<effect> ::= (and <effect>

�

)

<effect> ::= (not <atomic formula(term)>)

<effect> ::= <atomic formula(term)>

<effect> ::=

:conditional�effects

(forall (<variable>

�

) <effect>)

<effect> ::=

:conditional�effects

(when <GD> <effect>)

<effect> ::=

:fluents

(change <fluent> <expression>)

We assume that all variables must be bound (either with a quanti�er or in the parameters

section of an action de�nition).

As in strips, the truth value of predicates are assumed to persist forward in time.

Unlike strips, PDDL has no delete list | instead of deleting (on a b) one simply asserts

(not (on a b)). If an action's e�ects does not mention a predicate P then the truth of

that predicate is assumed unchanged by an instance of the action.

The semantics of (when P E) are as follows: If P is true before the action, then e�ect

E occurs after. P is a secondary precondition [10]. The action is feasible even if P is false,

but the e�ect E occurs only if P is true.

Fluents are explained in Section 12.

8 Action Expansions

In many classical hierarchical planners (such as Sipe [12], O-Plan [5], and UMCP [6]) goals

are speci�ed in terms of abstract actions to carry out as well as (or instead of) goals to

achieve. A solution to a planning problems is a sequence of actions that jointly compose all

the abstract actions originally requested. PDDL allows for this style of planning by pro-

viding an :expansion �eld in action de�nitions, provided the domain declares requirement

:action-expansions. The �eld, as described above, is of the form :expansion <action

spec>, where <action spec> has the following syntax:

<action spec> ::= <action-term>

<action spec> ::= (in-context <action spec>

<action-def body>)

<action spec> ::= (choice <action spec>

�

)

<action spec> ::= (forsome (<typed list(variable)>

�

)

<action spec>)

<action spec> ::= (series <action spec>

�

)

<action spec> ::= (parallel <action spec>

�

)

9

<action spec> ::= (tag <action-label term>

�

<action spec>

<action-label term>

�

)

<action spec> ::=

:foreach�expansions

(foreach <typed list(variable)>

<GD> <action spec>)

<action spec> ::=

:dag�expansions

(constrained (<action spec>

+

)

<action constraint>

�

)

<action constraint>::= (in-context <action constraint>

<action-def body>)

<action constraint>::= (series <action constraint>

�

)

<action constraint>::= (parallel <action constraint>

�

)

<action-term> ::= (<action functor> <term>

�

)

<action-label term>::= <action label>

| (< <action label>)

| (> <action label>)

<action label> ::= <name>

Extra choices may be added to an action expansion after the action is de�ned, by the use

of :methods, as described in Section 11. An action with no expansion is called a primitive

action, or just a primitive. It is always possible to tell by the action de�nition if the action

is primitive; if all its expansions are de�ned via methods, then the :expansion argument

should be the symbol :methods.

An action may be expanded into a structure of actions, either a series-parallel combi-

nation, or, if the domain declares requirement :dag-expansions an arbitrary partial order

(with steps labeled by tag). If there is a choice of expansions, it is indicated using choice.

A forsome behaves like a choice among all its instances.

The only built-in action term is (--), or no-op.

Anywhere an action is allowed, the expansion may have an expression of the form

(in-context <action spec>

:precondition P

:maintain M)

This construct is used to declare preconditions and maintenance conditions of actions that

are due purely to their occurring in the context of this expansion. (It should not be used to

repeat the preconditions associated with the de�nition of the action itself.) For example,

to indicate a plan to evacuate an area of friendly forces and then shell it, one might write

(series (clear ?area)

(in-context (shell ?area)

:precondition (not (exists (?x - unit)

(and (friendly ?x) (in ?x ?area))))))

As syntactic sugar, PDDL allows you to write (achieve P) as an abbreviation for

(in-context (--) :precondition P).

10

The (constrained A C

�

) syntax allows fairly arbitrary further conditions to be im-

posed on an action spec, with labels standing in for actions and their endpoints. The labels

are de�ned by the (tag labels action) construct. A label stands for the whole action (oc-

currence) unless it is quali�ed by < or >, in which case it stands for the beginning or end

of the action. Inside C, (series l

1

l

2

...l

k

) imposes an additional ordering requirement

on the time points tagged l

1

; : : : ; l

k

. (in-context (series l

1

...l

k

) -conditions-) can be

used to impose extra conditions (or announce extra e�ects) of the interval corresponding to

such an additional ordering.

