3. LISTS

One of the most useful datatypes in Lisp is the list cell, a data structure that contains pointers to two
other objects, called the CAR and the CDR of the list cell. You can build very complicated structures
out of list cells, including lattices and trees, but most often they’re used to represent simple linear lists
of objects.

The following functions are used to manipulate individual list cells:

(CONS X YY) [Function]

CONS is the primary list construction function. It creates and returns a new list cell
containing pointers to X and Y. If Y is a list, this returns a list with X added at the
beginning of .
(LI'STPX) [Function]
Returns X if Xis a list cell, e.g., something created by CONS; NI L otherwise.
(LISTP NIL) = NIL
(NLI STP X) [Function]

The same as (NOT (LISTP X)). Returns T if X is not a list cell, NI L otherwise.
However, (NLI STP NIL) = T

(CARX) [Function]

Returns the first element of the list X. CAR of NI L is always NI L. For all other nonlists
(e.g., symbols, numbers, etc.), the value returned is controlled by CAR/ CDRERR (below).

(CDR X) [Function]

Returns all but the first element of the list X. CDRof NI L is always NI L. The value of CDR
for other nonlists is controlled by CAR/ CDRERR (below).

CAR/ CDRERR [Variable]

The variable CAR/ CDRERR controls the behavior of CAR and CDR when they are passed
non-lists (other than NI L).

If CAR/ CDRERR = NI L (the current default), then CAR or CDR of a non-list (other than
NI L) return the string "{car of non-list}" or "{cdr of non-list}". If
CAR/ CDRERR = T, then CARand CDR of a non-list (other than NI L) causes an error.

If CAR/ CDRERR = ONCE, then CAR or CDR of a string causes an error, but CAR or CDR of

anything else returns the string "{car of non-list}" or"{cdr of non-list}" as
above. This catches loops which repeatedly take CAR or CDR of an object, but it allows
one-time errors to pass undetected.

If CAR/ CDRERR = CDR, then CAR of a non-list returns "{car of non-list}" as
above, but CDR of a non-list causes an error. This setting is based on the observation that

31

INTERLISP-D REFERENCE MANUAL

3-2

nearly all infinite loops involving non-lists occur from taking CDRs, but a fair amount of
careless code takes CAR of something it has not tested to be a list.
(CAARX) (CADR X) (CDDR X) etc. [Function]

Often, combinations of CAR and CDR are used to extract parts of complex list structures.
Functions of the form C. . . Rmay be used for some of these combinations:

(CAAR X) ==> (CAR (CAR X))
(CADR X) ==> (CAR (CDR X))
(CDDDDR X) ==> (CDR (CDR (CDR (CDR X))))
All 30 combinations of nested CARs and CDRs up to 4 deep are included in the system.
(RPLACD X YY) [Function]

Replaces the CDR of the list cell X with Y. This physically changes the internal structure of
X, as opposed to CONS, which creates a new list cell. You can make a circular list by using
RPLACD to place a pointer to the beginning of a list at the end of the list.

The value of RPLACD is X. An attempt to RPLACD NI L will cause an error, Attenpt to
RPLACD NI L (exceptfor (RPLACD NIL NI L)). An attempt to RPLACD any other non-
list will cause an error, Arg not |ist.

(RPLACAX Y) [Function]

Like RPLACD, but replaces the CAR of X with Y. The value of RPLACA is X. An attempt to
RPLACA NI L will cause an error, Att enpt to RPLACA NI L, (except for (RPLACA NI L
NI L)). An attempt to RPLACA any other non-list will cause an error, Arg not |i st.

(RPLNODE X A D) [Function]
Performs (RPLACA X A), (RPLACD X D), and returns X.

(RPLNCDE2 X Y) [Function]
Performs (RPLACA X (CAR Y)),(RPLACD X (CDR Y)) and returns X.

(FRPLACD X Y) [Function]

(FRPLACAX YY) [Function]

(FRPLNCDE X A D) [Function]

(FRPLNCDE2 X Y) [Function]

Faster versions of RPLACD, etc.

Usually, you don’t use list cells alone, but in structures called “lists”. A list is represented by a list cell
whose CARis the first element of the list, and whose CDRis the rest of the list. That’s normally another
list cell (with another element of the list) or the “empty list,” NI L, marking the list’s end. List elements
may be any Lisp objects, including other lists.

You type in a list as a sequence of Lisp data objects (symbols, numbers, other lists, etc.) enclosed in
parentheses or brackets. Note that () is read as the symbol NI L.

