FUNCTION DEFINITION, MANIPULATION AND EVALUATION

Medley is designed to help you define and debug functions. Developing an applications program
with Medley involves defining a number of functions in terms of the system primitives and other
user-defined functions. Once defined, your functions may be used exactly like Interlisp primitive
functions, so the programming process can be viewed as extending the Interlisp language to include
the required functionality.

A function’s definition specifies if the function has a fixed or variable number of arguments, whether
these arguments are evaluated or not, the function argument names, and a series of forms which
define the behavior of the function. For example:

(LAMBDA (X Y) (PRINT X) (PRINT Y))

This function has two evaluated arguments, x and v, and it will execute (prNT x) and (priNT v) When
evaluated. Other types of function definitions are described below.

A function is defined by putting an expr definition in the function definition cell of a symbol. There
are a number of functions for accessing and setting function definition cells, but one usually defines a
function with oeri neg (see the Defining Functions section below). For example:

<« (DEFINEQ (FOO (LAMBDA (X Y) (PRINT X) (PRINT Y))))(FOO

The expression above will define the function roo to have the expr definition (Laveba (x v) (PRINT X)
(PRINT V)). After being defined, this function may be evaluated just like any system function:
< (FQO 3 (IPLUS 3 4))

7

7
Not all function definition cells contain expr definitions. The compiler (see the first page of Chapter
18) translates expr definitions into compiled code objects, which execute much faster. Interlisp
provides a number of “function type functions” which determine how a given function is defined, the
number and names of function arguments, etc. See the Function Type Functions section below.

Usually, functions are evaluated automatically when they appear within another function or when
typed into Interlisp. However, sometimes it is useful to envoke the Interlisp interpreter explicitly to
apply a given “functional argument” to some data. There are a number of functions which will apply
a given function repeatedly. For example, mpcar will apply a function (or an expr definition) to all of
the elements of a list, and return the values returned by the function:
<~ (MAPCAR ' (1 2 3 4 5) '(LAMBDA (X) (ITIMES X X))
(1 49 16 25)

When using functional arguments, there are a number of problems which can arise, related to
accessing free variables from within a function argument. Many times these problems can be solved
using the function Funcri on to create a Funars Object.

The macro facility provides another way of specifying the behavior of a function (see the Macros
section below). Macros are very useful when developing code which should run very quickly, which
should be compiled differently than when it is interpreted, or which should run differently in
different implementations of Interlisp.

10-1

INTERLISP-D REFERENCE MANUAL

Function Types

10-2

Interlisp functions are defined using list expressions called “expr definitions.” An expr definition is a
list of the form (LAMBDA- WORD ARG LI ST FORM, ... FORM). LAMBDA- WORD determines whether
the arguments to this function will be evaluated or not. ARG LI ST determines the number and
names of arguments. FORM, ... FORM,are a series of forms to be evaluated after the arguments are
bound to the local variables in ARG LI ST.

If LAMBDA- WORD is the symbol Lawveoa, then the arguments to the function are evaluated. If LAVBDA-
WORD is the symbol navepa, then the arguments to the function are not evaluated. Functions which
evaluate or don’t evaluate their arguments are therefore known as “lambda” or “nlambda” functions,
respectively.

If ARG LI ST is nL or a list of symbols, this indicates a function with a fixed number of arguments.
Each symbol is the name of an argument for the function defined by this expression. The process of
binding these symbols to the individual arguments is called “spreading” the arguments, and the
function is called a “spread” function. If the argument list is any symbol other than wt, this
indicates a function with a variable number of arguments, known as a “nospread” function.

If ARG LI ST is anything other than a symbol or a list of symbols, such as (Laveba “Foor ...), attempting
to use this expr definition will generate an arg not symbol error. In addition, if nc or 7is used as an
argument name, the error attenpt to bind NiL or TiS generated.

These two parameters (lambda/nlambda and spread/nospread) may be specified independently, so
there are four nain function types, known as lambda-spread, nlanbda-spread, lanbda-nospread, and
nlambda-nospread functions. Each one has a different form and is used for a different purpose.
These four function types are described more fully below.

For lambda-spread, lanbda-nospread, or nlambda-spread functions, there is an upper limit to the
number of arguments that a function can have, based on the number of arguments that can be stored
on the stack on any one function call. Currently, the limit is 80 arguments. If a function is called with
more than that many arguments, the error too mny arguments occurs. However, nlambda-nospread
functions can be called with an arbitrary number of arguments, since the arguments are not
individually saved on the stack.

Lambda-Spread Functions

Lambda-spread functions take a fixed number of evaluated arguments. This is the most common
function type. A lambda-spread expr definition has the form:

(Laveba (ARG, ... ARG, FORM, ... FORMW)

The argument list (ARG, ... ARG, is a list of symbols that gives the number and names of the

formal arguments to the function. If the argument list is () or ~, this indicates that the function
takes no arguments. When a lambda-spread function is applied to some arguments, the arguments
are evaluated, and bound to the local variables ARG, ... ARG, Then, FORM, ... FORM, are

evaluated in order, and the value of the function is the value of FORM,.
< (DEFI NEQ (FOO (LAMBDA (X Y) (LIST X VY))))
(FOO

— (FOO 99 (PLUS 3 4))
(99 7)

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

In the above example, the function roo defined by (Laveba (x v) (LisT x v)) is applied to the arguments
99 and (rLus 3 4). These arguments are evaluated (giving 99 and 7), the local variable x is bound to 99
and vy to 7, (LisT x v) is evaluated, returning (99 7), and this is returned as the value of the function.

A standard feature of the Interlisp system is that no error occurs if a spread function is called with too
many or too few arguments. If a function is called with too many argumnents, the extra arguments
are evaluated but ignored. If a function is called with too few arguments, the unsupplied ones will be
delivered as n L. In fact, a spread function cannot distinguish between being given n L as an argument,
and not being given that argument, e.g., (Fog and (rFoo niL) are exactly the same for spread functions.
If it is necessary to distinguish between these two cases, use an nlambda function and explicitly
evaluate the arguments with the eva. function.

