
10-1

FUNCTION DEFINITION, MANIPULATION AND EVALUATION
  

Medley is designed to help you define and debug functions.  Developing an applications program
with Medley involves defining a number of functions in terms of the system primitives and other
user-defined functions.  Once defined, your functions may be used exactly like Interlisp primitive
functions, so the programming process can be viewed as extending the Interlisp language to include
the required functionality.

A function’s definition specifies if the function has a fixed or variable number of arguments, whether
these arguments are evaluated or not, the function argument names, and a series of forms which
define the behavior of the function.  For example:

(LAMBDA (X Y) (PRINT X) (PRINT Y))

This function has two evaluated arguments, X and Y, and it will execute (PRINT X) and (PRINT Y) when
evaluated.  Other types of function definitions are described below.

A function is defined by putting an expr definition in the function definition cell of a symbol.  There
are a number of functions for accessing and setting function definition cells, but one usually defines a
function with DEFINEQ (see the Defining Functions section below).  For example:

← (DEFINEQ (FOO (LAMBDA (X Y) (PRINT X) (PRINT Y))))(FOO)

The expression above will define the function FOO to have the expr definition (LAMBDA (X Y) (PRINT X)
(PRINT Y)).  After being defined, this function may be evaluated just like any system function:

← (FOO 3 (IPLUS 3 4))
3
7
7

Not all function definition cells contain expr definitions.  The compiler (see the first page of Chapter
18) translates expr definitions into compiled code objects, which execute much faster.  Interlisp
provides a number of “function type functions” which determine how a given function is defined, the
number and names of function arguments, etc.  See the Function Type Functions section below.

Usually, functions are evaluated automatically when they appear within another function or when
typed into Interlisp.  However, sometimes it is useful to envoke the Interlisp interpreter explicitly to
apply a given “functional argument” to some data.  There are a number of functions which will apply
a given function repeatedly.  For example, MAPCAR will apply a function (or an expr definition) to all of
the elements of a list, and return the values returned by the function:

← (MAPCAR ’(1 2 3 4 5) ’(LAMBDA (X) (ITIMES X X))
(1 4 9 16 25)

When using functional arguments, there are a number of problems which can arise, related to
accessing free variables from within a function argument.  Many times these problems can be solved
using the function FUNCTION to create a FUNARG object.

The macro facility provides another way of specifying the behavior of a function (see the Macros
section below).  Macros are very useful when developing code which should run very quickly, which
should be compiled differently than when it is interpreted, or which should run differently in
different implementations of Interlisp.



10-2

INTERLISP-D REFERENCE MANUAL

Function Types

Interlisp functions are defined using list expressions called “expr definitions.”  An expr definition is a
list of the form (LAMBDA-WORD ARG-LIST FORM1 ... FORMN).  LAMBDA-WORD determines whether
the arguments to this function will be evaluated or not.  ARG-LIST determines the number and
names of arguments.  FORM1 ... FORMN are a series of forms to be evaluated after the arguments are
bound to the local variables in ARG-LIST.

If LAMBDA-WORD is the symbol LAMBDA, then the arguments to the function are evaluated.  If LAMBDA-
WORD is the symbol NLAMBDA, then the arguments to the function are not evaluated.  Functions which
evaluate or don’t evaluate their arguments are therefore known as “lambda” or “nlambda” functions,
respectively.

If ARG-LIST is NIL or a list of symbols, this indicates a function with a fixed number of arguments.
Each symbol is the name of an argument for the function defined by this expression.  The process of
binding these symbols to the individual arguments is called “spreading” the arguments, and the
function is called a “spread” function.  If the argument list is any symbol other than NIL, this
indicates a function with a variable number of arguments, known as a “nospread” function.

If ARG-LIST is anything other than a symbol or a list of symbols, such as (LAMBDA "FOO" ...), attempting
to use this expr definition will generate an Arg not symbol error.  In addition, if NIL or T is used as an
argument name, the error Attempt to bind NIL or T is generated.

These two parameters (lambda/nlambda and spread/nospread) may be specified independently, so
there are four nain function types, known as lambda-spread, nlanbda-spread, lanbda-nospread, and
nlambda-nospread functions.  Each one has a different form and is used for a different purpose.
These four function types are described more fully below.

For lambda-spread, lanbda-nospread, or nlambda-spread functions, there is an upper limit to the
number of arguments that a function can have, based on the number of arguments that can be stored
on the stack on any one function call.  Currently, the limit is 80 arguments.  If a function is called with
more than that many arguments, the error Too many arguments occurs.  However, nlambda-nospread
functions can be called with an arbitrary number of arguments, since the arguments are not
individually saved on the stack.  

Lambda-Spread Functions

Lambda-spread functions take a fixed number of evaluated arguments.  This is the most common
function type.  A lambda-spread expr definition has the form:

(LAMBDA (ARG1 ... ARGM) FORM1 ... FORMN)

The argument list (ARG1 ... ARGM) is a list of symbols that gives the number and names of the
formal arguments to the function.  If the argument list is ( ) or NIL, this indicates that the function
takes no arguments.  When a lambda-spread function is applied to some arguments, the arguments
are evaluated, and bound to the local variables ARG1 ... ARGM.  Then, FORM1 ... FORMN are
evaluated in order, and the value of the function is the value of FORMN.

← (DEFINEQ (FOO (LAMBDA (X Y) (LIST X Y))))
(FOO)

← (FOO 99 (PLUS 3 4))
(99 7)



10-3

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

In the above example, the function FOO defined by (LAMBDA (X Y) (LIST X Y)) is applied to the arguments
99 and (PLUS 3 4).  These arguments are evaluated (giving 99 and 7), the local variable X is bound to 99
and Y to 7, (LIST X Y) is evaluated, returning (99 7), and this is returned as the value of the function.

A standard feature of the Interlisp system is that no error occurs if a spread function is called with too
many or too few arguments.  If a function is called with too many argumnents, the extra arguments
are evaluated but ignored.  If a function is called with too few arguments, the unsupplied ones will be
delivered as NIL.  In fact, a spread function cannot distinguish between being given NIL as an argument,
and not being given that argument, e.g., (FOO) and (FOO NIL) are exactly the same for spread functions.
If it is necessary to distinguish between these two cases, use an nlambda function and explicitly
evaluate the arguments with the EVAL function.

Nlambda-Spread Functions

Nlambda-spread functions take a fixed number of unevaluated arguments.  An nlambda-spread expr
definition has the form:

(NLAMBDA (ARG1 ... ARGM) FORM1 ... FORMN)

Nlambda-spread functions are evaluated similarly to lanbda-spread functions, except that the
arguments are not evaluated before being bound to the variables ARG1 ... ARGM.