LISTS

Sometimes, you won’t want your list to end in NI L, but just with the final element. To indicate that,
type a period (with spaces on both sides) in front of the final element. This makes CDR of the list’s
final cell be the element immediately following the period, e.g. (A . B) or(A B C . D). Note that
a list needn’t end in NI L. It is simply a structure composed of one or more list cells. The input
sequence (A B C . NI L) isequivalentto(A B C),and(A B . (C D)) isequivalentto(A B C
D). Note, however, that (A B . C D) will create a list containing the five symbols A, B, % , C, and D.

Lists are printed by printing a left parenthesis, and then printing the first element of the list, a space,
the second element, etc., until the final list cell is reached. The individual elements of a list are printed
by PRI N1, if the list is being printed by PRI N1, and by PRI N2 if the list is being printed by PRI NT or
PRI N2. Lists are considered to terminate when CDR of some node is not a list. If CDR of this terminal
node is NI L (the usual case), CAR of the last node is printed followed by a right parenthesis. If CDR of
the terminal node is not NI L, CAR of the last node is printed, followed by a space, a period, another
space, CDR of the last node, and the right parenthesis. A listinputas (A B C . N L) will print as
(A B Q,andalistinputas (A B . (C D)) will printas(A B C D). PRI NTLEVEL affects the
printing of lists (see the PRI NTLEVEL section of Chapter 25), and that carriage returns may be inserted
where dictated by LI NELENGTH (see the Output Functions section of Chapter 25).

Note: Be careful when testing the equality of list structures. EQwill be true only when the
two lists are the exact same list. For example,

< (SETQ A’ (1 2))
(12)

< (SETQ B A)
(12)

— (EQ A B)
T

—(SETQ C ' (1 2))
(12)
<(EQ A Q

NI L
—(EQUAL A O
T

In the example above, the values of A and B are the exact same list, so they are EQ
However, the value of Cis a totally different list, although it happens to have the same
elements. EQUAL should be used to compare the elements of two lists. In general, one
should notice whether list manipulation functions use EQ or EQUAL for comparing lists.
This is a frequent source of errors.

Creating Lists

(LIST X1 Xo... XN) [NoSpread Function]

Returns a list of its arguments, e.g.
(LIST'"A'B’'(CD) => (AB(CD)

(LIST* X1 X2 ... XN) [NoSpread Function]

Returns a list of its arguments, using the last argument for the tail of the list. This is like
an iterated CONS: (LI ST* A B C) == (CONS A (CONS B Q)). Forexample,

3-3

INTERLISP-D REFERENCE MANUAL

(LIST* "A'B’'C) => (AB. O
(LIST* "A’'B’'(CD) => (ABCD)

(APPEND X1 X2 ... XN) [NoSpread Function]

Copies the top level of the list X1 and appends this to a copy of the top level of the list X2
appended to . . . appended to X\, e.g.,

(APPEND ' (A B) '(CDE) "(FQ) = (ABCDEFOQ
Only the first N- 1 lists are copied. However N = 1 is treated specially; (APPEND X)
copies the top level of a single list. To copy a list to all levels, use COPY.

The following examples illustrate the treatment of non-lists:

(APPEND ' (ABC 'D) => (ABC. D
(APPEND A ' (B C D)) => (B C D)

(APPEND (ABC. D) '(EFG) = (ABCEFO
(APPEND (ABC. D)) => (ABC. D

(NCONC X1 X2 ... XN) [NoSpread Function]
Returns the same value as APPEND, but modifies the list structure of X1 . .. Xp- 1.

NCONC cannot change NI L to a list:

<(SETQ FOO NI L)
NI L

—(NCONC FOO ' (A B Q)
(A B O

—FOO
NI L

Although the value of the NCONCis (A B C), FOOhas not been changed. The “problem”
is that while it is possible to alter list structure with RPLACA and RPLACD, there is no way
to change the non-list NI L to a list.

(NCONCL LST X) [Function]
Adds X to the end of LST: (NCONC LST (LI ST X))

(ATTACHX L) [Function]

“Attaches” X to the front of L by doing a RPLACA and RPLACD. The value is EQUAL to
(CONS X L), but EQto L, which it physically changes (except if L is NI L). (ATTACH X
NI L) is the same as (CONS X NI L). Otherwise, if L is not a list, an error is generated,
Arg not list.

(MKLI ST X) [Function]
“Make List.” If Xisalist or NI L, returns X; Otherwise, returns (LI ST X).