Nlambda-Spread Functions

Nlambda-spread functions take a fixed number of unevaluated arguments. An nlambda-spread expr
definition has the form:

(naveba (ARG, ... ARG, FORM ... FORMy

Nlambda-spread functions are evaluated similarly to lanbda-spread functions, except that the
arguments are not evaluated before being bound to the variables ARG, ... ARG,

<~ (DEFI NEQ (FOO (NLAMBDA (X Y) (LIST X Y))))
(FOO)

«~ (FOO 99 (PLUS 3 4))
(99 (PLUS 3 4))
In the above example, the function roo defined by (nLaveba (x v) (LIsT x v)) is applied to the arguments
99 and (pLus 3 4). These arguments are unevaluated to x and v. (LisT x vy is evaluated, returning (99
(pLUS 3 4)), and this is returned as the value of the function.

Functions can be defined so that all of their arguments are evaluated (lambda functions) or none are
evaluated (nlambda functions). If it is desirable to write a function which only evaluates some of its
arguments (e.g., serQ), the functions should be defined as an nlambda, with some arguments explicitly
evaluated using the function evaL. If this is done, the user should put the symbol evaL on the property
list of the function under the property inro. This informs various system packages, such as DWIM,
CLISP, and Masterscope, that this function in fact does evaluate its arguments, even though it is an
nlambda.

Warning: A frequent problem that occurs when evaluating arguments to nlambda functions with evac
is that the form being evaluated may reference variables that are not accessible within the nlambda
function. This is usually not a problem when interpreting code, but when the code is compiled, the
values of “local” variables may not be accessible on the stack (see Chapter 18). The system nlambda
functions that evaluate their arguments (such as serq) are expanded in-line by the compiler, so this is
not a problem. Using the macro facility is recommended in cases where it is necessary to evaluate
some arguments to an nlambda function.

Lambda-Nospread Functions

Lambda-nospread functions take a variable number of evaluated arguments. A lambda-nospread
expr definition has the form:

(Lavea VAR FORM, ... FORMy

10-3

INTERLISP-D REFERENCE MANUAL

10-4

VAR may be any symbol, except n. and 1. When a lambda-nospread function is applied to some
arguments, each of these arguments is evaluated and the values stored on the stack. VAR is then
bound to the number of arguments which have been evaluated. For example, if Foo is defined by
(LavBDA X ...), when (Foo A B ¢ is evaluated, , B, and c are evaluated and x is bound to 3. VAR should
never be reset

The following functions are used for accessing the arguments of lambda-nospread functions.

(ARGVAR M [NLambda Function]

Returns the Mh argument for the lambda-nospread function whose argument list is VAR
VAR is the name of the atomic argument list to a lambda-nospread function, and is not
evaluated. Mis the number of the desired argument, and is evaluated. The value of arc is
undefined for Mless than or equal to 0 or greater than the value of VAR

(SETARG VAR M X) [NLambda Function]

Sets the Mh argument for the lambda-nospread function whose argument list is VAR to X.
VAR s not evaluated; Mand X are evaluated. Mshould be between 1 and the value of VAR

In the example below, the function roo is defined to collect and return a list of all of the evaluated
arguments it is given (the value of the for statement).

<« (DEFI NEQ (FOO
(LAMBDA X (for ARGNUM from 1l to X collect (ARG X ARGNUM]
(FOO

< (FOD 99 (PLUS 3 4))
(99 7)

< (FOO 99 (PLUS 3 4)(TINES 3 4)))
(99 7 12)

NLambda-Nospread Functions

Nlambda-nospread functions take a variable number of unevaluated arguments. An nlambda-
nospread expr definition has the form:

(naveba VAR FORM, ... FORMy

VAR may be any symbol, except nL and 1. Though similar in form to lambda-nospread expr
definitions, an nlambda-nospread is evaluated quite differently. When an nlambda-nospread function
is applied to some arguments, VAR is simply bound to a list of the unevaluated arguments. The user
may pick apart this list, and evaluate different arguments.

In the example below, roo is defined to return the reverse of the list of arguments it is given
(unevaluated):
<« (DEFI NEQ (FOO (NLAMBDA X (REVERSE X))))
(FOO
< (FOO 99 (PLUS 3 4))
((PLUS 3 4) 99)
«— (FOO 99 (PLUS 3 4)(TIMES 3 4))
(TINES 3 4)(PLUS 3 4) 99)
The warning about evaluating arguments to nlambda functions also applies to nlambda-nospread
function.

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

Compiled Functions

Functions defined by expr definitions can be compiled by the Interlisp compiler (see Chapter 18). The
compiler produces compiled code objects (of data type ccoer) which execute more quickly than the
corresponding expr definition code. Functions defined by compiled code objects may have the same
four types as expr definitions (lambda/nlambda, spread/nospread). Functions created by the
compiler are referred to as compiled functions.

Function Type Functions

There are a variety of functions used for examining the type, argument list, etc. of functions. These
functions may be given either a symbol (in which case they obtain the function definition from the
definition cell), or a function definition itself.

(FNTYP FN) [Function]

Returns ni L if FNis not a function definition or the name of a defined function. Otherwise,
rnryp returns one of the following symbols, depending on the type of function definition.
exrR Lambda-spread expr definition
cexpr Lambda-spread compiled definition
rexrr Nlambda-spread expr definition
crexeRr Nlambda-spread compiled definition
exrr- Lambda-nospread expr definition
cexpre Lambda-nospread compiled definition
rexrrr Nlambda-nospread expr definition
crexpre Nlambda-nospread compiled definition
FUNARG FNTYP returns the symbol runars if FNis a Funare expression.

EXP, FEXPR, EXPR:, and rexpr: indicate that FN is defined by an expr definition. cexer, crExPr,
cexpre, and crexpre indicate that FN is defined by a compiled definition, as indicated by the
prefix c. The suffix = indicates that FN has an indefinite number of arguments, i.e., is a
nospread function. The prefix r indicates unevaluated arguments. Thus, for example, a
crexpre IS a compiled nospread nlambda function.

(EXPRP FN [Function]

Returns T it (enTYP FN) IS ExPr, FEXPR, EXPR*, OF FEXPR*; NI L Otherwise. However, (exrrr FN) is
also true if FN is (has) a list definition, even if it does not begin with Lavepa or navepa. In
other words, exere is Not quite as selective as Fnrvp.

(CCODEP FN [Function]

Returns 1 if (entyr FN) is either cexpr, crexPr, cexPr*, OF cFEXPR:; NI L Otherwise.

