
2-1

2. SYMBOLS (LITATOMS)

A litatom (for “literal atom”) is an object that conceptually consists of a print name, a value, a function
definition, and a property list. Litatoms are also known as “symbols” in Common Lisp. For clarity,
we will use the term “symbol”.

A symbol is read as any string of non-delimiting characters that cannot be interpreted as a number.
The syntactic characters that delimit symbols are called “separator” or “break” characters (see Chapter
25) and normally are space, end-of-line, line-feed, left parenthesis (, right parenthesis), double quote
", left square bracket [, and right square bracket]. However, any character may be included in a
symbol by preceding it with the character %. Here are some examples of symbols:

A wxyz 23SKIDDOO %]
Long% Litatom% With% Embedded% Spaces

(LITATOM X) [Function]

Returns T if X is a symbol, NIL otherwise. Note that a number is not a symbol.

(LITATOM NIL) = T

(ATOM X) [Function]

Returns T if X is an atom (i.e., a symbol or a number) or NIL (e.g. (ATOM NIL) = T);
otherwise returns NIL.

Warning: (ATOM X) is NIL if X is an array, string, etc. In Common Lisp, the function
CL:ATOM is defined equivalent to the Interlisp function NLISTP.

Each symbol has a print name, a string of characters that uniquely identifies that symbol: Those
characters that are output when the symbol is printed using PRIN1, e.g., the print name of the symbol
ABC%(D consists of the five characters ABC(D.

Symbols are unique: If two symbols print the same, they will always be EQ. Note that this is not true
for strings, large integers, floating-point numbers, etc.; they all can print the same without being EQ.
Thus, if PACK or MKATOM is given a list of characters corresponding to a symbol that already exists,
they return a pointer to that symbol, and do not make a new symbol. Similarly, if the read program is
given as input a sequence of characters for which a symbol already exists, it returns a pointer to that
symbol.

Symbol names are limited to 255 characters. Attempting to create a larger symbol will cause an error:
Atom too long.

Sometimes we’ll refer to a “PRIN2-name”. The PRIN2-name of a symbol is those characters output
when it is printed using PRIN2. So the PRIN2-name of the symbol ABC%(D is the six characters
ABC%(D. The PRIN2-name depends on what readtable is being used (see Chapter 25), since this
determines where %s will be inserted. Many of the functions below allow either print names or
PRIN2-names to be used, as specified by FLG and RDTBL arguments. If FLG is NIL, print names are
used. Otherwise, PRIN2-names are used, computed with respect to the readtable RDTBL (or the
current readtable, if RDTBL = NIL).

2-2

INTERLISP-D REFERENCE MANUAL

(MKATOM X) [Function]

Creates and returns a symbol whose print name is the name as that of the string X or, if X
is not a string, the same as that of (MKSTRING X). Examples:

(MKATOM ’(A B C)) => %(A% B% C%)
(MKATOM "1.5") => 1.5

Note that the last example returns a number, not a symbol. It is a deeply-ingrained
feature of Interlisp that no symbol can have the print name of a number.

(SUBATOM X N M) [Function]

Returns a symbol made from the Nth through Mth characters of the print name of X. If N or
M are negative, they specify positions counting backwards from the end of the print name.
Equivalent to (MKATOM (SUBSTRING X N M)). Examples:

(SUBATOM "FOO1.5BAR" 4 6) => 1.5
(SUBATOM ’(A B C) 2 -2) => A% B% C

(PACK X) [Function]

If X is a list of symbols, PACK returns a single symbol whose print name is the
concatenation of the print names of the symbols in X. If the concatenated print name is
the same as that of a number, PACK returns that number. For example:

(PACK ’(A BC DEF G)) => ABCDEFG
(PACK ’(1 3.4)) => 13.4
(PACK ’(1 E -2)) => .01

Although X is usually a list of symbols, it can be a list of arbitrary objects. The value of
PACK is still a single symbol whose print name is the concatenation of the print names of
all the elements of X, e.g.,

(PACK ’((A B) "CD")) => %(A% B%)CD

If X is not a list or NIL, PACK generates the error Illegal arg.

