
B-1LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT—THE LISP
EDITOR

SEdit is the Lisp structure editor. It allows you to edit Lisp code
directly in memory. This editor replaces DEdit in Chapter 16,
Structure Editor, of the Interlisp-D Reference Manual. First
introduced in Lyric, the SEdit structure editor has been greatly
enhanced in the Medley release. Medley additions are indicated
with revision bars in the right margin.

16.1 SEdit - The Structure Editor

As a structure editor, SEdit alters Lisp code directly in memory.
The effect this has on the running system depends on what is being
edited.

For Common Lisp definitions, SEdit always edits a copy of the
object. For example, with functions, it edits the definition of the
function. What the system actually runs is the installed function,
either compiled or interpreted. The primary difference between the
definition and the installed function is that comment forms are
removed from the definition to produce the installed function. The
changes made while editing a function will not be installed until the
edit session is complete.

For Interlisp functions and macros, SEdit edits the actual structure
that will be run. An exception to this is an edit of an EXPR
definition of a compiled function. In this case, changes are included
and the function is unsaved when the edit session is completed.

SEdit edits all other structures, such as variables and property lists,
directly. SEdit installs all changes as they are made.

If an error is made during an SEdit session, abort the edit with an
Abort command (see Section 16.1.7, Command Keys). This
command undoes all changes from the beginning of the edit
session and exits from SEdit without changing your environment.

If the definition being edited is redefined while the edit window is
open, SEdit redisplays the new definition. Any edits on the old
definition will be lost. If SEdit was busy when the redefinition
occurred, the SEdit window will be gray. When SEdit is no longer
busy, position the cursor in the SEdit window and press the left
mouse button; SEdit will get the new definition and display it.

16.1.1 An Edit Session

The List Structure Editor discussion in Chapter 3, Language
Integration, explains how to start an editor in Lisp.

Whenever you call SEdit, a new SEdit window is created. This
SEdit window has its own process, and thus does not rely on an

B-2 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

Exec to run in. You can make edits in the window, shrink it while
you do something else, expand it and edit some more, and finally
close the window when you are done.

Throughout an edit session, SEdit remembers everything that you
do through a change history. All edits can be undone and redone
sequentially. When an edit session ends, SEdit forgets this
information and installs the changes in the system.

The session ends with an event signalling to the editor that
changes are complete. Three events signal completion:

• Closing the window.

Do this to terminate the edit session when you are finished.

• Shrinking the window.

Shrink the window when you have made some edits and may want
to continue the editing session at a later time.

• Typing one of the Completion Commands, listed below.

Each of these commands has the effect of installing your changes,
completing the edit, and returning the TTY process to the Exec.
They vary in what is done in addition to completing. Using these
commands the definition that you were editing can be automatically
compiled, the edit window can be closed, or both.

A new edit session begins when you come back to an SEdit after
completing. The change history is discarded at this point.

If the Exec is waiting for SEdit to return before going on, complete
the edit session using any of the methods above to alert the Exec
that SEdit is done. The TTY process passes back to the Exec .

16.1.2 SEdit Carets

There are two carets in SEdit, the edit caret and the structure caret.
The edit caret appears when characters are edited within a single
structure, such as an atom, string, or comment. Anything typed in
will appear at the edit caret as part of the structure that the caret is
within. The edit caret looks like this:

The structure caret appears when the edit point is between
structures, so that anything inserted will go into a new structure. It
looks like this:

SEdit changes the caret frequently, depending on where you are in
the structure you are editing, and how the caret is positioned. The
left mouse button allows an edit caret position to be set. The
middle mouse button allows the structure caret position to be set .

B-3LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

16.1.3 The Mouse

In SEdit, the mouse buttons are used as follows. The left mouse
button positions the mouse cursor to point to parts of Lisp
structures. The middle mouse button positions the mouse cursor to
point to whole Lisp structures. Thus, selecting the Q in LEQ using
the left mouse button selects that character, and sets the edit caret
after the Q:

Any characters typed in at this point would be appended to the
atom LEQ.

