
The Transplan Domain

October 24, 1997

Drew McDermott

Yale University

mcdermott-drew@yale.edu

1 Introduction

The Transplan Domain is a hierarchical-planning domain for use in the AIPS-98

Planning Competition. When we say that the domain is hierarchical, we mean

that part of the de�nition of a feasible action in the domain involves the use of

some standard plans from a plan library. A problem statement may mention

both that certain goals (states of a�airs) are to be brought about, and that

certain standard actions are to be carried out. In other respects, the domain is

purely \classical," in that all actions are under the control of the planner, and

there is perfect information about the initial situation and the e�ects of actions.

The domain is derived from the University of Maryland Translog Domain

(Andrews et al. 1995), which was derived from a domain due to the Prodigy

group at Carnegie Mellon University.

The �les transplan/domain.pddl and transplan/methods.pddl contain

a detailed and complete speci�cation of the domain in PDDL, the Problem

Domain De�nition Language. (See �le pddl.ps.) What follows is an overview

to help understand the formal spec.

2 Overview

A problem in the Transplan domain is to transport one or more objects, called

packages, to one or more locations. A location is a \small" place, such as a

building, airport, fuel depot, etc. Locations occur in cities, and cities occur

in regions. (Some locations are outside of cities.) Cities and locations are

connected by routes of various kinds (air-routes, road-routes, and rail-routes).

Locations are of two sorts: transport-centers, such as airports and train stations,

and non-transport-centers, such as \street addresses," post o�ces, and depots.

Packages are carried in vehicles, which also are of various kinds (airplanes,

trucks. trains, and traincars). Not every package can be transported in every

kind of vehicle. The predicate (can-carry v p) is true of v and p if vehicle v

can carry package p. This often depends on the \shape" of the package and the

\specialty" of the vehicle. See domain.pddl for details.

Vehicles and locations can have compartments. For example, a vehicle with

specialty livestock-carrier has three compartments: gas-tank, water-tank,

and cargo-area. Compartments are labeled \generically," not as individuals.

So you always have to refer to the owner of the compartment as well as the

compartment itself. For example, to say that vehicle truck13 has 100 liters of

gasoline, write (contains truck13 gas-tank 0.1). (Actually, that just says

1



it has 0.1 cubic meter of something. To say it is gasoline, you also have to write

(contains-kind truck13 gas-tank fuel).)

The primitive actions in the domain allow you to load packages into vehicles,

transfer liquids (fuel or water) between vehicles and storage tanks, and move

vehicles from location to location. However, the primitives do not tell the whole

story. Most of them cannot be used in isolation, but only as components of stan-

dard plans. (In PDDL notation, they have the �eld :only-in-expansions=t.)

The standard plans for transporting objects are given in the �le methods.pddl.

They allow you to transport an object in one of the following two basic ways:

1. (transport-direct p l

o

l

d

): load package p onto a vehicle, move the

vehicle from l

o

to l

d

, and unload p from it. (This is only feasible if there

is a direct route from l

o

to l

d

.)

2. (transport-via-hub p c

1

c

2

): Find a hub h, transport-direct from

c

1

to h, then transport-direct from h to c

2

. Note that h, c

1

, and c

2

must all be transport centers.

As a sort of \macro," the action (transport-between-tcenters p c

1

c

2

)

means to do one of

� (transport-direct p c

1

c

2

)

� (transport-via-hub p c

1

c

2

)

in the case where c

1

and c

2

are transport centers.

The two basic transport methods, plus the transport-between-tcenters

macro, can be used to implement (transport p l

o

l

d

) in one of the following

combinations:

1. Just transport-direct from l

o

to l

d

.

2. If l

o

and l

d

are non-hub transport centers, then transport-via-hub from

l

o

to l

d

.

3. If l

o

is not a transport center, but l

d

is, transport-direct from l

o

to

some transport center c , then transport-between-tcenters from c to

l

d

.

4. If l

o

is a transport center, but l

d

isn't, then transport-between-tcenters

from l

o

to some transport center c, then transport-direct from c to l

d

.

5. If neither l

o

nor l

d

is a transport center, then �nd two transport centers c

1

and c

2

, and transport-direct from l

o

to c

1

, then transport-between-tcenters

from c

1

to c

2

, then transport-direct from c

2

to l

d

.

Note that this structure is not recursive. The longest possible sequence is of

length four:

l

0

�! c

1

�! h �! c

2

�! l

d

2



i.e., from l

o

to transport center c

1

, then to hub h, then to transport center c

2

,

then to l

d

. While this limits the search, it also limits the possibilities, because

there may exist many routes from l

o

to l

d

, but if they don't �t the legal patterns

they can't be used.

