
E-1LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E. ERROR SYSTEM

This appendix replaces Chapter 24, Error System, of Common Lisp
Implementation Notes, Lyric Release, which replaced most of
Chapter 24, Errors, of Common Lisp, the Language. Text shown
with StrikeThru is that text from the Lyric release that no longer
applies in Medley. Enhancements added in Medley are indicated
with revision bars in the right margin.

The XCL error system has been updated to reflect the current ANSI
Common Lisp error system proposal. This version seems to be
gaining wide use in other Common Lisp implementations, so no
further major changes are anticipated.

The Common Lisp error system is based on proposal number 18
for the Common Lisp error system. Deviations from this proposal
are noted. Since the Common Lisp error system has not yet been
standardized, this system may change in future releases to
accommodate the final version of the Common Lisp error system.

If you have access to the ARPANet, a copy of this proposal may be
retrieved from MIT-AI.ARPA as the file "COMMON;COND18 TXT".

All symbols described in the error system proposal that are not
already in the "LISP" package are exported from the
"CONDITIONS" package. In addition, the "XEROX-COMMON-
LISP" package exports these symbols, so you can make them
available either by using "XCL" or using "CONDITIONS", whichever
is appropriate to your application. The distinction is made so that
XCL extensions of the Common Lisp error system will be clear. All
unqualified symbols are assumed to be in the "LISP" package.

Summary of Error System Changes

The semantics of HANDLER-BIND where multiple bindings are set
up or mutiple condition types are being handled are slightly
different. Old code that used this will probably not behave as
expected.

HANDLER-BIND and HANDLER-CASE (a.k.a. CONDITION-CASE)
now always take a typespec instead of a list of condition types to
indicate the conditions to be handled. Old code that uses this will
only handle the first condition type in the list. The function,
CONDITIONS::CONVERT-HANDLER-CASE is provided to aid in
converting old code. It may be used as a mutation function in SEdit.

HANDLER-CASE now supports a :NO-ERROR option that is
executed if none of the other clauses are taken. This is handy for
writing code that depends on the normal completion of some
operation, for example, creating auxilliary files if a particular stream
is successfully opened.

E-2 LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

SERIOUS-CONDITION no longer forces entry to the debugger. The
function used to signal the condition now determines what happens
if the condition is not handled. This means that SERIOUS-
CONDITION has no more interesting properties and is likely to be
removed in the final version of the error standard.

Several new condition types have been defined. Others have
moved in the hierarchy. For example, ILLEGAL-GO is now a
subtype of PROGRAM-ERROR.

 No standard condition type has a default handler.

The standard debugger entry point is now called INVOKE-
DEBUGGER instead of DEBUG.

The syntax of DEFINE-CONDITION has been changed to make it
more like CLOS’ DEFCLASS. The function
CONDITIONS::CONVERT-OLD-DEFINE-CONDITION is provided
to aid in converting old code. It may be used as a mutation function
in SEdit.

Several DEFINE-CONDITION options have been merged, while
others have been removed. In particular, there are no more "instant
variables."

PROCEED-CASE has been replaced by RESTART-CASE. The
semantics of restarts have been cleaned up and several new
features added. Related functions, such as COMPUTE-PROCEED-
CASES, have been renamed appropriately.

INVOKE-PROCEED-CASE has been renamed to INVOKE-
RESTART.

DEFINE-PROCEED-FUNCTION has been removed, although XCL
will continue to support it for compatibility.

The arguments to a restart’s report function are different. Old code
that used something other than a string for the report method will
not work correctly.

A distinction is now made between invoking a restart interactively
and simply invoking one. To this end, there is the function INVOKE-
RESTART-INTERACTIVELY and the :INTERACTIVE option to
RESTART-CASE.

RESTART-BIND, in analogy to HANDLER-BIND, has been added.

A new variable, *BREAK-ON-SIGNALS* exists to aid in debugging.
It is a generalization of *BREAK-ON-WARNINGS*. The latter has
been retained for compatibility.

The proceed function PROCEED has been changed to
CONTINUE.

Old compiled code will continue to work except in the following
cases, some of which have been mentioned above:

 A proceed case’s report function was not a simple string. Such
code can cause stack overflow trying to report the condition
(*STANDARD-OUTPUT* ends up being bound to NIL). Such code
should be rewritten.

E-3LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

A handler binding is made to a list of condition types. Only the first
type in the list will be handled.

Multiple handler bindings were created by the same HANDLER-
BIND or HANDLER-CASE. Such code will work as expected, but if
recompiled in Medley, will not. To get the effect of the current
semantics, you must use nested HANDLER-BINDs.

Under the new error system, use-value and store-value
no longer prompt for a value.

