
9-1

9. LISTS AND ITERATIVE STATEMENTS

Medley gives you a large number of predicates, conditional functions, and control functions. Also,
there is a complex “iterative statement” facility which allows you to easily create complex loops and
iterative constructs.

Data Type Predicates

Medley provides separate functions for testing whether objects are of certain commonly-used types:

(LITATOM X) [Function]

Returns T if X is a symbol; NIL otherwise. Note that a number is not a symbol.

(SMALLP X) [Function]

Returns X if X is a small integer; NIL otherwise. (The range of small integers is -65536 to
+65535.

(FIXP X) [Function]

Returns X if X is a small or large integer; NIL otherwise.

(FLOATP X) [Function]

Returns X if X is a floating point number; NIL otherwise.

(NUMBERP X) [Function]

Returns X if X is a number of any type, NIL otherwise.

(ATOM X) [Function]

Returns T if X is an atom (i.e. a symbol or a number); NIL otherwise.

(ATOM X) is NIL if X is an array, string, etc. In Common Lisp, CL:ATOM is defined
equivalent to the Interlisp function NLISTP.

(LISTP X) [Function]

Returns X if X is a list cell (something created by CONS); NIL otherwise.

(NLISTP X) [Function]

(NOT (LISTP X)). Returns T if X is not a list cell, NIL otherwise.

(STRINGP X) [Function]

Returns X if X is a string, NIL otherwise.

(ARRAYP X) [Function]

Returns X if X is an array, NIL otherwise.

(HARRAYP X) [Function]

Returns X if it is a hash array object; otherwise NIL.

9-2

 INTERLISP-D REFERENCE MANUAL

HARRAYP returns NIL if X is a list whose CAR is an HARRAYP, even though this is accepted
by the hash array functions.

Note: The empty list, () or NIL, is considered to be a symbol, rather than a list.
Therefore, (LITATOM NIL) = (ATOM NIL) = T and (LISTP NIL) = NIL. Take
care when using these functions if the object may be the empty list NIL.

Equality Predicates

Sometimes, there is more than one type of equality. For instance, given two lists, you can ask whether
they are exactly the same object, or whether they are two distinct lists that contain the same elements.
Confusion between these two types of equality is often the source of program errors.

(EQ X Y) [Function]

Returns T if X and Y are identical pointers; NIL otherwise. EQ should not be used to
compare two numbers, unless they are small integers; use EQP instead.

(NEQ X Y) [Function]

The same as (NOT (EQ X Y))

(NULL X) [Function]
(NOT X) [Function]

The same as (EQ X NIL)

(EQP X Y) [Function]

Returns T if X and Y are EQ, or if X and Y are numbers and are equal in value; NIL
otherwise. For more discussion of EQP and other number functions, see Chapter 7.

EQP also can be used to compare stack pointers (Section 11) and compiled code (Chapter
10).

(EQUAL X Y) [Function]

EQUAL returns T if X and Y are one of the following:

1. EQ
2. EQP, i.e., numbers with equal value
3. STREQUAL, i.e., strings containing the same sequence of characters
4. Lists and CAR of X is EQUAL to CAR of Y, and CDR of X is EQUAL to CDR of Y

EQUAL returns NIL otherwise. Note that EQUAL can be significantly slower than EQ.

A loose description of EQUAL might be to say that X and Y are EQUAL if they print out the
same way.

(EQUALALL X Y) [Function]

Like EQUAL, except it descends into the contents of arrays, hash arrays, user data types,
etc. Two non-EQ arrays may be EQUALALL if their respective componants are EQUALALL.

9-3

CONDITIONALS AND ITERATIVE STATEMENTS

Note: In general, EQUALALL descends all the way into all datatypes, both those you’ve
defined and those built into the system. If you have a data structure with fonts and
pointers to windows, EQUALALL will descend those also. If the data structures are
circular, as windows are, EQUALALL can cause stack overflow.

Logical Predicates

(AND X1 X2 ... XN) [NLambda NoSpread Function]

Takes an indefinite number of arguments (including zero), that are evaluated in order. If
any argument evaluates to NIL, AND immediately returns NIL, without evaluating the
remaining arguments. If all of the arguments evaluate to non-NIL, the value of the last
argument is returned. (AND) => T.

(OR X1 X2 ... XN) [NLambda NoSpread Function]

Takes an indefinite number of arguments (including zero), that are evaluated in order. If
any argument is non-NIL, the value of that argument is returned by OR (without
evaluating the remaining arguments). If all of the arguments evaluate to NIL, NIL is
returned. (OR) => NIL.

AND and OR can be used as simple logical connectives, but note that they may not evaluate all of their
arguments. This makes a difference if some of the arguments cause side-effects. This also means you
can use AND and OR as simple conditional statements. For example: (AND (LISTP X) (CDR X))
returns the value of (CDR X) if X is a list cell; otherwise it returns NIL without evaluating (CDR X).
In general, you should avoid this use of AND and OR in favor of more explicit conditional statements in
order to make programs more readable.