← (DEFINEQ (FOO (NLAMBDA (X Y) (LIST X Y))))
(FOO)

← (FOO 99 (PLUS 3 4))
(99 (PLUS 3 4))

In the above example, the function FOO defined by (NLAMBDA (X Y) (LIST X Y)) is applied to the arguments
99 and (PLUS 3 4).  These arguments are unevaluated to X and Y.   (LIST X Y) is evaluated, returning (99
(PLUS 3 4)), and this is returned as the value of the function.

Functions can be defined so that all of their arguments are evaluated (lambda functions) or none are
evaluated (nlambda functions).  If it is desirable to write a function which only evaluates some of its
arguments (e.g., SETQ), the functions should be defined as an nlambda, with some arguments explicitly
evaluated using the function EVAL.  If this is done, the user should put the symbol EVAL on the property
list of the function under the property INFO.  This informs various system packages, such as DWIM,
CLISP, and Masterscope, that this function in fact does evaluate its arguments, even though it is an
nlambda.

Warning:  A frequent problem that occurs when evaluating arguments to nlambda functions with EVAL
is that the form being evaluated may reference variables that are not accessible within the nlambda
function.  This is usually not a problem when interpreting code, but when the code is compiled, the
values of “local” variables may not be accessible on the stack (see Chapter 18).  The system nlambda
functions that evaluate their arguments (such as SETQ) are expanded in-line by the compiler, so this is
not a problem.  Using the macro facility is recommended in cases where it is necessary to evaluate
some arguments to an nlambda function.

Lambda-Nospread Functions

Lambda-nospread functions take a variable number of evaluated arguments.  A lambda-nospread
expr definition has the form:

(LAMBDA VAR FORM1 ... FORMN)



10-4

INTERLISP-D REFERENCE MANUAL

VAR may be any symbol, except NIL and T.  When a lambda-nospread function is applied to some
arguments, each of these arguments is evaluated and the values stored on the stack.  VAR is then
bound to the number of arguments which have been evaluated.  For example, if FOO is defined by
(LAMBDA X ...), when (FOO A B C) is evaluated, A, B, and C are evaluated and X is bound to 3.  VAR should
never be reset

The following functions are used for accessing the arguments of lambda-nospread functions.

(ARG VAR M)  [NLambda Function]

Returns the Mth argument for the lambda-nospread function whose argument list is VAR.
VAR is the name of the atomic argument list to a lambda-nospread function, and is not
evaluated.  M is the number of the desired argument, and is evaluated.  The value of ARG is
undefined for M less than or equal to 0 or greater than the value of VAR.

(SETARG VAR M X)  [NLambda Function]

Sets the Mth argument for the lambda-nospread function whose argument list is VAR to X.
VAR is not evaluated;  M and X are evaluated.  M should be between 1 and the value of VAR.

In the example below, the function FOO is defined to collect and return a list of all of the evaluated
arguments it is given (the value of the for statement).

← (DEFINEQ (FOO 
  (LAMBDA X (for ARGNUM from 1 to X collect (ARG X ARGNUM)]

(FOO)

← (FOO 99 (PLUS 3 4))
(99 7)

← (FOO 99 (PLUS 3 4)(TIMES 3 4)))
(99 7 12)

NLambda-Nospread Functions

Nlambda-nospread functions take a variable number of unevaluated arguments.  An nlambda-
nospread expr definition has the form:

(NLAMBDA VAR FORM1 ... FORMN)

VAR may be any symbol, except NIL and T.  Though similar in form to lambda-nospread expr
definitions, an nlambda-nospread is evaluated quite differently.  When an nlambda-nospread function
is applied to some arguments, VAR is simply bound to a list of the unevaluated arguments.  The user
may pick apart this list, and evaluate different arguments.

In the example below, FOO is defined to return the reverse of the list of arguments it is given
(unevaluated):

← (DEFINEQ (FOO (NLAMBDA X (REVERSE X)))) 
(FOO)

← (FOO 99 (PLUS 3 4))
((PLUS 3 4) 99)

← (FOO 99 (PLUS 3 4)(TIMES 3 4))
(TIMES 3 4)(PLUS 3 4) 99)

The warning about evaluating arguments to nlambda functions also applies to nlambda-nospread
function.  



10-5

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

Compiled Functions

Functions defined by expr definitions can be compiled by the Interlisp compiler (see Chapter 18).  The
compiler produces compiled code objects (of data type CCODEP) which execute more quickly than the
corresponding expr definition code.  Functions defined by compiled code objects may have the same
four types as expr definitions (lambda/nlambda, spread/nospread).  Functions created by the
compiler are referred to as compiled functions.

Function Type Functions

There are a variety of functions used for examining the type, argument list, etc. of functions.  These
functions may be given either a symbol  (in which case they obtain the function definition from the
definition cell), or a function definition itself.

(FNTYP FN)  [Function]

Returns NIL if FN is not a function definition or the name of a defined function.  Otherwise,
FNTYP returns one of the following symbols, depending on the type of function definition.

EXPR Lambda-spread expr definition
CEXPR Lambda-spread compiled definition
FEXPR Nlambda-spread expr definition

CFEXPR Nlambda-spread compiled definition
EXPR* Lambda-nospread expr definition

CEXPR* Lambda-nospread compiled definition
FEXPR* Nlambda-nospread expr definition
CFEXPR* Nlambda-nospread compiled definition
FUNARG FNTYP returns the symbol FUNARG if FN is a FUNARG expression.

EXP, FEXPR, EXPR*, and FEXPR* indicate that FN is defined by an expr definition.  CEXPR, CFEXPR,
CEXPR*, and CFEXPR* indicate that FN is defined by a compiled definition, as indicated by the
prefix C.  The suffix * indicates that FN has an indefinite number of arguments, i.e., is a
nospread function.  The prefix F indicates unevaluated arguments.  Thus, for example, a
CFEXPR* is a compiled nospread nlambda function.

(EXPRP FN)  [Function]

Returns T if (FNTYP FN) is EXPR, FEXPR, EXPR*, or FEXPR*;  NIL otherwise.  However, (EXPRP FN) is
also true if FN is (has) a list definition, even if it does not begin with LAMBDA or NLAMBDA.  In
other words, EXPRP is not quite as selective as FNTYP.

(CCODEP FN)  [Function]

Returns T if (FNTYP FN) is either CEXPR, CFEXPR, CEXPR*, or CFEXPR*;  NIL otherwise. 