LISTS

Building Lists From Left to Right

(TCONC PTR X) [Function]

TCONC is similar to NCONCL,; it is useful for building a list by adding elements one at a
time at the end. Unlike NCONC1, TCONC does not have to search to the end of the list each
time it is called. Instead, it keeps a pointer to the end of the list being assembled, and
updates this pointer after each call. This can be considerably faster for long lists. The cost
is an extra list cell, PTR. (CAR PTR) is the list being assembled, (CDR PTR) is (LAST
(CAR PTR)). TCONCreturns PTR, with its CARand CDR appropriately modified.

PTR can be initialized in two ways. If PTRis NI L, TCONC will create and return a PTR. In
this case, the program must set some variable to the value of the first call to TCONC. After
that, it is unnecessary to reset the variable, since TCONC physically changes its value.
Example:
< (SETQ FOO (TCONC NI'L 1))
((1) 1)
<—(fﬁlrLl from2 to 5 do (TCONC FOO 1))

<—FOO
((1 23 45)5)
If PTRis initially (NI L), the value of TCONC is the same as for PTR = NI L. but TCONC
changes PTR This method allows the program to initialize the TCONC variable before
adding any elements to the list. Example:

< (SETQ FOO (CONS))

(NI'L)
<—(for | from1l to 5 do (TCONC FOO 1))
NI L
<—FOO
((1 23 45)5)
(LCONC PTR X) [Function]

Where TCONC is used to add elements at the end of a list, LCONC is used for building a list
by adding lists at the end, i.e., it is similar to NCONC instead of NCONC1. Example:

<—(SETQ FOO (CONS))

(NIL)
—(LCONC FOO ' (1 2))
((12) 2

<(LCONC FOO ' (3 4 5))
((1 23 4 5) 5)
—(LCONC FOO NI'L)
((1 2 3 4 5) 5)

LCONC uses the same pointer conventions as TCONC for eliminating searching to the end
of the list, so that the same pointer can be given to TCONC and LCONC interchangeably.
Therefore, continuing from above,

< (TCONC FOO NI L)
((12345NL) NL)

35

INTERLISP-D REFERENCE MANUAL

3-6

—(TCONC FOO ’ (3 4 5))
((12345NL(345)) (345))

The functions DOCOLLECT and ENDCOLLECT also let you build lists from left-to-right like TCONC, but
without the overhead of an extra list cell. The listis kept as a circular list. DOCOLLECT adds items;
ENDCOLLECT replaces the tail with its second argument, and returns the full list.

(DOCOLLECT | TEM LST) [Function]

“Adds” | TEMto the end of LST. Returns the new circular list. Note that LST is modified,
but it is not EQto the new list. The new list should be stored and used as LST to the next
call to DOCOLLECT.

(ENDCOLLECT LST TAI L) [Function]

Takes LST, a list returned by DOCOLLECT, and returns it as a non-circular list, adding
TAI L as the terminating CDR.

Here is an example using DOCOLLECT and ENDCOLLECT. HPRI NT is used to print the
results because they are circular lists. Notice that FOO has to be set to the value of
DOCOLLECT as each element is added.
< (SETQ FOO NI L]
NI L
<(HPRINT (SETQ FOO (DOCOLLECT 1 FOQ
(1. {1})
<—(HPRINT (SETQ FOO (DOCOLLECT 2 FOQ
(2 1. {1})
<(HPRINT (SETQ FOO (DOCOLLECT 3 FOQ
1(312. {1})

—(HPRI NT (SETQ FOO (DOCOLLECT 4 FOQ|
(4 123. {1})

«—(SETQ FOO (ENDCOLLECT FQO 5]
(1234.5)

The following two functions are useful when writing programs that reuse a scratch list to collect
together some result(s) (both of these compile open):

(SCRATCHLI ST LST X1 X2 ... XN) [NLambda NoSpread Function]

SCRATCHLI ST sets up a context in which the value of LST is used as a “scratch” list. The
expressions X1, X2, ... Xy are evaluated in turn. During the course of evaluation, any
value passed to ADDTOSCRATCHLI ST will be saved, reusing CONS cells from the value of
LST. If the value of LST is not long enough, new CONS cells will be added onto its end. If
the value of LST is NI L, the entire value of SCRATCHLI ST will be “new” (i.e., no CONS
cells will be reused).

(ADDTOSCRATCHLI ST VALUE) [Function]

For use under calls to SCRATCHLI ST. VALUE is added on to the end of the list of things
being collected by SCRATCHLI ST. When SCRATCHLI ST returns, its value is a list
containing all of the things added by ADDTOSCRATCHLI ST.

