14. ERRORS AND DEBUGGING

Occasionally, while a program is running, an error occurs which stops the computation. Errors can be
caused in different ways. A coding mistake may have caused the wrong arguments to be passed to a
function, or caused the function to attempt something illegal. For example, PLUS will cause an error if
its arguments are not numbers. It is also possible to interrupt a computation by typing one of the
“interrupt characters,” such as Control-D or Control-E (Medley interrupt characters are listed in
Chapter 30). Finally, you can specify that certain functions automatically cause an error whenever
they are entered (see Chapter 15). This facilitates debugging by allowing you to examine the context
within the computation.

When an error occurs, the system can either reset and unwind the stack, or go into a “break”, and
attempt to debug the program. You can modify the mechanism that decides whether to unwind the
stack or break, and is described in the Controlling When to Break section in this chapter. Within a
break, Medley offers an extensive set of “break commands”.

This chapter explains what happens when errors occur. It also tells you how to handle program errors
using breaks and break commands. The debugging capabilities of the break window facility are
described, as well as the variables that control its operation. Finally, advanced facilities for modifying
and extending the error mechanism are presented.

Breaks

One of the most useful debugging facilities in Medley is the ability to put the system into a “break”,
stopping a computation at any point, allowing you to interrogate the state of the world and affect the
course of the computation. When a break occurs, a “break window” (see the Break Windows section
below) is brought up near the TTY window of the broken process. The break window looks like a top-
level executive window, except that the prompt character is “:” instead of “<=” as in the top-level
executive. A break saves the environment where the break occurred, so that you may evaluate
variables and expressions in the borken environment. In addition, the break program recognizes a
number of useful “break commands”, providing an easy way to interrogate the state of the broken

computation.

Breaks may be entered in several ways. Some interrupt characters (Chapter 30) automatically cause a
break whenever you type them. Function errors may also cause a break, depending on the depth of
the computation (see Controlling When to Break below). Finally, Medley provides facilities which
make it easy to “break” suspect functions so that they always cause a break whenever they are
entered.

Within a break you have access to all of the power of Medley; you can do anything you can do at the
top-level executive. For example, you can evaluate an expression, call the editor, change the function,
and evaluate the expression again, all without leaving the break. You can also type in commands like
REDO, and UNDO (Chapter 13), to redo or undo previously executed events, including break
commands.

Similarly, you can prettyprint functions, define new functions or redefine old ones, load a file, compile
functions, time a computation, etc. In addition, you can examine the stack (see Chapter 11), and even
force a return back to some higher function via the functions RETFROMor RETEVAL.

Once a break occurs, you are in complete control of the flow of the computation, and the computation
will not proceed without specific instruction from you. If you type in an expression whose evaluation

14-1

MEDLEY REFERENCE MANUAL

causes an error, the break is maintained. Similarly if you abort a computation initiated from within
the break (by typing Control-E), the break is maintained. Only if you give one of the commands that
exits from the break, or evaluates a form which does a RETFROMor RETEVAL out of BREAK1, will the
computation continue. Also, BREAKL does not “turn off” Control-D, so a Control-D will force an
immediate return to the top level.

Break Windows

14-2

When a break occurs, a break window is brought up near the TTY window of the borken process and
the terminal stream switched to it. The title of the break window is changed to the name of the broken
function and the reason for the break. If a break occurs under a previous break, a new break window
is created.

If a break is caused by a storage full error, the display break package will not try to open a new break
window, since this would cause an infinite loop.

While in a break window, clicking the middle button brings up a menu of break commands: EVAL,
EDI T, revert, 1, OK BT, BT!, and ?=. Clicking on these commands is equivalent to typing the
corresponding break commandm, except BT and BT! which behave differently from the typed-in
commands (see Break Commands below).