(ARGTYPE FN)  [Function]

FN is the name of a function or its definition.  ARGTYPE returns 0, 1, 2, or 3, or NIL if FN is not a
function.   ARGTYPE corresponds to the rows of FNTYPs.   The interpretation of this value is as
follows:

0 Lambda-spread function (EXPR, CEXPR)
1 Nlambda-spread function (FEXPR, CFEXPR) 



10-6

INTERLISP-D REFERENCE MANUAL

2 Lambda-nospread function (EXPR*, CEXPR*)
3 Nlambda-nospread function (FEXPR*, CFEXPR*)

(NARGS FN)  [Function]

Returns the number of arguments of FN, or NIL if FN is not a function.  If FN is a nospread
function, the value of NARGS is 1.

(ARGLIST FN)  [Function]

Returns the “argument list” for FN.  Note that the “argument list” is a symbol for
nospread functions.  Since NIL is a possible value for ARGLIST, the error Args not available is
generated if FN is not a function.

If FN is a compiled function, the argument list is constructed, i.e., each call to ARGLIST
requires making a new list.  For functions defined by expr definitions, lists beginning with
LAMBDA or NLAMBDA, the argument list is simply CADR of GETD.  If FN has an expr definition, and
CAR of the definition is not LAMBDA or NLAMBDA, ARGLIST will check to see if CAR of the definition is
a member of LAMBDASPLST (see Chapter 20).  If it is, ARGLIST presumes this is a function object
the user is defining via DWIMUSERFORMS, and simply returns CADR of the definition as its
argument list.  Otherwise ARGLIST generates an error as described above.

(SMARTARGLIST FN EXPLAINFLG TAIL)  [Function]

A “smart” version of ARGLIST that tries various strategies to get the arglist of FN.

First SMARTARGLIST checks the property list of FN under the property ARGNAMES.  For spread
functions, the argument list itself is stored.  For nospread functions, the form is (NIL
ARGLIST1 . ARGLIST2), where ARGLIST1 is the value SMARTARGLIST should return when EXPLAINFLG

= T, and ARGLIST2 the value when EXPLAINFLG = NIL.  For example, (GETPROP ’DEFINEQ

’ARGNAMES) = (NIL (X1 Xl ... XN) . X).  This allows the user to specify special argument lists.

Second, if FN is not defined as a function, SMARTARGLIST attempts spelling correction on FN
by calling FNCHECK (see Chapter 20), passing TAIL to be used for the call to FIXSPELL.  If
unsuccessful, the FN Not a function error will be generated.

Third, if FN is known to the file package (see Chapter 17) but not loaded in, SMARTARGLIST
will obtain the arglist information from the file.

Otherwise, SMARTARGLIST simply returns (ARGLIST FN).

SMARTARGLIST is used by BREAK (see Chapter 15) and ADVISE with EXPLAINFLG = NIL for
constructing equivalent expr definitions, and by the TTYIN in-line command ?= (see Chapter
26), with EXPLAINFLG = T. 

Defining Functions

Function definitions are stored in a “function definition cell” associated with each symbol.  This cell is
directly accessible via the two functions PUTD and GETD (see below), but it is usually easier to define
functions with DEFINEQ:



10-7

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

(DEFINEQ X1 X2 ... XN)  [NLambda NoSpread Function]

DEFINEQ is the function normally used for defining functions.  It takes an indefinite number
of arguments which are not evaluated.  Each Xi must be a list defining one function, of the
form (NAME DEFINITION).  For example:

(DEFINEQ (DOUBLE (LAMBDA (X) (IPLUS X X))))

The above expression will define the function DOUBLE with the expr definition (LAMBDA (X)

(IPLUS X X)).  Xi may also have the form (NAME ARGS . DEF-BODY), in which case an appropriate
lambda expr definition will be constructed.  Therefore, the above expression is exactly the
same as:

(DEFINEQ (DOUBLE (X) (IPLUS X X)))

Note that this alternate form can only be used for lambda functions.  The first form must
be used to define an nlambda function.

DEFINEQ returns a list of the names of the functions defined.

(DEFINE X —)  [Function]

Lambda-spread version of DEFINEQ.  Each element of the list X is itself a list either of the
form (NAME DEFINITION) or (NAME ARGS . DEF-BODY).  DEFINE will generate an error, Incorrect

defining form on encountering an atom where a defining list is expected.

DEFINE and DEFINEQ operate correctly if the function is already defined and BROKEN, ADVISED, or BROKEN-IN.

For expressions involving type-in only, if the time stamp facility is enabled (see the Time Stamps
section of Chapter 16), both DEFINE and DEFINEQ stamp the definition with your initials and date.

UNSAFE.TO.MODIFY.FNS  [Variable]

Value is a list of functions that should not be redefined, because doing so may cause
unusual bugs (or crash the system!).  If you try to modify a function on this list (using
DEFINEQ, TRACE, etc), the system prints Warning: XXX may be unsafe to modify -- continue?  If you
type Yes, the function is modified, otherwise an error occurs.  This provides a measure of
safety for novices who may accidently redefine important system functions.  You can add
your own functions onto this list.

By convention, all functions starting with the character backslash (“\”) are system internal
functions, which you should never redefine or modify.  Backslash functions are not on
UNSAFE.TO.MODIFY.FNS, so trying to redefine them will not cause a warning.

DFNFLG  [Variable]

DFNFLG is a global variable that affects the operation of DEFINEQ and DEFINE.  If DFNFLG=NIL, an
attempt to redefine a function FN will cause DEFINE to print the message (FN REDEFINED) and to
save the old definition of FN using SAVEDEF (see the Functions for Manipulating Typed
Definitions section of Chapter 17) before redefining it (except if the old and new
definitions are EQUAL, in which case the effect is simply a no-op).  If DFNFLG=T, the function is
simply redefined.  If DFNFLG=PROP or ALLPROP, the new definition is stored on the property list
under the property EXPR.  ALLPROP also affects the operation of RPAQQ and RPAQ (see the
Functions Used Within Source Files section of Chapter 17).  DFNFLG is initially NIL.



10-8

INTERLISP-D REFERENCE MANUAL

DFNFLG is reset by LOAD (see the Loading Files section of Chapter 17) to enable various ways
of handling the defining of functions and setting of variables when loading a file.  For
most applications, the user will not reset DFNFLG directly.

Note:  The compiler does not respect the value of DFNFLG when it redefines functions to their
compiled definitions (see the first page of Chapter 18).  Therefore, if you set DFNFLG to PROP
to completely avoid inadvertantly redefining something in your running system, you must
use compile mode F, not ST.

Note that the functions SAVEDEF and UNSAVEDEF (see the Functions for Manipulating Typed
Definitions section of Chapter 17) can be useful for “saving” and restoring function
definitions from property lists.

