
7-1LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. CO
MMON LISP IMPLEMENTATION

This section describes new features and enhancements that
implement Common Lisp into the Lisp operating environment
within the Medley release. This information supplements the
Common Lisp Implementation Notes, Lyric release. Medley
enhancements are indicated with revision bars in the right margin.

New Features Since Lyric

The following description summarizes the new Common Lisp
implementation features that have been added or changed since
the Lyric release.

New compiler Interface -- The Medley compiler gives better
progress reports and it is now possible to invoke the compiler on
any definer (not just functions, as before).

New Implementation of Defstruct -- A new version of defstruct
compiles more compactly and gives more options so that defstruct
has at least as much functionality as the Interlisp record package.

Adoption of features and clarifications suggested by the
Common Lisp Cleanup Committee -- Among other changes,
the behavior of append on dotted lists is now better defined, and
a new function xcl:row-major-aref has been added.

Common Lisp Veneer on the Interlisp record package -- A
collection of macros that make the use of existing Interlisp
datatypes more appealing has been added.

Performance enhancements -- A closure caching scheme now
insures that repeated calls to symbol-functions of the same
symbol will return EQ compiled-function objects.

New opcodes have been added for several common list functions,
such as member and assoc.

Common Lisp Definers

The Medley release contains a new implementation of definers
and a reworking of the top level of the XCL Compiler. These
represent upward compatible changes that have the effect of
allowing the Common Lisp compiler to print out progress reports
indicating which definer is currently being compiled. To receive the
full benefit of these changes, recompile any file containing a
defdefiner expression.

It is now possible to compile individual definers by using any of the
following forms:

7-2 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Compile-Definer

(xcl:compile-definer name type)

Compile and install the definer of type type named name .

EXAMPLE:

(xcl:compile-definer ’foo ’structures)

In this example, the definer will compile and install the structures
definition of foo.

Compile-Form

(xcl:compile-form form)

Compile and evaluate form.

EXAMPLE:

(xcl:compile-form ’(progn (defconstant c 1) (defun foo (a b) (+ c a
b))))

In this example, the definer will compile and evaluate the progn
using compile-file semantics.

EXAMPLE:

(xcl:compile-form ’(with-collection (dotimes (i 10) (collect i))))

In this example, the definer returns:

(0 1 2 3 4 5 6 7 8 9)

Define-File-Environment

Rather than establishing il:makefile-environment props and
il:filetypes on the root name of a file, you can define a file
environment using the form:

(xcl:define-file-environment filename &key readtable package base compiler)

This produces an object of file-manager type xcl:file-
environments. The filename can be either a string or a symbol.
The rootname of the file is constructed by interning the filename in
the Interlisp package. Puts the compiler argument (if any) under
the il:filetype prop of the file rootname. Puts the readtable,
package and base arguments (if any) under the il:makefile-
environment prop of the file rootname. None of the arguments are
evaluated. There are no defaults.

EXAMPLE:

(xcl:define-file-environment myfile :package "XCL-USER" :readtable "XCL"
:compiler :compile-file)

In this example, compile-file is put under the il:filetype prop of
myfile. The readtable, XCL and compile arguments are put under
the il:makefile-environment prop of myfile.

NOTE: xcl:define-file-environment is a definer and hence will
not be installed if il:dfnflg is il:prop or if a file is prop loaded.

7-3LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Site-Name Special Uses

The following special variables are defined and may be set in your
init file to inform Common Lisp of site information:

xcl:*short-site-name*

This variable is used in the function short-site-name.

xcl:*long-site-name*

This variable is used in the function long-site-name.

EXAMPLES:

(setq xcl:*short-site-name* "AIS")

(setq xcl:*long-site-name* "Artificial Intelligence Systems")

In these examples, (short-site-name) returns "AIS" and (long-site-
name) returns "Artificial Intelligence Systems".

Record Access

The Medley release contains several methods for accessing
existing Interlisp records using Common Lisp syntax. These
features help to integrate Interlisp and Common Lisp. The following
sections describe these additions.

Define-Record
(xcl:define-record name interlisp-record-name
&key conc-name constructor predicate fast-accessors) [Definer]

Creates a structures object named by the symbol name that
provides Common Lisp accessors, settors, predicates and
constructors for the Interlisp record named by the symbol interlisp-
record-name. The Interlisp record must be defined before the
xcl:define-record expression is evaluated. The keyword
arguments are treated as in defstruct. The package of constructed
names is taken from the value of *package* at the time of
evaluation (as in defstruct). The system contains no predeclared
define-records.