Introduction to Error System Terminology

condition A condition is a kind of object which is created when an exceptional
situation arises in order to represent the relevant features of that
situation.

signal, handlers Once a condition is created, it is common to signal it. When a
condition is signaled, a set of handlers are tried in some pre-
defined order until one decides to handle the condition or until no
more handlers are found. A condition is said to have been handled
if a handler performs a non-local transfer of control to exit the
signalling process.

restart Although such transfers of control may be done directly using
traditional Lisp mechanisms such as catch and throw, block
and return, or tagbody and go, the condition system also
provides a more structured way to restart a computation. Among
other things, the use of these structured primitives for restarting
allows a better and more integrated relationship between the user
program and the interactive debugger.

serious conditions It is not necessary that all conditions be handled. Some conditions
are trivial enough that a failure to handle them may be disregarded.
Others, which we will call serious conditions must be handled in
order to assure correct program behavior. If a serious condition is
signalled but no handler is found, the debugger will be entered so
that the user may interactively specify how to proceed.

errors conditions which result from incorrect programs or data are called
errors. Not all conditions are errors, however. Storage conditions
are examples of conditions that are not errors. For example, the
control stack may legitimately overflow without a program being
in error. Even though a stack overflow is not necessarily a program
error, it is serious enough to warrant entry to the debugger if the
condition goes unhandled.

Some types of conditions are predefined by the system. All types of
conditions are subtypes of conditions:condition. That is,

(typep c ’conditions:condition)

is true if c is a condition.

E-4 LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

creating conditions The only standard way to define a new condition type is
conditions:define-condition. The only standard way to
instantiate a condition is conditions:make-condition.

When a condition object is created, the most common operation to
be performed upon it is to signal it (although there may be
applications in which this does not happen, or does not happen
immediately).

When a condition is signaled, the system tries to locate the most
appropriate handler for the condition and invoke that handler.
Handlers are located according to the following rules:

bound • Check for locally defined (ie, bound) handlers.

• If no appropriate bound handler is found, check first for the
default handler of the signaled type and then of each of its
superiors.

decline If an appropriate handler is found, the handler may decline by
simply returning without performing a non-local transfer of control.
In such cases, the search for an appropriate handler is picked up
where it left off, as if the called handler had never been present.
When a handler is running, the "handler binding stack" is popped
back to just below the binding that caused that handler to be
invoked. This is done to avoid infinite recursion in the case that a
handler also signals a condition.

conditions:handler-bind When a condition is signaled, handlers are searched for in the
dynamic environment of the signaller. Handlers can be established
within a dynamic context by use of conditions:handler-bind
and other forms based on it.

handler A handler is a function of one argument, the condition to be
handled. The handler may inspect the object (using primitives
described in another section) to be sure it is interested in handling
the condition. After inspecting the condition, the handler must take
one of the following actions:

• It may decline to handle the condition by simply returning. When
this happens, any returned values are ignored and the effect on
the signaling process is the same as if the handler had not run.
The next handler in line will be tried, or if no such handler exists,
the default action for the given condition will be taken. A default
handler may also decline, in which case the condition will go
unhandled. What happens then depends on which function was
used to signal the condition (xcl:signal, error, cerror,
warn).

• It may perform some non-local transfer of control using go,
return, throw, abort, or conditions:invoke-restart.

• It may signal another condition.

• It may invoke the debugger.

E-5LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

conditions:restart-case When a condition is signalled, a facility is available for use by
handlers to transfer control to an outer dynamic contour of the
program. The form which creates contours that may be returned to
is conditions:restart-case. Each contour is set up by a
conditions:restart-case clause, and is called a restart. The
function that transfers control to a restart is
conditions:invoke-restart.

proceed function Also, control may be transferred along with parameters to a named
xcl:proceed-case clause by invoking a proceed function of that
name.

Proceed functions are created with the macro xcl:define-
proceed-function.

restart type A restart with a particular name is sometimes called a restart type.

report In some cases, it may be useful to report a condition or a restart to
a user or a log file of some sort. When the printer is invoked on a
condition or proceed case and *print-escape* is nil, the report
function for that object is invoked. In particular, this means that an
expression like

(princ condition)

will invoke condition’s report function. Because of this, no
special function is provided for invoking the report function of a
condition or a restart.

Program Interface to the Condition System

Defining and Creating Conditions
conditions:define-condition name (parent-type) [({slot}*) {option}*]

[Macro]

Defines a new condition type with the given name, making it a
subtype of the given parent-type.

Except as otherwise noted, the arguments are not evaluated.

The valid options are:

(:documentation doc-string)

doc-string should be a string which describes the purpose of
the condition type or NIL. If this option is omitted, NIL is
assumed. (documentation name ’type) will retrieve this
information.

(:conc-name symbol-or-string)

As in defstruct, this sets up automatic prefixing of the
names of slot accessors. Also as in defstruct if no prefix is
specified the default behavior for automatic prefixing is to use
the name of the new type followed by a hyphen interned in the

E-6 LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

package which is current at the time that the
conditions:define-condition is processed.