(GETD FN)  [Function]

Returns the function definition of FN.  Returns NIL if FN is not a symbol, or has no
definition.

GETD of a compiled function constructs a pointer to the definition, with the result that two
successive calls do not necessarily produce EQ results.  EQP or EQUAL must be used to compare
compiled definitions.

(PUTD FN DEF —)  [Function]

Puts DEF into FN’s function cell, and returns DEF. Generates an error, Arg not symbol, if FN is
not a symbol.  Generates an error, Illegal arg, if DEF is a string, number, or a symbol other
than NIL.

(MOVD FROM TO COPYFLG —)  [Function]

Moves the definition of FROM to TO, i.e., redefines TO.  If COPYFLG = T, a COPY of the
definition of FROM is used.  COPYFLG =T is only meaningful for expr definitions, although
MOVD works for compiled functions as well.  MOVD returns TO.

COPYDEF (see the Functions for Manipulating Typed Definitions section of Chapter 17) is a
higher-level function that not only moves expr definitions, but works also for variables,
records, etc.

(MOVD? FROM TO COPYFLG —)  [Function]

If TO is not defined, same as (MOVD FROM TO COPYFLG).  Otherwise, does nothing and
returns NIL.

Function Evaluation

Usually, function application is done automatically by the Interlisp interpreter.  If a form is typed into
Interlisp whose CAR is a function, this function is applied to the arguments in the CDR of the form.  These
arguments are evaluated or not, and bound to the funcion parameters, as determined by the type of
the function, and the body of the function is evaluated.  This sequence is repeated as each form in the
body of the function is evaluated.

There are some situations where it is necessary to explicitly call the evaluator, and Interlisp supplies a
number of functions that will do this.  These functions take “functional arguments,” which may either



10-9

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

be symbols with function definitions, or expr definition forms such as (LAMBDA (X)...), or FUNARG
expressions. 

(APPLY FN ARGLIST —)  [Function]

Applies the function FN to the arguments in the list ARGLIST, and returns its value.  APPLY
is a lambda function, so its arguments are evaluated, but the individual elements of
ARGLIST are not evaluated.  Therefore, lambda and nlambda functions are treated the
same by APPLY—lambda functions take their arguments from ARGLIST without evaluating
them.  For example:

← (APPLY ’APPEND ’((PLUS 1 2 3)(4 5 6))) 
(PLUS 1 2 3 4 5 6)

Note that FN may explicitly evaluate one or more of its arguments itself.  For example, the
system function SETQ is an nlambda function that explicitly evaluates its second argument.
Therefore, (APPLY ’SETQ ’(FOO (ADD1 3)))will set FOO to 4, instead of setting it to the expression
(ADD1 3).

APPLY can be used for manipulating expr definitions.  For example:
← (APPLY ’(LAMBDA (X Y)(ITIMES X Y)) ’(3 4))) 

12

(APPLY* FN ARG1 ARG2 ... ARGN )  [NoSpread Function]

Nospread version of APPLY.  Applies the function FN to the arguments ARG1 ARG2 ...
ARGN.  For example: 

← (APPLY ’APPEND ’(PLUS 1 2 3)(4 5 6)) 
(PLUS 1 2 3 4 5 6)

(EVAL X—)  [Function]

EVAL evaluates the expression X and returns this value, i.e., EVAL provides a way of calling
the Interlisp interpreter.  Note that EVAL is itself a lambda function, so its argument is first
evaluated, e.g.:

← (SETQ FOO ’ADD1 3)))
(ADD1 3)

←(EVAL FOO)
4

←(EVAL ’FOO)
(ADD1 3)

(QUOTE X)  [Nlambda NoSpread Function]

QUOTE prevents its arguments from being evaluated.  Its value is X itself, e.g., (QUOTE FOO) is
FOO.

Interlisp functions can either evaluate or not evaluate their arguments.  QUOTE can be used
in those cases where it is desirable to specify arguments unevaluated.

The single-quote character (’) is defined with a read macro so it returns the next
expression, wrapped in a call to QUOTE (see Chapter 25).  For example, ’FOO reads as
(QUOTE FOO).  This is the form used for examples in this manual.

Since giving QUOTE more than one argument is almost always a parenthese error, and one
that would otherewise go undetected, QUOTE itself generates an error in this case, Parenthesis
error.



10-10

INTERLISP-D REFERENCE MANUAL

(KWOTE X)  [Function]

Value is an expression which, when evaluated, yields X.  If X is NIL or a number, this is X
itself.  Otherwise (LIST (QUOTE QUOTE) X).  For example:

(KWOTE 5) => 5
(KWOTE (CONS ’A ’B)) => (QUOTE (A.B))

(NLAMBDA.ARGS X)  [Function]

This function interprets its argument as a list of unevaluated nlambda arguments.  If any
of the elements in this list are of the form (QUOTE...), the enclosing QUOTE is stripped off.
Actually, NLAMBDA.ARGS stops processing the list after the first non-quoted argument.
Therefore, whereas (NLAMBDA.ARGS ’((QUOTE FOO) BAR)) -> (FOO BAR),  (NLAMBDA.ARGS ’(FOO (QUOTE
BAR))) -> (FOO (QUOTE BAR)).

NLAMBDA.ARGS is alled by a number of nlambda functions in the system, to interpret their
arguments.  For instance, the function BREAK calls NLAMBDA.ARGS so that (BREAK ’FOO) will break
the function FOO, rather than the function QUOTE.

(EVALA X A)  [Function]

Simulates association list variable lookup.  X is a form, A is a list of the form:

((NAME1 . VAL1) (NAME2 . VAL2)... (NAMEN . VALN))

The variable names and values in A are “spread” on the stack, and then X is evaluated.
Therefore, any variables appearing free in X that also appears as CAR of an element of A will
be given the value on the CDR of that element.

(DEFEVAL TYPE FN)  [Function]

Specifies how a datum of a particular type is to be evaluated.  Intended primarily for user-
defined data types, but works for all data types except lists, literal atoms, and numbers.
TYPE is a type name.  FN is a function object, i.e., name of a function or a lambda
expression.  Whenever the interpreter encounters a datum of the indicated type, FN is
applied to the datum and its value returned as the result of the evaluation.  DEFEVAL returns
the previous evaling function for this type.  If FN = NIL, DEFEVAL returns the current evaling
function without changing it.  If FN = T, the evaling functions is set back to the system
default (which for all data types except lists is to return the datum itself).

COMPILETYPELST (see Chapter 18) permits the user to specify how a datum of a particular type
is to be compiled.