COND Conditional Function

(COND CLAUSE1 CLAUSE2 ... CLAUSEK) [NLambda NoSpread Function]

COND takes an indefinite number of arguments, called clauses. Each CLAUSEi is a list of
the form (Pi Ci1 ... CiN), where Pi is the predicate, and Ci1 ... CiN are the
consequents. The operation of COND can be paraphrased as:

IF P1 THEN C11 ... C1N ELSEIF P2 THEN C21 ... C2N ELSEIF P3 ...

The clauses are considered in sequence as follows: The predicate P1 of the clause
CLAUSEi is evaluated. If the value of P1 is “true” (non-NIL), the consequents Ci1 ...
CiN are evaluated in order, and the value of the COND is the value of the last expression in
the clause. If P1 is “false” (EQ to NIL), then the remainder of CLAUSEi is ignored, and the
next clause, CLAUSEi+1, is considered. If no Pi is true for any clause, the value of the COND
is NIL.

If a clause has no consequents, and has the form (Pi), then if Pi evaluates to non-NIL, it is
returned as the value of the COND. It is only evaluated once.

Example:

←(DEFINEQ (DOUBLE (X)
(COND ((NUMBERP X) (PLUS X X))

9-4

 INTERLISP-D REFERENCE MANUAL

((STRINGP X) (CONCAT X X))
((ATOM X) (PACK* X X))
(T (PRINT "unknown") X)
((HORRIBLE-ERROR))]

(DOUBLE)

←(DOUBLE 5)
10

←(DOUBLE "FOO")
"FOOFOO"

←(DOUBLE ’BAR)
BARBAR

←(DOUBLE ’(A B C))
"unknown"
(A B C)

A few points about this example: Notice that 5 is both a number and an atom, but it is
“caught” by the NUMBERP clause before the ATOM clause. Also notice the predicate T,
which is always true. This is the normal way to indicate a COND clause which will always
be executed (if none of the preceeding clauses are true). (HORRIBLE-ERROR) will never
be executed.

The IF Statement

The IF statement lets you write conditional expressions that are easier to read than using COND
directly. CLISP translates expressions using IF, THEN, ELSEIF, or ELSE (or their lowercase versions)
into equivalent CONDs. In general, statements of the form:

(if AAA then BBB elseif CCC then DDD else EEE)

are translated to:

(COND (AAA BBB)
 (CCC DDD)
 (T EEE))

The segment between IF or ELSEIF and the next THEN corresponds to the predicate of a COND clause,
and the segment between THEN and the next ELSE or ELSEIF as the consequent(s). ELSE is the same
as ELSEIF T THEN. These words are spelling corrected using the spelling list CLISPIFWORDSPLST.
You may also use lower-case versions (if, then, elseif, else).

If there is nothing following a THEN, or THEN is omitted entirely, the resulting COND clause has a
predicate but no consequent. For example, (if X then elseif ...) and (if X elseif ...)
both translate to (COND (X) ...)—if X is not NIL, it is returned as the value of the COND.

Each predicate must be a single expression, but multiple expressions are allowed as the consequents
after THEN or ELSE. Multiple consequent expressions are implicitely wrapped in a PROGN, and the
value of the last one is returned as the value of the consequent. For example:

(if X then (PRINT "FOO") (PRINT "BAR") elseif Y then (PRINT "BAZ"))

9-5

CONDITIONALS AND ITERATIVE STATEMENTS

Selection Functions

(SELECTQ X CLAUSE1 CLAUSE2 ... CLAUSEK
DEFAULT) [NLambda NoSpread Function]

Selects a form or sequence of forms based on the value of X. Each clause CLAUSEi is a list
of the form (Si Ci1 ... CiN) where Si is the selection key. Think of SELECTQ as:

IF X = S1 THEN C11 ... C1N ELSEIF X = S2
THEN ... ELSE DEFAULT

If Si is a symbol, the value of X is tested to see if it is EQ to Si (which is not evaluated). If
so, the expressions Ci1 ... CiN are evaluated in sequence, and the value of the SELECTQ
is the value of the last expression.

If Si is a list, the value of X is compared with each element (not evaluated) of Si, and if X is
EQ to any one of them, then Ci1 ... CiN are evaluated as above.

If CLAUSEi is not selected in one of the two ways described, CLAUSEi+1 is tested, etc., until
all the clauses have been tested. If none is selected, DEFAULT is evaluated, and its value is
returned as the value of the SELECTQ. DEFAULT must be present.

An example of the form of a SELECTQ is:

[SELECTQ MONTH
(FEBRUARY (if (LEAPYEARP) then 29 else 28))

((SEPTEMBER APRIL JUNE NOVEMBER) 30) 31]

If the value of MONTH is the symbol FEBRUARY, the SELECTQ returns 28 or 29 (depending
on (LEAPYEARP)); otherwise if MONTH is APRIL, JUNE, SEPTEMBER, or NOVEMBER, the
SELECTQ returns 30; otherwise it returns 31.

SELECTQ compiles open, and is therefore very fast; however, it will not work if the value
of X is a list, a large integer, or floating point number, since SELECTQ uses EQ for all
comparisons.

SELCHARQ (Chapter 2) is a version of SELECTQ that recognizes CHARCODE symbols.