:report-function expression

expression should be a suitable argument to the function
special form, e.g., a symbol or a lambda expression. It
designates a function of two arguments, a condition and a
stream, which prints the condition to the stream when
print-escape is nil.

The :report-function describes the condition in a
human-sensible form. This item is somewhat different than a
structure’s :print-function in that it is only used if
print-escape is nil.

(:report exp)

This option specifies the report function for this condition type.
Report function are inherited, so if a particular condition type
does not have one, the report function of its parent will be
used.

If exp is a string, it is a shorthand for

(:report (lambda (condition stream)

 (declare (ignore conditions))

 (princ exp stream)))

If exp is not a string, (function exp) will be evaluated in
the current lexical environment. This should return a function
of two arguments, a condition and a stream. It will be called
when a condition of this type is to be printed and *print-
escape* is nil. The report function will be called with the
condition to be reported and the stream to which the report is
to be made.

:handler-function expression

expression should be a suitable argument to the function
special form. It designates a function of one argument, a
condition, which may handle that condition if no dynamically-
bound handler did.

(:handle exp)

This option specifies a default handler for conditions of this
type. (function exp) will be evaluated in the current lexical
context. This should result in a function of one argument, a
condition, to be used as the default handler for this condition
type.

Each slot is a defstruct slot-description. In addition to those
specified, the slots of the parent-type are also available. No slot-
options are allowed, only an optional default-value expression.
Condition objects are immutable, i.e., all of their slots are
automatically declared to be :read-only.

E-7LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

conditions:make-condition will accept keywords with the
same name as any of the slots, and will initialize the corresponding
slots in conditions it creates.

Accessors are created according to the same rules as used by
defstruct. For example:

(conditions:define-condition bad-food-color (food-lossage)
(food color)
 (:report (lambda (c s) (format s "The food ~A was ~A"
 (bad-food-color-food c) (bad-food-
color-color c)))))

defines a condition of type bad-food-color which inherits from
the food-lossage condition type. The new type has slots food
and color so that conditions:make-condition will accept
:food and :color keywords and accessors bad-food-color-
food and bad-food-color-color will apply to objects of this
type.

The report function for a condition will be implicitly called any time a
condition is printed with *print-escape* being nil. Hence,
 (princ condition)

is a way to invoke the condition’s report function.

Here are some examples of defining condition types. This form
defines a condition called machine-error which inherits from
error:

(conditions:define-condition machine-error (error) (machine-
name)
 (:report (lambda (c s) (format s
 "There is a problem with ~A."
 (machine-error-machine-name c))))
)

The following defines a new error condition (a subtype of
machine-error) for use when machines are not available:

(conditions:define-condition machine-not-available-error
 (machine-error) (machine-name)
 (:report (lambda (c s) (format s
 "The machine ~A is not available."
 (machine-error-machine-name c))))
)

The following defines a still more specific condition, built upon
machine-not-available-error, which provides a default for
machine-name but which does not provide any new slots:

(conditions:define-condition
 my-favorite-machine-not-available-error
 (machine-not-available-error)
 ((machine-name "Tesuji:AISDev")))

This gives the machine-name slot a default initialization. Since no
:report clause was given, the information supplied in the
definition of machine-not-available-error will be used if a
condition of this type is printed while *print-escape* is nil.

xcl:condition-reporter type [Macro]

E-8 LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

Returns the object used to report conditions of the given type. This
will be either a string, a function of two arguments (condition and
stream) or nil if there is no report function. setf may be used
with this form to change the report function for a condition type.

xcl:condition-handler type [Macro]

Returns the default handler for conditions of the given type. This
will be a function of one argument or nil if there is no default
handler. setf may be used with this form to change the default
handler for a condition type.

conditions:make-condition type &rest slot-initializations [Function]

Calls the appropriate constructor function for the given type,
passing along the given slot initializations to the constructor, and
returning an instantiated condition.

The slot-initializations are given in alternating keyword/value pairs.
eg,

(conditions:make-condition ’bad-food-color
 :food my-food
 :color my-color)

This function is provided mainly for writing subroutines that
manufacture a condition to be signaled. Since all of the condition
signalling functions can take a type and slot-initializations, it is
usually easier to call them directly.

Signalling Conditions

xcl:*current-condition* [Variable]

This variable is bound by condition-signalling forms
(conditions:signal, error, cerror, and warn) to the
condition being signaled. This is especially useful in restart filters.
The top-level value of xcl:*current-condition* is nil.

conditions:signal datum &rest arguments [Function]

Invokes the signal facility on a condition. If the condition is not
handled, conditions:signal returns the condition object that
was signaled.

If datum is a condition then that condition is used directly. In this
case, it is an error for arguments to be non-nil.