EXAMPLE:

The form:

(xcl:define-record menu il:menu)

allows you to write:

(menu-items foo) and (setf (menu-items foo) fie)

rather than:

(il:fetch (il:menu il:items) il:of foo)

7-4 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Record-Fetch

(xcl:record-fetch record field object) [Macro]

Evaluates object. Does not evaluate record and field. Both record
and field must be symbols. Symbols with the same p-names are
interned in the Interlisp package and are used to construct an
il:fetch form. xcl:record-fetch may be used with setf and
expands to the suitable replace form.

Record-FFetch

(xcl:record-ffetch record field object) [Macro]

Similar to xcl:record-fetch, but an il:ffetch form is generated
instead. Evaluates object. Does not evaluate record and field .
Both record and field must be symbols. Symbols with the same
p-names are interned in the Interlisp package and are used to
construct an il:ffetch form. Ffetch may be used with setf and
expands to the suitable freplace form.

Record-Create

(xcl:record-create record &rest keyword-pairs) [Macro]

Evaluates the second element of each pair. Does not evaluate
record (record must be a symbol) . A symbol with the same p-
name is interned in the Interlisp package and used to construct an
il:create form. The rest of the arguments form keyword pairs. The
first element of each pair should be a symbol such that a symbol
with the same p-name exists in the Interlisp package and names
either a valid slot for this record or is one of :using, :copying,
:reusing, or :smashing.

 Array Reference

(xcl:row-major-aref array index) [Function]

 Returns the element of array given by the row-major-index index.
The array can be of any dimension. This function can be used
with setf .

 Shadowing of Global Macros

 The XCL Compiler now properly handles shadowing of global
macros by lexical functions. In the Lyric Compiler, lexical functions
defined with flet did not shadow global definitions of the same
name. This has been fixed in Medley.

 Evaluating Load-time Expressions

 The XCL Compiler now handles il:loadtimeconstant correctly.
The new Compiler substitutes the entire expression for each
reference to the value of a load-time constant. There are potential
problems if the code depends on the expression being evaluated
exactly once, e.g. if it contains (IDATE).

Common Lisp Defstruct Options

The Medley release contains a new implementation of defstruct
that offers greater compiled-code compaction, and several new
extensions that increase efficiency. This implementation
introduces functionality that allows defstruct to parallel the Interlisp

7-5LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

record module in flexibility. These features also help to integrate
Interlisp and Common Lisp. The following sections describe these
additions.

Defstruct Options

:inline

Can be one or both of :accessor and :predicate or t, implying
’(:accessor :predicate) or nil, implying no optimizations allowed or
:only, implying all accessors and the predicate will be inline only
and not funcallable (not usable with the Lisp primitive "funcall").
The default is ’(:accessor :predicate).

Copiers and constructors are never inline. The option (:inline :only)
implies that no funcallable accessors will be generated (similarly,
the predicate, if any, will not be funcallable).

:fast-accessors

Can be t or nil. t implies inline accessors will not type check. The
default is nil.

Note that funcallable accessors (if any), always type check, if
possible.

NOTE: This represents a change from the Lyric implementation,
which allowed specification of a list of slot names that had fast
inline accessors.

:template

Can be t or nil, t implies that no datatype will be instantiated.
(:template t) implies no :type option. The default is nil.

Templated defstructs have no predicates, copiers or constructs. It
is an error to supply any such option in combination with (:template
t). Templated defstructs are intended to be used as are
IL:blockrecord’s. It is possible for a templated defstruct to include
another templated structure, but it is an error for a standard
defstruct to include a templated structure.

Funcallable accessors (accessors that may be used with the Lisp
primative "funcall") share code with suitable closure templates if
the defstruct is compiled with the XCL Compiler. Byte compiled
defstructs still generate explicit defun’s for all funcallable accessors.

Defstruct Slot Options

:type

The following specialized types are recognized:

(unsigned-byte {1 - 16})

(signed-byte {16, 32})

float, etc.

(member t nil)

il:fullpointer

il:xpointer

il:fullxpointer

7-6 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Warning When Using Defstruct

Defstruct automatically generates a number of auxilliary functions
without checking whether redefining those functions will affect the
system. To avoid redefining key functions, you should be aware
of the names that will be used. For example:

Do not attempt to define a Structure named TREE. This use of
Defstruct implicitly redefines the built-in Common Lisp function
COPY-TREE, which renders your system inoperable.

If you have already tried to define a (DEFSTRUCT TREE A B)
structure by mistake, you will need to reload your system.