(EVALHOOK FORM EVALHOOKFN)  [Function]

EVALHOOK evaluates the expression FORM, and returns its value.  While evaluating FORM, the
function EVAL behaves in a special way.  Whenever a list other than FORM itself is to be
evaluated, whether implicitly or via an explicit call to EVAL, EVALHOOKFN is invoked (it
should be a function), with the form to be evaluated as its argument.  EVALHOOKFN is then
responsible for evaluating the form.  Whatever is returned is assume to be the result of
evaluating the form.  During the execution of EVALHOOKFN, this special evaluation is
turned off.  (Note that EVALHOOK does not affect the evaluations of variables, only of lists).

Here is an example of a simple tracing routine that uses the EVALHOOK feature:



10-11

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

←(DEFINEQ (PRINTHOOK (FORM)
(printout T "eval: "FORM T)
(EVALHOOK FORM (FUNCTION PRINTHOOK
(PRINTHOOK)

Using PRINTHOOK, one might see the following interaction:
←(EVALHOOK ’(LIST (CONS 1 2)(CONS 3 4)) ’PRINTHOOK)

eval: (CONS 1 2)
eval: (CONS 3 4)
((1.2)(3.4))

Iterating and Mapping Functions

The functions below are used to evaluate a form or apply a function repeatedly.  RPT, RPTQ, and FRPTQ
evaluate an expression a specified number of time.  MAP, MAPCAR, MAPLIST, etc., apply a given function
repeatedly to different elements of a list, possibly constructing another list.

These functions allow efficient iterative computations, but they are difficult to use.  For programming
iterative computations, it is usually better to use the CLISP Iterative Statement facility (see Chapter 9),
which provides a more general and complete facility for expressing iterative statements.  Whenever
possible, CLISP transltes iterative statements into expressions using the functions below, so there is no
efficiency loss.

(RPT N FORM)  [Function]

Evaluates the expression FORM, N times.  Returns the value of the last evaluation.  If N is
less than or equal to 0, FORM is not evaluated, and RPT returns NIL.

Before each evaluation, the local variable RPTN is bound to the number of evaluations yet to
take place.  This variable can be referenced within FORM.  For example, (RPT 10 ’(PRINT

RPTN)) will print the numbers 10, 9...1, and return 1.

(RPTQ N FORM1 FORM2... FORMN)  [NLambda NoSpread Function]

Nlambda-nospread version of RPT:  N is evaluated, FORMi are not.  Returns the value of the
last evaluation of FORMN.

(FRPTQ N FORM1 FORM2... FORMN)  [NLambda NoSpread Function]

Faster version of RPTQ.  Does not bind RPTN.

(MAP MAPX MAPFN1 MAPFN2)   [Function]

If MAPFN2 is NIL, MAP applies the function MAPFN1 to successive tails of the list MAPX.  That is,
first it computes (MAPFN1 MAPX), and then (MAPFN1 (CDR MAPX)), etc., until MAPX becomes
a non-list.  If MAPFN2 is provided, (MAPFN2 MAPX) is used instead of (CDR MAPX) for the
next call for MAPFN1, e.g., if MAPFN2 were CDDR, alternate elements of the list would be
skipped.  MAP returns NIL.

(MAPC MAPX MAPFN1 MAPFN2)   [Function]

Identical to MAP, except that (MAPFN1 (CAR MAPX)) is computed at each iteration instead of
(MAPFN1 MAPX), i.e., MAPC works on elements, MAP on tails. MAPC returns NIL.



10-12

INTERLISP-D REFERENCE MANUAL

(MAPLIST MAPX MAPFN1 MAPFN2)   [Function]

Successively computes the same values that MAP would compute, and returns a list
consisting of those values. 

(MAPCAR MAPX MAPFN1 MAPFN2)   [Function]

Computes the same values that MAPC would compute, and returns a list consisting of those
values, e.g., (MAPCAR X ’FNTYP) is a list of FNTYPs for each element on X.

(MAPCON MAPX MAPFN1 MAPFN2)   [Function]

Computes the same values that MAP and MAPLIST but NCONCs these values to form a list which
it returns.

(MAPCONC MAPX MAPFN1 MAPFN2)   [Function]

Computes the same values that MAPC and MAPCAR, but NCONCs the values to form a list which it
returns.

Note that MAPCAR creates a new list which is a mapping of the old list in that each element of the new list
is the result of applying a function to the corresponding element on the original list.  MAPCONC is used
when there are a variable number of elements (including none) to be inserted at each iteration.
Examples:
(MAPCONC ’(A B C NIL D NIL) ’(LAMBDA (Y)(if (NULL Y) then NIL

else (LIST Y)))) = > (A B C D)

This MAPCONC returns a list consisting of MAPX with all NILs removed.

(MAPCONC ’((A B) C (D E F)(G) H I) ’(LAMBDA (Y)(if (LISP Y) then Y
else NIL))) = > (A B D E F G)

This MAPCONC returns a linear list consisting of all the lists on MAPX.

Since MAPCONC uses NCONC to string the corresponding lists together, in this example the original list will
be altered to be ((A B C D E F G) C (D E F G)(G) H I).  If this is an undesirable side effect, the functional
argument to MAPCONC should return instead a top level copy of the lists, i.e., (LAMBDA (Y) (if (LISTP Y) then
(APPERND Y) else NIL))).

(MAP2C MAPX MAPY MAPFN1 MAPFN2)   [Function]

Identical to MAPC except MAPFN1 is a function of two arguments, and (MAPFN1 (CAR

MAPX)(CAR MAPY)) is computed at each iteration.  Terminates when either MAPX or MAPY is a
non-list.

MAPFN2 is still a function of one argument, and is applied twice on each iteration;
(MAPFN2 MAPX) gives the new MAPX, (MAPFN2 MAPY) the new MAPY.  CDR is used if MAPFN2
is not supplied, i.e., is NIL.

(MAP2CAR MAPX MAPY MAPFN1 MAPFN2)   [Function]

Identical to MAPCAR except MAPFN1 is a function of two arguments, and (MAPFN1 (CAR

MAPX)(CAR MAPY)) is used to assemble the new list.  Terminates when either MAPX or MAPY
is a non-list.



10-13

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

(SUBSET MAPX MAPFN1 MAPFN2)   [Function]

Applies  MAPFN1 to elements of MAPX and returns a list of those elements for which this
application is non-NIL, e.g.:

(SUBSET ’(A B 3 C 4) ’NUMBERP) = (3 4)

MAPFN2 plays the same role as with MAP, MAPC, et al.

(EVERY EVERYX EVERYFN1 EVERYFN2)   [Function]

Returns T if the result of applying EVERYFN1 to each element in EVERYX is true, otherwise
NIL.  For example, (EVERY ’(X Y Z) ’ATOM) => T.