3 Vehicle Movements and Capacity Limitations

The primitive action for motion is (move v l

1

l

2

r), where v is a vehicle, l

1

and l

2

are locations, and r is a route. The motion is possible only if one of the

following is true:

1. the proposition (connects r l

1

l

2

d) is true for some distance d; i.e., l

1

and l

2

are connected by a direct route;

2. v is a truck, and (connects r c

1

c

2

d) is true, where c

1

and c

2

are

the cities in which l

1

and l

2

are located; i.e., in reasoning about truck

movements we can neglect intra-city motions.

The move action is used only inside expansions of (achieve-vehicle-at v

l), which can be strung together ad lib. Hence a vehicle can be gotten anywhere

eventually if there is enough connectivity (as contrasted with package movement,

which must be governed by transport schemas.)

Vehicles cannot hold an in�nite amount. The predicate (capacity v c x)

is true if x is the capacity in cubic meters of compartment c of vehicle or depot v.

The sum of the packages loaded or liquid transferred to a compartment cannot

exceed its capacity. (And, of course, you can never have a negative amount in

a compartment.)

When a vehicle moves, it uses up fuel and time. Because we're in a classical-

planning domain, we have the somewhat arti�cial convention that two vehicles

cannot move simultaneously. (However, if the vehicle is a train, then all its cars

move.)

Time passes only when a vehicle is in motion. If livestock are loaded into

a vehicle, even a stationary one, they use up water at a rate that depends on

the type of vehicle. (The water is in the water-tank compartment, and the

animals are in the cargo-area compartment.) If they use up all their water,

they die. Animals cannot be unloaded, and hence transports of animals cannot

be completed, if the animals are dead.

The rates at which these changes occur are determined by the following

predicates:

� (fuel-rate v r n): n is the rate in liters/kg-km at which vehicle v burns

fuel on route r. The \kg" in the denominator re
ects the fact that if v

is a train, the rate depends on its mass, i.e., the sum of the masses of its

cars. (The mass of the cargo is not taken into account.)

� (fuel-waste v r w): w is the fuel required for v to start and stop on

route r.

3



� (speed v r s): s is the speed in km/hr of vehicle v on route r.

� (latency v r l): l is the time in hr for vehicle v to start and stop on

route r.

� (water-rate v r): r is the rate (liters/hr) per cubic meter of animal (!)

that water is consumed when animals are in vehicle v.

As explained in Section 5, these capacities and rates will be ignored for some

phases of the competition.

4 Packages

Objects to be transported are called \packages." The term encompasses some

items that are not ordinarily thought of as packages, such as quantities of liquid

or groups of animals. The terminology re
ects the fact that packages must be

treated as a unit. You can't break a group of animals into individual animals

(let alone fractions of animals!) in order to cram them into cars that are already

partially �lled.

You can load two di�erent packages into a compartment, and then extract

them later, provided they are of the same kind, as speci�ed by the predicate

(stuff p s), where p is a package and s is of type kind-of-stuff. The s

argument is the same as in (contains-kind v c s), specifying the kind of

stu� in compartment c of vehicle or depot v. All \discrete" objects have stuff

items. Liquid and granular objects are of various kinds; the only two de�ned

as part of the domain are fuel and water.

As a consequence of these rules, you can put a shipment of refrigerators and

a shipment of TV sets into a vehicle and get them out later. You could even

put together and later separate a shipment of refrigerators and a herd of cows

using the same vehicle (except that the current domain won't allow them both

into vehicles of the same specialty). You can put two \packages" of fuel into a

tank and take them out later, but you can't have a fuel package and a water

package in the same tank at the same time.

The action for transferring liquids is called (liquid-transfer s c

s

d c

d

a), where s is a source (vehicle or depot), d is a destination (vehicle or depot),

c

s

and c

d

are the compartments involved, and a is the amount being transferred.

This action can be used to load and unload \liquid packages," but it can also

be used to transfer anonymous batches of fuel and water to keep vehicles and

animals running.

A package is either aboard a vehicle or at a location, never both. If it

is a liquid, it also has a container: (container p c) asserts that the \liquid

package" p is in container c (of the vehicle or location where it currently resides).

4



5 Rules of the Competition

To compete in the competition, your program must be able to solve problems

stated in PDDL, a manual for which appears in the �le pddl.ps. (References

to �les are to �les accessible at

ftp://ftp.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz

which de�nes a group of �les plus a subdirectory transplan. This manual is

the �le transplan/doc.ps in that subdirectory.)

Some contestants may not want to use PDDL as the domain de�nition. And

some may want to use PDDL extended with advice of various kinds. See below.

In any case, the use of PDDL to state problems simply means that we will

express problems in this format:

(define (situation transplan-world)

(:domain transplan)

(:init (package p1)

(stuff p1 fuel)

...))