(SELECTC X CLAUSE1 CLAUSE2 ... CLAUSEK
DEFAULT) [NLambda NoSpread Function]

“SELECTQ-on-Constant.” Like SELECTQ, but the selection keys are evaluated, and the
result used as a SELECTQ-style selection key.

SELECTC is compiled as a SELECTQ, with the selection keys evaluated at compile-time.
Therefore, the selection keys act like compile-time constants (see Chapter 18).

For example:

[SELECTC NUM
 ((for X from 1 to 9 collect (TIMES X X)) "SQUARE") "HIP"]

compiles as:

(SELECTQ NUM
 ((1 4 9 16 25 36 49 64 81) "SQUARE") "HIP")

9-6

 INTERLISP-D REFERENCE MANUAL

PROG and Associated Control Functions

(PROG1 X1 X2 ... XN) [NLambda NoSpread Function]

Evaluates its arguments in order, and returns the value of its first argument X1. For
example, (PROG1 X (SETQ X Y)) sets X to Y, and returns X’s original value.

(PROG2 X1 X2 ... XN) [NoSpread Function]

Like PROG1. Evaluates its arguments in order, and returns the value of its second
argument X2.

(PROGN X1 X2 ... XN) [NLambda NoSpread Function]

PROGN evaluates each of its arguments in order, and returns the value of its last argument.
PROGN is used to specify more than one computation where the syntax allows only one,
e.g., (SELECTQ ... (PROGN ...)) allows evaluation of several expressions as the
default condition for a SELECTQ.

(PROG VARLST E1 E2 ... EN) [NLambda NoSpread Function]

Lets you bind some variables while you execute a series of expressions. VARLST is a list of
local variables (must be NIL if no variables are used). Each symbol in VARLST is treated
as the name of a local variable and bound to NIL. VARLST can also contain lists of the
form (NAME FORM). In this case, NAME is the name of the variable and is bound to the
value of FORM. The evaluation takes place before any of the bindings are performed, e.g.,
(PROG ((X Y) (Y X)) ...) will bind local variable X to the value of Y (evaluated
outside the PROG) and local variable Y to the value of X (outside the PROG). An attempt to
use anything other than a symbol as a PROG variable will cause an error, Arg not
symbol. An attempt to use NIL or T as a PROG variable will cause an error, Attempt to
bind NIL or T.

The rest of the PROG is a sequence of forms and symbols (labels). The forms are evaluated
sequentially; the labels serve only as markers. The two special functions, GO and RETURN,
alter this flow of control as described below. The value of the PROG is usually specified by
the function RETURN. If no RETURN is executed before the PROG “falls off the end,” the
value of the PROG is NIL.

(GO L) [NLambda NoSpread Function]

GO is used to cause a transfer in a PROG. (GO L) will cause the PROG to evaluate forms
starting at the label L (GO does not evaluate its argument). A GO can be used at any level
in a PROG. If the label is not found, GO will search higher progs within the same function,
e.g., (PROG ... A ... (PROG ... (GO A))). If the label is not found in the function
in which the PROG appears, an error is generated, Undefined or illegal GO.

(RETURN X) [Function]

A RETURN is the normal exit for a PROG. Its argument is evaluated and is immediately
returned the value of the PROG in which it appears.

9-7

CONDITIONALS AND ITERATIVE STATEMENTS

Note: If a GO or RETURN is executed in an interpreted function which is not a PROG, the
GO or RETURN will be executed in the last interpreted PROG entered if any, otherwise
cause an error.

GO or RETURN inside of a compiled function that is not a PROG is not allowed, and will
cause an error at compile time.

As a corollary, GO or RETURN in a functional argument, e.g., to SORT, will not work
compiled. Also, since NLSETQ’s and ERSETQ’s compile as separate functions, a GO or
RETURN cannot be used inside of a compiled NLSETQ or ERSETQ if the corresponding
PROG is outside, i.e., above, the NLSETQ or ERSETQ.

(LET VARLST E1 E2 ... EN) [Macro]

LET is essentially a PROG that can’t contain GO’s or RETURN’s, and whose last form is the
returned value.

(LET* VARLST E1 E2 ... EN) [Macro]
(PROG* VARLST E1 E2 ... EN) [Macro]

LET* and PROG* differ from LET and PROG only in that the binding of the bound
variables is done “sequentially.” Thus

(LET* ((A (LIST 5))
(B (LIST A A)))

 (EQ A (CADR B)))

would evaluate to T; whereas the same form with LET might find A an unbound variable
when evaluating (LIST A A).

The Iterative Statement

The various forms of the iterative statement (i.s.) let you write complex loops easily. Rather than
writing PROG, MAPC, MAPCAR, etc., let Medley do it for you.

An iterative statement is a form consisting of a number of special words (known as i.s. operators or
i.s.oprs), followed by operands. Many i.s.oprs (FOR, DO, WHILE, etc.) act like loops in other
programming languages; others (COLLECT, JOIN, IN, etc.) do things useful in Lisp. You can also use
lower-case versions of i.s.oprs (do, collect, etc.).