If datum is a condition type, then the condition used is the result of
doing

(apply #’conditions:make-condition
 datum arguments)

If datum is a string, then the condition used is the result of doing
(conditions:make-condition
 ’conditions:simple-condition

:format-string datum
:format-arguments arguments).

If the condition is of type xcl:serious-condition, then
xcl:signal will behave exactly like error, i.e., it will call

E-9LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

xcl:debug if the condition isn’t handled, and will never return to its
caller.

If (typep condition conditions:*break-on-signals*) is
true, then the debugger will be entered prior to the signalling
process. This is true for all other functions and macros that signal
conditions, such as warn, error, cerror, assert and check-
type.

conditions:*break-on-signals* [Variable]

This flag is primarily for use when debugging programs that do
signaling. Its value is a type specifier.

When (typep condition conditions:*break-on-signals*)
is true, then calls to conditions:signal and other functions that
implicitly call conditions:signal will enter the debugger prior to
signalling the condition. The conditions:continue restart may
be used to continue with the normal signalling process.

The default value of this variable is nil.

Note: the variable *break-on-warnings* continues to be
supported for compatibility, but conditions:*break-on-

signals* offers that power and more. New code should not use
break-on-warnings.

error datum &rest arguments [Function]

Like conditions:signal except if the condition is not handled,
the debugger is called with the given condition, and error never
returns.

datum is treated as in conditions:signal. If datum is a string,
a conditon of type conditions:simple-error is made. This
form is compatible with that described in Steele’s Common Lisp,
the Language.

cerror proceed-format-string datum &rest arguments [Function]

Like error, if the condition is not handled the debugger is called
with the given condition. However, cerror enables the restart
conditions:continue, which will simply return the condition
being signalled from cerror.

datum is treated as in error. If datum is a condition, then that
condition is used directly. In this case, arguments will be used only
with the proceed-format-string and will not be used to initialize
datum.

The proceed-format-string must be a string. Note that if datum is
not a string, then the format arguments used by the proceed-
format-string will still be the arguments (in the keyword format as
specified). In this case, some care may be necessary to set up the
proceed-format-string correctly. The format directive ~* may be
particularly useful in this situation.

The value returned by cerror is the condition which was signaled.

E-10 LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

See Steele’s Common Lisp, the Language, page 430 for examples
of the use of cerror.

warn datum &rest arguments [Function]

Invokes the signal facility on a condition. If the condition is not
handled, then the text of the warning is printed on *error-
output*. If the variable *break-on-warnings* is true, then in
addition to printing the warning, the debugger is entered using the
function break. The value returned by warn is the condition that
was signalled.

If datum is a condition, then that condition is used directly. In this
case, if the condition is not of type conditions:warning or
arguments is non-null, then an error of type conditions:type-
error is signalled.

If datum is a condition type, then the condition used is the result of
doing (apply #’conditions:make-conditions datum
arguments). This result must be of type conditions:warning or
an error of type conditions:type-error is signalled.

If datum is a string, then the condition used is the result of
(conditions:make-conditions ’conditions:simple-

warning :format-string datum :format-arguments

arguments).

The precise mechanism for warning is as follows:

1) If *break-on-warnings* is true, the debugger will be entered.
This feature is primarily for compatibility with old code: use of
conditions:*break-on-signals* is preferred. If the break is
continued using the conditions:continue restart, warn

proceeds with step 2.

2) The warning condition is signalled. While it is being signalled, the
conditions:muffle-warning restart is established for use by a
handler to bypass further action by warn, i.e., to cause warn to
immediately return.

3) The warning condition is reported to *error-output* by the
warn function. Note that warn will indicate that the condition being
signalled is a warning when it reports it, so there is no need for the
condition to do so in its report method.

break-on-warnings [Variable]

check-type [Macro]

ecase [Macro]

ccase [Macro]

etypecase [Macro]

ctypecase [Macro]

assert [Macro]

All of the above behave as described in Common Lisp: the
Language. The default clauses of ecase and ccase forms signal
conditions:simple-error conditions. The default clauses of

E-11LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

etypecase and ctypecase forms signal conditions:type-
error conditions. assert signals the xcl:assertion-failed
condition. ccase and ctypecase set up a conditions:store-
value restart.

Handling Conditions

conditions:handler-bind bindings &rest forms [Macro]

Executes the forms in a dynamic context where the given local
handler bindings are in effect. The elements of bindings must take
the form (type-spec handler). The handlers are bound in the order
they are given, i.e., when searching for a handler, the error system
will consider the leftmost binding in a particular
conditions:handler-bind form first. However, while one of
these handlers is running, none of the bindings established by the
conditions:handler-bind will be in effect.

type must be a type specifier. To make a binding for several
condition types, use (or type1 type2 ...).

handler should evaluate to a function of one argument, a condition,
to be used to handle a signalled condition during execution of the
forms.