(ARGTYPE FN [Function]

FNis the name of a function or its definition. arcryre returnso, 1, 2, or 3, or nL if FNis not a
function. arcryre corresponds to the rows of rnryps. The interpretation of this value is as
follows:

o Lambda-spread function (exrr cexer)

1 Nlambda-spread function (Fexrr, crexPR)

10-5

INTERLISP-D REFERENCE MANUAL

2 Lambda-nospread function (expr-, cexprr)
3 Nlambda-nospread function (rexer:, crexPrr)

(NARGS FN [Function]

Returns the number of arguments of FN, or n L if FNis not a function. If FNis a nospread
function, the value of nares S 1.

(ARGLI ST FN) [Function]

Returns the “argument list” for FN. Note that the “argument list” is a symbol for
nospread functions. Since niL is a possible value for araLi st, the error args not available IS
generated if FNis not a function.

If FN is a compiled function, the argument list is constructed, i.e., each call to araisrt
requires making a new list. For functions defined by expr definitions, lists beginning with
LAMBDA OF NLAVBDA, the argument list is simply caor of cero. If FN has an expr definition, and
car of the definition is not Laveba or nLaveDa, AraLl sT Will check to see if car of the definition is
a member of LaveoaspLst (see Chapter 20). If it is, araLi sT presumes this is a function object
the user is defining via owwserrorvs, and simply returns caor of the definition as its
argument list. Otherwise araLi sT generates an error as described above.

(SMARTARGLI ST FN EXPLAI NFLG TAI L) [Function]

A “smart” version of araLi st that tries various strategies to get the arglist of FN.

First smrraraLl st checks the property list of FN under the property arenanves. For spread
functions, the argument list itself is stored. For nospread functions, the form is (nL
ARGLI STy . ARGLI ST,), Where araLi sT4 IS the value swrtaraLl sT should return when EXPLAI NFLG
= 1, and AraisT, the value when EXPLAI NFLG = nit. For example, (GeTProP DEFI NEQ
"ARGNAMES) = (NIL (X1 X ... xN . x . This allows the user to specify special argument lists.

Second, if FN is not defined as a function, smartaraLl st attempts spelling correction on FN
by calling rncreck (see Chapter 20), passing TAI L to be used for the call to Fixspece. |If
unsuccessful, the eN not a function error will be generated.

Third, if FN is known to the file package (see Chapter 17) but not loaded in, swvarTARGLI ST
will obtain the arglist information from the file.

Otherwise, swartaraLl st Simply returns (araui st FN.

swarTARGLI ST IS used by ereak (see Chapter 15) and sovise with EXPLAI NFLG = nio for
constructing equivalent expr definitions, and by the t1vin in-line command »= (see Chapter
26), with EXPLAI NFLG=T.

Defining Functions

10-6

Function definitions are stored in a “function definition cell” associated with each symbol. This cell is
directly accessible via the two functions purp and cetp (See below), but it is usually easier to define
functions with peri Neq:

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

(DEFINEQX; X, . .. Xy [NLambda NoSpread Function]

per NEQ IS the function normally used for defining functions. It takes an indefinite number
of arguments which are not evaluated. Each X; must be a list defining one function, of the
form (nave eI N TIQN) . FOr example:

(DEFI NEQ (DOUBLE (LAMBDA (X) (1PLUS X X))))

The above expression will define the function pousLe with the expr definition (Laveba (x)
(1PLUs X x)). X may also have the form (nave Ares . DeF- Bopy), in which case an appropriate

lambda expr definition will be constructed. Therefore, the above expression is exactly the
same as:

(DEFI NEQ (DOUBLE (X) (I1PLUS X X)))

Note that this alternate form can only be used for lambda functions. The first form must
be used to define an nlambda function.

peFl NeQ returns a list of the names of the functions defined.

(DEFI NE X —- [Function]

Lambda-spread version of oerineq. Each element of the list X is itself a list either of the
form (NavE DEFINITION) OF (NAME ARGS . DEF-BODY). DeEFINE Will generate an error, incorrect
defining formoOn encountering an atom where a defining list is expected.

oeri Ne and peri NeQ Operate correctly if the function is already defined and BRoKeN, ADVI SED, OF BROKEN- I N.

For expressions involving type-in only, if the time stamp facility is enabled (see the Time Stamps
section of Chapter 16), both peri ne and peri Neq stamp the definition with your initials and date.

UNSAFE. TO MODI FY. FNS [Variable]

Value is a list of functions that should not be redefined, because doing so may cause
unusual bugs (or crash the system!). If you try to modify a function on this list (using
DEFI NEQ, TRACE, etc), the system prints warning: Xxx may be unsafe to nodify -- continue? If you
type ves, the function is modified, otherwise an error occurs. This provides a measure of
safety for novices who may accidently redefine important system functions. You can add
your own functions onto this list.

By convention, all functions starting with the character backslash (“\”’) are system internal
functions, which you should never redefine or modify. Backslash functions are not on
UNSAFE. TO. MODI FY. FNs, SO trying to redefine them will not cause a warning.

DFNFLG [Variable]

oFNFLG IS a global variable that affects the operation of perineq and oerine. If DENFLG=NIL, an
attempt to redefine a function £~ will cause oeri Ne to print the message (Fn reperi Nep) and to
save the old definition of rn using saveper (Ssee the Functions for Manipulating Typed
Definitions section of Chapter 17) before redefining it (except if the old and new
definitions are equaL, in which case the effect is simply a no-op). If ornrLeT, the function is
simply redefined. If ornFLa=PrRoP OF ALLPROP, the new definition is stored on the property list
under the property exer. ALLProp also affects the operation of reage and reag (see the
Functions Used Within Source Files section of Chapter 17). orneLcis initially niL.

10-7

INTERLISP-D REFERENCE MANUAL

DFNFLG IS reset by Loap (see the Loading Files section of Chapter 17) to enable various ways
of handling the defining of functions and setting of variables when loading a file. For
most applications, the user will not reset ornrLG directly.

Note: The compiler does not respect the value of orneLe when it redefines functions to their
compiled definitions (see the first page of Chapter 18). Therefore, if you set orneLG tO PrRoP
to completely avoid inadvertantly redefining something in your running system, you must
use compile mode r, not sr.

Note that the functions saveoer and unsaveoer (see the Functions for Manipulating Typed
Definitions section of Chapter 17) can be useful for “saving” and restoring function
definitions from property lists.