(PACK* X1 X2... XN) [NoSpread Function]

Version of PACK that takes an arbitrary number of arguments, instead of a list. Examples:

(PACK* ’A ’BC ’DEF ’G => ABCDEFG
(PACK* 1 3.4)) => 13.4

(GENSYM PREFIX — — — —) [Function]

Returns a symbol of the form Xnnnn, where X = PREFIX (or A if PREFIX is NIL) and
nnnn is an integer. Thus, the first one generated is A0001, the second A0002, etc. The
integer suffix is always at least four characters long, but it can grow beyond that. For
example, the next symbol produced after A9999 would be A10000. GENSYM provides a
way of generating symbols for various uses within the system .

Note: The Common Lisp function CL:GENSYM is not the same as Interlisp’s GENSYM.
Interlisp always creates interned symbols whereas CL:GENSYM creates uninterned
symbols.

2-3

SYMBOLS (LITATOMS)

GENNUM [Variable]

The value of GENNUM, initially 0, determines the next GENSYM, e.g., if GENNUM is set to 23,
(GENSYM) = A0024.

The term “gensym” is used to indicate a symbol that was produced by the function
GENSYM. Symbols generated by GENSYM are the same as any other symbols: they have
property lists, and can be given function definitions. The symbols are not guaranteed to
be new. For example, if the user has previously created A0012, either by typing it in, or
via PACK or GENSYM itself, then if GENNUM is set to 11, the next symbol returned by
GENSYM will be the A0012 already in existence.

(MAPATOMS FN) [Function]

Applies FN (a function or lambda expression) to every symbol in the system. Returns
NIL. For example:

(MAPATOMS (FUNCTION (LAMBDA(X) (if (GETD X) then (PRINTX)]

will print every symbol with a function definition.

Warning: Be careful if FN is a lambda expression or an interpreted function: since
NOBIND is a symbol, it will eventually be passed as an argument. The first reference to
that argument within the function will signal an error.

A way around this problem is to use a Common Lisp function, so that the Common Lisp
interpreter will be invoked. It will treat the argument as local, not special and no error
will be signaled. An alternative solution is to include the argument to the Interlisp
function in a LOCALVARS declaration and then compile the function before passing it to
MAPATOMS. This will significantly speed up MAPATOMS.

(APROPOS STRING ALLFLG QUITFLG OUTPUT) [Function]

APROPOS scans all symbols in the system for those which have STRING as a substring and
prints them on the terminal along with a line for each relevant item defined for each
selected symbol. Relevant items are:

• function definitions, for which only the arglist is printed

• dynamic variable values

• non-null property lists

PRINTLEVEL (see Chapter 25) is set to (3 . 5) when APROPOS is printing.

If ALLFLG is NIL, then symbols with no relevant items and “internal” symbols are
omitted (“internal” currently means those symbols whose print name begins with a \ or
those symbols produced by GENSYM). If ALLFLG is a function, it is used as a predicate on
symbols selected by the substring match, with value NIL meaning to omit the symbol. If
ALLFLG is any other non-NIL value, then no symbols are omitted.

Note: Unlike CL:APROPOS which lets you designate the package to search, APROPOS
searches all packages.

2-4

INTERLISP-D REFERENCE MANUAL

Using Symbols as Variables

Symbols are commonly used as variable names. Each symbol has a “top level” value, which can be an
arbitrary object. Symbols may also be given special variable bindings within PROGs or functions,
which only exist for the duration of the function. When a symbol is evaluated, the “current” variable
binding is returned. This is the most recent special variable binding, or the top-level binding if the
symbol hasn’t been rebound. SETQ is used to change the current binding. For more information on
variable bindings in Interlisp, see Chapter 11.