The BT and BT! menu commands bring up a backtrace menu beside the break window showing the
frames on the stack. BT shows frames for which REALFRAMEP is T; BT! shows all frames. When one
of the frames is selected from the backtrace menu, it is grayed and the function name and the variables
bound in that frame (including local variables and PROG variables) are printed in the “backtrace frame
window.” If the left button is used for the selection, only named variables are printed. If the middle
button is used, all variables are printed (variables without names appear as *var* N). The
“backtrace frame” window is an inspect window (see Chapter 26). In this window, the left button is
used to select the name of the function, the names of the variables or the values of the variables. For
example, below is a picture of a break window with a backtrace menu created by BT. The
OPENSTREAMstack frame has been selected, so its variables are shown in an inspect window on top of
the break window:

OFENSTRE&M Frame
OPEMSTREAR
#F ILE* {DEKIFOO
ACCESS INPUT
#RECOG* oLo
PARAMETERS NIL
OBEOLETE# NIL
*yar*g aLo
*ypar®y NIL
*yar®s NIL

ERRORSET {OSKIFOO - FILE MOT FOUMD break: 1

BREAEL
EWALA
DFENETRERE
EWL

LISPR
ERRORSET

FILE WOT FOUND
f0EK}FOO0

{OPENSTREAM broken)

EWALOT a6,
ERRORSET
T

After selecting an item, the middle button brings up a menu of commands that apply to the selected
item. If the function name is selected, you are given a choice of editing the function or seeing the
compiled code with | NSPECTCODE (Chapter 26). If you edit the function in this way, the editor is
called in the broken process, so variables evaluated in the editor are in the broken process.

ERRORS AND DEBUGGING

If a variable name is selected, the command SET is offered. Selecting SET will READ a value and set
the selected to the value read.

Note: The inspector will only allow the setting of named variables. Even with this restriction it is still
possible to crash the system by setting variables inside system frames. Exercise caution in setting
variables in other than your own code.

If avalue is selected, the inspector is called on the selected value.

The internal break variable LASTPCOS (see the section below) is set to the selected backtrace menu
frame so that the normal break commands EDI T, revert, and ?= work on the currently selected
frame. The commands EVAL, revert, 1, OK and ?= in the break menu cause the corresponding
commands to be “typed in.” This means that these break commands will not have the intended effect
if characters have already been typed in. The typed-in break commands BT, BTV, etc. use the value of
LASTPCS to determine where to start listing the stack, so selecting a stack frame name in the backtrace
menu affects these commands.

Break Commands

The basic function of the break package is BREAK1. BREAKL is just another Interlisp function, not a
special system feature like the interpreter or the garbage collector. It has arguments, and returns a
value, the same as any other function. For more information on the function BREAK1, see Creating
Breaks with BREAK1 below.

The value returned by BREAK1 is called “the value of the break.” You can specify this value explicitly
by using the RETURN break command (see below). But in most cases, the value of a break is given
implicitly, via a GOor OK command, and is the result of evaluating “the break expression.” The break
expression, stored in the variable BRKEXP, is an expression equivalent to the computation that would
have taken place had no break occurred. For example, if you break on the function FOO, the break
expression is the body of the definition of FOO When you type OK or GO the body of FQO is
evaluated, and its value returned as the value of the break, i.e., to whatever function called FOO.
BRKEXP is set up by the function that created the call to BREAK1. For functions broken with BREAK or
TRACE, BRKEXP is equivalent to the body of the definition of the broken function (see Chapter 15).
For functions broken with BREAKI N, using BEFORE or AFTER, BRKEXP is NI L. For BREAKI N
AROUND, BRKEXP is the indicated expression (see Chapter 15).

BREAK1 recognizes a large set of break commands. These are typed in without parentheses. In order
to facilitate debugging of programs that perform input operations, the carriage return that is typed to
complete the GO, OK, EVAL, etc. commands is discarded by BREAK1, so that it will not be part of the
input stream after the break.

co) [Break Command]

Evaluates BRKEXP, prints its value, and returns it as the value of the break. Releases the
break and allows the computation to proceed.

oK [Break Command]
Same as GOexcept that the value of BRKEXP is not printed.

14-3

MEDLEY REFERENCE MANUAL

14-4

EVAL

[Break Command]

Same as OK except that the break is maintained after the evaluation. The value of EVAL is
bound to the local variable ! VALUE, which you can interrogate. Typing GO or OK
following EVAL will not cause BRKEXP to be reevaluated, but simply returns the value of
I VALUE as the value of the break. Typing another EVAL will cause reevaluation. EVAL is
useful when you are not sure whether the break will produce the correct value and want
to examine it before continuing with the computation.