Selecting the same letter using the middle mouse button selects the
whole atom (this convention matches TEdit’s character/word
selection convention), and sets a structure caret between the LEQ
and the n:

At this point, any characters typed in would form a new atom
between the LEQ and the n.

Larger structures can be selected in two ways. Use the middle
mouse button to position the mouse cursor on the parenthesis of
the desired list to select that list. Press the mouse button multiple
times, without moving the mouse, extends the selection. Using the
previous example, if the middle button were pressed twice, the list
(LEQ ...) would be selected:

Pressing the button a third time would cause the list containing the
(LEQ n 1) to be selected.

The right mouse button positions the mouse cursor for selecting
sequences of structures or substructures. Extended selections are
indicated by a box enclosing the structures selected. The selection
is extended in the same mode as the original selection. That is, if
the original selection were a character selection, the right button
could be used to select more characters in the same atom.
Extended selections also have the property of being marked for
pending deletion. That is, the selection takes the place of the caret,
and anything typed in is inserted in place of the selection.

For example, selecting the E by pressing the left mouse button and
selecting the Q by pressing the right mouse button would produce:

Similarly, pressing the middle mouse button and then selecting with
the right mouse button extends the selection by whole structures.
Thus, in our example, pressing the middle mouse button to select
LEQ and pressing the right mouse button to select the 1 would
produce:

B-4 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

This is not the same as selecting the entire list, as above. Instead,
the elements in the list are collectively selected, but the list itself is
not.

16.1.4 Gaps

The SEdit structure editor requires that everything edited must have
an underlying Lisp structure, even if the structure is not directly
displayed. For example, with quoted forms the actual structure
might be (QUOTE GREEN), although this would be displayed as
’GREEN. Even when the user is in the midst of typing in a form, the
underlying Lisp structure must exist.

Because of this necessity, SEdit provides gaps to serve as dummy
Lisp objects during typing. SEdit does not need a gap for every
form typed in, but gaps are necessary for quoted objects. When
something is typed that requires SEdit to build a Lisp structure and
thus create a gap, as the quote character does, the gap will appear
marked for pending deletion. This means it is ready to be replaced
by the structure to be typed in. In this way it is possible to type
special structures, like quotes, directly, while SEdit maintains the
structure.

A gap looks like:

A gap displayed after a quote has been typed in would look like
this:

with the gap marked for pending deletion, ready for typein of the
object to be quoted.

16.1.5 Broken Atoms

When you are typing an atom (a symbol or a number), SEdit saves
the characters you type until you finish the atom. SEdit determines
that you’ve finished the atom when you type a character that cannot
(without being escaped) belong to an atom, such as a space or
open parenthesis. SEdit then tries to create an atom with these
characters, just as if it were the Lisp reader. If it succeeds, the
atom becomes part of the structure you’re editing. However, if it
fails, SEdit intercepts the reader error that would otherwise occur
and instead creates a special SEdit structure called a Broken-Atom.
A Broken-Atom looks and behaves in SEdit just like a normal atom,
but is printed in italics to alert you to its needing correction.

SEdit has to create a Broken-Atom when the characters typed don’t
make a legal atom. For example, the characters "DECLARE:"
cannot make a symbol because the colon is a package specifier,
but the form is not correct for a package-qualified symbol.
Similarly, the characters "#b123" cannot represent an integer in
base two, because 2 and 3 are not legal digits in base two, so SEdit
would make a Broken-Atom that looks like #b123.

B-5LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

Broken-Atoms can be edited in SEdit just like real atoms.
Whenever you finish editing a Broken-Atom, SEdit again tries to
create an atom from the characters. If it succeeds, it reprints the
atom in SEdit’s default font, rather than in italics. You should be
sure to correct any Broken-Atoms you create before exiting SEdit,
since Broken-Atoms do not behave in any useful way outside SEdit.