A symbol whose top-level value is the symbol NOBIND is considered to have no value. If a symbol has
no local bindings, and its top-level value is NOBIND, trying to evaluate it will cause an unbound-atom
error. In addition, if a symbol’s local binding is to NOBIND, trying to evaluate it will cause an error.

The symbols T and NIL always evaluate to themselves. Attempting to change the value of T or NIL
with the functions below will generate the error; Attempt to set T or Attempt to set NIL.

The following functions (except BOUNDP) will also generate the error Arg not litatom, if not given
a symbol.

(BOUNDP VAR) [Function]

Returns T if VAR has a special variable binding, or if VAR has a top-level value other than
NOBIND; otherwise NIL. That is, if X is a symbol, (EVAL X) will cause an Unbound
atom error if and only if (BOUNDP X) returns NIL.

Note: The Interlisp interpreter has been modified so that it will generate an Unbound
Variable error when it encounters any symbol bound to NOBIND. This is a change from
previous releases that only signaled an error when a symbol had a top-level binding of
NOBIND in addition to no dynamic binding.

(SET VAR VALUE) [NoSpread Function]

Sets the “current” value of VAR to VALUE, and returns VALUE.

SET is a normal function, so both VAR and VALUE are evaluated before it is called. Thus, if
the value of X is B, and value of Y is C, then (SET X Y) would result in B being set to C,
and C being returned as the value of SET.

(SETQ VAR VALUE) [NoSpread Function]

Like SET, but VAR is not evaluated, VALUE is. Thus, if the value of X is B and the value of
Y is C, (SETQ X Y) would result in X (not B) being set to C, and C being returned.

Actually, neither argument is evaluated during the calling process. However, SETQ itself
calls EVAL on its second argument. As a result, typing (SETQ VAR FORM) and SETQ
(VAR FORM) to the Interlisp Executive are equivalent: in both cases VAR is not
evaluated, and FORM is.

(SETQQ VAR VALUE) [NoSpread Function]

Like SETQ, but neither argument is evaluated, e.g., (SETQQ X (A B C)) sets X to (A B
C).

2-5

SYMBOLS (LITATOMS)

(PSETQ VAR1 VALUE1 ... VARN VALUEN) [Macro]

Does a SETQ in parallel of VAR1 (unevaluated) to VALUE1, VAR2 to VALUE2, etc. All of
the VALUEi terms are evaluated before any of the assignments. Therefore, (PSETQ A B
B A) can be used to swap the values of the variables A and B.

(GETTOPVAL VAR) [Function]

Returns the top level value of VAR (even if NOBIND), regardless of any intervening local
bindings.

(SETTOPVAL VAR VALUE) [Function]

Sets the top level value of VAR to VALUE, regardless of any intervening bindings, and
returns VALUE.

(GETATOMVAL VAR) [Function]

Same as (GETTOPVAL VAR).

(SETATOMVAL VAR VALUE) [Function]

Same as SETTOPVAL.

Note: The compiler (see Chapter 18) treats variables somewhat differently from the interpreter, and
you need to be aware of these differences when writing functions that will be compiled. For
example, variable references in compiled code are not checked for NOBIND, so compiled code
will not generate unbound-atom errors. In general, it is better to debug interpreted code,
before compiling it for speed. The compiler offers some facilities to increase the efficiency of
variable use in compiled functions: Global variables can be defined so that the entire stack is
not searched at each variable reference. Local variables have bindings that are not visible
outside the function, which reduces variable conflicts and makes variable lookup faster.

Function Definition Cells

Each symbol has a function-definition cell, which is accessed when that symbol is used as a function.
This is described in detail in Chapter 10.

Property Lists

Each symbol has an associated property list, which allows a set of named objects to be associated with
the symbol. A property list associates a name (known as a “property name” or “property”) with an
arbitrary object (the “property value” or “value”). Sometimes the phrase “to store on the property X”
is used, meaning to place the indicated information on a property list under the property name X.

Property names are usually symbols or numbers, although no checks are made. However, the
standard property list functions all use EQ to search for property names, so they may not work with
non-atomic property names. The same object can be used as both a property name and a property
value.