For example, to expand an action into four subactions (A), (B), (C), and (D), such that

(A) precedes (B) and (D), and (C) precedes (D), with condition (P) maintained from the

end of (A) until the end of (D), write

:expansion (constrained ((series (tag A (> end-a)) (B))

(series (C) (tag (< beg-d) (D) (> end-d))))

(in-context (series end-a beg-d end-d)

:maintain (P)))

As an illustration of all this, here is a fragment of the University of Maryland Translog

domain [1], specifying how to unload a atbed truck:

(:action unload

:parameters (?p - package ?v - vehicle ?l - location)

:expansion

(choice

... ; several choices elided

(forsome (?c - crane)

(in-context

(constrained

(series (tag (pick-up-package-vehicle

?p ?c ?v ?l)

(> end-n1))

(tag (< beg-n2)

(put-down-package-ground

?p ?c ?l)))

(in-context (series end-n1 beg-n2)

:maintain (and (at-package ?p ?c)

(at-equipment ?c ?l))))

:precondition (and (flatbed ?v)

(empty ?c)

(at-package ?p ?v)

(at-vehicle ?v ?l)

(at-equipment ?c ?l))))))

Note that PDDL does not allow you to specify whether it makes sense to insert steps to

achieve an in-context precondition of a choice (as opposed to using it as a \�lter" condition).

That falls into the category of advice, which is handled in a planner-speci�c way.

11

The parallel construct imposes no constraints on the execution order of its arguments.

However, a label associated with a parallel composition is associated with the �rst action of

the composition to begin, in the case of a \<" label, or the last action to end, in the case of

a \>." E.g., to indicate that a condition be true from the end of act1 until a set of actions

performed in parallel with act1 are �nished, write

(constrained (tag (parallel (tag (act1) (> end-act1))

(act2)

...

(actN))

(> alldone))

(in-context (series end-act1 alldone)

:maintain (condition)))

If the domain declares requirement :foreach-expansions, then an action can have an

expansion of the form (foreach (v) P (v) A(v)), where v is a set of typed variables, P (v)

is a precondition, and A(v) is an action spec. The idea is to expand the action into zero or

more occurrences of A(v), one for each instance of P (v) that is true before in the situation

when the expanded action begins execution. (See Appendix A for a precise de�nition of

what it means for an action-spec to be satis�ed by an action sequence.)

The syntax of the language permits labels to occur inside choice and foreach action

specs. It is a consequence of the formal semantics of Appendix A that (a) a constraint

mentioning a label inside a choice branch that doesn't occur doesn't constrain anything;

(b) a constraint mentioning a reference to a label inside a foreach or forsome from outside

doesn't constrain anything.

In Section 5 we mentioned that an action de�nition may contain an argument

:only-in-expansions.

If this is t (default is nil), then a planner is not allowed to assume that instances of the

action are feasible if its preconditions are satis�ed. Instead, it can include an action in

a plan only if it occurs as the expansion of some other action. The intended use of this

notation is to indicate that we do not really know all the preconditions of the action, just

some standard contexts in which the preconditions are sure to be satis�ed.

See Section 11 for a notation that allows cumbersome action expansions to be broken

into more manageable pieces.

9 Axioms

Axioms are logical formulas that assert relationships among propositions that hold within

a situation (as opposed to action de�nitions, which de�ne relationships across successive

situations). To have axioms, a domain must declare requirement :domain-axioms.

<axiom-def> ::= (:axiom <GD>)

:vars (<typed list (variable)>)

:context <GD>

:implies <literal(term)>)

12

The :vars �eld behaves like a universal quanti�er. All the variables that occur in the axiom

must be declared here.