16.1.6 Special Characters

A few characters have special meaning in Lisp, and are treated
specially by SEdit. SEdit must always have a complete structure
to work on at any level of the edit. This means that SEdit needs a
special way to type in structures such as lists, strings, and quoted
objects. In most instances these structures can be typed in just as
they would be to a regular Exec, but in a few cases this is not
possible.

Lists- (and) Lists begin with an open parenthesis character (. Typing an open
parenthesis gives a balanced list, that is, SEdit inserts both an open
and a close parenthesis. The structure caret is between the two
parentheses. List elements can be typed in at the structure caret.
When a close parenthesis,) is typed, the caret will be moved
outside the list (and the close parenthesis), effectively finishing the
list. Square bracket characters, [and], have no special meaning in
SEdit, as they have no special meaning in Common Lisp.

Quoted Structures: SEdit handles the quote keys so that it is possible to type in all
quote forms directly. When typing one of the following quote keys
at a structure caret, the quote character typed will appear, followed
by a gap to be replaced by the object to be quoted.

Single Quote – ’ Use to enter quoted structures.

Backquote –‘ Use to enter backquoted structures.

Comma – , Use to enter comma forms, as used with a Backquote form.

At Sign – @ Use after a comma to create a comma-at-sign gap. This allows
type-in of comma-at forms, e.g. ,@list, as used within a Backquote
form.

Dot – . Use the dot (period) after a comma to create a comma-dot gap.
This allows type-in of comma-dot forms, e.g. ,.list, as used within
a Backquote form.

Hash Quote – #’ Use this two character sequence to enter the CL:FUNCTION
abbreviation hash–quote (#’).

Dotted Lists: The dot, or period, character (.) is used to type dotted lists in
SEdit. After typing a dot, SEdit inserts a dot and a gap to fill in for
the tail of the list. To dot an existing list, point the cursor between
the last and second to the last element in the list, and type a dot.
To undot a list, select the tail of the list before the dot while holding
down the SHIFT key.

Escape- \ or % Use to escape from a specific typed in character. Use the escape
key to enter characters, like parentheses, which otherwise have
special meaning to the SEdit reader. Press the escape key then
type in the character to escape. SEdit uses the escape key

B-6 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

appropriate to the environment it is editing in; it depends on the
readtable that was current when the editor was started. The
backslash key (\) is used when editing Common Lisp, and the
percent key (%) is used when editing Interlisp.

Multiple Escape- | Use the multiple escape key, the vertical bar character (|), to
escape a sequence of typed in characters. SEdit always balances
multiple escape characters. When one multiple escape character is
typed, SEdit produces a balanced pair, with the caret between
them, ready for typing in the characters to be escaped. If you type
a second vertical bar, the caret moves after the second vertical
bar, and is still within the same atom, so that you can add more
unescaped characters to the atom.

Comments- ; The comment key, a semicolon (;), starts a comment. When a
semicolon is typed, an empty comment is inserted with the caret in
position for typing in the comment. Comments can be edited like
strings. There are three levels of comments supported by SEdit:
single, double, and triple. Single semicolon comments are
formatted at the comment column, about three-quarters of the way
across the SEdit window, towards the right margin. Double
semicolon comments are formatted at the current indentation of the
code that they are in. Triple semicolon comments are formatted
against the left margin of the SEdit window. The level of a
comment can be increased or decreased by pointing after the
semicolon, and either typing another semicolon, or backspacing
over the preceding semicolon. Comments can be placed anywhere
in your Common Lisp code. However, in Interlisp code, they must
follow the placement rules for Interlisp comments.

Strings- " Enter strings in SEdit by typing a double quote ("). SEdit balances
the double quotes. When one is typed, SEdit produces a second,
with the caret between the two, ready for typing the characters of
the string. If a double quote character is typed in the middle of a
string, SEdit breaks the string into two smaller strings, leaving the
caret between them.