Many symbols in the system already have property lists, with properties used by the compiler, the
break package, DWIM, etc. Be careful not to clobber such system properties. The variable SYSPROPS
is a list of property names used by the system.

2-6

INTERLISP-D REFERENCE MANUAL

The functions below are used to manipulate the property lists of symbols. Except when indicated,
they generate the error ATM is not a SYMBOL, if given an object that is not a symbol.

(GETPROP ATM PROP) [Function]

Returns the property value for PROP from the property list of ATM. Returns NIL if ATM is
not a symbol, or PROP is not found. GETPROP also returns NIL if there is an occurrence of
PROP but the corresponding property value is NIL. This can be a source of program
errors.

Note: GETPROP used to be called GETP.

(PUTPROP ATM PROP VAL) [Function]

Puts the property PROP with value VAL on the property list of ATM. VAL replaces any
previous value for the property PROP on this property list. Returns VAL.

(ADDPROP ATM PROP NEW FLG) [Function]

Adds the value NEW to the list which is the value of property PROP on the property list of
the ATM. If FLG is T, NEW is CONSed onto the front of the property value of PROP;
otherweise, it is NCONCed on the end (using NCONC1). If ATM does not have a property
PROP, or the value is not a list, then the effect is the same as (PUTPROP ATM PROP
(LIST NEW)). ADDPROP returns the (new) property value. Example:

←(PUTPROP ’POCKET ’CONTENTS NIL)
(NIL)

←(ADDPROP ’POCKET ’CONTENTS ’COMB)
(COMB)

←(ADDPROP ’POCKET ’CONTENTS ’WALLET)
(COMB WALLET)

(REMPROP ATM PROP) [Function]

Removes all occurrences of the property PROP (and its value) from the property list of
ATM. Returns PROP if any were found (T if PROP is NIL), otherwise NIL.

(CHANGEPROP X PROP1 PROP2) [Function]

Changes the property name of property PROP1 to PROP2 on the property list of X (but
does not affect the value of the property). Returns X, unless PROP1 is not found, in which
case it returns NIL.

(PROPNAMES ATM) [Function]

Returns a list of the property names on the property list of ATM.

(DEFLIST L PROP) [Function]

Used to put values under the same property name on the property lists of several
symbols. L is a list of two-element lists. The first element of each is a symbol, and the
second element is the property vqalue of the property PROP. Returns NIL. For example:

(DEFLIST ’((FOO MA)(BAR CA)(BAZ RI)) ’STATE)

2-7

SYMBOLS (LITATOMS)

puts MA on FOO’s STATE property, CA on BAR’s STATE property, and RI on BAZ’s STATE
property.

Property lists are conventionally implemented as lists of the form

(NAME1 VALUE1 NAME2 VALUE2...)

although the user can store anything as the property list of a symbol. However, thge functions which
manipulate property lists observe this convention by searching down the property lists two CDRs at a
time. Most of these functions also generate the error Arg not litatom if given an argument which
is not a symbol, so they cannot be used directly on lists. (LISTPUT, LISTPUT1, LISTGET, and
LISTGET1 are functions similar to PUTPROP and GETPROP that work directly on lists (see Chapter 3) .
The property lists of symbols can be directly accessed with the following functions.

(GETPROPLIST ATM) [Function]

Returns the property list of ATM.

(SETPROPLIST ATM LST) [Function]

If ATM is a symbol, sets the property list of ATM to be LST, and returns LST as its value.

(GETLIS X PROPS) [Function]

Searches the property list of X, and returns the property list as of the first property on
PROPS that it finds. For example:

←(GETPROPLIST ’X)
(PROP1 A PROP3 B A C)

←(GETLIS ’X ’(PROP2 PROP3))
(PROP3 B A C)

Returns NIL if no element on props is found. X can also be a list itself, in which case it is
searched as described above. If X is not a symbol or a list, returns NIL.