(GETDFN [Function]

Returns the function definition of FN. Returns ~nv if FN is not a symbol, or has no
definition.

eeTo of a compiled function constructs a pointer to the definition, with the result that two
successive calls do not necessarily produce eqresults. egr or equa. must be used to compare
compiled definitions.

(PUTD FN DEF o [Function]

Puts DEF into FN's function cell, and returns DEF. Generates an error, Arg not symbol , if FNiS
not a symbol. Generates an error, 111egal arg, if DEF is a string, number, or a symbol other
than niL.

(MOVD FROM TO CCPYFLG - [Function]

Moves the definition of FROMto TQ i.e., redefines TO. If COPYFLG = 71, a copy of the
definition of FROMis used. COPYFLG =t is only meaningful for expr definitions, although
vovb works for compiled functions as well. movo returns TO.

corvoer (see the Functions for Manipulating Typed Definitions section of Chapter 17) is a
higher-level function that not only moves expr definitions, but works also for variables,
records, etc.

(MOVD? FROM TO COPYFLG o [Function]
If TOis not defined, same as (vovo FROM TO COPYFLG. Otherwise, does nothing and
returns ni L.

Function Evaluation

10-8

Usually, function application is done automatically by the Interlisp interpreter. If a form is typed into
Interlisp whose car is a function, this function is applied to the arguments in the cor of the form. These
arguments are evaluated or not, and bound to the funcion parameters, as determined by the type of
the function, and the body of the function is evaluated. This sequence is repeated as each form in the
body of the function is evaluated.

There are some situations where it is necessary to explicitly call the evaluator, and Interlisp supplies a
number of functions that will do this. These functions take “functional arguments,” which may either

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

be symbols with function definitions, or expr definition forms such as (Laveba (x...), OF FUNARG
expressions.

(APPLY FN ARGLI ST — [Function]

Applies the function FN to the arguments in the list ARGLI ST, and returns its value. aepLy
is a lambda function, so its arguments are evaluated, but the individual elements of
ARGLI ST are not evaluated. Therefore, lambda and nlambda functions are treated the
same by aprLy—lambda functions take their arguments from ARGLI ST without evaluating
them. For example:

< (APPLY * APPEND ' ((PLUS 1 2 3)(4 5 6)))
(PLUS 1 2 3 4 5 6)

Note that FN may explicitly evaluate one or more of its arguments itself. For example, the
system function serq is an nlambda function that explicitly evaluates its second argument.
Therefore, (appLy * sETQ ' (Foo (ADDL 3))) Will set Foo to 4, instead of setting it to the expression
(ADDL 3).

appLY can be used for manipulating expr definitions. For example:
- (A|>1|>2|_Y " (LAMBDA (X V) (ITIMES X Y)) ' (3 4)))

(APPLY* FN ARG, ARG, . .. ARG) [NoSpread Function]

Nospread version of apeLy. Applies the function FN to the arguments ARG, ARG, . ..
ARG,. Forexample:

< (APPLY * APPEND * (PLUS 1 2 3)(4 5 6))
(PLUS 123 45 6)

(EVAL X—- [Function]

evaL evaluates the expression X and returns this value, i.e., evaL provides a way of calling
the Interlisp interpreter. Note that evaL is itself a lambda function, so its argument is first
evaluated, e.g.:

— (SETQ F(I))' ADDL 3)))

(ADDL 3
~(EVAL FOO)
4
<(EVAL ’ FOO)
(ADDL 3)
(QUOTE X [Nlambda NoSpread Function]
Quote prevents its arguments from being evaluated. Its value is X itself, e.g., (uote Foo is

FQO.

Interlisp functions can either evaluate or not evaluate their arguments. quore can be used
in those cases where it is desirable to specify arguments unevaluated.

The single-quote character () is defined with a read macro so it returns the next
expression, wrapped in a call to qore (see Chapter 25). For example, ' oo reads as
(Quote Foo . This is the form used for examples in this manual.

Since giving quote more than one argument is almost always a parenthese error, and one
that would otherewise go undetected, quore itself generates an error in this case, parent hesi s

error.

10-9

INTERLISP-D REFERENCE MANUAL

10-10

(KWOTE X) [Function]

Value is an expression which, when evaluated, yields X. If X is nL or a number, this is X
itself. Otherwise (LisT (Quote Quote) x) . For example:

(KWOTE 5) => 5
(KWOTE (CONS * A’ B)) => (QUOTE (A B))

(NLAMBDA. ARGS X) [Function]

This function interprets its argument as a list of unevaluated nlambda arguments. If any
of the elements in this list are of the form (quore. . .), the enclosing quore is stripped off.
Actually, naveoa Ares stops processing the list after the first non-quoted argument.

Therefore, whereas (NLAVBDA ARGS ' ((QUOTE FOO) BAR)) -> (FOO BAR), (NLAVBDA. ARGS ' (FOO (QUOTE
BAR))) -> (FOO (QUOTE BAR)).

NLAMVBDA. ARGs IS alled by a number of nlambda functions in the system, to interpret their
arguments. For instance, the function sreak calls nLavBDA. ARGs SO that (Break ' Fag will break
the function roo, rather than the function quore.

(EVALA X A [Function]

Simulates association list variable lookup. Xis aform, Ais a list of the form:
((NAMVE; . VALp; (NAME, . VAL,y... (NAME, . VALy)
The variable names and values in A are “spread” on the stack, and then X is evaluated.

Therefore, any variables appearing free in X that also appears as car of an element of A will
be given the value on the cor of that element.

(DEFEVAL TYPE FN [Function]

Specifies how a datum of a particular type is to be evaluated. Intended primarily for user-
defined data types, but works for all data types except lists, literal atoms, and numbers.
TYPE is a type name. FN is a function object, i.e., name of a function or a lambda
expression. Whenever the interpreter encounters a datum of the indicated type, FN is
applied to the datum and its value returned as the result of the evaluation. oerevaL returns
the previous evaling function for this type. If FN = n v, erevaL returns the current evaling
function without changing it. If FN = 7, the evaling functions is set back to the system
default (which for all data types except lists is to return the datum itself).

cowl LETYPELST (See Chapter 18) permits the user to specify how a datum of a particular type
is to be compiled.