For example, we might de�ne the classical blocks-world predicates above and clear as

follows:

(:axiom

:vars (?x ?y - physob)

:context (on ?x ?y)

:implies (above ?x ?y)))

(:axiom

:vars (?x ?y - physob)

:context (exists (?z - physob)

(and (on ?x ?z) (above ?z ?y)))

:implies (above ?x ?y))

(:axiom

:vars (?x - physob)

:context (or (= ?x Table)

(not (exists (?b - block)

(on ?b ?x))))

:implies (clear ?x))

Unless a domain declares requirement :true-negation, not is treated using the tech-

nique of \negation as failure" [4]. That means it makes no sense to conclude a negated

formula; they should occur only as deductive goals, when (not g) succeeds if and only

if g fails. (If g contains variables, the results are unde�ned.) Hence axioms are treated

directionally, always used to conclude the :implies �eld, and never to conclude a formula

from the :context �eld. (Of course, whether an axiom is used forward or backward is a

matter of advice, and PDDL is silent on this issue.)

Another important reason for the directionality of axioms is to avoid overly complex in-

teractions with action de�nitions. The rule is that action de�nitions are not allowed to have

e�ects that mention predicates that occur in the :implies �eld of an axiom. The intention

is that action de�nitions mention \primitive" predicates like on, and that all changes in

truth value of \derived" predicates like above occur through axioms. Without axioms, the

action de�nitions will have to describe changes in all predicates that might be a�ected by an

action, which leads to a complex software engineering (or \domain engineering") problem.

If a domain declares requirement :true-negation (which implies :open-world), then

exactly how action de�nitions interact with axioms becomes hard to understand, and the

management takes no responsibility for the outcome. (For example, if there is an axiom

P ^Q � R, and an action causes (not R) when P and Q are true, does P become false or

Q?)

The domain requirement :subgoal-through-axioms indicates that a goal involving

derived predicates may have to be solved by �nding actions to change truth values of

related primitive predicates. For example, a goal (above A B) might be achieve by either

achieving (on A B) or achieving (and (an A Z) (above Z B)) for some Z. A domain

13

that does not declare this requirement may still have axioms, but they will be used only for

timeless predicates.

Note that a given predicate can be in the :implies �eld of more than one axiom.

10 Safety Constraints

A domain declaring requirement :safety-constraints is allowed to specify safety con-

straints, de�ned as background goals that must be satis�ed throughout the planning pro-

cess. A plan is allowed only if at its end none of these background goals is false. In other

words, if one of the constraints is violated at some point in the plan, it must become true

again by the end.

<safety-def> ::= (:safety <GD>)

For example, one could command a softbot (software robot) to avoid deleting �les that

are not backed up on tape with the following constraint:

(:safety

(forall (?f)

(or (file ?f) (written-to-tape ?f))))

As everywhere else in PDDL, free variables are not allowed.

It is important to note that safety constraints do not require an agent to make them

true; rather, the agent must avoid creating new violations of the constraints. For example,

if a constraint speci�es that all of my �les be read protected, then the agent would avoid

changing any of my �les to be readable; but if my .plan �le is already readable in the initial

state, then the agent would not protect that �le.

For details of safety constraints, please refer to [11].

Safety constraints should not be confused with :timeless propositions. (See Section 4.)

Timeless propositions are always true in all problems in the domain, and it should be

impossible for any action to change them. Hence no special measures are required to ensure

that they are not violated.

11 Adding Axioms and Action Expansions Modularly

Although PDDL allows a domain to be de�ned as one gigantic define, it is often more

convenient to break the de�nition into pieces. The following notation allows adding axioms

and action expansions to an existing domain:

(define (addendum <name>)

(:domain <name>)

<extra-def>

�

)

<extra-def> ::= <action-def>

<extra-def> ::=

:domain�axioms

<axiom-def>

<extra-def> ::=

:action�expansions

<method-def>

14

<extra-def> ::=

:safety�constraints

<safety-def>

<method-def> ::= (:method <action functor>

[:name <name>]

:parameters (<typed list (variable)>)

<action-def body>

Please remember that, as explained in Section 4, in the \strict subset" of PDDL addenda

are not allowed.

Inside a (define (addendum ...) ...) expression, :actions and :axioms behave as

though they had been included in the original (define (domain ...) ...) expression

for the domain. :method declarations specify further choice points for the expansion of an

already-declared action, almost as though the given <action-def body> included inside a

choice in the original expansion of the action. (It doesn't work quite that neatly because

the parameters may have new names, and because an <action-def body> is not exactly

what's expected in a choice.)

In a method de�nition, the <action-def body> may not have an :effect �eld or an

:only-in-expansions �eld.