EVERY operates by evaluating (EVERYFN1 (CAR EVERYX) EVERYX).  The second argument is
passed to EVERYFN1 so that it can look at the next element on EVERYX if necessary.  If
EVERYFN1 yields NIL, EVERY immediately returns NIL.  Otherwise, EVERY computes (EVERYFN2
EVERYX), or (CDR EVERYX) if EVERYFN2 = NIL, and uses this as the “new” EVERYX, and the
process continues.  For example (EVERY X ’ATOM ’CDDR) is true if every other element of X is
atomic.

(SOME SOMEX SOMEFN1 SOMEFN2)   [Function]

Returns the tail of SOMEX beginning with the first element that satisfies SOMEFN1, i.e., for
which SOMEFN1 applied to that element is true.  Value is NIL if no such element exists. 
(SOME X ’(LAMBDA (Z) (EQUAL Z Y))) is equivalent to (MEMBER Y X).  SOME operates analogously to
EVERY.  At each stage, (SOMEFN1 (CAR SOMEX) SOMEX) is computed, and if this not NIL, SOMEX
is returned as the value of SOME.  Otherwise, (SOMEFN2 SOMEX) is computed, or (CDR SOMEX)
if SOMEFN2 = NIL, and used for the next SOMEX.

(NOTANY SOMEX SOMEFN1 SOMEFN2)   [Function]

(NOT (SOME SOMEX SOMEFN1 SOMEFN2)).

(NOTEVERY EVERYX EVERYFN1 EVERYFN2)   [Function]

(NOT (EVERY EVERYX EVERYFN1 EVERYFN2)).

(MAPRINT LST FILE LEFT RIGHT SEP PFN LISPXPRINTFLG)   [Function]

A general printing function.  For each element of the list LST, applies PFN to the element,
and FILE.  If PFN is NIL, PRIN1 is used.  Between each application MAPRINT performs PRIN1 of
SEP (or "" if SEP = NIL).  If LEFT is given, it is printed (using PRIN1) initially;  if RIGHT is
given, it is printed (using PRIN1) at the end.

For example, (MAPRINT X NIL ’%( ’%)) is equivalent to PRIN1 for lists.  To print a list with
commas between each element and a final “.” one could use (MAPRINT X T NIL ’%. ’%,).

If LISPXPRINTFLG = T, LISPXPRIN1 (see Chapter 13) is used instead of PRIN1.



10-14

INTERLISP-D REFERENCE MANUAL

Functional Arguments

The functions that call the Interlisp-D evaluator take “functional arguments,” which may  be symbols
with function definitions, or expr definition forms such as (LAMBDA (X) ...).

The following functions are useful when one wants to supply a functional argument which will
always return NIL, T, or 0.  Note that the arguments X1 ... XN to these functions are evaluated,

though they are not used.

(NILL X1 ... XN )   [NoSpread Function]

Returns NIL.

(TRUE X1 ... XN )   [NoSpread Function]

Returns T.

(ZERO X1 ... XN )   [NoSpread Function]

Returns 0.

When using expr definitions as function arguments, they should be enclosed within the function
FUNCTION rather than QUOTE, so that they will be compiled as separate functions.

(FUNCTION FN ENV )   [NLambda Function]

If ENV = NIL, FUNCTION is the same as QUOTE, except that it is treated differently when
compiled.  Consider the function definition:
(DEFINEQ (FOO (LST)(FIE LST (FUNCTION (LAMBDA (Z)(ITIMES Z Z))]

FOO calls the function FIE with the value of LST and the expr definition (LAMBDA (Z)(LIST (CAR
Z))).

If FOO is run interpreted, it does not make any difference whether FUNCTION or QUOTE is used.
However, when FOO is compiled, if FUNCTION is used the compiler will define and compile the
expr definition as an auxiliary function (see Chapter 18).  The compiled expr definition
will run considerably faster, which can make a big difference if it is applied repeatedly.

Compiling FUNCTION will not create an auxiliary function if it is a functional argument to a
function that compiles open, such as most of the mapping functions (MAPCAR, MAPLIST, etc.).

If ENV is not NIL, it can be a list of variables that are (presumably) used freely by FN.  ENV
can also be an atom, in which case it is evaluated, and the value interpreted as described
above.

Macros

Macros provide an alternative way of specifying the action of a function.  Whereas function
definitions are evaluated with a “function call”, which involves binding variables and other
housekeeping tasks, macros are evaluated by translating one Interlisp form into another, which is then
evaluated.

A symbol may have both a function definition and a macro definition.  When a form is evaluated by
the interpreter, if the CAR has a function definition, it is used (with a function call), otherwise if it has a



10-15

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

macro definition, then that is used.  However, when a form is compiled, the CAR is checked for a macro
definition first, and only if there isn’t one is the function definition compiled.  This allows functions
that behave differently when compiled and interpreted.  For example, it is possible to define a
function that, when interpreted, has a function definition that is slow and has a lot of error checks, for
use when debugging a system.  This function could also have a macro definition that defines a fast
version of the function, which is used when the debugged system is compiled.

Macro definitions are represented by lists that are stored on the property list of a symbol.  Macros are
often used for functions that should be compiled differently in different Interlisp implementations,
and the exact property name a macro definition is stored under determines whether it should be used
in a particular implementation.  The global variable MACROPROPS contains a list of all possible macro
property names which should be saved by the MACROS file package command.  Typical macro property
names are DMACRO for Interlisp-D, 10MACRO for Interlisp-10, VAXMACRO for Interlisp-VAX, JMACRO for Interlisp-
Jerico, and MACRO for “implementation independent” macros.  The global variable COMPILERMACROPROPS is a
list of macro property names.  Interlisp determines whether a symbol has a macro definition by
checking these property names, in order, and using the first non-NIL property value as the macro
definition.  In Interlisp-D this list contains DMACRO and MACRO in that order so that DMACROs will override the
implementation-independent MACRO properties.  In general, use a DMACRO property for macros that are to
be used only in Interlisp-D, use 10MACRO for macros that are to be used only in Interlisp-10, and use MACRO
for macros that are to affect both systems.

Macro definitions can take the following forms:

(LAMBDA ...)
(NLAMBDA ...) A function can be made to compile open by giving it a macro definition

of the form (LAMBDA ...) or (NLAMBDA ...), e.g., (LAMBDA (X) (COND ((GREATERP X
0) X) (T (MINUS X)))) for ABS.  The effect is as if the macro definition were
written in place of the function wherever it appears in a function being
compiled, i.e., it compiles as a lambda or nlambda expression.  This
saves the time necessary to call the function at the price of more
compiled code generated in-line.