16.1.7 Commands

SEdit commands are most easily entered through the keyboard.
When possible, SEdit uses a named key on the keyboard, for
example, the DELETE key. The other commands are either Meta,
Control, or Meta-Contol key combinations. For the alphabetic
command keys, either uppercase or lowercase will work.

There are two menus available, as an alternative means of invoking
commands. They are the middle button popup menu, and the
attached command menu. These menus are described in more
detail below.

16.1.8 Editing Commands

Redisplay: Control-L [Editor Command]

Redisplays the structure being edited.
Delete Selection: DELETE [Editor Command]

Deletes the current selection.
Delete Word: Control-W [Editor Command]

B-7LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

Deletes the previous atom or whole structure. If the caret is in the
middle of an atom, deletes backward to the beginning of the atom
only.

Control-Meta-O [Editor Command]

Performs a fast edit by calling ED with its CURRENT option.

16.1.9 Completion Commands

Abort: Meta-A [Editor Command]

Aborts. This command must be confirmed. All changes since the
beginning of the edit session are undone, and the edit is closed.

The following commands signal completion of an edit session and
install the structure you were editing.

Control-X [Editor Command]

Signals the system that this edit is complete. The window remains
open, though, so the user can see the edit and start editing again
directly.

Control-C [Editor Command]

Signals the system that this edit is complete and compiles the
definition being edited. The variable *compile-fn* determines the
function to be called to do the compilation. See the Options section
below.

Control-Meta-X [Editor Command]

Signals the system that this edit is complete and closes the
window.

Control-Meta-C [Editor Command]

Signals the system that this edit is complete, compiles the definition
being editing, and closes the window.

16.1.10 Undo Commands

Undo: Meta-U or UNDO [Editor Command]

Undoes the last edit. All changes since the beginning of the edit
session are remembered, and can be undone sequentially.

Redo: Meta-R or AGAIN [Editor Command]

Redoes the edit change that was just undone. Redo only works
directly following an Undo. Any number of Undo commands can
be sequentially redone.

16.1.11 Find Commands

Find: Meta-F or FIND [Editor Command]

Finds a specified structure, or sequence of structures. If there is a
current selection, SEdit looks for the next occurrence of the
selected structure. If there is no selection, SEdit prompts for the
structure to find, and searches forward from the position of the

B-8 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

caret. The found structure will be selected, so the Find command
can be used to easily find the same structure again.

If a sequence of structures is selected, SEdit will look for the next
occurrence of the same sequence. Similarly, when SEdit prompts
for the structure to find, you can type a sequence of structures to
look for.

The variable *wrap-search* controls whether or not SEdit wraps
around from the end of the structure being edited and continues
searching from the beginning.

Reverse Find: Control-Meta-F [Editor Command]

Finds a specified structure, searching in reverse from the position
of the caret.

The variable *wrap-search* controls whether or not SEdit wraps
around from the beginning of the structure being edited and
continues searching from the end.

Find Gap: Meta-N or SKIP-NEXT [Editor Command]

Skips to the next gap in the structure, leaving it selected for
pending deletion.

Substitute: Meta-S or SHIFT-FIND [Editor Command]

Substitutes one structure, or sequence of structures, for another
structure, or sequence, within the current selection. SEdit prompts
you in the SEdit prompt window for the structures to replace, and
the structures to replace with.

The selection to substitute within must be a structure selection. To
get a structure selection, click with the middle mouse button (not
the left), and extend it, if necessary, with the right mouse button.
If you begin with the left button, you will get an informational
message "Select the structure to substitute within", because the
selection was of characters, rather than structures.

Delete Structure: Control-Meta-S [Editor Command]

Removes all occurences of a structure or sequence of structures
within the current selection. SEdit prompts the user in the SEdit
prompt window for the structures to delete.