Method names are an aid in describing problem solutions as structures of instantiated

action schemas. Each action has its own space of method names; there is no need to make

them unique over a domain. If an action has a method supplied in its original de�nition,

the name of that method is the same as the name of the action itself.

Example:

(define (addendum carry-methods)

:domain translog

...

(:method CARRY-VIA-HUB

:name usual

:parameters (?p - package ?tc ?tc - tcenter)

:expansion (forsome (?hub - hub)

(in-context (series (carry-direct ?p ?tc1 ?hub)

(carry-direct ?p ?hub ?tc2))

:precondition (exists (?city1 ?city2 - city

?reg1 ?reg2 - region)

(and (in-city ?tc1 ?city1)

(in-city ?tc2 ?city2)

(in-region ?city1 ?reg1)

(in-region ?city2 ?reg2)

(serves ?hub ?reg1)

(serves ?hub ?reg2)

(available ?hub)))))

:precondition (not (hazardous ?p)))

...)

The reason to give addenda names is so the system will know when an addendum is

being rede�ned instead of being added for the �rst time. When a (define (addendum N)

15

...) expression is evaluated, all the material previously associated with N is erased before

the de�nitions are added. The name of an addendum is local to its domain, so di�erent

domains can have addenda with the same name.

12 Expression Evaluation

If a domain declares requirement :expression-evaluation, then it supports a built-in

predicate (eval E V) that succeeds if the value of expression E is V . E has Lisp-like

syntax for expressions, which should at least allow functions +, -, *, and /; this argument

position is said to be an evaluation context. Evaluation contexts are the only places in

PDDL where functions are allowed, except for terms denoting actions. E should not

include any variables; if it does, the goal will fail in an implementation-dependent way.

(Some implementations will distinguish between failure due to E's value being di�erent

from V and failure due to the inability to generate all instances of E. Cf. equation,

below.)

Another evaluation context is the argument to (test E). Here E is an expression

whose main functor is one of =, >, <, >=, or <=. The expression is evaluated, and the goal

succeeds if it evaluates to T.

The goal (bounded-int I L H) succeeds if I is an integer in the interval [L;H]. L

and H are evaluation contexts.

The goal (equation L R) tries to bind variables so that L and R are equal. Both L

and R are evaluation contexts, but if there is an unbound variable, it is bound to whatever

value would make L and R evaluate to the same thing. E.g., if ?y has been bound to 6,

and ?x is unbound, then (equation (+ ?x 2) (- ?y 3)) will bind ?x to 1. Don't expect

an implementation to do anything fancy here; every implementation should at least handle

the case where there is a single occurrence of an unbound variable, buried at most inside

an expression of the form (+ ...).

The domain-vars de�ned in (define (domain...) ...) expressions are evaluated in

evaluation contexts. The syntax is

<domain-vars-def> ::= (:domain-variables

<typed list(domain-var-declaration)>

<domain-var-declaration>::= <name> | (<name> <constant>)

E.g.:

(define (domain cat-in-the-hat)

(:types thing)

(:domain-variables (numthings 2) - integer)

...

(:axiom

:vars (?i - integer)

:context (bounded-int ?i 1 numthings)

:implies (thing ?i)))

16

A variable like this is scoped over the entire domain, and is inherited by domains that

extend this one. If the variable is redeclared in an extending theory, it shadows the original

binding.

If a domain declares requirement :fluents, then it supports the type (fluent <type>),

plus some new predicates. A uent is a term with time-varying value (i.e., a value that can

change as a result of performing an action). The proposition (current-value F V) is true

in a situation if V is the current value of F in that situation. Further, if a planner handles

the :fluents requirement, then there must be a built-in predicate (fluent-eval E V),

which succeeds if V is the value of E, using the current value of any uent that occurs in

E (and otherwise behaving like eval). Similarly, there is a predicate fluent-test that

is to test as fluent-eval is to eval. In addition, there is an e�ect (change F E) that

changes the value of uent F to E. E is an evaluation context, and its value is computed

with respect to the situation obtaining before the action (cf. when).