(EVALHOOK FORM EVALHOOKFN [Function]

evaLHook evaluates the expression FORM and returns its value. While evaluating FORM the
function evaL behaves in a special way. Whenever a list other than FORM itself is to be
evaluated, whether implicitly or via an explicit call to eva,, EVALHOOKFN is invoked (it
should be a function), with the form to be evaluated as its argument. EVALHOOKFN is then
responsible for evaluating the form. Whatever is returned is assume to be the result of
evaluating the form. During the execution of EVALHOOKFN, this special evaluation is
turned off. (Note that evaLHox does not affect the evaluations of variables, only of lists).

Here is an example of a simple tracing routine that uses the eva.Hox feature:

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

«—(DEFI NEQ (PRI NTHOOK (FORM)
(printout T "eval: "FORMT)
(EVALHOOK FORM (FUNCTI ON PRI NTHOOK
(PRI NTHOOK)

Using pri NTHOK, One might see the following interaction:

—(EVALHOOK * (LI ST (CONS 1 2)(CONS 3 4)) ’ PRI NTHOOK)
eval : (CONS 1 2)

eval | (CONS 3 4)
((1.2)(3.4))

Iterating and Mapping Functions

The functions below are used to evaluate a form or apply a function repeatedly. rer, reTQ, and rreTQ
evaluate an expression a specified number of time. wap, mpcar, mapLi sT, etc., apply a given function
repeatedly to different elements of a list, possibly constructing another list.

These functions allow efficient iterative computations, but they are difficult to use. For programming
iterative computations, it is usually better to use the CLISP Iterative Statement facility (see Chapter 9),
which provides a more general and complete facility for expressing iterative statements. Whenever
possible, CLISP transltes iterative statements into expressions using the functions below, so there is no
efficiency loss.

(RPT N FORM [Function]

Evaluates the expression FORM N times. Returns the value of the last evaluation. If Nis
less than or equal to 0, FORMis not evaluated, and ret returns ni L.

Before each evaluation, the local variable retn is bound to the number of evaluations yet to
take place. This variable can be referenced within FORM For example, (reT 10 ' (PRINT
rerTN)) Will print the numbers 10, 9...1, and return 1.

(RPTQ N FORM, FORM,. .. FORM) [NLambda NoSpread Function]

Nlambda-nospread version of rer: N is evaluated, FORM are not. Returns the value of the
last evaluation of FORM,

(FRPTQN FORM, FORM,. .. FORMy [NLambda NoSpread Function]
Faster version of rerq. Does not bind retn.
(MAP VAP, MAPFN,; MAPFN,) [Function]

If MAPFN, is ni L, map applies the function MAPFN; to successive tails of the list MAPy. That is,
first it computes (MAPFN, MAP,, and then (MAPFN; (cor MAPy)), etc., until MAP, becomes
a non-list. If MAPFN, is provided, (MAPFN, MAP,) is used instead of (cor MAPy) for the
next call for MAPFN,, e.g., if MAPFN, were coor, alternate elements of the list would be
skipped. wap returns niL.

(MAPC MAP, MAPFN, MAPFN,) [Function]

Identical to wp, except that (MAPFN; (car MAPy)) is computed at each iteration instead of
(MAPFEN; MAPy) , i.e., maec works on elements, e on tails. mpec returns nic.

10-11

INTERLISP-D REFERENCE MANUAL

(MAPL| ST MAP, MAPFN, MAPFN,) [Function]

Successively computes the same values that v would compute, and returns a list
consisting of those values.

(MAPCAR MAP, MAPFN, MAPFN, [Function]

Computes the same values that mec would compute, and returns a list consisting of those
values, e.g., (mpPcar x * FNTYP) IS @ list of entyes for each element on x.

(MAPCON MAP, MAPFN, MAPFN,) [Function]
Computes the same values that wap and meeLi sT but ncones these values to form a list which
it returns.

(MAPCONC MAP, MAPFN;, MAPFN,) [Function]

Computes the same values that mrc and marcar, but ncones the values to form a list which it
returns.

Note that mprcar creates a new list which is a mapping of the old list in that each element of the new list
is the result of applying a function to the corresponding element on the original list. mpoonc is used
when there are a variable number of elements (including none) to be inserted at each iteration.

Examples:
(MAPCONC ' (A B C NIL D NIL) ' (LAVBDA (Y)(if (NULL Y) then NIL
else (LIST V)))) = > (ABCD)

This mapcone returns a list consisting of mapy with all nLs removed.

(MAPCONC ' ((A B) C(DE F)(G H1) '(LAVMBDA (Y)(if (LISPY) then Y
else NIL))) => (ABDEFQ

This mapcone returns a linear list consisting of all the lists on MAP;.

Since mapcone USes Noone to string the corresponding lists together, in this example the original list will
be alteredtobe (ABcDEF Q@ c(DEF (9 HI). Ifthisisan undesirable side effect, the functional
argument to mecone should return instead a top level copy of the lists, i.e., (LAvBDA (Y) (if (LISTP V) then
(APPERND Y) else NIL))).

(MAP2C MAP, MAP, MAPFN, NAPFN,) [Function]

Identical to mrc except MAPFN,; is a function of two arguments, and (MAPFN; (car
MAPy) (car MAP,)) is computed at each iteration. Terminates when either MAP, or MAP, is a
non-list.

MAPFEN, is still a function of one argument, and is applied twice on each iteration;
(MAPEN, MAP,) gives the new MAPy, (MAPEN, MAP,) the new MAP,. coris used if MAPFN,
is not supplied, i.e., isn L.

(MAP2CAR MAP, MAP, MAPFN, MAPFN,) [Function]

Identical to mpcar except MAPFN,; is a function of two arguments, and (MAPFN; (car
MAPy) (car MAP,)) is used to assemble the new list. Terminates when either MAPy or VAP,
is a non-list.

10-12

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

(SUBSET MAP, MAPFN, MAPFN,) [Function]

Applies MAPFN,; to elements of MAPy and returns a list of those elements for which this
application is non-nL, €.9.:
(SUBSET ' (A B 3 C 4) 'NUMBERP) = (3 4)

MAPFN, plays the same role as with mp, mrc, et al.

(EVERY EVERY, EVERYFN, EVERYFN,) [Function]

Returns T if the result of applying EVERYFN; to each element in EVERYj is true, otherwise
NnL. For example, (EvERY ' (X ¥ 2) " ATQY => T.