16.1.12 General Commands

Arglist: Meta-H or HELP [Editor Command]

Shows the argument list for the function currently selected, or
currently being typed in, in the SEdit prompt window. If the
argument list will not fit in the SEdit prompt window, it is displayed
in the main Prompt Window.

Convert Comments: Meta-; [Editor Command]

B-9LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

Converts old style comments in the selected structure to new style
comments. This converter notices any list that begins with an
asterisk (*) in the INTERLISP package (IL:*) as an old style
comment. Section 16.1.18, Options, describes the converter
options .

Comment Out Selection: Control-Meta-; [Editor Command]

This command puts the contents of a structure selection into a
comment. This provides an easy way to "comment out" a chunk of
code. The Extract command can be used to reverse this process,
returning the comment to the structures contained therein.

Edit: Meta-O [Editor Command]

Edits the definition of the current selection. If the selected name
has more than one type of definition, SEdit asks for the type to be
edited. If the selection has no definition, a menu pops up. This
menu lets the user specify either the type of definition to be
created, or no definition if none needs to be created.

Eval: Meta-E [Editor Command]

Evaluates the current selection. If the result is a structure, the
inspector is called on it, allowing the user to choose how to look at
the result. Otherwise, the result is printed in the SEdit prompt
window. The evaluation is done in the process from which the edit
session was started. Thus, while editing a function from a break
window, evaluations are done in the context of the break.

Expand: Meta-X or EXPAND [Editor Command]

Replaces the current selection with its definition. This command
can be used to expand macros and translate CLISP.

Extract: Meta- / [Editor Command]

Extracts one level of structure from the current selection. If there is
no selection, but there is a structure caret, the list containing the
caret is used. This command can be used to strip the parentheses
off a list, or to unquote a quoted structure, or to replace a comment
with the structures contained therein.

Inspect: Meta-I [Editor Command]

Inspect the current selection.

Join: Meta-J [Editor Command]

Joins. This command joins any number of sequential Lisp objects
of the same type into one object of that type. Join is supported for
atoms, strings, lists, and comments. In addition, SEdit permits
joining of a sequence of atoms and strings, since either type can
easily be coerced into the other. In this case, the result of the Join
will be an atom if the first object in the selection is an atom,
otherwise the result will be a string.

Mutate: Meta-Z [Editor Command]

Mutates. This command allows the user to do arbitrary operations
on a LISP structure. First select the structure to be mutated (it
must be a whole structure, not an extended selection). When the

B-10 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

user presses Meta-Z SEdit prompts for the function to use for
mutating. This function is called with the selected structure as its
argument, and the structure is replaced with the result of the
mutation.

For example, an atom can be put in upper case by selecting the
atom and mutating by the function U-CASE. You can replace a
structure with its value by selecting it and mutating by EVAL.

Quote: Meta-’
Meta-‘
Meta-,
Meta-.
Meta-@ or Meta-2
Meta-# or Meta-3 [Editor Command]

Quotes the current selection with the specified kind of quote,
respectively, Single Quote, Backquote, Comma, Comma-At-Sign,
Comma-Dot, or Hash-Quote.

Normalize Selection: Meta-Space or Meta-Return [Editor Command]

Scrolls the current selection to the center of the window. Similarly,
the Space or Return key can be used to normalize the caret.

Parenthesize: Meta-) or Meta-0 [Editor Command]

Parenthesizes the current selection, positioning the caret after the
new list.

Parenthesize: Meta- (or Meta-9 [Editor Command]

Parenthesizes the current selection, positioning the caret at the
beginning of the new list. Only a whole structure selection or an
extended selection of a sequence of whole structures can be
parenthesized.

B-11LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

16.1.13 Miscellaneous

Change Print Base: Meta-B [Editor Command]

Changes Print Base. Prompts for entry of the desired Print Base,
in decimal. SEdit redisplays fixed point numbers in this new base.

Set Package: Meta-P [Editor Command]

Changes the current package for this edit. Prompts the user, in
the SEdit prompt window, for a new package name. SEdit will
redisplay atoms with respect to that package.