(:action pour

:parameters (?source ?dest - container)

:vars (?sfl ?dfl - (fluent number) ?dcap - number)

:precondition (and (contents ?source ?sfl)

(contents ?dest ?dfl)

(capacity ?dest ?dcap)

(fluent-test (<= (+ ?sfl ?dfl) ?dcap)))

:effect (when (and (contents ?source ?sfl)

(contents ?dest ?dfl))

(and (change ?sfl 0)

(change ?dfl (+ ?dfl ?sfl)))))

One of the additional built-in functions that comes with requirement :fluents is (sum

v p e). This is a uent whose value in a situation is

X

� such that �(p) is true

�(e)

v declares all the variables of p that aren't already bound. e is a uent-evaluation context.

For example,

(fluent-eval (sum (?p - person ?w - number)

(and (aboard ?p ?elevator)

(weight ?p ?w))

?w))

succeeds if ?w is the total weight of all the people on a ?elevator (a variable which must

be bound somewhere else). Note that the value of this uent depends on who is on the

elevator, not on what their mass is, because in this formulation it's assumed not to change.

If dieting is to be taken into account, then we would write

(fluent-eval (sum (?p - person ?w - (fluent number))

(and (aboard ?p ?elevator)

(weight ?p ?w))

?w))

17

where now ?w is a uent itself.

13 Problems

A problem is what a planner tries to solve. It is de�ned with respect to a domain. A problem

speci�es two things: an initial situation, and a goal to be achieved. Because many problems

may share an initial situation, there is a facility for de�ning named initial situations.

<problem> ::= (define (problem <name>)

(:domain <name>)

[<require-def>]

[<situation>]

[<object declaration>]

[<init>]

<goal>

+

[<length-spec>]

<situation> ::= (:situation <initsit name>)

<object declaration> ::= (:objects <typed list (name)>)

<init> ::= (:init <literal(name)>

+

)

<initsit name> ::= <name>

<goal> ::= (:goal <GD>)

<goal> ::=

:action�expansions

(:expansion <action spec(action-term)>)

<length-spec> ::= (:length [(:serial <integer>)] [(:parallel <integer>)])

Initial situations are de�ned thus:

<initsit def> ::= (define (situation <initsit name>)

(:domain <name>)

[<object declaration>]

[<init>])

A problem de�nition must specify either an initial situation by name, or a list of initially

true literals, or both. If it speci�es both, then the literals are treated as e�ects (adds and

deletes) to the named situation. The :objects �eld, if present, describes objects that exist

in this problem or initial situation but are not declared in the :constants �eld of its domain

or any superdomain. Objects do not need to be declared if they occur in the :init list in

a way that makes their type unambiguous.

All predicates which are not explicitly said to be true in the initial conditions are assumed

by PDDL to be false, unless the domain declares requirement :open-world.

For example,

(define (situation briefcase-init)

(:domain briefcase-world)

(:objects P D)

(:init (place home) (place office)))

18

(define (problem get-paid)

(:domain briefcase-world)

(:situation briefcase-init)

(:init (at B home) (at P home) (at D home) (in P))

(:goal (and (at B office) (at D office) (at P home))))

The :goal of a problem de�nition may include a goal description or (if the domain

has declare the requirement :action-expansions) an expansion, or both. A solution to a

problem is a series of actions such that (a) the action sequence is feasible starting in the

given inital situation situation; (b) the :goal, if any, is true in the situation resulting from

executing the action sequence; (c) the :expansion, if any, is satis�ed by the series of actions

(in the sense explained in Appendix A).

For instance, in the transportation domain, one might have the problem

(define (problem transport-beans)

(:domain transport)

(:situation standard-network)

(:init (beans beans27)

(at beans27 chicago))

(:expansion (constrained (tag (carry-in-train

beans27 chicago newyork)

(> end))

(in-context end

:precondition (not (spoiled beans27))))))

The :requirements �eld of a problem de�nition is for the rare case in which the goal

or initial conditions speci�ed in a problem require some kind of expressiveness that is not

found in the problem's domain.

The :length �eld of a problem de�nition declares that there is known to be a solution

of a given length; this may be useful to planners that look for solutions by length.

Unlike addendum names (see Section 11), problem names are global. Exactly how they

are passed to a planner is implementation-dependent.

14 Scope of Names

Here is a table showing the di�erent kinds of names and over what scope they are bound

19

Name type Scope

Reserved word PDDL language

Domain name Global

Type Domain, inherited

Constant Domain, inherited

Domain variable Domain, inherited

Predicate Domain, inherited

Action functor Domain, inherited

Addendum Domain, local

Situation name Domain, inherited

Problem name Global

Method name Per action functor

Names with scope \domain, inherited" are visible in a domain and all its descendants.

