
3-1LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/INTERLISP-D
INTEGRATION

NOTE: Chapter 3 is organized to correspond to the original
Interlisp-D Reference Manual, and explains changes related to
how Common Lisp affects Interlisp-D in your Lisp software
development environment. To make it easy to use this chapter
with the IRM, information is organized by IRM volume and
section numbers. Section headings from the IRM are maintained to
aid in cross-referencing.

Lyric information as well as Medley release enhancements are
included. Medley additions are indicated with revision bars in the
right margin.

VOLUME I—LANGUAGE

Chapter 2 Litatoms

(2.1)

What Interlisp calls a "LITATOM" is the same as what Common
Lisp calls a "SYMBOL." Symbols are partitioned into separate
name spaces called packages. When you type a string of
characters, the resulting symbol is searched for in the "current
package." A colon in the symbol separates a package name from a
symbol name; for example, the string of characters "CL:AREF"
denotes the symbol AREF accessible in the package CL. For a full
discussion, see Guy Steele’s Common Lisp, the Language.

All the functions in this section that create symbols do so in the
INTERLISP package (IL), which is also where all the symbols in the
Interlisp-D Reference Manual are found. Note that this is true even
in cases where you might not expect it. For example, U-CASE
returns a symbol in the INTERLISP package, even when its
argument is in some other package; similarly with L-CASE and
SUBATOM. In most cases, this is the right thing for an Interlisp
program; e.g., U-CASE in some sense returns a "canonical" symbol
that one might pass to a SELECTQ, regardless of which executive
it was typed in. However, to perform symbol manipulations that
preserve package information, you should use the appropriate
Common Lisp functions (See Common Lisp the Language, Chapter
11, Packages and Chapter 18, Strings).

Symbols read under an old Interlisp readtable are also searched for
in the INTERLISP package. See Section 25.8, Readtables, for
more details.

3-2 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/INTERLISP-D INTEGRATION

Section 2.1 Using Litatoms as Variables

(I:2.3)

(BOUNDP VAR) [Function]

The Interlisp interpreter has been modified to consider any symbol
bound to the distinguished symbol NOBIND to be unbound. It will
signal an UNBOUND-VARIABLE condition on encountering
references to such symbols. In prior releases, the interpreter only
considered a symbol unbound if it had no dynamic binding and in
addition its top-level value was NOBIND.

For most user code, this change has no effect, as it is unusual to
bind a variable to the particular value NOBIND and still deliberately
want the variable to be considered bound. However, it is a
particular problem when an interpreted Interlisp function is passed
to the function MAPATOMS. Since NOBIND is a symbol, it will
eventually be passed as an argument to the interpreted function.
The first reference to that argument within the function will signal an
error.

A work-around for this problem is to use a Common Lisp function
instead. Calls to this function will invoke the Common Lisp
interpreter which will treat the argument as a local, not special,
variable. Thus, no error will be signaled. Alternatively, one could
include the argument to the Interlisp function in a LOCALVARS
declaration and then compile the function before passing it to
MAPATOMS. This has the advantage of significantly speeding up
the MAPATOMS call.

Section 2.3 Property Lists

(I:2.6)

The value returned from the function REMPROP has been
changed in one case:

(REMPROP ATM PROP) [Function]

Removes all occurrences of the property PROP (and its value) from
the property list of ATM. Returns PROP if any were found (T if
PROP is NIL), otherwise NIL.

Section 2.4 Print Names

(I:2.7)

The print functions now qualify the name of a symbol with a
package prefix if the symbol is not accessible in the current
package. The Interlisp "PRIN1" print name of a symbol does not
include the package name.

(I:2.10)

The GENSYM function in Interlisp creates symbols interned in the
INTERLISP package. The Common Lisp CL:GENSYM function
creates uninterned symbols.

3-3LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/INTERLISP-D INTEGRATION

(I:2.11)

(MAPATOMS FN) [Function]

See the note for BOUNDP above.