← (for X from 1 to 5 do (PRINT ’FOO))
FOO
FOO
FOO
FOO
FOO
NIL

←(for X from 2 to 10 by 2 collect (TIMES X X))
(4 16 36 64 100)

←(for X in ’(A B 1 C 6.5 NIL (45)) count (NUMBERP X))
2

Iterative statements are implemented using CLISP, which translates them into the appropriate PROGs,
MAPCARs, etc. They’re are translated using all CLISP declarations in effect (standard/fast/undoable/

9-8

 INTERLISP-D REFERENCE MANUAL

etc.); see Chapter 21. Misspelled i.s.oprs are recognized and corrected using the spelling list
CLISPFORWORDSPLST. Operators can appear in any order; CLISP scans the entire statement before it
begins to translate.

If you define a function with the same name as an i.s.opr (WHILE, TO, etc.), that i.s.opr will no longer
cause looping when it appears as CAR of a form, although it will continue to be treated as an i.s.opr if
it appears in the interior of an iterative statement. To alert you, a warning message is printed, e.g.,
(While defined, therefore disabled in CLISP).

I.S. Types

Every iterative statement must have exactly one of the following operators in it (its “is.stype”), to
specify what happens on each iteration. Its operand is called the “body” of the iterative statement.

DO FORMS [I.S. Operator]

Evaluate FORMS at each iteration. DO with no other operator specifies an infinite loop. If
some explicit or implicit terminating condition is specified, the value of the loop is NIL.
Translates to MAPC or MAP whenever possible.

COLLECT FORM [I.S. Operator]

The value of FORM at each iteration is collected in a list, which is returned as the value of
the loop when it terminates. Translates to MAPCAR, MAPLIST or SUBSET whenever
possible.

When COLLECT translates to a PROG (if UNTIL, WHILE, etc. appear in the loop), the
translation employs an open TCONC using two pointers similar to that used by the
compiler for compiling MAPCAR. To disable this translation, perform (CLDISABLE
’FCOLLECT).

JOIN FORM [I.S. Operator]

FORM returns a list; the lists from each iteration are concatenated using NCONC, forming
one long list. Translates to MAPCONC or MAPCON whenever possible. /NCONC, /MAPCONC,
and /MAPCON are used when the CLISP declaration UNDOABLE is in effect.

SUM FORM [I.S. Operator]

The values of FORM from each iteration are added together and returned as the value of
the loop, e.g., (for I from 1 to 5 sum (TIMES I I)) returns 1+4+9+16+25 =
55. IPLUS, FPLUS, or PLUS will be used in the translation depending on the CLISP
declarations in effect.

COUNT FORM [I.S. Operator]

Counts the number of times that FORM is true, and returns that count as the loop’s value.

ALWAYS FORM [I.S. Operator]

Returns T if the value of FORM is non-NIL for all iterations. Note: Returns NIL as soon as
the value of FORM is NIL).

9-9

CONDITIONALS AND ITERATIVE STATEMENTS

NEVER FORM [I.S. Operator]

Like ALWAYS, but returns T if the value of FORM is never true. Note: Returns NIL as soon
as the value of FORM is non-NIL.

Often, you’ll want to set a variable each time through the loop; that’s called the “iteration variable”, or
i.v. for short. The following i.s.types explicitly refer to the i.v. This is explained below under FOR.

THEREIS FORM [I.S. Operator]

Returns the first value of the i.v. for which FORM is non-NIL, e.g., (for X in Y
thereis (NUMBERP X)) returns the first number in Y.

Note: Returns the value of the i.v. as soon as the value of FORM is non-NIL.

LARGEST FORM [I.S. Operator]
SMALLEST FORM [I.S. Operator]

Returns the value of the i.v. that provides the largest/smallest value of FORM.
$$EXTREME is always bound to the current greatest/smallest value, $$VAL to the value of
the i.v. from which it came.

Iteration Variable I.s.oprs

You’ll want to bind variables to use during the loop. Rather than putting the loop inside a PROG or
LET, you can specify bindings like so:

BIND VAR [I.S. Operator]
BIND VARS [I.S. Operator]

Used to specify dummy variables, which are bound locally within the i.s.

Note: You can initialize a variable VAR by saying VAR←FORM:

(bind HEIGHT ← 0 WEIGHT ← 0 for SOLDIER in ...)

To specify iteration variables, use these operators:

FOR VAR [I.S. Operator]

Specifies the iteration variable (i.v.) that is used in conjunction with IN, ON, FROM, TO, and
BY. The variable is rebound within the loop, so the value of the variable outside the loop
is not affected. Example:

←(SETQ X 55)
55

←(for X from 1 to 5 collect (TIMES X X))
(1 4 9 16 25)

←X
55

FOR OLD VAR [I.S. Operator]

Like FOR, but VAR is not rebound, so its value outside the loop is changed. Example:

←(SETQ X 55)
55

9-10

 INTERLISP-D REFERENCE MANUAL

←(for old X from 1 to 5 collect (TIMES X X))
(1 4 9 16 25)

←X
6

FOR VARS [I.S. Operator]

VARS a list of variables, e.g., (for (X Y Z) in ...). The first variable is the i.v., the
rest are dummy variables. See BIND above.