Every operates by evaluating (EVERYFN, (car EVERYy) EVERYy . The second argument is
passed to EVERYFN; so that it can look at the next element on EVERYy if necessary. If
EVERYFN, vields ni L, every immediately returns nL. Otherwise, every computes (EVERYFN,
EVERYy), or (cor EVERYy) if EVERYFN, = niL, and uses this as the “new” EVERYy, and the

process continues. For example (every x ' ATam * cobr) is true if every other element of X is
atomic.

(SOMVE SOME, SOVEFN, SOMEFN,) [Function]

Returns the tail of SOVE, beginning with the first element that satisfies SOMVEFN,, i.e., for
which SOVEFN,; applied to that element is true. Value is n L if no such element exists.

(SOME X ' (LAMBDA (2) (EQUAL Z Y))) IS equivalent to (vemBer Y x). sove operates analogously to
every. At each stage, (SOVEFN,; (car SOVE,) SQOVE,) is computed, and if this not ni L, SOVEy

is returned as the value of sove. Otherwise, (SOVEFN, SOMVE,) is computed, or (cor SOVEy)
it SOVEFN, = nit, and used for the next SOVE.

(NOTANY SOME, SOVEFN, SOVEFN,) [Function]

(noT (save SOME, SOMEFN; SOMVEFN,)).

(NOTEVERY EVERYy EVERYFN, EVERYFN,) [Function]

(nor (every EVERYy EVERYFN; EVERYFN,)).

(MAPRI NT LST FI LE LEFT RI GHT SEP PFN LI SPXPRI NTFLG) [Function]

A general printing function. For each element of the list LST, applies PFN to the element,
and FI LE. If PENis nL, prine is used. Between each application mapri Nt performs prine of
SEP (or »+ if SEP = ~i1). If LEFT is given, it is printed (using pr n) initially; if RI GHT is
given, it is printed (using pri n1) at the end.

For example, (vPRINT X NL % %) iS equivalent to print for lists. To print a list with
commas between each element and a final «. ” one could use (MAPRINT X T NIL "% " %).

If LI SPXPRI NTFLG= T, LI spxpri N1 (See Chapter 13) is used instead of pri n1.

10-13

INTERLISP-D REFERENCE MANUAL

Functional Arguments

The functions that call the Interlisp-D evaluator take “functional arguments,” which may be symbols
with function definitions, or expr definition forms such as (Laveba (x ...).

The following functions are useful when one wants to supply a functional argument which wiill
always return n i, 7, or o. Note that the arguments X; ... X to these functions are evaluated,

though they are not used.

(NILL X, ... Xy) [NoSpread Function]
Returns nic.

(TRUE X; ... Xy) [NoSpread Function]
Returns .

(ZEROX; ... Xy) [NoSpread Function]
Returns o.

When using expr definitions as function arguments, they should be enclosed within the function
FUNCTI oN rather than quorg, so that they will be compiled as separate functions.

(FUNCTI ON FN ENV) [NLambda Function]

If ENV = N, Funcrion is the same as quorg, except that it is treated differently when
compiled. Consider the function definition:
(DEFI NEQ (FOO (LST) (FIE LST (FUNCTION (LAMBDA (2) (I TIMES Z 2))]

roo calls the function ri e with the value of Lst and the expr definition (Laveba (z)(LisT (carR
2))).

If Foo is run interpreted, it does not make any difference whether runcri ov or quore is used.
However, when roo is compiled, if runcri ovis used the compiler will define and compile the
expr definition as an auxiliary function (see Chapter 18). The compiled expr definition
will run considerably faster, which can make a big difference if it is applied repeatedly.

Compiling runcti ov will not create an auxiliary function if it is a functional argument to a
function that compiles open, such as most of the mapping functions (m,car, mapL sT, etc.).

If ENV is not niL, it can be a list of variables that are (presumably) used freely by FN. ENV
can also be an atom, in which case it is evaluated, and the value interpreted as described
above.

Macros

10-14

Macros provide an alternative way of specifying the action of a function. Whereas function
definitions are evaluated with a “function call”, which involves binding variables and other
housekeeping tasks, macros are evaluated by translating one Interlisp form into another, which is then
evaluated.

A symbol may have both a function definition and a macro definition. When a form is evaluated by
the interpreter, if the car has a function definition, it is used (with a function call), otherwise if it has a

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

macro definition, then that is used. However, when a form is compiled, the car is checked for a macro
definition first, and only if there isn’t one is the function definition compiled. This allows functions
that behave differently when compiled and interpreted. For example, it is possible to define a
function that, when interpreted, has a function definition that is slow and has a lot of error checks, for
use when debugging a system. This function could also have a macro definition that defines a fast
version of the function, which is used when the debugged system is compiled.

Macro definitions are represented by lists that are stored on the property list of a symbol. Macros are
often used for functions that should be compiled differently in different Interlisp implementations,
and the exact property name a macro definition is stored under determines whether it should be used
in a particular implementation. The global variable mcrorrors contains a list of all possible macro
property names which should be saved by the mcres file package command. Typical macro property
names are pbwvacro for Interlisp-D, 1omcro for Interlisp-10, vaxwacro for Interlisp-VAX, smcro for Interlisp-
Jerico, and macro for “implementation independent” macros. The global variable cowi LErRvacroPRePs IS @
list of macro property names. Interlisp determines whether a symbol has a macro definition by
checking these property names, in order, and using the first non-n L property value as the macro
definition. In Interlisp-D this list contains ovacro and macro in that order so that owvacros will override the
implementation-independent wmacro properties. In general, use a owacro property for macros that are to
be used only in Interlisp-D, use 1omacro for macros that are to be used only in Interlisp-10, and use macro
for macros that are to affect both systems.

Macro definitions can take the following forms:

(LAMBDA .. .)

(NLAMBDA ...) A function can be made to compile open by giving it a macro definition
of the form (Lavepa ...) Or (NLAMBDA .. .), €.0., (LAMBDA (X) (COND ((GREATERP X
0) X (T (MNUs X)))) for ass. The effect is as if the macro definition were
written in place of the function wherever it appears in a function being
compiled, i.e., it compiles as a lambda or nlambda expression. This
saves the time necessary to call the function at the price of more
compiled code generated in-line.

(NI L EXPRESSI ON
(LI ST EXPRESSI OV “Substitution” macro. Each argument in the form being evaluated or
compiled is substituted for the corresponding atom in usr, and the
result of the substitution is used instead of the form. For example, if the
macro definition of aobt is ((x (1pLus x 1)), then, (aobr (car v)) iS
compiled as (1PLus (CarR V) 1).