Macros for Collecting Objects

xcl:with -collection

(xcl:with-collection &body forms) [Macro]

(xcl:collect form) [Macro]

This pair of macros is provided for efficiently collecting objects into
a list. In Common Lisp, there is no direct facility provided for doing
this, so one must either push objects onto a list, then reverse it, or
maintain a tail pointer to the list and use rplacd to add new items.
The latter has an efficient implementation in Xerox Common Lisp,
and xcl:with-collection is provided to take advantage of it.

Lexically within the body of an xcl:with-collection, the macro
xcl:collect is defined. It will append the value of its argument to the
end of the list being collected. The value of xcl:with-collection is
the collected list.

xcl:collect may be used inside of functions passed as arguments
to other functions.

EXAMPLE:
(xcl:with-collection
 (maphash
 #’(lambda (key val)
 (when (interesting-p val) (xcl:collect key)))
 the-hash-table))

will collect a list of all the "interesting" keys in the order that they
were encountered.

It is an error to use xcl:collect outside the scope of an xcl:with-
collection. Proper lexical nesting is observed, so an instance of
xcl:collect applies to the most deeply nested xcl:with-collection
that is is found in.

7-7LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Macros for Writing Macros

xcl:once-only

(xcl:once-only ({ variable }*) &body forms) [Macro]

This macro is provided to aid in writing macros. xcl:once-only
helps solve the problem of multiple evaluation of subforms of a
macro.

EXAMPLE:

(defmacro test (reference form)
 ‘(setf ,reference (cons ,form ,form)))

This example has the problem that form will be evaluated twice. To
avoid this, one might instead write:

(defmacro test (reference form)
 (let ((value (gensym)))
 ‘(let ((,value ,form))
 (setf ,reference (cons ,value ,value)))))

This solves the problem of multiple evaluation, but introduces some
others. If form is in fact something simple, like a reference to a
variable or a literal, there was no need to create the temporary
variable, thus "wasting" a symbol. This can be extremely important
in Xerox Common Lisp as symbol space is limited and symbols are
never reclaimed. If there are many temporary values to be
computed, the macro definition becomes cluttered with calls to
gensym that obscure the essence of the code.

xcl:once-only helps solve these problems. For each of the
variables listed, xcl:once-only determines if its value (at
macroexpansion time) is simple: a symbol or a literal. If it is,
appearances of that variable in the macroexpansion will remain
unchanged. If it is not, the macroexpansion will contain code to
store the value in a temporary gensym’ed variable and use that
variable in the macroexpansion. Thus, the example could be written
as

(defmacro test (reference form)
 (xcl:once-only (form)
 ‘(setf ,reference (cons ,form ,form))))

Then (test (aref the-array x) y) will expand to
something like

(setf (aref the-array x) (cons y y))

while (test (aref the-array x) (random-form)) will
expand to something like

(let ((#:g377 (random-form)))
 (setf (aref the-array x) (cons #:g377 #:g377)))

Note that xcl:once-only does not attempt to preserve order of
evaluation. If this is important then you will still have to create
temporary variables yourself.

7-8 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Common Lisp Append Datatypes

A clarification adopted by X3J13 involves the behavior of the
APPEND function with non-lists. The cdr of the last cons in any
but the last argument given to APPEND is discarded (whether NIL
or not) when preparing the list to be returned. In the case where
there is no last cons (i.e., the argument is not a list) in any but the
last list argument, the entire argument is effectively ignored. In this
situation, if the last argument is a non-list, the result of APPEND
can be a non-list. NB: APPEND and COPY-LIST now produce
different results for non-lists.

EXAMPLE:

(append ’(a b c . d) ’())

produces the result:

(a b c)

EXAMPLE:

(append ’(a b . c) ’() 3)

produces the result:

(a b . 3)

EXAMPLE:

(append 3 17)

produces the result:

17.

Closure Cache

The Medley sysout contains a closure cache that provides
increased time and space efficiency. Less new memory is
allocated because repeated calls to symbol-function of the same
symbol now will cons exactly one closure object. Repeated calls
to symbol-function of the same symbol now return EQ- compiled
function objects.

Symbols and Packages

Pkg -goto and In-package

PKG-GOTO is now a synonym for IN-PACKAGE. The PKG-GOTO
function can be used to change packages in an exec.

PKG-GOTO takes one argument, which can be either a double-
quoted string, a symbol, or a package structure. This function is
used to set package in an exec.

(xcl:pkg-goto package-name &key nicknames use) [Function]

PKG-GOTO operates like IN-PACKAGE, but asks for confirmation
if a new package is being created. The function is useful at the top
level in the exec, to avoid creating new packages when a name is
misspelled.

Defpackage Export argument

7-9LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Defpackage’s EXPORT argument now accepts strings. Optionally,
strings can be given to :EXPORT instead of symbols. This is
recommended when defpackage is used in the makefile-
environment property of a file. The strings are interned in the
package being defined and then exported.