IN FORM [I.S. Operator]

FORM must evaluate to a list. The i.v. is set to successive elements of the list, one per
iteration. For example, (for X in Y do ...) corresponds to (MAPC Y (FUNCTION
(LAMBDA (X) ...))). If no i.v. has been specified, a dummy is supplied, e.g., (in Y
collect CADR) is equivalent to (MAPCAR Y (FUNCTION CADR)).

ON FORM [I.S. Operator]

Same as IN, but the i.v. is reset to the corresponding tail at each iteration. Thus IN
corresponds to MAPC, MAPCAR, and MAPCONC, while ON corresponds to MAP, MAPLIST,
and MAPCON.

←(for X on ’(A B C) do (PRINT X))
(A B C)
(B C)
(C)
NIL

Note: For both IN and ON, FORM is evaluated before the main part of the i.s. is entered, i.e.
outside of the scope of any of the bound variables of the i.s. For example, (for X bind
(Y←’(1 2 3)) in Y ...) will map down the list which is the value of Y evaluated
outside of the i.s., not (1 2 3).

IN OLD VAR [I.S. Operator]

Specifies that the i.s. is to iterate down VAR, with VAR itself being reset to the
corresponding tail at each iteration, e.g., after (for X in old L do ... until
...) finishes, L will be some tail of its original value.

IN OLD (VAR←FORM) [I.S. Operator]

Same as IN OLD VAR, except VAR is first set to value of FORM.

ON OLD VAR [I.S. Operator]

Same as IN OLD VAR except the i.v. is reset to the current value of VAR at each iteration,
instead of to (CAR VAR).

ON OLD (VAR←FORM) [I.S. Operator]

Same as ON OLD VAR, except VAR is first set to value of FORM.

9-11

CONDITIONALS AND ITERATIVE STATEMENTS

INSIDE FORM [I.S. Operator]

Like IN, but treats first non-list, non-NIL tail as the last element of the iteration, e.g.,
INSIDE ’(A B C D . E) iterates five times with the i.v. set to E on the last iteration.
INSIDE ’A is equivalent to INSIDE ’(A), which will iterate once.

FROM FORM [I.S. Operator]

Specifies the initial value for a numerical i.v. The i.v. is automatically incremented by 1
after each iteration (unless BY is specified). If no i.v. has been specified, a dummy i.v. is
supplied and initialized, e.g., (from 2 to 5 collect SQRT) returns (1.414 1.732
2.0 2.236).

TO FORM [I.S. Operator]

Specifies the final value for a numerical i.v. If FROM is not specified, the i.v. is initialized
to 1. If no i.v. has been specified, a dummy i.v. is supplied and initialized. If BY is not
specified, the i.v. is automatically incremented by 1 after each iteration. When the i.v. is
definitely being incremented, i.e., either BY is not specified, or its operand is a positive
number, the i.s. terminates when the i.v. exceeds the value of FORM. Similarly, when the
i.v. is definitely being decremented the i.s. terminates when the i.v. becomes less than the
value of FORM (see description of BY).

FORM is evaluated only once, when the i.s. is first entered, and its value bound to a
temporary variable against which the i.v. is checked each interation. If the user wishes to
specify an i.s. in which the value of the boundary condition is recomputed each iteration,
he should use WHILE or UNTIL instead of TO.

When both the operands to TO and FROM are numbers, and TO’s operand is less than
FROM’s operand, the i.v. is decremented by 1 after each iteration. In this case, the i.s.
terminates when the i.v. becomes less than the value of FORM. For example, (from 10
to 1 do PRINT) prints the numbers from 10 down to 1.

BY FORM (without IN or ON) [I.S. Operator]

If you aren’t using IN or ON, BY specifies how the i.v. itself is reset at each iteration. If
you’re using FROM or TO, the i.v. is known to be numerical, so the new i.v. is computed by
adding the value of FORM (which is reevaluated each iteration) to the current value of the
i.v., e.g., (for N from 1 to 10 by 2 collect N) makes a list of the first five odd
numbers.

If FORM is a positive number (FORM itself, not its value, which in general CLISP would
have no way of knowing in advance), the loop stops when the value of the i.v. exceeds the
value of TO’s operand. If FORM is a negative number, the loop stops when the value of the
i.v. becomes less than TO’s operand, e.g., (for I from N to M by -2 until
(LESSP I M) ...). Otherwise, the terminating condition for each iteration depends on
the value of FORM for that iteration: if FORM<0, the test is whether the i.v. is less than TO’s
operand, if FORM>0 the test is whether the i.v. exceeds TO’s operand; if FORM = 0, the
loop terminates unconditionally.

9-12

 INTERLISP-D REFERENCE MANUAL

If you didn’t use FROM or TO and FORM is not a number, the i.v. is simply reset to the value
of FORM after each iteration, e.g., (for I from N by (FOO) ...) sets I to the value
of (FOO) on each loop after the first.