RETURN FORM [Break Command]

FORMis evaluated, and returned as the value of the break. For example, one could use the
EVAL command and follow this with RETURN (REVERSE ! VALUE) .

[Break Command]

Calls ERROR! and aborts the break, making it “go away” without returning a value. This
is a useful way to unwind to a higher level break. All other errors, including those
encountered while executing the GO, OK, EVAL, and RETURN commands, maintain the
break.

The following four commands refer to “the broken function”, whose name is stored in the BREAKL
argument BRKFN.

10

uB

[Break Command]
The broken function is unbroken, the break expression is evaluated, the function is
rebroken, and then the break is exited with the value printed.

[Break Command]
The broken function is unbroken, the break expression is evaluated, the function is
rebroken, and then the break is exited without the value printed.

[Break Command]

Unbreaks the broken function.

[Break Command]

Resets the variable LASTPGS, which establishes a context for the commands ?=, ARGS, BT,
BTV, BTV*, EDI T, and | N? described below. LASTPGCS is the position of a function call on
the stack. It is initialized to the function just before the call to BREAK1, i.e., (STKNTH -1
" BREAK1) .

When control passes from BREAK1, e.g. as a result of an EVAL, OK, GO, REVERT, 1
command, or via a RETFROMor RETEVAL you type in, (RELSTK LASTPOS) is executed to
release this stack pointer.

@treats the rest of the teletype line as its argument(s). It first resets LASTPCOS to (STKNTH
-1 ' BREAK1) and then for each atom on the line, @searches down the stack for a call to
that atom. The following atoms are treated specially:

ERRORS AND DEBUGGING

@ Do not reset LASTPCS to (STKNTH -1 ' BREAK1) but leave it as it
was, and continue searching from that point.

anumber N If negative, move LASTPOS down the stack N frames. If positive, move

LASTPGCS up the stack N frames.

! The next atom on the line (which should be a number) specifies that the
previous atom should be searched for that many times. For example, “ @
FOO / 3”isequivalentto“ @ FOO FOO FQOO".

= Resets LASTPCS to the value of the next expression, e.g., if the value of
FQO is a stack pointer, “@ = FOO FI E” will search for FI E in the
environment specified by (the value of) FOO.

For example, if the push-down stack looks like:

[9] BREAK1L
[8] FOO
[7] COND
[6] FIE
[5] COND
[4 FIE
[3] COND
[2] FIE
[1] FuM

then “ @ FI E COND” will set LASTPCS to the position corresponding to
[5];“ @ @ COND” will then set LASTPOSto [3];and“@FIE / 3 -
1”7to[1].

If @cannot successfully complete a search for function FN, it searches the stack again from
that point looking for a call to a function whose name is a possible misspelling of FN (see
spelling correction in Chapter 20). If the search is still unsuccessful, @types (FN NOT
FOUND) , and then aborts.

When @ finishes, it types the name of the function at LASTPGCS, i.e., (STKNAME
LASTPCS) .

@can be used on BRKCOMS (see Creating Breaks with BREAK1 below). In this case, the
next command on BRKCOVS is treated the same as the rest of the teletype line.

[Break Command]

This is a multi-purpose command. Its most common use is to interrogate the value(s) of
the arguments of the broken function. For example, if FOOhas three arguments (X Y Z),
then typing ?=to a break on FOOwill produce:

1 ?=

X = value of X
Y = valueof Y
Z = valueofZ

14-5

MEDLEY REFERENCE MANUAL

14-6

PB

BT

?= operates on the rest of the teletype line as its arguments. If the line is empty, as in the
above case, it operates on all of the arguments of the broken function. If the you type ?=
X (CAR YY), you will see the value of X, and the value of (CAR Y). The difference
between using ?= and typing X and (CAR Y) directly to BREAK1 is that ?= evaluates its
inputs as of the stack frame LASTPCS, i.e., it uses STKEVAL. This provides a way of
examining variables or performing computations as of a particular point on the stack. For
example, @ FOO / 2 followed by ?= X will allow you to examine the value of X in the
previous call to FOO etc.

?=also recognizes numbers as referring to the correspondingly numbered argument, i.e.,
it uses STKARGIn this case. Thus
T@FIE

FI E
1 ?7= 2

will print the name and value of the second argument of FI E.