(REMPROPLIST ATM PROPS) [Function]

Removes all occurrences of all properties on the list PROPS (and their corresponding
property values) from the property list of ATM. Returns NIL.

Print Names

The term “print name” has an extended meaning: The characters that are output when any object is
printed. In Medley, all objects have print names, although only symbols and strings have their print
names explicitly stored. Symbol print names are limited to 255 characters.

This section describes a set of functions that can be used to access and manipulate the print names of
any object, though they are primarily used with the print names of symbols. In Medley, print
functions qualify symbol names with a package prefix if the symbol is not accessible in the current
package. The exception is Interlisp’s PRIN1, which does not include a package prefix.

The print name of an object is those characters that are output when the object is printed using PRIN1,
e.g., the print name of the list (A B "C") consists of the seven characters (A B C) (two of the
characters are spaces).

2-8

INTERLISP-D REFERENCE MANUAL

The PRIN2-name of an object is those characters output when the object is printed using PRIN2. Thus
the PRIN2-name of the list (A B "C") is the 9 characters (A B "C") (including the two spaces).
The PRIN2-name depends on what readtable is being used (see Chapter 25), since this determines
where %s will be inserted. Many of the functions below allow either print names of PRIN2-names to
be used, as specified by FLG and RDTBL arguments. If FLG is NIL, print names are used. Otherwise,
PRIN2-names are used, computed with respect to the readtable RDTBL (or the current readtable, if
RDTBL = NIL).

The print name of an integer depends on the setting of RADIX (see Chapter 25). The functions
described in this section (UNPACK, NCHARS, etc.) define the print name of an integer as though the
radix was 10, so that (PACK (UNPACK ’X9)) will always be X9 (and not X11, if RADIX is set to 8).
However, integers will still be printed by PRIN1 using the current radix. The user can force these
functions to use print names in the current radix by changing the setting of the variable PRXFLG (see
Chapter 25).

(CL:SYMBOL-NAME SYM) [Common Lisp Function]

Returns a string displaced to the SYM print name. Strings returned from CL:SYMBOL-
NAME may be destructively modified without affecting SYM’s print name.

(NCHARS X FLG RDTBL) [Function]

Returns the number of characters in the print name of X. If FLG = T, the PRIN2-name is
used. Examples:

(NCHARS ’ABC) => 3
(NCHARS "ABC" T) => 5

NCHARS works most efficiently on symbols and strings, but can be given any object.

(NTHCHAR X N FLG RDTBL) [Function]

Returns X, if X is a tail of the list Y; otherwise NIL. X is a tail of Y if it is EQ to 0 or more
CDRs of Y.

(NTHCHAR ’ABC 2) => B
(NTHCHAR 15.6 2) => 5
(NTHCHAR ’ABC%(D -3 T) => %%
(NTHCHAR "ABC" 2) => B
(NTHCHAR "ABC" 2 T) => A

NTHCAR and NCHARS work much faster on objects that actually have an internal
representation of their print name, i.e., symbols and strings, than they do on numbers and
lists, since they don’t have to simulate printing.

(L-CASE X FLG) [Function]

Returns a lowercase version of X. If FLG is T, the first letter is capitalized. If X is a string,
the value of L-CASE is also a string. If X is a list, L-CASE returns a new list in which L-
CASE is computed for each corresponding element and non-NIL tail of the original list.
Examples:

(L-CASE ’FOO) => foo
(L-CASE ’FOO T) => Foo
(L-CASE "FILE NOT FOUND" T) => "File not found"

2-9

SYMBOLS (LITATOMS)

(L-CASE ’(JANUARY FEBRUARY (MARCH "APRIL")) T) =>
’(January February (March "April"))

(U-CASE X) [Function]

Like L-CASE, but returns the uppercase version of X.

(U-CASEP X) [Function]

Returns T if X contains no lowercase letters; NIL otherwise.