Attached Menu: Meta-M [Editor Command]

Attaches a menu of the commonly used commands (the SEdit
Command Menu) to the top of the SEdit window. Each SEdit
window can have its own menu, if desired.

16.1.14 Help Menu

When the mouse cursor is positioned in the SEdit title bar and the
middle mouse button is pressed, a Help Menu of commands pops
up. The menu looks like this:

B-12 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

The Help Menu lists each command and its corresponding
Command Key. (In the menu, the letter C stands for CONTROL,
while M indicates Meta.) The command selected is executed just
as if the command had been entered from the keyboard. The menu
remembers which command was selected last, and pops up with
the mouse cursor next to that same command the next time the
menu is used. This provides a very fast way to repeat the same
command when using the mouse.

16.1.15 Command Menu

The SEdit Attached Command Menu contains the commonly used
commands. Use the Meta-M keyboard command to bring up this
menu. The menu can be closed, independently of the SEdit
window, when desired. The menu looks like:

All of the commands in the menu function identically to their
corresponding keyboard commands, except for Find and
Substitute.

When Find is selected with the mouse cursor, SEdit prompts in the
menu window, next to the Find button, for the structures to find.
Type in the structures then select Find again. The search begins
from the caret position in the SEdit window.

Similarly, Substitute prompts, next to the Find button, for the
structures to find, and next to the Substitute button for the
structures to substitute with. After both have been typed in,
selecting Substitute replaces all occurrences of the Find structures
with the Substitute structures, within the current selection.

To do a confirmed substitute, set the edit point before the first
desired substitution, and select Find. Then if you want to substitute
that occurrence of the structure, select Substitute. Otherwise,
select Find again to go on.

Selecting either Find or Substitute with the right mouse button
erases the old structure to find or substitute from the menu, and
prompts for a new one.

16.1.16 SEdit Programmer’s Interface

The following sections describe SEdit’s programmer’s interface.
All symbols are external in the package named "SEdit".

16.1.17 SEdit Window Region Manager

SEdit provides user redefinable functions which control how SEdit
chooses the region for a new edit window.

B-13LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

(get-window-region context reason name type) [Function]

This function is called when SEdit wants to know where to place a
window it is about to open. This happens whenever the user starts
a new SEdit or expands an Sedit icon.The default behavior is to
pop a window region off SEdit’s stack of regions that have been
used in the past. If the stack is empty, SEdit prompts for a new
region.

This function can be redefined to provide different behavior. It is
called with the edit context, a reason for needing a region, the
name of the structure to be edited, and the type of the structure to
be edited. The edit context is SEdit’s main data structure and can
be useful for associating particular edits with specific regions. The
reason argument specifies why SEdit wants a region, and will be
one of the keywords :CREATE or :EXPAND.

(save-window-region context reason name type region) [Function]

This function is called whenever SEdit is finished with a region and
wants to make the region available for other SEdits. This happens
whenever an SEdit window is closed or shrunk, or when an SEdit
Icon is closed. The default behavior is simply to push the region
onto SEdit’s stack of regions.

This function can be redefined to provide different behavior. It is
also called with the edit context, the reason, the name, the type,
and additionally the window region that is being released. The
reason argument specifies why SEdit is releasing the region, and
will be one of the keywords :CLOSE, :SHRINK, or :CLOSE-ICON.

keep-window-region [Variable]

Default T. This flag determines the behavior of the default SEdit
region manager, explained above, for shrinking and expanding
windows. When set to T, shrinking an SEdit window will not give
up that window’s region; the icon will always expand back into the
same region. When set to NIL, the window’s region is made
available for other SEdits when the window is shrunk. Then when
an SEdit icon is expanded, the window will be reshaped to the next
available region.

This variable is only used by the default implementations of the
functions get-window-region and save-window-region. If these
functions are redefined, this flag is no longer used.