?=can also be used on BRKCOVS (see Creating Breaks with BREAK1 below), in which case
the next command on BRKCOMS is treated as the rest of the teletype line. For example, if
BRKCOVS is (EVAL ?= (X Y) GO, BRKEXP is evaluated, the values of X and Y printed,
and then the function exited with its value being printed.

?= prints variable values using the function SHOAPRI NT (see Chapter 25), so that if
SYSPRETTYFLG = T, the value is prettyprinted.

?=is a universal mnemonic for displaying argument names and their corresponding
values. In addition to being a break command, ?= is an edit macro that prints the
argument names and values for the current expression (see Chapter 16), and a read macro
(actually ? is the read macro character) which does the same for the current level list being
read.

[Break Command]

Prints the bindings of a given variable. Similar to ?=, except ascends the stack starting
from LASTPGCS, and, for each frame in which the given variable is bound, prints the frame
name and value of the variable (with PRI NTLEVEL resetto (2 . 3)),e.g.

:PB FOO
@ FN1: 3
@ FN2: 10

@ TOP: NOBI ND

PB is also a programmer’s assistant command (see Chapter 13) that can be used when not
in a break. PBis implemented via the function PRI NTBI NDI NGS.

[Break Command]

Prints a backtrace of function names starting at LASTPOS. The value of LASTPCS is
changed by selecting an item from the backtrace menu (see the Break Window Variables
section below) or by the @command. The several nested calls in system packages such as
break, edit, and the top level executive appear as the single entries ** BREAK**,
** EDI TOR**, and ** TOP* * respectively.

ERRORS AND DEBUGGING

BTV [Break Command]

Prints a backtrace of function names with variables beginning at LASTPCS.

The value of each variable is printed with the function SHOAPRI NT (see Chapter 25), so
that if SYSPRETTYFLG= T, the value is prettyprinted.

BTV+ [Break Command]

Same as BTV except also prints local variables and arguments to SUBRs.

BTV* [Break Command]

Same as BTV except prints arguments to local variables.

BTV! [Break Command]

Same as BTV except prints everything on the stack.

BT, BTV, BTV+, BTV*, and BTV! all take optional functional arguments. Use these arguments to
choose functions to be skipped on the backtrace. As the backtrace scans down the stack, the name of
each stack frame is passed to each of the arguments of the backtrace command. If any of these
functions returns a non-Nl L value, then that frame is skipped, and not shown in the backtrace. For
example, BT EXPRP will skip all functions definied by expr definitions, BTV (LAMBDA (X) (NOT
(MEMB X FOOFNS))) will skip all but those functions on FOOFNS. If used on BRKCOVS (see Creating
Breaks with BREAK1 below) the functional argument is no longer optional, i.e., the next element on
BRKCOMVS must either be a list of functional arguments, or NI L if no functional argument is to be
applied.

For BT, BTV, BTV+, BTV*, and BTV! , if Control-P is used to change a printlevel during the backtrace,
the printlevel is restored after the backtrace is completed.

The value of BREAKDELI M TER initially the carriage return character, is printed to delimit the output
of ?= and backtrace commands. You can reset it (e.g. to a comma) for more linear output.

ARGS [Break Command]

Prints the names of the variables bound at LASTPCS, i.e., (VARI ABLES LASTPOS) (see
Chapter 11). For most cases, these are the arguments to the function entered at that
position, i.e., (ARGLI ST (STKNAME LASTPCS)).

REVERT [Break Command]

Goes back to position LASTPOS on stack and reenters the function called at that point with
the arguments found on the stack. If the function is not already broken, REVERT first
breaks it, and then unbreaks it after it is reentered.

REVERT can be given the position using the conventions described for @ e.g., REVERT
FOO - 1 isequivalentto @ FOO - 1 followed by REVERT.

REVERT is useful for restarting a computation in the situation where a bug is discovered
at some point below where the problem actually occurred. REVERT essentially says “go
back there and start over in a break.” REVERT will work correctly if the names or
arguments to the function, or even its function type, have been changed.