Characters and Character Codes

Characters are represented 3 different ways in Medley. In Interlisp they are single-character symbols
or integer character codes. In Common Lisp they are instances of the CHARACTER datatype. In
general Interlisp character functions don’t accept Common Lisp characters and vice versa. The only
exceptions are Interlisp string-manipulation functions that accept “string or symbol” types as
arguments.

You can convert between Interlisp and Common Lisp characaters by using the functions CL:CODE-
CHAR, CL:CHAR-CODE, and CHARCODE (see below).

Medley uses the 16-bit NS character set, described in the document Character Code Standard (Xerox
System Integration Standards, XSIS 058404, April 1984). Legal character codes range from 0 to 65535.
The NS (Network Systems) character encoding encompasses a much wider set of available characters
than the 8-bit character standards (such as ASCII), including characters comprising many foreign
alphabets and special symbols. For instance, Medley supports the display and printing of the
following:

• Le système d’information Medley est remarqueablement polyglotte

• Das Medley Kommunikationssystem bietet merkwürdige multilinguale Nutzmöglichkeiten

• M ⊆ ❑ [w] ⇔ ∀ v with Rwv: M ⊆ [v]

These characters can be used in strings, symbol print names, symbolic files, or anywhere else 8-bit
characters could be used. All of the standard string and print name functions (RPLSTRING, GNC,
NCHARS, STRPOS, etc.) accept symbols and strings containing NS characters. For example:

←(STRPOS "char""this is an 8-bit character string")
18

←(STRPOS "char""celui-ci comports des characteres NS")
23

In almost all cases, a program does not have to distinguish between NS characters or 8-bit characters.
The exception to this rule is the handling of input/output operations (see Chapter 25).

The function CHARCODE (see below) provides a simple way to create individual NS character codes.
The VirtualKeyboards library module provides a set of virtual keyboards that allows keyboard or
mouse entry of NS characters.

(PACKC X) [Function]

Like PACK except X is a list of character codes. For example,

(PACKC ’(70 79 79)) => FOO

2-10

INTERLISP-D REFERENCE MANUAL

(CHCON X FLG RDTBL) [Function]

Like UNPACK, but returns the print name of X as a list of character codes. If FLG = T, the
PRIN2-name is used. For example:

(CHCON ’FOO) => (70 79 79)

(DCHCON X SCRATCHLIST FLG RDTBL) [Function]

Like DUNPACK.

(NTHCHARCODE X N FLG RDTBL) [Function]

Like NTHCHAR, but returns the character code of the Nth character of the print name of X.
If N is negative, it is interpreted as a count backwards from the end of X. If the absolute
value of N is greater than the number of characters in X, or 0, then the value of
NTHCHARCODE is NIL.

If FLG is T, then the PRIN2-name of X is used, computed with respect to the readtable.

(CHCON1 X) [Function]

Returns the character code of the first character of the print name of X; equal to
(NTHCHARCODE X 1).

(CHARACTER N) [Function]

N is a character code. Returns the symbol having the corresponding single character as its
print name.

 (CHARACTER 70) => F

(FCHARACTER N) [Function]

Fast version of CHARACTER that compiles open.

The following function makes it possible to gain the efficiency that comes from dealinig with character
codes without losing the symbolic advantages of character symbols.

(CHARCODE CHAR) [Function]

Returns the character code specified by CHAR (unevaluated). If CHAR is a one-character
symbol or string, the corresponding character code is simply returned. Thus, (CHARCODE
A) is 65, (CHARCODE 0) is 48. If CHAR is a multi-character symbol or string, it specifies a
character code as described below. If CHAR is NIL, CHARCODE simply returns NIL.
Finally, if CHAR is a list structure, the value is a copy of CHAR with all the leaves replaced
by the corresponding character codes. For instance, (CHARCODE (A (B C))) => (65
(66 67)).

If a character is specified by a multi-character symbol or string, CHARCODE interprets it as
follows:

CR, SPACE, etc.