Names with scope \domain, local" are visible within a domain but are not visible in descen-

dant domains. Method names are a documentation convenience, and need have no scope

except that of the functor of which they are methods.

There is limited possibility of overloading names in PDDL. The same name may be

used for a global-scope entity (e.g., a problem) and a domain-scope entity (e.g., a predicate).

But the same domain-scoped name cannot be used for two di�erent kinds of entity. For

instance, the same name cannot be used for a type and an action.

The rules for method names are looser, because they are not true names. The only

restriction is that two distinct methods for the same action may not have the same name.

15 Current Requirement Flags

Here is a table of all requirements in PDDL 0.0. Some requirements imply others; some

are abbreviations for common sets of requirements. If a domain stipulates no requirements,

it is assumed to declare a requirement for :strips.

20

Requirement Description

:strips Basic STRIPS-style adds and deletes

:typing Allow type names in declarations of variables

:disjunctive-preconditions Allow or in goal descriptions

:equality Support = as built-in predicate

:existential-preconditions Allow exists in goal descriptions

:universal-preconditions Allow forall in goal descriptions

:quantified-preconditions = :existential-preconditions

+ :universal-preconditions

:conditional-effects Allow when in action e�ects

:action-expansions Allow actions to have :expansions

:foreach-expansions Allow actions expansions to use foreach

(implies :action-expansions)

:dag-expansions Allow labeled subactions

(implies :action-expansions)

:domain-axioms Allow domains to have :axioms

:subgoal-through-axioms Given axioms p � q and goal q, generate subgoal p

:safety-constraints Allow :safety conditions for a domain

:expression-evaluation Support eval predicate in axioms

(implies :domain-axioms)

:fluents Support type (fluent t).

Implies :expression-evaluation

:open-world Don't make the \closed-world assumption" for all

predicates | i.e., if an atomic formula is not

known to be true, it is not necessarily assumed false

:true-negation Don't handle not using negation as failure,

but treat it as in �rst-order logic

(implies :open-world)

:adl = :strips + :typing

+ :disjunctive-preconditions

+ :equality

+ :quantified-preconditions

+ :conditional-effects

:ucpop = :adl + :domain-axioms

+ :safety-constraints

16 The Syntax Checker

This section describes how to run the PDDL syntax checker once you have downloaded the

tar distribution �le.

The �le pddl.system contains a Kantrowitz-defsystem de�nition of pddl-syntax-check

and pddl-solution-check, which are the syntax checker and solution checker, respectively.

Adjust the directory names in the calls to MK:DEFSYSTEM, then load in pddl.system, and do

(MK:COMPILE-SYSTEM 'PDDL-SYNTAX-CHECK)

21

If you compile and load a �le full of PDDL de�nitions, then the domain will be de�ned

as you expect. However, this works only if the �le contains no syntactic errors. To �nd and

eliminate errors, use the function

(PDDL-FILE-SYNCHECK <file>)

This will create a new �le with extension \.chk" which is a pretty-printed version of

the input, with all syntactic errors agged thus:

<< error-description: thing>>

where "thing" is a subexpression and "error-description" says what's wrong with it.

The idea is that the \.chk" �le plays the role of the \.log" �le in LaTeX. Instead of line

numbers the system just prints the entire input with errors agged. How well this works

depends partly on the quality of the pretty-printer.

If the global variable STRICT* is set to T, the syntax checker will ag violations of

\strictness" as de�ned in Section 4.

The syntax checker does a pretty thorough job, although there are a few gaps. In order

to check for correct number of arguments to predicates and such, it's necessary to store

information about domains as they are checked, so we have gone all the way, and written

the syntax checker in such a way that it stores all the information about a domain in

various data structures, whether the checker itself needs the information or not. Hence a

good way to implement a planner that uses the PDDL notation is to start with the internal

data structures containing the information about a domain, and add whatever indexes the

planner needs for e�ciency.

To avoid collisions with users' code, these data structures are not stored in any place

that is visible by accident (such as symbol property lists). There is a global hash table

PDDL-SYMBOL-TABLE* that contains all global bindings. Domains are stored in this ta-

ble, and then symbols with domain scope are stored in binding tables associated with the

domain.