16.1.18 Options

The following parameters can be set as desired.

wrap-parens [Variable]

This SEdit pretty printer flag determines whether or not trailing
close parenthesis characters,), are forced to be visible in the
window without scrolling. By default it is set to NIL, meaning that
close parens are allowed to "fall off" the right edge of the window.
If set to T, the pretty printer will start a new line before the structure
preceding the close parens, so that all the parens will be visible.

wrap-search [Variable]

B-14 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

This flag determines whether or not SEdit find will wrap around to
the top of the structure when it reaches the end, or vice versa in the
case of reverse find. The default is NIL.

clear-linear-on-completion [Variable]

This flag determines whether or not SEdit completely re-pretty
prints the structure being edited when you complete the edit. The
default value is NIL, meaning that SEdit reuses the pretty printing.

ignore-changes-on-completion [Variable]

Sometimes the structure that you are editing is changed by the
system upon completion. Editdates are an example of this
behavior. When this flag is NIL, the default, SEdit will redisplay the
new struct ure, capturing the changes. When T, SEdit will ignore
the fact that changes were made by the system and keep the old
structure.

convert-upgrade [Variable]

Default 100. When using Meta-; to convert old-style single- asterisk
comments, if the length of the comment exceeds convert-upgrade
characters, the comment is converted into a double semicolon
comment. Otherwise, the comment is converted into a single
semicolon comment.

Old-style double-asterisk comments are always converted into new-
style triple-semicolon comments.

16.1.19 Control Functions

(reset) [Function]

This function recomputes the SEdit edit environment. Any changes
made in the font profile, or any changes made to SEdit’s
commands are captured by resetting. Close all SEdit windows
before calling this function.

(add-command key-code form &optional scroll? key-name command-name help-string)
[Function]

This function allows you to write your own SEdit keyboard
commands. You can add commands to new keys, or you can
redefine keys that SEdit already uses as command keys. If you
mistakenly redefine an SEdit command, the funtion Reset-
Commands will remove all user-added commands, leaving SEdit
with its default set of commands.

key-code can be a character code, or any form acceptible to
il:charcode.

form determines the function to be called when the key command is
typed. It can be a symbol naming a function, or a list, whose first
element is a symbol naming a function and the rest of the elements
are extra arguments to the function. When the command is
invoked, SEdit will apply the function to the edit context (SEdit’s
main data structure), the charcode that was typed, and any extra
arguments supplied in form. The extra arguments do not get
evaluated, but are useful as keywords or flags, depending on how
the command was invoked. The command function must return T if

B-15LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

it handled the command. If the function returns NIL, SEdit will
ignore the command and insert the character typed.

The first optional argument, scroll?, determines whether or not
SEdit scrolls the window after running the command. This
argument defaults to NIL, meaning don’t scroll. If the value of
SCROLL is T, then SEdit will scroll the window to ensure that the
caret is visible.

The rest of the optional arguments are used to add this command
to SEdit’s middle button menu. When the item is selected from the
menu, the command function will be called as described above,
with the charcode argument set to NIL.

key-name is a string to identify the key (combination) to be typed to
invoke the command. For example "M-A" to represent the Meta-A
key combination, and "C-M-A" for Control-Meta-A.

command-name is a string to identify the command function, and
will appear in the menu next to the key-name.

help-string is a string to be printed in the prompt window when a
mouse button is held down over the menu item.

After adding all the commands that you want, you must call Reset-
Commands to install them.

For example:

(add-command "^U" (my-change-case t))

(add-command "^Y" (my-change-case nil))

(add-command "1,r" my-remove-nil

 "M-R" "Remove NIL"

 "Remove NIL from the selected structure"))

(reset-commands)

will add three commands. Suppose my-change-case takes the
arguments context, charcode, and upper-case?. upper-case? will
be set to T when my-change-case is called from Control-U, and
NIL when called from Control-Y. my-remove-nil will be called
with only context and charcode arguments when Meta-R is typed.