LISTS

Copying Lists

(CoPY X) [Function]

Creates and returns a copy of the list X. All levels of X are copied down to non-lists, so
that if X contains arrays and strings, the copy of X will contain the same arrays and strings,
not copies. COPY is recursive in the CAR direction only, so very long lists can be copied.

To copy just the top level of X, do (APPEND X) .

(COPYALL X) [Function]

Like COPY, but it copies down to atoms. Arrays, hash-arrays, strings, user data types, etc.,
are all copied. Analagous to EQUALALL (see the Equality Predicates section of Chapter 9).
This will not work if given a data structure with circular pointers; in this case, use
HCOPYALL.

(HCOPYALL X) [Function]

Like COPYALL, but it will work even if the data structure contains circular pointers.

Extracting Tails of Lists

(NTHX N) [Function]

Returns the tail of X beginning with the Nth element. Returns NI L if X has fewer than N
elements. This is different from Common Lisp’s NTH. Examples:

(NTH'(ABCD 1) => (ABCD)
(NTH'(ABCD) 3) => (CD)
(NTH'(ABCD 9) => NL
(NTH'(A. B) 2) => B
For consistency, if N = 0, NTHreturns (CONS NI L X):
(NTH'(AB) 0) => (NL AB)
(FNTHX N) [Function]

Faster version of NTHthat terminates on a null-check.

(LAST X) [Function]

Returns the last list cell in the list X. Returns NI L if X is not a list. Examples:

(LAST "' (A B Q) = (O
(LAST'(AB. Q) => (B. O
(LAST 'A) => NL
(FLAST X) [Function]

Faster version of LAST that terminates on a null-check.

(NLEFTL N TAIL) [Function]

NLEFT returns the tail of L that contains N more elements than TAI L. If L does not contain
N more elements than TAI L, NLEFT returns NI L. If TAI L is NI L or not a tail of L, NLEFT

3-7

INTERLISP-D REFERENCE MANUAL

returns the last N list cells in L. NLEFT can be used to work backwards through a list.
Example:
<—(SETQ FOO ' (A B C D E))
(ABCDE
<(NLEFT FOO 2)
(D E)
<(NLEFT FOO 1 (CDDR FQO))
(B CDE

—(NLEFT FOO 3 (CDDR FOO))
NI L

(LASTNL N) [Function]

Returns (CONS X Y), where Y is the last Nelements of L, and X is the initial segment, e.g.,

(LASTN'(ABCDE) 2) => ((ABC DE)
(LASTN' (A B) 2) => (NL A B)

Returns NI L if L is not a list containing at least N elements.

(TAILPX YY) [Function]
Returns X, if X is a tail of the list Y; otherwise NI L. Xis a tail of Y if it is EQto 0 or more
CDRs of V.

Note: If Xiis EQto 1 or more CDRs of Y, Xis called a “proper tail.”

Counting List Cells

(LENGTH X) [Function]
Returns the length of the list X, where “length” is defined as the number of CDRs required
to reach a non-list. Examples:

(LENGTH ' (A B Q) => 3
(LENGTH'(ABC. D) => 3
(LENGTH 'A) => 0
(FLENGTH X) [Function]

Faster version of LENGTH that terminates on a null-check.

(EQLENGTH X N) [Function]

Equivalent to (EQUAL (LENGTH X) N), but more efficient, because EQLENGTH stops as
soon as it knows that X is longer than N. EQLENGTH is safe to use on (possibly) circular
lists, since it is “bounded” by N.

(COUNT X) [Function]

Returns the number of list cells in the list X. Thus, COUNT is like a LENGTH that goes to all
levels. COUNT of a non-list is 0. Examples:

(COUNT * (A)) => 1
(COUNT " (A . B)) => 1
(COUNT * (A (B) Q) => 4

3-8

LISTS

In this last example, the value is 4 because the list (A X C) uses three list cells for any
object X, and (B) uses another list cell.

(COUNTDOMN X N) [Function]

Counts the number of list cells in X, decrementing N for each one. Stops and returns N
when it finishes counting, or when N reaches 0. COUNTDOWN can be used on circular
structures since it is “bounded” by N. Examples:

(COUNTDOWN ’ (A) 100) => 099

(COUNTDOMWN " (A . B) 100) => 99

(COUNTDOMWN * (A (B) © 100) => 096

(COUNTDOWN (DOCOLLECT 1 NI'L) 100) => O

(EQUALN X Y DEPTH) [Function]

Like EQUAL, for use with (possibly) circular structures. Whenever the depth of CAR
recursion plus the depth of CDR recursion exceeds DEPTH, EQUALN does not search further
along that chain, and returns the symbol ?. If recursion never exceeds DEPTH, EQUALN
returns T if the expressions X and Y are EQUAL ; otherwise NI L.