An example of the use of conditions:handler-bind appears
at the end of the conditions:restart-case macro description.

conditions:handler-case form &rest cases [Macro]

xcl:condition-case form &rest cases [Macro]

Executes the given form. Each case has the form

 (type ([var]) . body)

If a condition is signalled (and not handled by an intervening
handler) during the execution of the form, and there is an
appropriate clause—i.e., one for which

 (typep condition ’type)

is true—then control is transferred to the body of the relevant
clause, binding var, if present, to the condition that was signaled. If
no condition is signalled, then the values resulting from the form are
returned by the xcl:condition-case. If the condition is not
needed, var may be omitted.

Earlier clauses will be considered first by the error system. I.e.,
(xcl:condition-case form
 (cond1 ...)
 (cond2 ...))

is equivalent to
(xcl:condition-case
 (xcl:condition-case form
 (cond1 ...))
 (cond2 ...))

E-12 LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

type may also be a list of types, in which case it will catch
conditions of any of the specified types.

One may also specify an action to be taken if execution of form
completes normally. This may be done by specifying a clause that
has :no-error as its type. Such a clause, if provided, must be
last. A :no-error clause looks like:

 (:no-error lambda-list . body)

If execution of the form completes normally and there is a :no-
error clause, the values produced by the form will be bound to
variables in the clause’s lambda-list and the body will be executed
with none of the handler bindings in effect. In this case the value of
the xcl:condition-case form is the value returned by the last
form of the body of its :no-error clause. Having a :no-error
clause is equivalent to wrapping (mutiple-value-call

#’(lambda lambda-list . body) ...) around the
xcl:condition-case form.

conditions:handler-case is synonymous with
xcl:condition-case.

Examples:

(xcl:condition-case (/ x y)
 (division-by-zero () nil))

(xcl:condition-case (open *the-file*
 :direction :input)
 (file-error (condition)
 (format t "~&Open failed: ~A~%" condition)))

(xcl:condition-case (some-user-function)
 (file-error (condition) condition)
 (division-by-zero () 0)
 ((or unbound-variable undefined-function) ()
 ’unbound))

(xcl:condition-case (open my-file)
 (file-error ()
 (format *error-output* "Couldn’t open ~S."
 my-file))
 (:no-error (stream)
 (open-more-files my-file stream) stream)))

Note the difference between xcl:condition-case and
conditions:handler-bind. In conditions:handler-bind,
you are specifying functions that will be called in the dynamic
context of the condition signalling form. In xcl:condition-
case, you are specifying continuations to be used instead of the
original form if a condition of a particular type is signaled. These
continuations will be executed in the same dynamic context as the
original form.

conditions:ignore-errors &body forms [Macro]

Executes the forms in a context that handles conditions of type
error by returning control to this form. If no error is signaled, all

E-13LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

values returned by the last form are returned by
conditions:ignore-errors. Otherwise, the form returns the
two values nil and the condition that was signaled. Synonym for

(xcl:condition-case (progn . forms)
 (error (condition)
 (values nil condition)).

xcl:debug &optional datum &rest arguments [Function]

Enters the debugger with a given condition without signalling that
condition. When the debugger is entered, it will announce the
condition by invoking the condition’s report function.

datum is treated the same as for xcl:signal except if datum is
not specified, it defaults to "Call to DEBUG".

This function will never directly return to its caller. Return can occur
only by a special transfer of control, such as to a catch, block,
tagbody, xcl:proceed-case or xcl:catch-abort.

conditions:invoke-debugger condition [Function]

Invokes the debugger with the given condition. This is intended to
be used as a portable entry point to the debugger. For finer
control over the debugging state, see the function xcl:debugger.

break &optional format-string &rest format-arguments [Function]

Enters the debugger with a simple condition with the given
arguments. If no format-string is provided, it defaults to "Break."
Computation may be continued by invoking the
conditions:continue restart. If continued, break returns nil.

break is approximately:

(defun break (&optional (format-string "Break")
 &rest format-arguments)
 (conditions:restart-case (conditions:invoke-debugger
(conditions:make-conditions ’conditions:simple-condition
:format-string format-string :format-arguments format-
arguments)
 (conditions:continue ()
 :report "Return from BREAK."
 nil)))

Restarts
conditions:restart-case expression {(case-name arglist {keyword value}* {form}*)}*

[Macro]

The expression is evaluated in a dynamic context where the case
clauses have special meanings as points to which control may be
transferred. If expression runs to completion, all values returned by
the form are simply returned by the conditions:restart-case
form. On the other hand, the computation of expression may
choose to transfer control to one of the restart clauses. If a transfer
to a clause occurs, the forms in the body of that clause will be

E-14 LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

evaluated in the same dynamic context as the
conditions:restart-case form, and any values returned by
the last such form will be returned by the conditions:restart-
case form.