BY FORM (with IN or ON) [I.S. Operator]

If you did use IN or ON, FORM’s value determines the tail for the next iteration, which in
turn determines the value for the i.v. as described earlier, i.e., the new i.v. is CAR of the tail
for IN, the tail itself for ON. In conjunction with IN, you can refer to the current tail within
FORM by using the i.v. or the operand for IN/ON, e.g., (for Z in L by (CDDR Z)
...) or (for Z in L by (CDDR L) ...). At translation time, the name of the
internal variable which holds the value of the current tail is substituted for the i.v.
throughout FORM. For example, (for X in Y by (CDR (MEMB ’FOO (CDR X)))
collect X) specifies that after each iteration, CDR of the current tail is to be searched for
the atom FOO, and (CDR of) this latter tail to be used for the next iteration.

AS VAR [I.S. Operator]

Lets you have more than one i.v. for a single loop, e.g., (for X in Y as U in V do
...) moves through the lisps Y and V in parallel (see MAP2C). The loop ends when any of
the terminating conditions is met, e.g., (for X in Y as I from 1 to 10 collect
X) makes a list of the first ten elements of Y, or however many elements there are on Y if
less than 10.

The operand to AS, VAR, specifies the new i.v. For the remainder of the i.s., or until
another AS is encountered, all operators refer to the new i.v. For example, (for I from
1 to N1 as J from 1 to N2 by 2 as K from N3 to 1 by -1 ...) terminates
when I exceeds N1, or J exceeds N2, or K becomes less than 1. After each iteration, I is
incremented by 1, J by 2, and K by -1.

OUTOF FORM [I.S. Operator]

For use with generators. On each iteration, the i.v. is set to successive values returned by
the generator. The loop ends when the generator runs out.

Condition I.S. Oprs

What if you want to do things only on certain times through the loop? You could make the loop body
a big COND, but it’s much more readable to use one of these:

WHEN FORM [I.S. Operator]

Only run the loop body when FORM’s value is non-NIL. For example, (for X in Y
collect X when (NUMBERP X)) collects only the elements of Y that are numbers.

UNLESS FORM [I.S. Operator]

Opposite of WHEN: WHEN Z is the same as UNLESS (NOT Z).

WHILE FORM [I.S. Operator]

WHILE FORM evaluates FORM before each iteration, and if the value is NIL, exits.

9-13

CONDITIONALS AND ITERATIVE STATEMENTS

UNTIL FORM [I.S. Operator]

Opposite of WHILE: Evaluates FORM before each iteration, and if the value is not NIL, exits.

REPEATWHILE FORM [I.S. Operator]

Same as WHILE except the test is performed after the loop body, but before the i.v. is reset
for the next iteration.

REPEATUNTIL FORM [I.S. Operator]

Same as UNTIL, except the test is performed after the loop body.

Other I.S. Operators

FIRST FORM [I.S. Operator]

FORM is evaluated once before the first iteration, e.g., (for X Y Z in L first (FOO
Y Z) ...), and FOO could be used to initialize Y and Z.

FINALLY FORM [I.S. Operator]

FORM is evaluated after the loop terminates. For example, (for X in L bind Y_0 do
(if (ATOM X) then (SETQ Y (PLUS Y 1))) finally (RETURN Y)) will return
the number of atoms in L.

EACHTIME FORM [I.S. Operator]

FORM is evaluated at the beginning of each iteration before, and regardless of, any testing.
For example, consider,

(for I from 1 to N
do (... (FOO I) ...)
unless (... (FOO I) ...)
until (... (FOO I) ...))

You might want to set a temporary variable to the value of (FOO I) in order to avoid
computing it three times each iteration. However, without knowing the translation, you
can’t know whether to put the assignment in the operand to DO, UNLESS, or UNTIL. You
can avoid this problem by simply writing EACHTIME (SETQ J (FOO I)).

DECLARE: DECL [I.S. Operator]

Inserts the form (DECLARE DECL) immediately following the PROG variable list in the
translation, or, in the case that the translation is a mapping function rather than a PROG,
immediately following the argument list of the lambda expression in the translation. This
can be used to declare variables bound in the iterative statement to be compiled as local or
special variables. For example (for X in Y declare: (LOCALVARS X) ...).
Several DECLARE:s can apppear in the same i.s.; the declarations are inserted in the order
they appear.

DECLARE DECL [I.S. Operator]

Same as DECLARE:.

9-14

 INTERLISP-D REFERENCE MANUAL

Since DECLARE is also the name of a function, DECLARE cannot be used as an i.s. operator
when it appears as CAR of a form, i.e. as the first i.s. operator in an iterative statement.
However, declare (lowercase version) can be the first i.s. operator.

ORIGINAL I.S.OPR OPERAND [I.S. Operator]

I.S.OPR will be translated using its original, built-in interpretation, independent of any
user defined i.s. operators.

There are also a number of i.s.oprs that make it easier to create iterative statements that use the clock,
looping for a given period of time. See timers, Chapter 12.

Miscellaneous Hints For Using I.S.Oprs

Lowercase versions of all i.s. operators are equivalent to the uppercase, e.g., (for X in Y ...) is
equivalent to (FOR X IN Y ...).

Each i.s. operator is of lower precedence than all Interlisp forms, so parentheses around the operands
can be omitted, and will be supplied where necessary, e.g., BIND (X Y Z) can be written BIND X Y
Z, OLD (X_FORM) as OLD X_FORM, etc.