14-7

MEDLEY REFERENCE MANUAL

14-8

ORI G NAL [Break Command]

For use in conjunction with BREAKMACRCS (see Creating Breaks with BREAK1 below).
Formis (ORIG NAL . COVB). COMVS are executed without regard for BREAKMACROCS.
Useful for redefining a break command in terms of itself.

[Break Command]

Designed for use in conjunction with breaks caused by errors. Facilitates editing the
expression causing the break:

NON- NUMERI C ARG

NI L

(1 PLUS BROKEN)

CEDIT

IN FQO. ..

(1PLUS X 2)

ED T

(3
* OK
FOO

and you can continue by typing OK, EVAL, etc.

This command is very simple conceptually, but its implementation is complicated by all of
the exceptional cases involving interactions with compiled functions, breaks on user
functions, error breaks, breaks within breaks, et al. Therefore, we shall give the following
simplified explanation which will account for 90% of the situations arising in actual usage.
For those others, EDI T will print an appropriate failure message and return to the break.

EDI T begins by searching up the stack beginning at LASTPGCS (set by @command, initially
position of the break) looking for a form, i.e.,, an internal call to EVAL. Then EDI T
continues from that point looking for a call to an interpreted function, or to EVAL. It then
calls the editor on either the EXPR or the argument to EVAL in such a way as to look for an
expression EQ to the form that it first found. It then prints the form, and permits
interactive editing to begin. You can then type successive 0’s to the editor to see the chain
of superforms for this computation.

If you exit from the edit with an OK, the break expression is reset, if possible, so that you
can continue with the computation by simply typing OK. (Evaluating the new BRKEXP
will involve reevaluating the form that causes the break, so that if (PUTD (QUOTE
(FOO) BI G COVMPUTATI ON) were handled by EDI T, Bl G COMPUTATI ON would be
reevaluated.) However, in some situations, the break expression cannot be reset. For
example, if a compiled function FOO incorrectly called PUTD and caused the error Ar g
not at om followed by a break on PUTD, EDI T might be able to find the form headed by
FOO, and also find that form in some higher interpreted function. But after you corrected
the problem in the FOO-form, if any, you would still not have informed EDI T what to do
about the immediate problem, i.e., the incorrect call to PUTD. However, if FOO were
interpreted, EDI T would find the PUTD form itself, so that when you corrected that form,
EDI T could use the new corrected form to reset the break expression.

ERRORS AND DEBUGGING

I N? [Break Command]

Similar to EDI T, but just prints parent form, and superform, but does not call the editor,
e.g.,

ATTEMPT TO RPLAC NI L
A

(RPLACD BROKEN)

TIN?

FOO (RPLACD X 2)

Although EDI T and | N? were designed for error breaks, they can also be useful for user
breaks. For example, if upon reaching a break on his function FOO you determine that
there is a problem in the call to FOO you can edit the calling form and reset the break
expression with one operation by using EDI T.

Controlling When to Break

When an error occurs, the system has to decide whether to reset and unwind the stack, or go into a
break. In the middle of a complex computation, it is usually helpful to go into a break, so that you
may examine the state of the computation. However, if the computation has only proceeded a little
when the error occurs, such as when you mistype a function name, you would normally just terminate
a break, and it would be more convenient for the system to simply cause an error and unwind the
stack in this situatuation. The decision over whether or not to induce a break depends on the depth of
computation, and the amount of time invested in the computation. The actual algorithm is described
in detail below; suffice it to say that the parameters affecting this decision have been adjusted
empirically so that trivial type-in errors do not cause breaks, but deep errors do.

(BREAKCHECK ERRORPOS ERXN) [Function]

BREAKCHECK is called by the error routine to decide whether or not to induce a break
when a error occurs. ERRORPGCS is the stack position at which the error occurred; ERXN is
the error number. Returns T if a break should occur; NI L otherwise.

BREAKCHECK returns T (and a break occurs) if the “computation depth” is greater than or
equal to HELPDEPTH. HELPDEPTH is initially set to 7, arrived at empirically by taking into
account the overhead due to LI SPX or BREAK.

If the depth of the computation is less than HELPDEPTH, BREAKCHECK next calculates the
length of time spent in the computation. If this time is greater than HELPTI ME
milliseconds, initially set to 1000, then BREAKCHECK returns T (and a break occurs),
otherwise NI L.