Debugging Tools

Breaking

Even with HELPDEPTH set to zero, some errors do not cause a
break. In Koto and the old Interlisp execs in Lyric, the workaround
is:

(SETTOPVAL ’HELPFLAG ’BREAK!)

In Medley and Lyric’s new execs, HELPFLAG is bound but not
continually reset. The workaround:

(SETQ HELPFLAG ’BREAK!)

affects the current exec until the next time you call RESET (or
control-D). If you want the change in HELPFLAG to be seen by
other processes, you still need to use SETTOPVAL, and RESET
any execs in which you want to see the effect.

For related information, see the Medley error system variable
XCL:*BREAK-ON-SIGNALS* described in Appendix E.

Advising

In Lyric, putting a second piece of advice on a function caused the
system to believe that the function was in fact not advised, so any
further advice threw out the already existing advice. This has been
fixed. In Medley, the correct list entries are made regardless of
whether the function was previously advised.

In Lyric, loading a file with advice caused multiple instances of the
advice to be instantiated. To prevent this, ADVISE is now changed
in Medley in the following way: When a new piece of advice is put
on a function, the system examines the already existing advice to
see if the some advice is already there. If so, the old advice is
removed before adding the new advice. Sameness is determined
by a test similar to CL:EQUALP, except that case distinctions are
significant in strings and characters. The priority and location of the
advice is taken into account when determining the "sameness."
This makes it possible, for instance, to have identical advice be
both :FIRST and :LAST.

Advice is no longer replicated when loaded more than once.

The debugger and inspector now display interpreted lexical
closures conveniently. Displayed lexical closure contents include
the function contained, and any lexical bindings in the closure.
Compiled closures are not conveniently inspectable. Common Lisp
eval stack frames show their associated lexical environment in a
similar manner.

The :when option to XCL:BREAK-FUNCTION no longer causes
the broken function to return NIL when the break is not taken. The
correct values are returned.

7-10 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

Argument Names Displayed for Interpreted Functions

In the debugger, the frame inspector window will now display the
argument names for interpreted Common Lisp functions.
Previously, it gave them pseudonames "arg0" "arg1" etc.

Lexical Variables Evaluated by Debugger

The debugger EVAL command now evaluate expressions in the
lexical environment --i.e., you can evaluate an expression and use
variables that are lexically bound in your code. Only the lexical
environment at the point of the break can be evaluated. You can’t
presently back up to any given lexical environment.

EXAMPLE:

(defun fact(x)(if(= 1 x)nil(*x(fact(1-x)))))

(fact 4)

;; breaks. if you then type

EVAL x

2

Pathname Component Fixed in FS-ERROR

In Lyric, only one of the three FS-ERROR conditions was passed a
pathname component, resulting in the File Cacher not knowing
which file had the error, or resulting in pathname being lost when
PROTECTION VIOLATION or FILE SYSTEM RESOURCES
EXCEEDED were signaled. This problem occurred most noticeably
in Lyric when Interlisp errors were translated to XCL. This condition
has been fixed in Medley. FS-ERROR now correctly receives all
the pathname components.

Compiler Optimizations

Warning when using LABELS construct

In Lyric, use of the LABELS construct generated circular structure
that would not get collected. Interpreted, a LABELS construct
always creates this non-collectible structure. Compiled, such
structure would be created if there were non-tail-recursive or
mutually referencing subfunctions. The values of any closed-over
variables are captured by this structure and thus also not collected,
potentially causing large storage leaks. The latter situation has
been relieved somewhat for Medley.

In Medley, the unavoidable circularity has been reduced to include
only the mutually referencing functions, but not any of the other
data that they access. Thus, the uncollectable structure is created
only when a new copy of the code blocks are created, such a by
compiling the function containing the LABELS rather than each time
that function is called.

COMS added to dfasl files

The Medley compiler has been modified to better handle the
il:define-file-info, and defpackage forms. Now, loading a dfasl file

7-11LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

is not implicitly SYSLOAD. Since the file COMS for the file is now
included in the dfasl, that file will be noticed by the file manager
unless the load is explicitly SYSLOAD. (SYSLOADing of compiled
lcom and dfasl files is recommended.)

In Lyric, dfasls of file manager files did not contain the COMS of
the file. In Medley, COMS are present in dfasl files, just as they
are in lcom files. As with lcom files, the COMS will not be loaded
when the LDFLG argument to LOAD is SYSLOAD, nor will the
name of the file be added to FILELST, but instead will be added to
SYSFILES.