RETURN or GO may be used in any operand. (In this case, the translation of the iterative statement will
always be in the form of a PROG, never a mapping function.) RETURN means return from the loop
(with the indicated value), not from the function in which the loop appears. GO refers to a label
elsewhere in the function in which the loop. appears, except for the labels $$LP, $$ITERATE, and
$$OUT which are reserved, as described below.

In the case of FIRST, FINALLY, EACHTIME, DECLARE: or one of the i.s.types, e.g., DO, COLLECT, SUM,
etc., the operand can consist of more than one form, e.g., COLLECT (PRINT (CAR X)) (CDR X), in
which case a PROGN is supplied.

Each operand can be the name of a function, in which case it is applied to the (last) i.v., e.g., (for X
in Y do PRINT when NUMBERP) is the same as (for X in Y do (PRINT X) when
(NUMBERP X)). Note that the i.v. need not be explicitly specified, e.g., (in Y do PRINT when
NUMBERP) will work.

For i.s.types, e.g., DO, COLLECT, JOIN, the function is always applied to the first i.v. in the i.s., whether
explicity named or not. For example, (in Y as I from 1 to 10 do PRINT) prints elements on
Y, not integers between 1 and 10.

Note that this feature does not make much sense for FOR, OLD, BIND, IN, or ON, since they “operate”
before the loop starts, when the i.v. may not even be bound.

In the case of BY in conjunction with IN, the function is applied to the current tail e.g., (for X in Y
by CDDR ...) is the same as (for X in Y by (CDDR X) ...).

While the exact translation of a loop depends on which operators are present, a PROG will always be
used whenever the loop specifies dummy variables—if BIND appears, or there is more than one
variable specified by a FOR, or a GO, RETURN, or a reference to the variable $$VAL appears in any of
the operands. When PROG is used, the form of the translation is:

(PROG VARIABLES
{initialize}

9-15

CONDITIONALS AND ITERATIVE STATEMENTS

$$LP {eachtime}
{test}
{body}

$$ITERATE
{aftertest}
{update}
(GO $$LP)

$$OUT {finalize}
(RETURN $$VAL))

where {test} corresponds to that part of the loop that tests for termination and also for those
iterations for which {body} is not going to be executed, (as indicated by a WHEN or UNLESS); {body}
corresponds to the operand of the i.s.type, e.g., DO, COLLECT, etc.; {aftertest} corresponds to those
tests for termination specified by REPEATWHILE or REPEATUNTIL; and {update} corresponds to
that part that resets the tail, increments the counter, etc. in preparation for the next iteration.
{initialize}, {finalize}, and {eachtime} correspond to the operands of FIRST, FINALLY,
and EACHTIME, if any.

Since {body} always appears at the top level of the PROG, you can insert labels in {body}, and GO to
them from within {body} or from other i.s. operands, e.g., (for X in Y first (GO A) do
(FOO) A (FIE)). However, since {body} is dwimified as a list of forms, the label(s) should be
added to the dummy variables for the iterative statement in order to prevent their being dwimified
and possibly “corrected”, e.g., (for X in Y bind A first (GO A) do (FOO) A (FIE)). You
can also GO to $$LP, $$ITERATE, or $$OUT, or explicitly set $$VAL.

Errors in Iterative Statements

An error will be generated and an appropriate diagnostic printed if any of the following conditions
hold:

1. Operator with null operand, i.e., two adjacent operators, as in (for X in Y until do ...)

2. Operand consisting of more than one form (except as operand to FIRST, FINALLY, or one of the
i.s.types), e.g., (for X in Y (PRINT X) collect ...).

3. IN, ON, FROM, TO, or BY appear twice in same i.s.

4. Both IN and ON used on same i.v.

5. FROM or TO used with IN or ON on same i.v.

6. More than one i.s.type, e.g., a DO and a SUM.

In 3, 4, or 5, an error is not generated if an intervening AS occurs.

If an error occurs, the i.s. is left unchanged.

If no DO, COLLECT, JOIN or any of the other i.s.types are specified, CLISP will first attempt to find an
operand consisting of more than one form, e.g., (for X in Y (PRINT X) when ATOM X ...),
and in this case will insert a DO after the first form. (In this case, condition 2 is not considered to be
met, and an error is not generated.) If CLISP cannot find such an operand, and no WHILE or UNTIL
appears in the i.s., a warning message is printed: NO DO, COLLECT, OR JOIN: followed by the i.s.

9-16

 INTERLISP-D REFERENCE MANUAL

Similarly, if no terminating condition is detected, i.e., no IN, ON, WHILE, UNTIL, TO, or a RETURN or
GO, a warning message is printed: Possible non-terminating iterative statement:
followed by the iterative statement. However, since the user may be planning to terminate the i.s. via
an error, Control-E, or a RETFROM from a lower function, the i.s. is still translated.

Note: The error message is not printed if the value of CLISPI.S.GAG is T (initially NIL).

Defining New Iterative Statement Operators

The following function is available for defining new or redefining existing iterative statement
operators:

(I.S.OPR NAME FORM OTHERS EVALFLG) [Function]

NAME is the name of the new i.s.opr. If FORM is a list, NAME will be a new i.s.type, and
FORM its body.