Note that ass could be defined by the substitution macro ((x (cono
((GREATERP X 0) X) (T (MNUS X)))). In this case, however, (ass (Foo x))
would compile as
(COND ((GREATERP (FQO X) 0)
FQO X
(T (MNUS (FOO X))))

and (roo x) would be evaluated two times. (Code to evaluate (Foo %)
would be generated three times.)

(OPENLAMBDA ARGS BODY) This is a cross between substitution and Laveoa macros. When the
compiler processes an orenLamveDa, it attempts to substitute the actual
arguments for the formals wherever this preserves the frequency and

10-15

INTERLISP-D REFERENCE MANUAL

10-16

(= . OTHER- FUNCTI ON

(LI TATOMEXPRESSI ON

order of evaluation that would have resulted from a Lavepa expression,
and produces a Lavepba binding only for those that require it.

Note: orencaveDA assumes that it can substitute literally the actual
arguments for the formal arguments in the body of the macro if the
actual is side-effect free or a constant. Thus, you should be careful to use
names in ARGS which don’t occur in BODY (except as variable
references). For example, if Foo has a macro definition of

(OPENLAMBDA (ENV) (FETCH (MY- RECORD- TYPE ENV) OF BAR))

then (roo Ny will expand to
(FETCH (MY- RECORD- TYPE NI L) OF BAR)

When a macro definition is the atom T, it means that the compiler
should ignore the macro, and compile the function definition; this is a
simple way of turning off other macros. For example, the user may
have a function that runs in both Interlisp-D and Interlisp-10, but has a
macro definition that should only be used when compiling in Interlisp-
10. If the macro property has the macro specification, a ovacro of T will
cause it to be ignored by the Interlisp-D compiler. This omacrowould not
be necessary if the macro were specified by a 1omcroinstead of a mcro.

A simple way to tell the compiler to compile one function exactly as it
would compile another. For example, when compiling in Interlisp-D,
FRPLACAS are treated as reLacas. This is achieved by having rreLaca have a
DMACRO Of (= . RPLACA) .

If a macro definition begins with a symbol other than those given above,
this allows computation of the Interlisp expression to be evaluated or
compiled in place of the form. viTtatowis bound to the cor of the calling
form, EXPRESS| ON is evaluated, and the result of this evaluation is
evaluated or compiled in place of the form. For example, ui st could be
compiled using the computed macro:

[X (LIST ' CONS (CAR X) (AND (CDR X) (CONS ' LI ST (CDR X]

This would cause (LisT x vy z) to compile as (cons x (CoNs Y (CONS Z NIL))).
Note the recursion in the macro expansion.

If the result of the evaluation is the symbol | axorevacro, the macro is
ignored and the compilation of the expression proceeds as if there were
no macro definition. If the symbol in question is normally treated
specially by the compiler (car, cor, conp, anp, etc.), and also has a macro, if
the macro expansion returns 1 anoremacro, the symbol will still be treated
specially.

In Interlisp-10, if the result of the evaluation is the atom i nsTRucTI ons, NO
code will be generated by the compiler. It is then assumed the
evaluation was done for effect and the necessary code, if any, has been
added. This is a way of giving direct instructions to the compiler if you
understand it.

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

It is often useful, when constructing complex macro expressions, to use
the squore facility (see the Read Macros section of Chapter 25).

The following function is quite useful for debugging macro definitions:

(EXPANDMACRO EXP QUI ETFLG —o [Function]

Takes a form whose car has a macro definition and expands the form as it would be
compiled. The result is prettyprinted, unless QUI ETFLG=T, in which case the result is
simply returned.

Note: expanomacro only works on Interlisp macros. Use oL: macroexpand- 1 to expand Interlisp
macros visible to the Common Lisp interpreter and compliler.

DEFMACRO

Macros defined with the function oervacro are much like “computed” macros (see the above section), in
that they are defined with a form that is evaluated, and the result of the evaluation is used (evaluated
or compiled) in place of the macro call. However, pervacro macros support complex argument lists
with optional arguments, default values, and keyword arguments as well as argument list
destructuring.

(DEFMACRONAME ARGS FORM [NLambda NoSpread Function]

Defines NAME as a macro with the arguments ARGS and the definition form FORM (NAME,
ARGS, and FORM are unevaluated). If an expression starting with NAME is evaluated or
compiled, arguments are bound according to ARGS, FORM is evaluated, and the value of
FORMis evaluated or compiled instead. The interpretation of ARGS is described below.

Note: Like the function cermcro in Common Lisp, this function currently removes any
function definition for NAME.

ARGS is a list that defines how the argument list passed to the macro NAME is interpreted.
Specifically, ARGS defines a set of variables that are set to various arguments in the macro
call (unevaluated), that FORMcan reference to construct the macro form.

In the simplest case, ARGS is a simple list of variable names that are set to the
corresponding elements of the macro call (unevaluated). For example, given:
(DEFMACRO FQO (A B) (LIST 'PLUS A B B))

The macro call (Foo x (BaR v 2)) will expand to (pLus x (BAR Y 2) (BAR Y 2)).

&-keywords” (beginning with the character «&”") that are used to set variables to particular
items from the macro call form, as follows:

&OPTI ONAL Used to define optional arguments, possibly with default values. Each
element on ARGS after soemi ovaL until the next e-keyword or the end of
the list defines an optional argument, which can either be a symbol or a
list, interpreted as follows:

VAR

If an optional argument is specified as a symbol, that variable is set to
the corresponding element of the macro call (unevaluated).

10-17

INTERLISP-D REFERENCE MANUAL

10-18

&REST
&BODY

&KEY

(VAR DEFAULT)

If an optional argument is specified as a two element list, VAR is the
variable to be set, and DEFAULT is a form that is evaluated and used as
the default if there is no corresponding element in the macro call.

(VAR DEFAULT VARSETP)

If an optional argument is specified as a three element list, VAR and
DEFAULT are the variable to be set and the default form, and VARSETP
is a variable that is set to 7 if the optional argument is given in the macro
call, n L otherwise. This can be used to determine whether the argument
was not given, or whether it was specified with the default value.