(EQUALN " (((A) B) ' (((2)) B) 2) => 72

(EQUALN " (((A)) B) "(((2)) B) 3) => NIL

(EQUALN " (((A)) B) "(((A) B) 3) => T

Set Operations

(1 NTERSECTI ON X Y) [Function]

Returns a list whose elements are members of both lists X and Y (using EQUAL to do
compares).

Note that (| NTERSECTI ON X X) gives a list of all members of X without duplicates.

(UNTONX YY) [Function]

Returns a (new) list consisting of all elements included on either of the two original lists
(using EQUAL to compare elements). It is more efficient for X to be the shorter list.

The value of UNI ON is Y with all elements of X not in Y CONSed on the front of it.
Therefore, if an element appears twice in Y, it will appear twice in (UNI ON X Y). Since
(UNION " (A "(A A) = (A A,while(UNTON " (A A "(A)) = (A,UN ONis
non-commutative.

(LDI FFERENCE X) [Function]

“List Difference.” Returns a list of the elements in X that are not members of Y (using
EQUAL to compare elements).

Note: If Xand Y share no elements, LDI FFERENCE returns a copy of X.

(LDI FF LST TAIL ADD) [Function]

TAI L must be a tail of LST, i.e., EQto the result of applying some number of CDRs to LST.
(LDI FF LST TAI L) returns a list of all elements in LST up to TAI L.

39

INTERLISP-D REFERENCE MANUAL

If ADDis not NI L, the value of LDI FF is effectively (NCONC ADD (LDI FF LST TAIL)),
i.e., the list difference is added at the end of ADD.

If TAIL is not a tail of LST, LDl FF generates an error, LDI FF: not a tail. LD FF
terminates on a null-check, so it will go into an infinite loop if LST is a circular list and
TAI L is not a tail.

Example:

«—(SETQ FOO' (A B CDEF))
(ABCDEF

< (CDDR FOO)
(CDEF

<(LDI FF FOO (CDDR FOQO))
(A B)

<(LDI FF FOO (CDDR FOO) '(1 2))
(12 AB

—(LDIFF FOO'(C D E F))
LD FF: not a tail
(CDEF

Note that the value of LDI FF is always new list structure unless TAIL = NI L, in which
case the value is LST itself.

Searching Lists

(MEMB X Y) [Function]

Determines if X is a member of the list Y. If there is an element of Y EQto X, returns the
tail of Y starting with that element. Otherwise, returns NI L. Examples:
(MEMB'A'(A (W CD) => (AW CD
(MEMB'C'(A(W CD)) => (CD
(MEMB "W (A(W CD)) => NL
(MEMB' (W "(A(W CD)) => NL

(FMEMB X Y) [Function]

Faster version of MEMB that terminates on a null-check.

(MEMBER X YY) [Function]
Identical to MEMB except that it uses EQUAL instead of EQto check membership of X in Y.
Examples:

(MEMBER 'C ' (A (W CD) =>(CD
(MEMBER "W' (A (W CD) => NL
(MEMBER ' (W ' (A (W CD) => ((W CD

(EQVEMB X Y) [Function]
Returns T if either Xis EQto Y, or else Y is a list and X is an FMEMB of Y.

3-10

LISTS

Substitution Functions

(SUBST NEW OLD EXPR) [Function]

Returns the result of substituting NEWfor all occurrences of OLD in the expression EXPR.
Substitution occurs whenever OLD is EQUAL to CAR of some subexpression of EXPR, or
when OLD is atomic and EQ to a non-NI L CDR of some subexpression of EXPR For
example:

(SUBST "A'B’'(CB (X . B))) => (CA (X. A)
(SUBST'A'(BC '((BC DBC) => (ADBOC not (AD. A

SUBST returns a copy of EXPR with the appropriate changes. Furthermore, if NEWis a list,
it is copied at each substitution.

(DSUBST NEW OLD EXPR) [Function]

Like SUBST, but it does not copy EXPR, but changes the list structure EXPR itself. Like
SUBST, DSUBST substitutes with a copy of NEW More efficient than SUBST.