A restart clause has the form given above:

(case-name arglist {keyword value}* {form}*)

The case-name may be nil or any symbol.

The arglist is a normal lambda list that will be bound and evaluated
in the dynamic context of the conditions:restart-case form.
They will use whatever values were provided by
conditions:invoke-restart or conditions:invoke-

restart-interactively. Definitions of these two functions
appear later in this section.

The valid keyword/value pairs are:

:filter expression

expression should be suitable as an argument to the function
special form. It defines a predicate of no arguments that
determines if this clause is visible to conditions:find-

restart. Default = true.

:condition type

Shorthand for a common special case of :filter. The
following two key/value pairs are equivalent:

:condition foo

:filter
 (lambda ()
 (typep xcl:*current-condition*
 ’foo))

:interactive expression

The expression must be a form suitable as an argument to
function. (function expression) will be evaluated in the
current lexical and dynamic environments. The result should be
a function of no arguments which returns a list of values to be
used by conditions:invoke-restart-interactively.
This function will be called in the dynamic environment available
prior to any restart attempt. Any interaction with the user should
be done here and not in the body of the restart.

If there is no :interactive option specified and the restart is
invoked interactively, no arguments will be supplied.

:report expression

The expression can either be a constant string or a form suitable
as an argument to function.

If expression is not a string, (function expression) will be
evaluated in the current lexical and dynamic environment. The

E-15LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

result should be a function of one argument, a stream, which will
be called to report that restart. This function should print a short
summary of the action that restart will take if invoked.

If expression is a string, it is a shorthand for (lambda (s)

(format s expression)).

Only one of :condition or :filter may be specified. If no
:report is specified, the case-name will be used. It is an error to
have a null case name and no report function.

Examples:

(loop
 (conditions:restart-case
 (return (apply function some-args))
 (new-function (new-fn)
 :report "Use a different function."
 :interactive (lambda ()
 (list (prompt-for ’function "Function:
")))
 (setq function new-fn))))

(loop
 (conditions:restart-case
 (return (apply function some-args))
 (nil (new-fn)
 :report "Use a different function."
 :interactive (lambda ()
 (list (prompt-for ’function "Function:
")))
 (setq function new-fn))))

(conditions:restart-case (a-command-loop)
 (return-from-command-level ()
 :report
 (lambda (stream)
 (format stream "Return from command level ~D."
level))
 nil))

(loop
 (conditions:restart-case (another-computation)
 (conditions:continue () nil)))

The first and second examples are equivalent from the point of view
of someone using the interactive debugger, but differ in one
important aspect for non-interactive handling. If a handler "knows
about" restart names, as in:

(when (conditions:find-restart ’new-function)
 (conditions:invoke-restart ’new-function the-
replacement))

then only the first example, and not the second, will have control
transferred to its correction clause.

Here’s a more complete example:

(let ((my-food ’milk)
 (my-color ’greenish-blue))
 (do ()

E-16 LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

 ((not (food-colorable-p my-food
 my-color)))
 (conditions:restart-case (error ’bad-food-color
 :food my-food
 :color my-color)
 (use-food (new-food)
 :report "Use another food."
 (setf my-food new-food))
 (use-color (new-color)
 :report "Use another color."
 (setf my-color new-color))))
 ;; We won’t get to here until my-food
 ;; and my-color are compatible.
 (list my-food my-color))

Assuming that use-food and use-color have been defined as

(defun use-food (new-food)
 (invoke-restart ’use-food new-food))

(defun use-color (new-color)
 (invoke-restart ’use-color new-color))

then a handler can proceed from the error in either of two ways. It
may correct the color or correct the food. For example:

#’(lambda (condition) ...
 ;; Corrects color
 (use-color ’white) ...)

or
#’(lambda (condition) ...
 ;; Corrects food
 (use-food ’cheese) ...)

Here is an example using conditions:handler-bind and
conditions:restart-case.

(conditions:handler-bind ((foo-error
 #’(lambda (condition)
 (conditions:use-value 7))))
 (conditions:restart-case (error ’foo-error)
 (conditions:use-value (x) (* x x))))

The above form returns 49.

xcl:define-proceed-function name [Macro]
 {keyword value}*
 {variable}*

Valid keyword/value pairs are the same as those which are defined
for the xcl:proceed-case special form. That is, :filter,
:filter-function, :condition, :report, and :report-
function. The filter and report functions specified in a
xcl:define-proceed-function form will be used for
xcl:proceed-case clauses with the same name that do not
specify their own filter or report functions, respectively.

This form defines a function called name which will invoke a
proceed case with the same name. The proceed function takes
optional arguments which are given by the variables specification.
The parameter list for the proceed function will look like

E-17LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

 (&optional . variables)

The only thing that a proceed function really does is collect values
to be passed on to a proceed case clause.

Each element of variables has the form variable-name or (variable-
name initial-value). If initial-value is not supplied, it defaults to
nil.