2-11

SYMBOLS (LITATOMS)

The variable CHARACTERNAMES contains an association list mapping special
symbols to character codes. Among the characters defined this way are CR
(13), LF (10), SPACE or SP (32), ESCAPE or ESC (27), BELL (7), BS (8), TAB
(9), NULL (0), and DEL (127). The symbol EOL maps into the appropriate
end-of-line character code in the different Interlisp implementations (31 in
Interlisp-10, 13 in Interlisp-D, 10 in Interlisp-VAX). Examples:

(CHARCODE SPACE) => 32
(CHARCODE CR) => 13

CHARSET, CHARNUM, CHARSET-CHARNUM

If the character specification is a symbol or string of the form CHARSET,
CHARNUM, or CHARSET-CHARNUM, the character code for the character number
CHARNUM in the character set CHARSET is returned.

The 16-bit NS character encoding is divided into a large number of “character
sets”. Each 16-bit character can be decoded into a character set (an integer
from 0 to 254 inclusive) and a character number (also an integer from 0 to 254
inclusive). CHARSET is either an octal number, or a symbol in the association
list CHARACTERSETNAMES (which defines the character sets for GREEK,
CYRILLIC, etc.).

CHARNUM is either an octal number, a single-character symbol, or a symbol
from the association list CHARACTERNAMES. If CHARNUM is a single-digit
number, it is interpreted as the character “2”, rather than as the octal number
2. Examples:

(CHARCODE 12,6) => 2566
(CHARCODE 12,SPACE) => 2592
(CHARCODE GREEK,A) => 9793

↑CHARSPEC (control chars)

If the character specification is a symbol or string of one of the forms above,
preceded by the character ↑, this indicates a “control character,” derived from
the normal character code by clearing the seventh bit of the character code
(normally set). Examples:

(CHARCODE ↑A) => 1
(CHARCODE ↑GREEK,A) => 9729

#CHARSPEC (meta chars)

If the character specification is a symbol or string of one of the forms above,
preceded by the charactger #, this indicates a meta character, derived from the
normal character code by setting the eighth bit of the character code (normally
cleared). ↑ and # can both be set at once. Examples:

(CHARCODE #A) => 193
(CHARCODE #↑GREEK,A) => 9857

A CHARCODE form can be used wherever a structure of character codes would be
appropriate. For example:

2-12

INTERLISP-D REFERENCE MANUAL

(FMEMB (NTHCHARCODE X 1)(CHARCODE (CR LF SPACE ↑A)))
(EQ (READCCODE FOO)(CHARCODE GREEK,A))

There is a macro for CHARCODE which causes the character-code structure to be
constructed at compile-time. Thus, the compiled code for these examples is exactly as
efficient as the less readable:

(FMEMB (NTHCHARCODE X 1)(QUOTE (13 10 32 1)))
(EQ (READCCODE FOO)9793)

(CL:CHAR-CODE CHAR) [Common Lisp Function]

Returns the Interlisp character code of CHAR. Use to convert a Common Lisp character to
an Interlisp character code.

(CL:CODE-CHAR N) [Common Lisp Function]

Returns a character with the given non-negative integer N code. Returns NIL if no
character is possible with N. Use to convert an Interlisp character code to a Common Lisp
character.

(SELCHARQ E CLAUSE1... CLAUSEN DEFAULT) [Function]

Lets you branch one of several ways, based on the character code E. The first item in each
CLAUSEN is a character code or list of character codes, given in the form CHARCODE would
accept. If the value of E is a character code or NIL, and it is EQ or MEMB to the result of
applying CHARCODE to the first element of a clause, the remaining forms of that clause are
evaluated. Otherwise, the default is evaluated.

Thus

(SELCHARQ (BIN FOO))
((SPACE TAB)(FUM))
((↑D NIL)(BAR))
(a (BAZ))
(ZIP)))

is exactly equivalent to

(SELECTQ (BIN FOO))
((32 9)(FUM))
((4 NIL)(BAR))
(97 (BAZ))
(ZIP)))

If (BIN FOO) returned 32 (the SPACE character), the function FUM would be called.

2-13

2-14

INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