Below are some SEdit functions which are useful in writing new
commands.

(reset-commands) [Function]

This function installs all commands added by add-command.
SEdits which are open at the time of the reset-commands will not
see the new commands; only new SEdits will have the new
commands available.

(default-commands) [Function]

This function removes all commands added by add-command,
leaving SEdit with its default set of commands. As in reset-
commands, open SEdits will not be changed; only new SEdits will
have the user commands removed.

B-16 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

(get-prompt-window context) [Function]

This function returns the attached prompt window for a particular
SEdit.

(get-selection context) [Function]

This function returns two values: the selected structure, and the
type of selection, one of NIL, T, or :SUB-LIST. The selection type
NIL means there is not a valid selection (in this case the structure is
meaningless). T means the selection is one complete structure.
:SUB-LIST means a series of elements in a list is selected, in which
case the structure returned is a list of the elements selected.

(replace-selection context structure selection-type) [Function]

This function replaces the current selection with a new structure, or
multiple structures, by deleting the selection and then inserting the
new structure(s). The selection-type argument must be one of T or
:SUB-LIST. If T the structure is inserted as one complete structure.
If :SUB-LIST, the structure is treated as a list of elements, each of
which is insertd.

edit-fn [Variable]

This function is funcalled with the selected structure and the edit
options as its arguments from the Edit (M-O) command. It should
start the editor as appropriate, or else generate an error if the
selection is not editable.

compile-fn [Variable]

This function is funcalled with the arguments name, type, and body,
from the compile completion commands. It should compile the
definition, body, and install the code as appropriate.

(sedit structure props options) [Function]

This function provides a means of starting SEdit directly. structure
is the structure to be edited.

props is a property list, which may specify the following properties:

:name - the name of the object being edited

:type - the file manager type of the object being edited. If NIL,
SEdit will not call the file manager when it tries to refetch the
definition it is editing. Instead, it will just continue to use the
structure that it has.

:completion-fn - the function to be called when the edit session is
completed. This function is called with the context, structure,
and changed? arguments. context is SEdits main data
structure. structure is the structure being edited. changed?
specifies if any changes have been made, and is one of NIL,
T, or :ABORT, where :ABORT means the user is aborting the
edit and throwing away any changes made. If the value of
this property is a list, the first element is treated as the
function, and the rest of the elements are extra arguments
that the function is applied to following the main arguments
above.

B-17LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

:root-changed-fn - the function to be called when the entire
structure being edited is replaced with a new structure. This
function is called with the new structure as its argument. If the
value of this property is a list, the first element is treated as
the function, and the rest of the elements are extra arguments
that the function is applied to following the structure argument.

options is one or a list of any number of the followng keywords:

:close-on-completion - This option specifies that SEdit cannot
remain active for multiple completions. That is, the SEdit
window cannot be shrunk, and the completion commands that
normally leave the window open will in this case close the
window and terminate the edit.

:compile-on-completion - This option specifies that SEdit should
call the *compile-fn* to compile the definition being edited
upon completion, regardless of the completion command
used.

Warning with Declarations

CAUTION: There is a feature of the BYTECOMPILER that is not
supported by SEdit or the XCL compiler. It is possible to insert a
comment at the beginning of your function that looks like

(* DECLARATIONS: --)

The tail, or -- section, of this comment is taken as a set of local
record declarations which are then used by the compiler in that
function just as if they had been declared globally. See the
"Compiler" section in Chapter 3 of these Notes for additional
behavior in XCL.

SEdit does not recognize such declarations. Thus, if the "Expand"
command is used, the expansion will not be done with these
record declarations in effect. The code that you see in SEdit will
not be the same code compiled by the BYTECOMPILER.

B-18 LISP RELEASE NOTES, MEDLEY RELEASE, SEDIT

APPENDIX B. SEDIT

[This page intentionally left blank]