17 The Solution Checker

The solution checker is another Lisp program. To compile and load it, follow the instructions

for the syntax checker, but do (MK:COMPILE-SYSTEM 'PDDL-SOLUTION-CHECK) at the end.

A solution to a PDDL problem is a pair of items:

1. A primitive action sequence, i.e., a list of actions that have no expansions.

2. A list of nonprimitive actions, called expansion hints.

The second component may be absent. The �rst may, of course, be empty, but only if the

problem is trivial.

Suppose problem P has initial situation S, :goal G, and :expansion E. A solution

with action sequence A and hints H solves P if and only if all of the following are true:

1. A is feasible starting in situation S, and in the situation resulting from executing A,

G is true.

22

2. E, and, if present, H are executed by some (not necessarily contiguous) subsequence

of A.

3. Every action in A that is declared :only-in-expansions occurs in one of the subse-

quences instantiating E or H .

To run the solution checker, �rst load the domain of the problem in (using PDDL-FILE-SYNCHECK),

then call

(SOLUTION-CHECK A H P)

where A is the action sequence, H are the hints, and P is a problem (or problem name). It

returns T if it can verify the solution, NIL if it can't. It may print some helpful messages as

well.

As of Release 1.0, the solution checker does not actually check for the presence of action

expansions. So the H argument is ignored.

A Formal De�nition of Action Expansions

An anchored action sequence is a sequence hS

0

; q

1

; : : : ; q

k

i, where S

0

is a situation, q

1

; : : : ; q

k

are ground action terms, and q

i+1

is feasible in the situation resulting from executing

q

1

; : : : ; q

i

starting in S

0

. We call this situation result

dom

(S

0

; hq

1

; : : : ; q

i

i), and de�ne it

in the usual way. The subscript dom refers to the domain with respect to which result is

de�ned. In what follows, we will abbreviate result

dom

(S

0

; hq

1

; : : : ; q

i

i) as S

i

.

A realization within domain dom of an action spec A in the anchored action sequence

hS

0

; q

1

; : : : ; q

k

i is a mapping R whose domain is the set of ordered pairs hE; �i, where E is a

subexpression of A (de�ned by position, so two di�erent occurrences of the same expression

count as di�erent) or an action tag, and � is a substitution; and whose range is a set of

unions of closed intervals of the real interval [0; k]. (Not the integer interval!)

A realization R of A in hS

0

; q

1

; : : : ; q

k

i satis�es subexpression E of A with respect to

substitution �, if and only if one of the following is true:

1. E is an action-label term.

2. E is an occurrence of the term (--), and there is some i; 0 � i � k such that

R(E; �) = [i; i].

3. E is a primitive action term other than (--), and there is some i; 1 � i � k such that

�(E) = q

i

, and R(E; �) = [i� 1; i].

4. E is a nonprimitive action term, with �(E) variable-free, and there is an expansion A

0

in dom of �(E) (that is, an :expansion from the :action de�ning E or a :method for

E), and a realization R

0

within dom of �(E) in hS

0

; q

1

; : : : ; q

k

i, such that R(E; �) =

R

0

(�(E); ;).

5. E =(series E

1

: : : E

m

), and for all i, 1 � i � m� 1, R satis�es E

i

with respect to

�, and for all i; j; 1 � i < j � m, and for all x

i

2 R(E

i

; �); x

j

2 R(E

j

; �); x

i

� x

j

; and

R(E; �) = [

1�i�m

R(E

i

; �).

23

6. E =(parallel E

1

: : : E

m

), and for all 1 � i; j � m, R satis�es E

i

with respect to

�; and R(E; �) = [

1�i�m

R(E

i

; �).

7. E =(in-context E

1

a

1

: : : a

l

), and R satis�es E

1

with respect to �, with R(E; �) =

R(E

1

; �) and, for each a

i

:

� If a

i

= :precondition C, then C is true in S

L

.

� If a

i

= :maintain C, then C is true in S

s

for all integer s 2 [L;H].

where L = min(R(E

1

; �)) and H = max(R(E

1

; �)).

8. E =(choice E

1

: : : E

m

), and for some i, 1 � i � m, R satis�es E

i

with respect to

�, and R(E; �) = R(E

i

; �).