(NIL EXPRESSION)
(LIST EXPRESSION) “Substitution” macro.  Each argument in the form being evaluated or

compiled is substituted for the corresponding atom in LIST, and the
result of the substitution is used instead of the form.  For example, if the
macro definition of ADD1 is ((X) (IPLUS X 1)), then, (ADD1 (CAR Y)) is
compiled as (IPLUS (CAR Y) 1).

Note that ABS could be defined by the substitution macro ((X) (COND

((GREATERP X 0) X) (T (MINUS X)))).  In this case, however, (ABS (FOO X))

would compile as
(COND ((GREATERP (FOO X) 0)
  (FOO X))
 (T (MINUS (FOO X))))

and (FOO X) would be evaluated two times.  (Code to evaluate (FOO X)

would be generated three times.)

(OPENLAMBDA ARGS BODY) This is a cross between substitution and LAMBDA macros.  When the
compiler processes an OPENLAMBDA, it attempts to substitute the actual
arguments for the formals wherever this preserves the frequency and



10-16

INTERLISP-D REFERENCE MANUAL

order of evaluation that would have resulted from a LAMBDA expression,
and produces a LAMBDA binding only for those that require it.

Note:  OPENLAMBDA assumes that it can substitute literally the actual
arguments for the formal arguments in the body of the macro if the
actual is side-effect free or a constant. Thus, you should be careful to use
names in ARGS which don’t occur in BODY (except as variable
references).  For example, if FOO has a macro definition of
(OPENLAMBDA (ENV) (FETCH (MY-RECORD-TYPE ENV) OF BAR))

then (FOO NIL) will expand to
(FETCH (MY-RECORD-TYPE NIL) OF BAR)

T When a macro definition is the atom T, it means that the compiler
should ignore the macro, and compile the function definition; this is a
simple way of turning off other macros.  For example, the user may
have a function that runs in both Interlisp-D and Interlisp-10, but has a
macro definition that should only be used when compiling in Interlisp-
10.  If the MACRO property has the macro specification, a DMACRO of T will
cause it to be ignored by the Interlisp-D compiler.  This DMACRO would not
be necessary if the macro were specified by a 10MACRO instead of a MACRO.

(= . OTHER-FUNCTION) A simple way to tell the compiler to compile one function exactly as it
would compile another.  For example, when compiling in Interlisp-D,
FRPLACAs are treated as RPLACAs.  This is achieved by having FRPLACA have a
DMACRO of (= . RPLACA).

(LITATOM EXPRESSION) If a macro definition begins with a symbol other than those given above,
this allows computation of the Interlisp expression to be evaluated or
compiled in place of the form.  LITATOM is bound to the CDR of the calling
form, EXPRESSION is evaluated, and the result of this evaluation is
evaluated or compiled in place of the form.  For example, LIST could be
compiled using the computed macro:
[X (LIST ’CONS (CAR X)(AND (CDR X)(CONS ’LIST (CDR X]

This would cause (LIST X Y Z) to compile as (CONS X (CONS Y (CONS Z NIL))).
Note the recursion in the macro expansion.

If the result of the evaluation is the symbol IGNOREMACRO, the macro is
ignored and the compilation of the expression proceeds as if there were
no macro definition.  If the symbol in question is normally treated
specially by the compiler (CAR, CDR, COND, AND, etc.), and also has a macro, if
the macro expansion returns IGNOREMACRO, the symbol will still be treated
specially.

In Interlisp-10, if the result of the evaluation is the atom INSTRUCTIONS, no
code will be generated by the compiler.  It is then assumed the
evaluation was done for effect and the necessary code, if any, has been
added.  This is a way of giving direct instructions to the compiler if you
understand it.



10-17

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

It is often useful, when constructing complex macro expressions, to use
the BQUOTE facility (see the Read Macros section of Chapter 25).

The following function is quite useful for debugging macro definitions:

(EXPANDMACRO EXP QUIETFLG — —)  [Function]

Takes a form whose CAR has a macro definition and expands the form as it would be
compiled.  The result is prettyprinted, unless QUIETFLG=T, in which case the result is
simply returned.

Note:  EXPANDMACRO only works on Interlisp macros.  Use CL:MACROEXPAND-1 to expand Interlisp
macros visible to the Common Lisp interpreter and compliler.

DEFMACRO

Macros defined with the function DEFMACRO are much like “computed” macros (see the above section), in
that they are defined with a form that is evaluated, and the result of the evaluation is used (evaluated
or compiled) in place of the macro call.  However, DEFMACRO macros support complex argument lists
with optional arguments, default values, and keyword arguments as well as argument list
destructuring.

(DEFMACRO NAME ARGS FORM)  [NLambda NoSpread Function]

Defines NAME as a macro with the arguments ARGS and the definition form FORM (NAME,
ARGS, and FORM are unevaluated).  If an expression starting with NAME is evaluated or
compiled, arguments are bound according to ARGS, FORM is evaluated, and the value of
FORM is evaluated or compiled instead.  The interpretation of ARGS is described below.

Note: Like the function DEFMACRO in Common Lisp, this function currently removes any
function definition for NAME.

ARGS is a list that defines how the argument list passed to the macro NAME is interpreted.
Specifically, ARGS defines a set of variables that are set to various arguments in the macro
call (unevaluated), that FORM can reference to construct the macro form.

In the simplest case, ARGS is a simple list of variable names that are set to the
corresponding elements of the macro call (unevaluated).  For example, given:

(DEFMACRO FOO (A B) (LIST ’PLUS A B B))

The macro call (FOO X (BAR Y Z)) will expand to (PLUS X (BAR Y Z) (BAR Y Z)).

“&-keywords” (beginning with the character “&”) that are used to set variables to particular
items from the macro call form, as follows:

&OPTIONAL Used to define optional arguments, possibly with default values.  Each
element on ARGS after &OPTIONAL until the next &-keyword or the end of
the list defines an optional argument, which can either be a symbol or a
list, interpreted as follows:

VAR

If an optional argument is specified as a symbol, that variable is set to
the corresponding element of the macro call (unevaluated).



10-18

INTERLISP-D REFERENCE MANUAL

(VAR DEFAULT)

If an optional argument is specified as a two element list, VAR is the
variable to be set, and DEFAULT is a form that is evaluated and used as
the default if there is no corresponding element in the macro call.

(VAR DEFAULT VARSETP)

If an optional argument is specified as a three element list, VAR and
DEFAULT are the variable to be set and the default form, and VARSETP
is a variable that is set to T if the optional argument is given in the macro
call, NIL otherwise.  This can be used to determine whether the argument
was not given, or whether it was specified with the default value.