For example, after (DEFMACRO FOO (&OPTIONAL A (B 5) (C 6 CSET)) FORM
expanding the macro call (rao would cause rorvto be evaluated with A
settonL, BSettos, csettos, and cser settonL. (Foo 4 5 6) would be the
same, except that A would be set to 4 and cser would be set to 7.

Used to get a list of all additional arguments from the macro call. Either
&resT Or gsooy should be followed by a single symbol, which is set to a list
of all arguments to the macro after the position of the s-keyword. For
example, given

(DEFMACRO FQO (A B &REST C) FORM

expanding the macro call (Foo 1 2 3 4 5 would cause rForv to be
evaluated with asetto 1, ssetto 2, and csetto (3 4 5).

If the macro calling form contains keyword arguments (see exey below),
these are included in the grest list.

Used to define keyword arguments, that are specified in the macro call
by including a “keyword” (a symbol starting with the character “:”)
followed by a value.

Each element on arcs after sxev until the next e-keyword or the end of the
list defines a keyword argument, which can either be a symbol or a list,
interpreted as follows:

VAR

(VAR
((KEYWORD VAR)

If a keyword argument is specified by a single symbol VAR, or a one-
element list containing VAR, it is set to the value of a keyword
argument, where the keyword used is created by adding the character
“” to the front of VAR If a keyword argument is specified by a single-
element list containing a two-element list, KEYWORD is interpreted as the
keyword (which should start with the letter “:”’), and VAR is the variable
to set.

(VAR DEFAULT)
((KEYWORD VAR) DEFAULT)

&ALLOW OTHER- KEYS

&WHCOLE

FUNCTION DEFINITION, MANIPULATION AND EVALUATION

(VAR DEFAULT VARSETP)
(KEYWORD VAR DEFAULT VARSETP

If a keyword argument is specified by a two- or three-element list, the
first element of the list specifies the keyword and variable to set as
above. Similar to eoemionaL (above), the second element DEFAULT is a
form that is evaluated and used as the default if there is no
corresponding element in the macro call, and the third element
VARSETP is a variable that is set to 7 if the optional argument is given in
the macro call, n L otherwise.

For example, the form
(DEFMACRO FOO (&KEY A (B 5 BSET) ((:BAR C) 6 CSET)) FORV

Defines a macro with keys : 4, : 8 (defaulting to s), and : ear. Expanding
the macro call (rFoo :BaR 2 : A 1) would cause Formto be evaluated with A
set to 1, B set to 5, Bser set to n L, cset to 2, and cser set to T.

It is an error for any keywords to be supplied in a macro call that are
not defined as keywords in the macro argument list, unless either the &-
keyword gaLLow otHER- KEYS appears in ARGS, or the keyword : aLLow oTHER-

kevs (with a non-ni L value) appears in the macro call.

Used to bind and initialize auxiliary varables, using a syntax similar to
PRoG (See the pros and Associated Control Functions section of Chapter 9).
Any elements after eaux should be either symbols or lists, interpreted as
follows:

VAR

Single symbols are interpreted as auxiliary variables that are initially
bound toniL.

(VAR EXP)

If an auxiliary variable is specified as a two element list, VAR is a
variable initially bound to the result of evaluating the form EXP.

For example, given
(DEFMACRO FOO (A B &AUX C (D 5)) FORM

cwill be bound to n L and b to s when FORMis evaluated.

Used to get the whole macro calling form. Should be the first element
of ARGS, and should be followed by a single symbol, which is set to the
entire macro calling form. Other e-keywords or arguments can follow.
For example, given

(DEFMACRO FOO (&WHOLE X A B) FORV)

Expanding the macro call (Foo 1 2) would cause Forv to be evaluated
with x setto (Foo 1 2), Aset to 1, and B set to 2.

DEFMACRO MAcros also support argument list “destructuring,” a facility for
accessing the structure of individual arguments to a macro. Any place

10-19

INTERLISP-D REFERENCE MANUAL

10-20

Interpreting Macros

in an argument list where a symbol is expected, an argument list (in the
form described above) can appear instead. Such an embedded
argument list is used to match the corresponding parts of that particular
argument, which should be a list structure in the same form. In the
simplest case, where the embedded argument list does not include &-
keywords, this provides a simple way of picking apart list structures
passed as arguments to a macro. For example, given

(DEFMACRO FOO (A (B (C . D)) E) FORM)

Expanding the macro call (roo 1 (2 (3 4 5)) 6 would cause Formto be
evaluated with with A set to 1, B set to 2, cset to 3, pset to (4 5), and e set
to 6. Note that the embedded argument list (8 (¢ . p)) has an embedded
argument list (c . p. Also notice that if an argument list ends in a
dotted pair, that the final symbol matches the rest of the arguments in
the macro call.

An embedded argument list can also include e-keywords, for
interpreting parts of embedded list structures as if they appeared in a
top-level macro call. For example, given
(DEFMACRO FOO (A (B &OPTIONAL (C 6)) D) FORM

Expanding the macro call (Foo 1 (2) 3) would cause Forwto be evaluated
with with aset to 1, B set to 2, c set to 6 (because of the default value), and
psetto s.

Warning: Embedded argument lists can only appear in positions in an
argument list where a list is otherwise not accepted. In the above
example, it would not be possible to specify an embedded argument list
after the sopmional keyword, because it would be interpreted as an
optional argument specification (with variable name, default value, set
variable). However, it would be possible to specify an embedded
argument list as the first element of an optional argument specification
list, as so:

(DEFMACRO FOO (A (B &PTIONAL ((X (V) 2)
"(1(2) 3))) D FORY

In this case, x, v, and z default to 1, 2, and 3, respectively. Note that the

“default” value has to be an appropriate list structure. Also, in this case

either the whole structure (x (v) 2z can be supplied, or it can be

defaulted (i.e., is not possible to specify x while letting v default).

When the interpreter encounters a form car of which is an undefined function, it tries interpreting it as
a macro. If car of the form has a macro definition, the macro is expanded, and the result of this
expansion is evaluated in place of the original form. c.isptran (see the Miscellaneous Functions and
Variables section of Chapter 21) is used to save the result of this expansion so that the expansion only
has to be done once. On subsequent occasions, the translation (expansion) is retrieved from cLi sparraY
the same as for other cLi sp constructs.

Note: Because of the way that the evaluator processes macros, if you have a macro on roo, then typing
(roo ' A ' B) Will work, but Fooa B) will not work.

10-21