(define (problem prob-39)

(:domain transplan)

(:situation transplan-world)

(:init (not (available ramp72))

...)

(:expansion (parallel (transport p1 depot1 house22)

(transport p2 depot1 airport23)

...)))

The solver must then be callable with the problem name (prob-39) as ar-

gument.

Because this is a hierarchical planning domain, a solution is not just a se-

quence of actions. Instead, it is a sequence of actions plus a schema instantiation

hierarchy, which speci�es how the actions in the sequence satisfy the legal ex-

pansions of the transport actions. That is, for each transport action in the

problem statement, there must be an action schema map from the actions in

the problem statement (and possibly other actions) to the solution sequence.

An action schema map for an action term A consists of EITHER

� The position in the solution sequence of an action matching A;

� OR a method name from the plan library for A, plus:

{ for each step of the method, an action schema map for it;

{ for each goal of the method, two numbers specifying where in the

solution sequence the goal becomes true and when it becomes false

(or the end of the sequence if it never becoems false).

5



The map bottoms out in primitive actions that map to elements of the

solution sequence.

A solution might look like:

(; Solution sequence:

((load-items p1 truck3) ; interval 0 - 1

(door-close truck3) ; 1 - 2

(move truck3 depot1 depot13 route66) ; 2 - 3

(door-open truck3) ; 3 - 4

(unload-items p1 truck3) ; 4 - 5

(door-close truck3)) ; 5 - 6

; Action schema map:

(((transport p1 depot1 depot13)

:method transport-direct

(; list of submaps

((transport-direct p1 depot1 depot13) ; submap begins here

:method just-do-it

(((at truck3 depot1) :goal (0 2))

((load p1 truck3)

:method load-items

(((door-open truck3) :goal (0 1))

((load-items p1 truck3) :primitive (0 1))

((at p1 depot1) :goal (0 0))

((at truck3 depot1) :goal (0 2))

((aboard p1 truck3) :goal (1 4))

((at truck3 depot1) :goal (0 2))

((not (door-open truck3)) :goal (2 3))))

((at truck3 depot13)

:goal (3 5))

((unload p1 truck3)

:method unload-items

(((aboard p1 truck3) :goal (1 4))

((at truck3 depot13) :goal (3 5))

((door-open truck3) :goal (4 5))

((unload-items p1 truck3) :primitive (4 5))

((not (door-open truck3)) :goal (6 6))))))))

((achieve-vehicle-at truck3 depot13)

:method just-move-it

(((not (traincar truck3)) :goal (0 6))

((move truck3 depot1 depot13 route66) :primitive (2 3))

((at truck3 depot1) :goal (0 2))

((connects route66 depot1 depot13 49) :goal (0 6))

((can-travel truck3 route66) :goal (0 6))))))

(The method names are references to the transplan domain; see

transplan/methods.pddl.)

6



Although this looks complicated, it should be easy for a hierarchical planner

to produce it as output. We will supply, in the near future, a solution checker

that can take a structure of this kind and verify that it solves a problem.

For Phase 1 of the competition, we will ignore package volume, plus fuel,

time, and water constraints. That is, fuel-rate, fuel-waste, and water-rate

are set to 0, all packages have volume 0, and total elapsed time is not counted

in the score of a planner.

In Phase 2 of the competition, these rates will become nontrivial. Then it

will be possible for vehicles to fail to move for lack of fuel. Vehicles can refuel at

depots (using the action (liquid-transfer depot storage-tank v gas-tank

x)), but they have to have enough fuel to reach the depots.

In Phase 3 of the competition, new plans will be added to the the standard

plan library, and planners will have to cope with them.

Ideally, planners should take the PDDL domain de�nition as input, suitably

augmented with explicit advice, as explained in the PDDL Manual. Points will

be taken o� for the use of advice, although the exact formula has not been

arrived at yet.

Some contestants may �nd it burdensome to have to retarget their planners

to handle PDDL input. In that case, they are allowed to rewrite the entire

domain spec in their own language, subject to the following provisos:

1. The planner must accept problems expressed in the (define (problem

...)) notation.

2. The planner must output solutions in the form that is checkable by our

forthcoming automatic checker.

3. The competition committee will decide how many advice points to take

o� for idiosyncratic notations. We won't penalize special notations per se;

if they appear to be as neutral as the PDDL de�nition, they might lose

zero points.

4. They won't be able to enter Phase 3 of the competition.

Further details will be made available later.

References

Scott Andrews, Brian Kettler, Kutluhan Erol, and James Hendler 1995 UM

Translog: a planning domain for the development and benchmarking of planning

systems. University of Maryland Technical Report CS-TR-3487.

7