Section 2.5 Characters

A "character" in Interlisp is different from the type "character" in
Common Lisp. In Common Lisp, "character" is a distinguished data
type satisfying the predicate CL:CHARACTERP. In Interlisp, a
"character" is a single-character symbol, not distinguishable from
the type symbol (litatom). Interlisp also uses a more efficient object
termed "character code", which is indistinguishable from the type
integer.

Interlisp functions that take as an argument a "character" or
"character code" do not in general accept Common Lisp characters.
Similarly, an Interlisp "character" or "character code" is not
acceptable to a Common Lisp function that operates on characters.
However, since Common Lisp characters are a distinguished
datatype, Interlisp string-manipulation functions are willing to accept
them any place that a "string or symbol" is acceptable; the
character object is treated as a single-character string.

To convert an Interlisp character code n to a Common Lisp
character, evaluate (CL:CODE-CHAR n). To convert a Common
Lisp character to an Interlisp character code, evaluate (CL:CHAR-
CODE n). For character literals, where in Interlisp one would write
(CHARCODE x), to get the equivalent Common Lisp character one
writes #\x. In this syntax, x can be any character or string
acceptable to CHARCODE; e.g., #\GREEK-A.

Chapter 4 Strings

(I:4.1)

Interlisp strings are a subtype of Common Lisp strings. The
functions in this chapter accept Common Lisp strings, and produce
strings that can be passed to Common Lisp string manipulation
functions.

Chapter 5 Arrays

Interlisp arrays and Common Lisp arrays are disjoint data types.
Interlisp arrays are not acceptable arguments to Common Lisp
array functions, and vice versa. There are no functions that convert
between the two kinds of arrays.

3-4 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/INTERLISP-D INTEGRATION

Chapter 6 Hash Arrays

Interlisp hash arrays and Common Lisp hash tables are the same
data type, so Interlisp and Common Lisp hash array functions may
be freely intermixed. However, some of the arguments are
different; e.g., the order of arguments to the map functions in
IL:MAPHASH and CL:MAPHASH differ. The extra functionality of
specifying your own hashing function is available only from Interlisp
HASHARRAY, not CL:MAKE-HASH-TABLE , though the latter
does supply the three built-in types specified by Common Lisp, the
Language.

Chapter 7 Numbers and Arithmetic Functions

(I:7.2)

The addition of Common Lisp data structures within the Lisp
environment means that there are some invariants which used to
be true for anything in the environment that are no longer true.

For example, in Interlisp, there were two kinds of numbers: integer
and floating. With Common Lisp, there are additional kinds of
numbers, namely ratios and complex numbers, both of which
satisfy the Interlisp predicate NUMBERP. Thus, NUMBERP is no
longer the simple union of FIXP and FLOATP. It used to be that
a program containing

(if (NUMBERP X)
 then (if (FIXP X)
 then ...assume X is an integer ...
 else ...can assume X is floating point...))

would be correct in Interlisp. However, this is no longer true; this
program will not deal correctly with ratios or complex numbers,
which are NUMBERP but neither FIXP nor FLOATP.

Section 7.2 Integer Arithmetic

When typing to a new Interlisp Executive, the input syntax for
integers of radix other than 8 or 10 has been changed to match that
of Common Lisp. Use # instead of |, e.g., #b10101 is the new
syntax for binary numbers, #x1A90 for hexadecimal, etc. Suffix Q
is still recognized as specifying octal radix, but you can also use
Common Lisp’s #o syntax.

(I:7.4)

In the Lyric release, the FASL machinery would handle some
positive literals incorrectly, reading them back as negative
numbers. The numbers handled incorrectly were those numbers x
greater than 2**31-1 for which (mod (integer-length x) 8) was zero.
The Medley release fixes this situation. Any files containing such
numbers should be recompiled.

3-5LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/INTERLISP-D INTEGRATION

Chapter 10 Function Definition, Manipulation, and Evaluation

Section 10.1 Function Types

All Interlisp NLAMBDAs appear to be macros from Common Lisp’s
point of view. This is discussed at greater length in Common Lisp
Impementation Notes, Chapter 8, Macros.

