/* $Id: eqf.c,v 1.3 1999/05/31 23:35:28 sybalsky Exp $ (C) Copyright Venue, All Rights Reserved */ /************************************************************************/ /* */ /* */ /* */ /* */ /* */ /************************************************************************/ /************************************************************************/ /* */ /* (C) Copyright 1989-95 Venue. All Rights Reserved. */ /* Manufactured in the United States of America. */ /* */ /************************************************************************/ #include "version.h" #include "arith.h" // for FIXP_VALUE, FLOATP_VALUE #include "eqfdefs.h" // for N_OP_clequal, N_OP_eqlop, N_OP_eqq, N_OP_equal #include "lispemul.h" // for NIL, state, ATOM_T, ERROR_EXIT, SEGMASK, LispPTR #include "lispmap.h" // for ATOM_OFFSET, S_CHARACTER, S_NEGATIVE, S_POSITIVE #include "lspglob.h" #include "lsptypes.h" // for TYPE_FLOATP, GetTypeNumber, TYPE_FIXP, TYPE_SM... #include "my.h" // for N_MakeFloat /************************************************************ op 072 N_OP_eqlop EQL op 0314 N_OP_clequal CL:EQUAL op 0360 (inline) EQ op 0364 N_OP_equal IL:EQUAL op 0377 N_OP_eqq CL:= ***********************************************************/ /* differences between these operations: EQ is a strict pointer comparison, equivalent to C's == EQL (common lisp) does no conversions before comparison, but will compare equal FIXPs or equal FLOATPs. CL:= will do a numeric comparison and will compare floats. If given integers, it will convert to floating point first. IL:EQUAL is a recursive comparison which will compare 1 = 1.0 it work like code with CL:= for the most part CL:EQUAL is a recursive comparison which uses EQL at the leaves Interlisp operations IEQP, FEQP have no opcodes, although there is an unboxed FEQP. number types include: SMALLP (immediate with S_POSITIVE or S_NEGATIVE) FIXP (32 bit boxed value, handled in C. Usually canonical, i.e., will be SMALLP. (IPLUS x 0) will always canonicallize.) FLOATP (32 bit boxed value, handled in C, usually) RATIO (a/b. Always canonical, i.e., b doesn't divide a evenly) COMPLEX (a+bi. Not handled in C) BIGNUM (integer that can't be represented bigger than 32 bits) */ #define IF_IMMEDIATE(arg, doit, doitsmall) \ do { \ switch (SEGMASK & (arg)) { \ case ATOM_OFFSET: doit; /* NOLINT(bugprone-macro-parentheses) */ \ case S_CHARACTER: doit; /* NOLINT(bugprone-macro-parentheses) */ \ case S_POSITIVE: doitsmall; /* NOLINT(bugprone-macro-parentheses) */ \ case S_NEGATIVE: doitsmall; /* NOLINT(bugprone-macro-parentheses) */ \ } \ } while (0) /************************************************************************/ /* */ /* N _ O P _ c l e q u a l */ /* */ /* Common Lisp EQUAL, opcode 0314. */ /* */ /************************************************************************/ LispPTR N_OP_clequal(LispPTR arg1, LispPTR arg2) { int type; if (arg2 == arg1) return (ATOM_T); IF_IMMEDIATE(arg1, return (NIL), return (NIL)); IF_IMMEDIATE(arg2, return (NIL), return (NIL)); /* CL:EQUAL is true for two strings that have different Interlisp type numbers; cannot currently handle it here. */ /* can return NIL if one is a number and the other isn't */ if (Numberp(arg1)) { if (!Numberp(arg2)) return (NIL); } else { if (Numberp(arg2)) { return (NIL); } else ERROR_EXIT(arg2); } /* now we know both are numbers */ if ((type = GetTypeNumber(arg1)) != (GetTypeNumber(arg2))) return (NIL); /* now we know both are the same type. Shouldn't see any SMALLPs */ switch (type) { case TYPE_FIXP: if (FIXP_VALUE(arg1) == FIXP_VALUE(arg2)) { return (ATOM_T); } return (NIL); case TYPE_FLOATP: if (FLOATP_VALUE(arg1) == FLOATP_VALUE(arg2)) { return (ATOM_T); } return (NIL); default: ERROR_EXIT(arg2); } } /* end N_OP_clequal */ /************************************************************************/ /* */ /* N _ O P _ e q l o p */ /* */ /* Common Lisp EQL. */ /* */ /************************************************************************/ LispPTR N_OP_eqlop(LispPTR arg1, LispPTR arg2) { int type; if (arg2 == arg1) return (ATOM_T); IF_IMMEDIATE(arg1, return (NIL), return (NIL)); IF_IMMEDIATE(arg2, return (NIL), return (NIL)); /* EQL is true if EQ or both are numbers, the same type, and EQUAL */ /* can return NIL if one is a number and the other isn't */ if ((type = GetTypeNumber(arg1)) != (GetTypeNumber(arg2))) return (NIL); /* now we know both are the same type. Shouldn't see any SMALLPs */ switch (type) { case TYPE_FIXP: if (FIXP_VALUE(arg1) == FIXP_VALUE(arg2)) { return (ATOM_T); } return (NIL); case TYPE_FLOATP: if (FLOATP_VALUE(arg1) == FLOATP_VALUE(arg2)) { return (ATOM_T); } return (NIL); default: if (Numberp(arg1)) { ERROR_EXIT(arg2); } else return (NIL); } } /* end N_OP_eqlop */ /************************************************************************/ /* */ /* N _ O P _ e q u a l */ /* */ /* IL:EQUAL, opcode 0364. */ /* */ /************************************************************************/ LispPTR N_OP_equal(LispPTR arg1, LispPTR arg2) { int type, type2; if (arg2 == arg1) return (ATOM_T); IF_IMMEDIATE(arg1, return (NIL), goto arg1_small); IF_IMMEDIATE(arg2, return (NIL), goto arg2_small); goto arg2_small; arg1_small: IF_IMMEDIATE(arg2, return (NIL), return (NIL)); /* arg2 atom or both small */ arg2_small: if (Numberp(arg1)) { if (!Numberp(arg2)) return (NIL); } else { if (Numberp(arg2)) { return (NIL); } else ERROR_EXIT(arg2); } /* now we know both are numbers */ type = GetTypeNumber(arg1); type2 = GetTypeNumber(arg2); if (type == type2) { switch (GetTypeNumber(arg1)) { case TYPE_SMALLP: return (NIL); case TYPE_FIXP: if (FIXP_VALUE(arg1) == FIXP_VALUE(arg2)) { return (ATOM_T); } return (NIL); case TYPE_FLOATP: if (FLOATP_VALUE(arg1) == FLOATP_VALUE(arg2)) { return (ATOM_T); } return (NIL); default: ERROR_EXIT(arg2); } } if ((type == TYPE_FLOATP) || (type2 == TYPE_FLOATP)) { float f1, f2; N_MakeFloat(arg1, f1, arg2); N_MakeFloat(arg2, f2, arg2); if ((f1 + 0.0f) == (f2 + 0.0f)) return (ATOM_T); else return (NIL); } else return (NIL); /* neither is float, types are different */ } /* end N_OP_equal */ /************************************************************************/ /* */ /* N _ O P _ e q q */ /* */ /* Common Lisp =, opcode 0377. Numeric compare, will convert */ /* among representations as needed. */ /* */ /************************************************************************/ LispPTR N_OP_eqq(LispPTR arg1, LispPTR arg2) /* CL:= opcode 0377 */ { int type1, type2; float f1, f2; if (!((type1 = GetTypeEntry(arg1)) & TT_NUMBERP)) ERROR_EXIT(arg2); if (arg2 == arg1) return (ATOM_T); if (!((type2 = GetTypeEntry(arg2)) & TT_NUMBERP)) ERROR_EXIT(arg2); type1 &= 0x7ff; type2 &= 0x7ff; switch (type1) { case TYPE_SMALLP: switch (type2) { case TYPE_SMALLP: return (NIL); case TYPE_FIXP: return (NIL); case TYPE_FLOATP: goto checkfloats; default: ERROR_EXIT(arg2); } case TYPE_FIXP: switch (type2) { case TYPE_SMALLP: return (NIL); case TYPE_FIXP: if (FIXP_VALUE(arg1) == FIXP_VALUE(arg2)) return (ATOM_T); else return (NIL); case TYPE_FLOATP: goto checkfloats; default: ERROR_EXIT(arg2); } case TYPE_FLOATP: switch (type2) { case TYPE_SMALLP: goto checkfloats; case TYPE_FIXP: goto checkfloats; case TYPE_FLOATP: goto checkfloats; default: ERROR_EXIT(arg2); } default: ERROR_EXIT(arg2); } checkfloats: N_MakeFloat(arg1, f1, arg2); N_MakeFloat(arg2, f2, arg2); if (f1 == f2) return (ATOM_T); if ((f1 == -0.0f) && (f2 == 0.0f)) return (ATOM_T); if ((f1 == 0.0f) && (f2 == -0.0f)) return (ATOM_T); return (NIL); } /* end N_OP_eqq() */