For example, here are some possible proceed functions which
might be useful in conjunction with the bad-food-color error we
used as an example earlier:

(xcl:define-proceed-function use-food
 :report "Use another food."
 (food (read-typed-object ’food
 "Food to use instead: ")))

(xcl:define-proceed-function use-color
 :report "Change the food’s color."
 (color
 (read-typed-object ’food
 "Color to make the food: ")))

(defun maybe-use-water (condition)
 ;; A sample handler
 (when (eq (bad-food-color-food condition)
 ’milk)
 (use-food ’water)))

(xcl:handler-bind ((bad-food-color
 #’maybe-use-water))
 ...)

If a named proceed function is invoked in a context in which there is
no active proceed case by that name, the proceed function simply
returns nil. So, for example, in each of the following pairs of
handlers, the first is equivalent to the second but less efficient:

#’(lambda (condition) ; OK, but slow
 (when (xcl:find-proceed-case ’use-food)
 (use-food ’milk)))
#’(lambda (condition) ; Preferred
 (use-food ’milk))

#’(lambda (condition)
 (cond ((xcl:find-proceed-case ’use-food)
 (use-food ’chocolate))
 ((xcl:find-proceed-case ’use-color)
 (use-color ’orange))))
#’(lambda (condition)
 (use-food ’chocolate)
 (use-color ’orange))

conditions:restart-bind ({(name function {keyword value}*)}* {form}* [Macro]

Executes the forms in a dynamic context where the given restart
bindings are in effect.

name may be nil to indicate an anonymous restart, or some other
symbol to indicate a named restart.

E-18 LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

function will be evaluated in the current lexical and dynamic
contexts and should produce a function of no arguments to be used
to perform the restart. This function will be called when that restart
is activated by conditions:invoke-restart or
conditions:invoke-restart-interactively. Note that
unlike conditions:restart-case, invoking the restart does not
automatically transfer control back to the contour in which it was
established. If that is appropriate for that restart it is up to the
individual restart function to do this.

The valid keyword/value pairs are:

:interactive-function form

form will be evaluated in the current lexical and dynamic
environments and should produce a function of no arguments
that will construct the list of values to be used by
conditions:invoke-restart-interactively.

:report-function form

form will be evaluated in the current lexical and dynamic
environments and should produce a function of one argument, a
stream, that will be used to report that restart.

:filter-function form

form will be evaluated in the current lexical and dynamic
environments and should produce a function of no arguments
that will be used to determine if the given restart is currently
active.

This form is a more primitive way of establishing restarts than
conditions:restart-case. It is expected that conditions:restart-case
will be sufficient for most uses of the restart facility. An example of
where the more general facility provided by conditions:restart-bind
may be useful is:

(conditions:restart-bind ((nil #’(lambda ()
(expunge-directory the-dir)) :report-function
#’(lambda (stream) (format stream "Expunge ~A."
(directory-namestring the-dir))))) (cerror "Try
this file operation again." ’directory-full
:directory the-dir))

In this case, a restart is provided that allows the user to expunge
the full directory and return to the debugger after doing so. He can
then try some other restart, such as conditions:continue to
retry the failed operation.

conditions:compute-restarts [Function]

Uses the dynamic state of the program to compute a list of restarts.

E-19LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

Each restart object represents a point in the current dynamic state
of the program to which control may be transferred. The only
operations that Lisp defines for such objects are:

 conditions:restart-name,
 conditions:find-restart,
 conditions:invoke-restart, conditions:invoke-
restart-interactively,
 princ, and
 prin1,

to identify an object as a restart using (typep x
’conditions:restart), and standard Lisp operations that work
for all objects, such as eq, eql, describe, etc.

The list which results from a call to conditions:compute-
restarts is ordered so that the innermost (ie, more-recently
established) restarts are nearer the head of the list.

Note also that conditions:compute-restarts returns all valid
restarts, even if some of them have the same name as others and
therefore would not be found by conditions:find-restart.

It is an error to modify the list returned by conditions:compute-
restarts.

conditions:restart-name restart [Function]

Returns the name of the given restart, or nil if it is not named.

xcl:default-proceed-test proceed-case-name [Macro]

Returns the default filter function for proceed cases with the given
proceed-case-name. May be used with setf to change it.

xcl:default-proceed-report proceed-case-name [Macro]

Returns the default report function for proceed cases with the given
proceed-case-name. This may be a string or a function just as for
condition types. May be used with setf to change it.

conditions:find-restart identifier [Function]

Searches for a restart by the given identifier which is in the current
dynamic environment.

If identifier is a symbol, then the innermost (ie, most recently
established) restart with that name that is active is returned. nil is
returned if no such restart is found.

If identifier is a restart object, then it is simply returned unless it is
not currently valid for use. In that case, nil is returned.