Note: We discourage loading either sort of compiled file (lcom or
dfasl) with any value for LDFLG but SYSLOAD. Unless you intend
to edit a file, you should always load it SYSLOAD. Even when you
intend to edit it, it is usually preferable to SYSLOAD it and then load
the source PROP. If there are too many source files for this to be
practical, we recommend use of the WHERE-IS Library module.

While the location of definitions is made known to the edit interface
when files are loaded, it can be very inefficient when files are not
SYSLOADed. If, for example, you load ten compiled files with
LDFLG=NIL and then evaluate (ED ’FOO), then the COMS of all
ten files must be searched for definitions of each manager type with
name FOO. With forty manager types this comes to 400 parses of
COMS -- a time-consuming operation. If you instead load the
compiled files SYSLOAD and the sources PROP, then no COMS
need be searched, as checking for definitions of each manager
type is sufficient.

Loadflg argument

The Medley release contains a new keyword argument to cl:load.

(cl:load filename &key verbose print if-does-not-exist loadflg)

The loadflg argument follows the sematics of the loadflg argument
to il:load, with the exception that the loadflg argument will always
be interned in the Interlisp package.

EXAMPLE:

(cl:load "Mycompiled-file.dfasl" :loadflg :sysload)

In this example, "Mycompiled-file.dfasl" will load without the file
manager noticing that file.

Note: As explained in the previous section, we discourage loading
either sort of compiled file (lcom or dfasl) with any value for ldflg
but SYSLOAD.

Changes in CL:MAP, CL:WRITE-STRING, CL:COERCE , CL:GENSYM and IL:DEFERREDCONSTANT

In Lyric, a compiled call to CL:MAP that had been used for effect
would occasionally cons up a new list anyway. It would fail in the
case that the first argument was a constant that evaluated to NIL,
but not NIL itself, e.g. ’NIL. This has been fixed and no longer
occurs in Medley.

CL:WRITE-STRING is now twice as fast and creates no new
structure.

7-12 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

CL:COERCE now correctly returns the original object in all cases
where Common Lisp and Lisp require it.

The CL Compiler now compiles CL:GENSYM properly.

IL:DEFERREDCONSTANT is now handled correctly by the XCL
compiler.

ADD.PROCESS no longer coerces the process name to a symbol.
Rather, process names are treated as case-insensitive strings.
Thus, you can use strings for process names, and when typing
process commands to an exec, you need not worry about getting
the alphabetic case correct.

Compiler keeps Special &REST arguments

The CL Compiler now retains special &REST arguments. The
Lyric compiler threw away special &REST arguments. This has
been fixed in the Medley CL Compiler.

Compiler ignores TEdit formatting

COMPILE-FILE will now ignore TEdit formatting, but only if TEdit is
loaded.

Compiler notices Tail-recursive Lexical Functions

The XCL Compiler now performs tail recursion elimination on
FLETed lexical functions.

Compiler Error Message "BUG: Inconsistent stack depths seen"

You may occasionally see this error message while compiling.
Normally, error messages from the compiler beginning with "BUG"
indicate an internal compiler error. In this particular case, the
compiler error may reflect an error in the code you are compiling.

There is currently no compile-time argument checking. The
compiler performs an optimization that turns a tail-recursive
function call into a jump back to the beginning of the function. If this
tail-recursive call has the wrong number of arguments, the stack
modeler in the assembler will detect this as incosistent stack
depths, leading to the above error message.

EXAMPLE:

 (defun bad-length (x n)

 (if (endp x) n (bad-length (cdr x))))

Compiling this form will result in the error "BUG: Inconsistent stack
depths seen." The recursive call to bad-length has only one
argument, but the function expects two.

Thus, if you see this error message, you should check for tail-
recursive function calls with the wrong number of arguments.

Format ~C and WRITE-CHAR

In accordance with a recommendation of X3J13, the ~C FORMAT
operation with no modifiers now behaves exactly the same as
WRITE-CHAR for characters with no bits. The Medley release of
XCL conforms to this; the Lyric release did not. If you need to
obtain the Lyric behavior of ~C, use ~:C.

7-13LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

WITH-OUTPUT-TO-STRING and WITH-INPUT-FROM-STRING

For consistency with WITH-OPEN-STREAM and WITH-OPEN-
FILE, WITH-OUTPUT-TO-STRING and WITH-INPUT-FROM-
STRING now close the stream on exit from the form. WITH-
OUTPUT-TO-STRING is now significantly faster when writing long
strings.

7-14 LISP RELEASE NOTES, MEDLEY RELEASE, COMMON LISP IMPLEMENTATION

7. COMMON LISP IMPLEMENTATION

[This page intentionally left blank]