9. E =(forsome vars E

1

), and there is a substitution �

0

extending � by binding vars,

such that R satis�es E

1

with respect to �

0

, and R(E; �) = R(E

1

; �

0

).

10. E =(foreach vars P E

1

), and there is a set X of extensions to � such that for all

�

0

2 X , �

0

(P) is ground, such that if [L;H] = R(E; �), then

L = [

1�i�m

R(E

i

; �

0

)

and

X = f�

0

: �

0

extends � by binding vars to make �

0

(P) ground and true in S

L

g

11. E =(tag l

1

: : : l

l

E

1

l

l+1

: : : l

m

), and R satis�es E

1

with respect to �, with R(E; �) =

R(E

1

; �), and for all i; 1 � i � m,

� If l

i

= (< l), then R(l; �) = [L; L].

� If l

i

= (> l), then R(l; �) = [H;H].

� Otherwise, R(l; �) = [L;H].

where L = min(R(E

1

; �)) and H = max(R(E

1

; �)).

12. E =(constrained E

0

E

1

: : : E

m

), and for all i; 0 � i � m, R satis�es E

i

with

respect to � and R(E

i

; �) � R(E

0

; �); and R(E; �) = R(E

0

; �).

If R(E; �) is not given a value by repeated application of the rules in the list, then R(E; �) =

;.

Finally, an anchored action sequence satis�es an action spec if the action spec has a

realization into the action sequence that satis�es the entire action spec.

Note that the formal de�nition makes R(E; �) = ; if there is no occurrence of E inside

a foreach or forsome yielding substitution �, or if no action corresponding to E occurs in

the action sequence. Hence if an action spec has references to tags from contexts that make

no sense, they will be interpreted as the empty set, and be ignored if used in constraints.

(Implementators may not want to implement these semantics.)

24

References

[1] Scott Andrews, Brian Kettler, Kutluhan Erol, and James Hendler. Um Translog: A

Planning Domain for the Development and Benchmarking of Planning Systems. 1995.

[2] A. Barrett, D. Christianson, M. Friedman, K. Golden, C. Kwok, J.S. Penberthy, Y. Sun,

and D. Weld. UCPOP user's manual, (version 4.0). Technical Report 93-09-06d, Uni-

versity of Washington, Department of Computer Science and Engineering, November

1995. Available via FTP from pub/ai/ at ftp.cs.washington.edu.

[3] Jim Blythe, Oren Etzioni, Yolanda Gil, Robert Joseph, Dan Kahn, Craig Knoblock,

Steven Minton, Alicia P�erez, Scott Reilly, Manuela Veloso, and Xuemei Wang. Prodigy

4.0: The manual and tutorial. Technical Report CMU-CS-92-150, Carnegie Mellon

University, 1992.

[4] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Data

Bases, pages 293{322. Plenum Publishing Corporation, New York, NY, 1978.

[5] K. Currie and A. Tate. O-Plan: the open planning architecture. Arti�cial Intelligence,

52(1):49{86, November 1991.

[6] K. Erol, J. Hendler, and D. Nau. UMCP: A sound and complete procedure for hierar-

chical task-network planning. In Proc. 2nd Intl. Conf. on AI Planning Systems, pages

249{254, June 1994.

[7] Drew McDermott. Revised Nisp Manual. Technical Report 642, Yale Computer Science

Department, 1988.

[8] Drew McDermott. A Heuristic Estimator for Means-ends Analysis in Planning. In

Proc. International Conference on AI Planning Systems 3, pages 142{149, 1996.

[9] E. Pednault. Synthesizing plans that contain actions with context-dependent e�ects.

Computational Intelligence, 4(4):356{372, 1988.

[10] E. Pednault. ADL: Exploring the middle ground between STRIPS and the situation

calculus. In Proc. 1st Int. Conf. on Principles of Knowledge Representation and Rea-

soning, pages 324{332, 1989.

[11] Dan Weld and Oren Etzioni. The �rst law of robotics (a call to arms). In Proc. 12th

Nat. Conf. on AI, pages 1042{1047, 1994.

[12] David Wilkins. Practical Planning: Extending the Classical AI Planning Paradigm.

Morgan Kaufmann Publishers, Inc, 1988.

25