(LSUBST NEW OLD EXPR) [Function]

Like SUBST, but NEWis substituted as a segment of the list EXPR rather than as an
element. For instance,

(LSUBST "(AB) 'Y '(XYZ)) => (XABZ2
If NEWis not a list, LSUBST returns a copy of EXPRwith all OLD’s deleted:
(LSUBST NIL 'Y "(X Y 2)) => (X 2
(SUBLI SALST EXPR FLG) [Function]
ALST is a list of pairs:
((OLD1 . NEW) (Q.D2 . NEV§) ... (OLDN . NEWY)
Each OLD; is an atom. SUBLI S returns the result of substituting each NEW for the
corresponding OLD; in EXPR e.g.,
(SUBLIS'((A. X) (C. Y) "(ABCD) => (XBYD)

If FLG = NI L, new structure is created only if needed, so if there are no substitutions, the
value is EQto EXPR If FLG = T, the value is always a copy of EXPR.

(DSUBLI S ALST EXPR FLG) [Function]
Like SUBLI S, but it changes the list structure EXPR itself instead of copying it.

(SUBPAI ROLD NEW EXPR FLQ) [Function]

Like SUBLI S, but elements of NEWare substituted for corresponding atoms of OLD in
EXPR, e.g.,

(SUBPAIR'(AC) '(XY) '(ABCD) => (XBYD)

311

INTERLISP-D REFERENCE MANUAL

As with SUBLI S, new structure is created only if needed, or if FLG = T, e.g., if FLG =
NI L and there are no substitutions, the value is EQto EXPR.

If OLD ends in an atom other than NI L, the rest of the elements on NEWare substituted for
that atom. For example, if OLD = (A B . ©C and NEW = (U V X Y 2),Uis
substituted for A, Vfor B,and (X Y 2Z) for C. Similarly, if OLD itself is an atom (other
than NI L), the entire list NEWis substituted for it. Examples:

(SUBBPAIR'(AB. O '(WXYZ '(CABBY)) => ((Y2) WX X
Y)

SUBST, DSUBST, and LSUBST all substitute copies of the appropriate expression, whereas SUBLI S,
and DSUBLI S, and SUBPAI R substitute the identical structure (unless FLG = T). For example:

< (SETQ FOO '’ (A B))
(A B

< (SETQBAR ' (X Y 2))
(XY 2)

< (DSUBLI'S (LIST (CONS ' X FOO)) BAR)
((AB) Y 2

< (DSUBLI'S (LIST (CONS 'Y FOO)) BAR T)
((AB) (AB) 2

- (FQ(CAR BAR) FQO)

< (EQ (CADR BAR) FQOO)
NI L

Association Lists and Property Lists

312

It is often useful to associate a set of property names (NAMEL, NAME2, etc.), with a set of property
values (VALUEL, VALUE2, etc.). Two list structures commonly used to store such associations are
called “property lists” and “association lists.” A list in “association list” format is a list where each
element is a call whose CAR s a property name, and whose CDR is the value:

((NAMEL . VALUE1) (NAME2 . VALUE2) ...)

A list in “property list” format is a list where the first, third, etc. elements are the property names, and
the second, forth, etc. elements are the associated values:
(NAME1l VALUE1l NAME2 VALUE2 ...)

Another data structure that offers some of the advantages of association lists and property lists is the
hash array (see the first page of Chapter 6).

The functions below provide facilities for searching and changing lists in property list or association
list format.

Note: Property lists are used in many Medley system datatypes. There are special functions that can
be used to set and retrieve values from the property lists of symbols (see the Property Lists section of
Chapter 2), from properties of windows (see the Window Properties section of Chapter 28), etc.

(ASSOC KEY ALST) [Function]

ALST is a list of lists. ASSOC returns the first sublist of ALST whose CAR is EQto KEY. If
such a list is not found, ASSOC returns NI L. Example:

LISTS

(ASSCC "B’ ((A. 1) (B. 2) (C. 3))) => (B. 2
(FASSOC KEY ALST) [Function]
Faster version of ASSCC that terminates on a null-check.
(SASSOC KEY ALST) [Function]

Same as ASSOC, but uses EQUAL instead of EQwhen searching for KEY.

(PUTASSOC KEY VAL ALST) [Function]

Searches ALST for a sublist CAR of which is EQto KEY. If one is found, the CDR is replaced
(using RPLACD) with VAL. If no such sublist is found, (CONS KEY VAL) is added at the
end of ALST. Returns VAL. If ALST is not a list, generates an error, Arg not |ist.