For example, after (DEFMACRO FOO (&OPTIONAL A (B 5) (C 6 CSET)) FORM)

expanding the macro call (FOO) would cause FORM to be evaluated with A
set to NIL, B set to 5, C set to 6, and CSET set to NIL.  (FOO 4 5 6) would be the
same, except that A would be set to 4 and CSET would be set to T.

&REST
&BODY Used to get a list of all additional arguments from the macro call.  Either

&REST or &BODY should be followed by a single symbol, which is set to a list
of all arguments to the macro after the position of the &-keyword.  For
example, given
(DEFMACRO FOO (A B &REST C) FORM)

expanding the macro call (FOO 1 2 3 4 5) would cause FORM to be
evaluated with A set to 1, B set to 2, and C set to (3 4 5).

If the macro calling form contains keyword arguments (see &KEY below),
these are included in the &REST list. 

&KEY Used to define keyword arguments, that are specified in the macro call
by including a “keyword” (a symbol starting with the character “:”)
followed by a value.

Each element on ARGS after &KEY until the next &-keyword or the end of the
list defines a keyword argument, which can either be a symbol or a list,
interpreted as follows:

VAR
(VAR)
((KEYWORD VAR))

If a keyword argument is specified by a single symbol VAR, or a one-
element list containing VAR, it is set to the value of a keyword
argument, where the keyword used is created by adding the character
“:” to the front of VAR.  If a keyword argument is specified by a single-
element list containing a two-element list, KEYWORD is interpreted as the
keyword (which should start with the letter “:”), and VAR is the variable
to set.

(VAR DEFAULT)
((KEYWORD VAR) DEFAULT)



10-19

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

(VAR DEFAULT VARSETP)
((KEYWORD VAR) DEFAULT VARSETP)

If a keyword argument is specified by a two- or three-element list, the
first element of the list specifies the keyword and variable to set as
above.  Similar to &OPTIONAL (above), the second element DEFAULT is a
form that is evaluated and used as the default if there is no
corresponding element in the macro call, and the third element
VARSETP is a variable that is set to T if the optional argument is given in
the macro call, NIL otherwise.

For example, the form
(DEFMACRO FOO (&KEY A (B 5 BSET) ((:BAR C) 6 CSET)) FORM)

Defines a macro with keys :A, :B (defaulting to 5), and :BAR.  Expanding
the macro call (FOO :BAR 2 :A 1) would cause FORM to be evaluated with A
set to 1, B set to 5, BSET set to NIL, C set to 2, and CSET set to T.

&ALLOW-OTHER-KEYS It is an error for any keywords to be supplied in a macro call that are
not defined as keywords in the macro argument list, unless either the &-
keyword &ALLOW-OTHER-KEYS appears in ARGS, or the keyword :ALLOW-OTHER-
KEYS (with a non-NIL value) appears in the macro call.

&AUX Used to bind and initialize auxiliary varables, using a syntax similar to
PROG (see the PROG and Associated Control Functions section of Chapter 9).
Any elements after &AUX should be either symbols or lists, interpreted as
follows:

VAR

Single symbols are interpreted as auxiliary variables that are initially
bound to NIL.

(VAR EXP)

If an auxiliary variable is specified as a two element list, VAR is a
variable initially bound to the result of evaluating the form EXP.

For example, given
(DEFMACRO FOO (A B &AUX C (D 5)) FORM)

C will be bound to NIL and D to 5 when FORM is evaluated.

&WHOLE Used to get the whole macro calling form.  Should be the first element
of ARGS, and should be followed by a single symbol, which is set to the
entire macro calling form.  Other &-keywords or arguments can follow.
For example, given
(DEFMACRO FOO (&WHOLE X A B) FORM)

Expanding the macro call (FOO 1 2) would cause FORM to be evaluated
with X set to (FOO 1 2), A set to 1, and B set to 2.

DEFMACRO macros also support argument list “destructuring,” a facility for
accessing the structure of individual arguments to a macro.  Any place



10-20

INTERLISP-D REFERENCE MANUAL

in an argument list where a symbol is expected, an argument list (in the
form described above) can appear instead.  Such an embedded
argument list is used to match the corresponding parts of that particular
argument, which should be a list structure in the same form.  In the
simplest case, where the embedded argument list does not include &-
keywords, this provides a simple way of picking apart list structures
passed as arguments to a macro.  For example, given
(DEFMACRO FOO (A (B (C . D)) E) FORM)

Expanding the macro call (FOO 1 (2 (3 4 5)) 6) would cause FORM to be
evaluated with with A set to 1, B set to 2, C set to 3, D set to (4 5), and E set
to 6.  Note that the embedded argument list (B (C . D)) has an embedded
argument list (C . D).  Also notice that if an argument list ends in a
dotted pair, that the final symbol matches the rest of the arguments in
the macro call.

An embedded argument list can also include &-keywords, for
interpreting parts of embedded list structures as if they appeared in a
top-level macro call.  For example, given
(DEFMACRO FOO (A (B &OPTIONAL (C 6)) D) FORM)

Expanding the macro call (FOO 1 (2) 3) would cause FORM to be evaluated
with with A set to 1, B set to 2, C set to 6 (because of the default value), and
D set to 3.

Warning: Embedded argument lists can only appear in positions in an
argument list where a list is otherwise not accepted.  In the above
example, it would not be possible to specify an embedded argument list
after the &OPTIONAL keyword, because it would be interpreted as an
optional argument specification (with variable name, default value, set
variable).  However, it would be possible to specify an embedded
argument list as the first element of an optional argument specification
list, as so:
(DEFMACRO FOO (A (B &OPTIONAL ((X (Y) Z)

’(1 (2) 3))) D) FORM)

In this case, X, Y, and Z default to 1, 2, and 3, respectively.  Note that the
“default” value has to be an appropriate list structure.  Also, in this case
either the whole structure (X (Y) Z) can be supplied, or it can be
defaulted (i.e., is not possible to specify X while letting Y default).

Interpreting Macros

When the interpreter encounters a form CAR of which is an undefined function, it tries interpreting it as
a macro.  If CAR of the form has a macro definition, the macro is expanded, and the result of this
expansion is evaluated in place of the original form.  CLISPTRAN (see the Miscellaneous Functions and
Variables section of Chapter 21) is used to save the result of this expansion so that the expansion only
has to be done once.  On subsequent occasions, the translation (expansion) is retrieved from CLISPARRAY
the same as for other CLISP constructs.

Note:  Because of the way that the evaluator processes macros, if you have a macro on FOO, then typing
(FOO ’A ’B) will work, but FOO(A B) will not work.



10-21