Section 10.6 Macros

(EXPANDMACRO EXP QUIETFLG — —) [Function]

EXPANDMACRO only works on Interlisp macros, those appearing
on the MACRO, BYTEMACRO or DMACRO properties of symbols.
Use CL:MACROEXPAND-1 to expand Common Lisp macros and
those Interlisp macros that are visible to the Common Lisp compiler
and interpreter.

Section 10.6.1 DEFMACRO

(I:10.24)

Common Lisp does not permit a symbol to simultaneously name a
function and a macro. In Lyric, this restriction also applies to
Interlisp macros defined by DEFMACRO. That is, evaluating
DEFMACRO for a symbol automatically removes any function
definition for the symbol. Thus, if your purpose for using a macro is
to make a function compile in a special way, you should instead
use the new form XCL:DEFOPTIMIZER, which affects only
compilation. The Xerox Common Lisp Implementation Notes
describe XCL:DEFOPTIMIZER.

Interlisp DMACRO properties have typically been used for
implementation-specific optimizations. They are not subject to the
above restriction on function definition. However, if a symbol has
both a function definition and a DMACRO property, the Lisp
compiler assumes that the DMACRO was intended as an optimizer
for the old Interlisp compiler and ignores it.

Chapter 11 Stack Functions

Section 11.1 The Spaghetti Stack

Stack pointers now print in the form

#<Stackp address/framename>.

Some restrictions were placed on spaghetti stack manipulations in
order to integrate reasonably with Common Lisp’s CL:CATCH and
CL:THROW. In Lyric, it is an error to return to the same frame
twice, or to return to a frame that has been unwound through. This
means, for example, that if you save a stack pointer to one of your
ancestor frames, then perform a CL:THROW or RETFROM that
returns "around" that frame, i.e., to an ancestor of that frame, then

3-6 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/INTERLISP-D INTEGRATION

the stack pointer is no longer valid, and any attempt to use it
signals an error "Stack Pointer has been released". It is also an
error to attempt to return to a frame in a different process, using
RETFROM, RETTO, etc.

The existence of spaghetti stacks raises the issue of under what
circumstances the cleanup forms of CL:UNWIND-PROTECT are
performed. In Lisp, CL:THROW always runs the cleanup forms of
any CL:UNWIND-PROTECT it passes. Thanks to the integration of
CL:UNWIND-PROTECT with RESETLST and the other Interlisp
context-saving functions, CL:THROW also runs the cleanup forms
of any RESETLST it passes. The Interlisp control transfer
constructs RETFROM, RETTO, RETEVAL and RETAPPLY also
run the cleanup forms in the analogous case, viz., when returning
to a direct ancestor of the current frame. This is a significant
improvement over prior releases, where RETFROM never ran any
cleanup forms at all.

In the case of RETFROM, etc, returning to a non-ancestor, the
cleanup forms are run for any frames that are being abandoned as
a result of transferring control to the other stack control chain.
However, this should not be relied on, as the frames would not be
abandoned at that time if someone else happened to retain a
pointer to the caller’s control chain, but subsequently never
returned to the frame held by the pointer. Cleanup forms are not
run for frames abandoned when a stack pointer is released, either
explicitly or by being garbage-collected. Cleanup forms are also
not run for frames abandoned because of a control transfer via
ENVEVAL or ENVAPPLY. Callers of ENVEVAL or ENVAPPLY
should consider whether their intent would be served as well by
RETEVAL or RETAPPLY, which do run cleanup forms in most
cases.

Chapter 12 Miscellaneous

Section 12.4 System Version Information

All the functions listed on page 12.12 in the Interlisp-D Reference
Manual have had their symbols moved to the LISP (CL) package.
They are not shared with the INTERLISP package and any
references to them in your code will need to be qualified i.e.,
CL:name.

Section 12.8 Pattern Matching

Pattern matching is no longer a standard part of the environment.
The functionality for Pattern matching can be found in the Lisp
Library Module called MATCH.

3-7LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP/INTERLISP-D INTEGRATION

3. COMMON LISP/INTERLISP-D INTEGRATION

[This page intentionally left blank]