The argument order for ASSOC, PUTASSCQC, etc. is different from that of LI STGET, LI STPUT, etc.

(LI STGET LST PRCP) [Function]

Searches LST two elements at a time, by CDDR, looking for an element EQto PROP. If one
is found, returns the next element of LST, otherwise NI L. Returns NI L if LST is not a list.

Example:
(LISTGET "(A1 B2 C3) 'B) => 2
(LISTGET "(A1 B2 C3) "W => NL
(LI STPUT LST PROP VAL) [Function]

Searches LST two elements at a time, by CDDR, looking for an element EQ to PROP. If
PROP is found, replaces the next element of LST with VAL. Otherwise, PROP and VAL are
added to the end of LST. If LST is a list with an odd number of elements, or ends in a
non-list other than NI L, PROP and VAL are added at its beginning. Returns VAL. If LST is
not a list, generates an error, Arg not |ist.

(LI STGET1 LST PROP) [Function]

Like LI STGET, but searches LST one CDR at a time, i.e., looks at each element. Returns the
next element after PROP. Examples:

(LISTGET1 "(A1B2C3) 'B) => 2
(LISTGET1 "(A1B2C3) '1) => B
(LISTGET1 "(A1B2C3) 'W => NL
(LI STPUTL LST PROP VAL) [Function]

Like L1 STPUT, but searches LST one CDR at a time. Returns the modified LST. Example:

—(SETQ FOO ' (A 1 B 2))
(A1 B2

—(LI STPUT1 FOO ' B 3)
(A1 B 3)

(LI STPUT1 FOO '’ C 4)
(A1 B3C4

—(LISTPUTL FOO 1 ' W
(A1 W3 C4

—FOO

313

INTERLISP-D REFERENCE MANUAL

Sorting Lists

(A1 W3 C4)

If LST is not a list, no error is generated. However, since a non-list cannot be changed into
a list, LST is not modified. In this case, the value of LI STPUT1 should be saved.
Example:

«—(SETQ FOO NI L)
NI L

—(LI STPUT1 FOO ' A 5)
(A 5)

—FQO
NI L

3-14

(SORT DATA COVPAREFN) [Function]

DATA is a list of items to be sorted using COMPAREFN, a predicate function of two
arguments which can compare any two items on DATA and return T if the first one
belongs before the second. If COMPAREFN is NI L, ALPHORDER is used; thus (SORT
DATA) will alphabetize a list. If COMPAREFN is T, CAR'’s of items that are lists are given to
ALPHORDER, otherwise the items themselves; thus (SORT A- LI ST T) will alphabetize
an assoc list by the CAR of each item. (SORT X ' | LESSP) will sort a list of integers.

The value of SORT is the sorted list. The sort is destructive and uses no extra storage. The
value returned is EQto DATA but elements have been switched around. There is no safe
way to interrupt SORT. If you abort a call to SORT by any means, you may loose elements
from the list beeing sorted. The algorithm used by SORT is such that the maximum
number of compares is N*logoN, where N is (LENGTH DATA) .

Note: If (COWAREFN A B) = (COWPAREFN B A), then the ordering of Aand B
may or may not be preserved.

For example, if (FOO . FI E) appears before (FOO . FUM in X, (SORT X T) may or
may not reverse the order of these two elements.

(MERGE A B COVPAREFN) [Function]

Aand B are lists which have previously been sorted using SORT and COVPAREFN. Value is
a destructive merging of the two lists. It does not matter which list is longer. After
merging both A and B are equal to the merged list. (In fact, (CDR A) is EQto (CDR B)).

(ALPHORDER A B CASEARRAY) [Function]

A predicate function of two arguments, for alphabetizing. Returns a non-NI L value if its
arguments are in lexicographic order, i.e., if B does not belong before A. Numbers come
before literal atoms, and are ordered by magnitude (using GREATERP). Literal atoms and
strings are ordered by comparing the character codes in their print names. Thus
(ALPHORDER 23 123) is T, whereas (ALPHORDER ' A23 ' A123) is NI L, because the
character code for the digit 2 is greater than the code for 1.

LISTS

Atoms and strings are ordered before all other data types. If neither A nor B are atoms or
strings, the value of ALPHORDER is always T.

If CASEARRAY is non-NI L, it is a casearray (see the Random Access File Operations section
of Chapter 25) that the characters of A and B are translated through before being
compared. Numbers are not passed through CASEARRAY.