When searching for a matching restart, the filter function, if any, of
potential matches will be called to see if they are active. If it returns

E-20 LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

nil, then the restart is considered to not have been seen and the
search for a match continues.

Although anonymous restarts have a name of nil, it is an error for
the symbol nil to be given as an identifier to this function. If it is
approriate to search for anonymous restarts, you should use
conditions:compute-restarts instead.

conditions:invoke-restart restart &rest values [Function]

Calls the function associated with the given restart, passing the
values as arguments. The restart must be a restart object or the
non-null name of a restart which is valid in the current dynamic
context. If an argument is not valid, an error of type
conditions:control-error will be signalled.

If the argument is a named proceed case that has a corresponding
proceed function, xcl:invoke-proceed-case will do the
optional argument resolution specified by that function before
transferring control to the proceed case.

conditions:invoke-restart-interactively restart [Function]

Calls the function associated with the given restart, providing for
any necessary arguments. The restart must be a restart object or
the non-null name or a restart which is valid in the current dynamic
context. If the restart is not valid, an error of type
conditions:control-error will be signalled.

conditions:invoke-restart-interactively will first call
the restart’s interactive function as specified by the :interactive
keyword of conditions:restart-case or the :interactive-
function keyword of conditions:restart-bind. The
interactive function should return a list of values to be passed as
arguments to the restart. This list must be at least as long as the
number of required arguments that the restart has.

If the restart has no interactive function, no arguments will be
passed to the restart function. It is an error for a restart to require
arguments but not have an interactive function.

Once the arguments have been determined,
conditions:invoke-restart-interactively will simply do
(apply #’conditions:invoke-restart restart
arguments).

conditions:with-simple-restart (name format-string {format-arguments}*) {form}*

[Macro]

This is a shorthand for one of the most common uses of
conditions:restart-case.

If the restart designated by name is not invoked while executing the
forms, all values produced by the last form are returned. If the
restart established by conditions:with-simple-restart is

E-21LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

invoked, control is transferred to the conditions:with-simple-
restart form, which immediately returns the two values nil and
t.

It is permissible for name to be nil. In that case, an anonymous
restart is established.

conditions:with-simple-restart is essentially:

(defmacro conditions:with-simple-restart
 ((restart-name format-string
 &rest format-arguments)
 &body forms)
 ‘(conditions:restart-case (progn ,@forms)
 (,restart-name ()
 :report (lambda (stream)
 (format stream
 ,format-string
 ,@format-arguments))
 (values nil t))))

Example:

(defun read-eval-print-loop (level)
 (conditions:with-simple-restart
 (conditions:abort "Exit command level ~D." level)
 (loop
 (conditions:with-simple-restart
 (conditions:abort "Return to command level ~D."
level)
 (print (eval (read)))))))

xcl:catch-abort print-form &body forms [Macro]

Like conditions:with-simple-restart, but always uses the
name conditions:abort .

xcl:catch-abort could be defined by:

(defmacro xcl:catch-abort (print-form
 &body forms)
 ‘(conditions:with-simple-restart
 (conditions:abort ,print-form)
 ,@forms))

conditions:abort [Function]

This function transfers control to the nearest active restart named
conditions:abort. If there is none, this function signals an error
of type conditions:control-error.

xcl:abort could be defined by:

(define-proceed-function xcl:abort
 :report "Abort")

conditions:continue [Function]

E-22 LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

This function transfers control to the nearest active restart named
conditions:continue. If none exists it simply returns nil.

The conditions:continue restart is generally part of simple
protocols where there is a single "obvious" way to continue, such
as in break and cerror.

NB: conditions:continue replaces xcl:proceed.

xcl:proceed &optional condition [Function]

This is a predefined proceed function. It is used by such functions
as break, cerror, etc.

conditions:muffle-warning [Function]

This function transfers control to the nearest active restart named
conditions:muffle-warning. If none exists, an error of type
conditions:control-error is signalled.

warn sets up this restart so that handlers of
conditions:warning conditions have a way to tell warn that the
warning has been dealt with and that no further action is warranted.

conditions:use-value new-value [Function]

This function transfers control (and one value) to the nearest active
restart named conditions:use-value. If no such restart exists,
this function simply returns nil.

The conditions:use-value restart is generally used by
handlers trying to recover from errors of types such as
conditions:cell-error, where the handler may wish to supply
a replacement datum for one-time use.

conditions:store-value new-value [Function]

This function transfers control (and one value) to the nearest active
restart named conditions:store-value. If no such restart
exists, this function simply returns nil.

The conditions:use-value restart is generally used by
handlers trying to recover from errors of types such as
conditions:cell-error, where the handler may wish to supply
a replacement datum to be stored in the offending cell.

E-23LISP RELEASE NOTES, MEDLEY RELEASE, ERROR SYSTEM

APPENDIX E - ERROR SYSTEM

[This page intentionally left blank]