OTHERS is an (optional) list of additional i.s. operators and operands which will be added
to the i.s. at the place where NAME appears. If FORM is NIL, NAME is a new i.s.opr defined
entirely by OTHERS.

In both FORM and OTHERS, the atom $$VAL can be used to reference the value to be
returned by the i.s., I.V. to reference the current i.v., and BODY to reference NAME’s
operand. In other words, the current i.v. will be substituted for all instances of I.V. and
NAME’s operand will be substituted for all instances of BODY throughout FORM and
OTHERS.

If EVALFLG is T, FORM and OTHERS are evaluated at translation time, and their values
used as described above. A dummy variable for use in translation that does not clash
with a dummy variable already used by some other i.s. operators can be obtained by
calling (GETDUMMYVAR). (GETDUMMYVAR T) will return a dummy variable and also
insure that it is bound as a PROG variable in the translation.

If NAME was previously an i.s.opr and is being redefined, the message (NAME
REDEFINED) will be printed (unless DFNFLG=T), and all expressions using the i.s.opr
NAME that have been translated will have their translations discarded.

The following are some examples of how I.S.OPR could be called to define some existing
i.s.oprs, and create some new ones:

COLLECT (I.S.OPR ’COLLECT
’(SETQ $$VAL (NCONC1 $$VAL BODY)))

SUM (I.S.OPR ’SUM
’(SETQ $$VAL_(PLUS $$VAL BODY)

’(FIRST (SETQ $$VAL0))

NEVER (I.S.OPR ’NEVER
’(if BODY then

(SETQ $$VAL NIL) (GO $$OUT))

Note: (if BODY then (RETURN NIL)) would exit from the
i.s. immediately and therefore not execute the operations specified
via a FINALLY (if any).

9-17

CONDITIONALS AND ITERATIVE STATEMENTS

THEREIS (I.S.OPR ’THEREIS
’(if BODY then

(SETQ $$VAL I.V.) (GO $$OUT)))

RCOLLECT To define RCOLLECT, a version of COLLECT which uses CONS
instead of NCONC1 and then reverses the list of values:

(I.S.OPR ’RCOLLECT
 ’(FINALLY (RETURN

(DREVERSE $$VAL)))]

TCOLLECT To define TCOLLECT, a version of COLLECT which uses TCONC:

(I.S.OPR ’TCOLLECT
’(TCONC $$VAL BODY)

’(FIRST (SETQ $$VAL (CONS))
FINALLY (RETURN

(CAR $$VAL)))]

PRODUCT (I.S.OPR ’PRODUCT
’(SETQ $$VAL $$VAL*BODY)

 ’(FIRST ($$VAL 1))]

UPTO To define UPTO, a version of TO whose operand is evaluated only
once:

(I.S.OPR ’UPTO
NIL
’(BIND $$FOO←BODY TO $$FOO)]

TO To redefine TO so that instead of recomputing FORM each
iteration, a variable is bound to the value of FORM, and then that
variable is used:

(I.S.OPR ’TO
 NIL

 ’(BIND $$END FIRST
(SETQ $$END BODY)

ORIGINALTO $$END)]

Note the use of ORIGINAL to redefine TO in terms of its original
definition. ORIGINAL is intended for use in redefining built-in
operators, since their definitions are not accessible, and hence not
directly modifiable. Thus if the operator had been defined by the
user via I.S.OPR, ORIGINAL would not obtain its original
definition. In this case, one presumably would simply modify the
i.s.opr definition.

I.S.OPR can also be used to define synonyms for already defined i.s. operators by calling I.S.OPR
with FORM an atom, e.g., (I.S.OPR ’WHERE ’WHEN) makes WHERE be the same as WHEN. Similarly,
following (I.S.OPR ’ISTHERE ’THEREIS), one can write (ISTHERE ATOM IN Y), and
following (I.S.OPR ’FIND ’FOR) and (I.S.OPR ’SUCHTHAT ’THEREIS), one can write (find
X in Y suchthat X member Z) . In the current system, WHERE is synonymous with WHEN,
SUCHTHAT and ISTHERE with THEREIS, FIND with FOR, and THRU with TO.

9-18

 INTERLISP-D REFERENCE MANUAL

If FORM is the atom MODIFIER, then NAME is defined as an i.s.opr which can immediately follow
another i.s. operator (i.e., an error will not be generated, as described previously). NAME will not
terminate the scope of the previous operator, and will be stripped off when DWIMIFY is called on its
operand. OLD is an example of a MODIFIER type of operator. The MODIFIER feature allows the user
to define i.s. operators similar to OLD, for use in conjunction with some other user defined i.s.opr
which will produce the appropriate translation.

The file package command I.S.OPRS (Chapter 17) will dump the definition of i.s.oprs. (I.S.OPRS
PRODUCT UPTO) as a file package command will print suitable expressions so that these iterative
statement operators will be (re)defined when the file is loaded.

9-19

9-20

 INTERLISP-D REFERENCE MANUAL

[This page intentionally left blank]