Note: If either A or B is a number, the value returned in the “true” case is T. Otherwise,
ALPHORDER returns either EQUAL or LESSP to discriminate the cases of A and B being
equal or unequal strings/atoms.

Note: ALPHORDER does no UNPACKs, CHCONs, CONSes or NTHCHARs. It is several times
faster for alphabetizing than anything that can be written using these other functions.

(UALPHORDER A B) [Function]

Defined as (ALPHORDER A B UPPERCASEARRAY). UPPERCASEARRAY maps every
lowercase character into the corresponding uppercase character. For more information on
UPPERCASEARRAY see Chapter 25.

(MERGEI NSERT NEW LST ONEFLG) [Function]
LST is NI L or a list of partially sorted items. MERGEI NSERT tries to find the “best” place to
(destructively) insert NEWe.g.,

(MERGEI NSERT ’ FI E2 ' (FOO FOOL FIE FUM) => (FOO FOOL FI E
FIE2 FUM

Returns LST. MERGEI NSERT is undoable.

If ONEFLG = T and NEWis already a member of LST, MERGEI NSERT does nothing and
returns LST.

MERGEI NSERT is used by ADDTOFI LE (see the Functions for Manipulating File Command Lists
section of Chapter 17) to insert the name of a new function into a list of functions. The algorithm is
essentially to look for the item with the longest common leading sequence of characters with respect
to NEW and then merge NEWin starting at that point.

Other List Functions

(REMOVE X L) [Function]

Removes all top-level occurrences of X from list L, returning a copy of L with all elements
EQUAL to X removed. Example:

(REMWVE A’ (ABC (A A) => (BC(A)
(REMVE ' (A) "(ABC (A A) => (ABCA

(DREMOVE X L) [Function]

Like REMOVE, but uses EQ instead of EQUAL, and actually modifies the list L when
removing X, and thus does not use any additional storage. More efficient than REMOVE.

DREMOVE cannot change a list to NI L:
<(SETQ FOO ' (A))

3-15

INTERLISP-D REFERENCE MANUAL

(A
< (DREMOVE ’ A FOO)
NI L

<—FOQOO
(A
The DREMOVE above returns NI L, and does not perform any CONSes, but the value of FOO
is still (A) , because there is no way to change a list to a non-list. See NCONC.

(REVERSE L) [Function]

Reverses (and copies) the top level of a list, e.g.,
(REVERSE "(A B (C D)) => ((CD BA
If L is not a list, REVERSE just returns L.

(DREVERSE L) [Function]

Value is the same as that of REVERSE, but DREVERSE destroys the original list L and thus
does not use any additional storage. More efficient than REVERSE.

(COVPARELI STS X V) [Function]

Compares the list structures X and Y and prints a description of any differences to the
terminal. If X and Y are EQUAL lists, COVPARELI| STS simply prints out SAME. Returns
NI L.

COVPARELI STS prints a terse description of the differences between the two list
structures, highlighting the items that have changed. This printout is not a complete and
perfect comparison. If Xand Y are radically different list structures, the printout will not
be very useful. COWVPARELI STS is meant to be used as a tool to help users isolate
differences between similar structures.

When a single element has been changed for another, COMPARELI STS prints out items
suchas (A -> B), for example:
< (COVMPARELI STS "(A B CD) '(X B E D)
(A->X) (C->E)
NI L
When there are more complex differences between the two lists, COMPARELI| STS prints X
and Y, highlighting differences and abbreviating similar elements as much as possible.
“&” is used to signal a single element that is present in the same place in the two lists; “ - -
” signals an arbitrary number of elements in one list but not in the other; “-2-,”“-3-7,
etc. signal a sequence of two, three, etc. elements that are the same in both lists. Examples:
(COVPARELI STS " (A B CD) '(AD)
(ABC--)
(A D
< (COVPARELISTS "(ABCDEFGH "(ABCDX))
(A-3- EF--)
(A-3- X
< (COWPARELISTS"(ABC(DEF (G H 1) "(AB(G C(DEF

H 1))
(A & & (D-2- (O & &

3-16

LISTS

(A& (G & (D-2- &) &)
(NEGATE X) [Function]
For a form X, returns a form which computes the negation of X . For example:
(NEGATE ' (MEMBER X Y)) => (NOT (MEMBER X Y))
(NEGATE " (EQ X Y)) => (NEQ X V)

(NEGATE * (AND X (NLISTP X))) => (OR (NULL X) (LISTP X))
(NEGATE NIL) => T

317

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

3-18