BREAKCHECK determines the “computation depth” by searching back up the stack looking
for an ERRORSET frame (ERRORSETSs indicate how far back unwinding is to take place
when an error occurs, see the Catching Errors section below). At the same time, it counts
the number of internal calls to EVAL. As soon as the number of calls to EVAL exceeds
HEL PDEPTH, BREAKCHECK immediately stops searching for an ERRORSET and returns T.
Otherwise, BREAKCHECK continues searching until either an ERRORSET is found or the
top of the stack is reached. (If the second argument to ERRORSET is | NTERNAL, the
ERRORSET is ignored by BREAKCHECK during this search.) BREAKCHECK then counts the
number of function calls between the error and the last ERRORSET, or the top of the stack.

14-9

MEDLEY REFERENCE MANUAL

The number of function calls plus the number of calls to EVAL (already counted) is used as
the “computation depth”.

BREAKCHECK determines the computation time by subtracting the value of the variable
HELPCLQOCK from the value of (CLOCK 2), the number of milliseconds of compute time
(see Chapter 12). HELPCLOCK is rebound to the current value of (CLOCK 2) for each
computation typed in to LI SPX or to a break. The time criterion for breaking can be
suppressed by setting HELPTI ME to NI L (or a very big number), or by setting HELPCLOCK
to NIL. Setting HELPCLOCK to NI L will not have any effect beyond the current
computation, because HELPCLOCK is rebound for each computation typed in to LI SPX
and BREAK.

You can suppress all error breaks by setting the top level binding of the variable
HELPFLAG to NI L using SETTOPVAL (HELPFLAG is bound as a local variable in LI SPX,
and reset to the global value of HELPFLAGon every LI SPX line, so just SETQing it will not
work.) If HELPFLAG = T (the initial value), the decision whether to cause an error or
break is decided based on the computation time and the computation depth, as described
above. Finally, if HELPFLAG = BREAK!, a break will always occur following an error.

Break Window Variables

The appearance and use of break windows is controlled by the following variables:

(VBREAK ONFLG) [Function]

If ONFLG is non-NI L, break windows and trace windows are enabled. If ONFLGis NI L,
break windows are disabled (break windows do not appear, but the executive prompt is
changed to “:” to indicate that the system is in a break). WBREAK returns T if break
windows are currently enabled; NI L otherwise.

MaxBkMenuW dt h [Variable]
MaxBkMenuHei ght [Variable]

The variables MaxBkMenuW dt h (default 125) and MaxBkMenuHei ght (default 300)
control the maximum size of the backtrace menu. If this menu is too small to contain all of
the frames in the backtrace, it is made scrollable in both vertical and horizontal directions.

AUTOBACKTRACEFLG [Variable]

This variable controls when and what kind of backtrace menu is automatically brought
up. The value of AUTOBACKTRACEFL G can be one of the following:

NI L The backtrace menu is not automatically brought up (the default).
T On error breaks the BT menu is brought up.
BT! On error breaks the BT! menu is brought up.

ALVWAYS The BT menu is brought up on both error breaks and user breaks (calls to
functions broken by BREAK).

ALWAYS! On both error breaks and user breaks the BT! menu is brought up.

14-10

ERRORS AND DEBUGGING

BACKTRACEFONT [Variable]
The backtrace menu is printed in the font BACKTRACEFONT.

CLOSEBREAKW NDOWFLG [Variable]

The system normally closes break windows after the break is exited. If
CLOSEBREAKW NDOWFLG s NI L, break windows will not be closed on exit. In this case,
you must close all break windows.

BREAKREQ ONSPEC [Variable]

Break windows are positioned near the TTY window of the broken process, as determined
by the variable BREAKREG ONSPEC. The value of this variable is a region (see Chapter 27)
whose LEFT and BOTTOM fields are an offset from the LEFT and BOTTOM of the TTY
window. The W DTH and HEI GHT fields of BREAKREG ONSPEC determine the size of the
break window.

TRACEW NDOW [Variable]

The trace window, TRACEW NDOW is used for tracing functions. It is brought up when the
first tracing occurs and stays up until you close it. TRACEW NDOW can be set to a
particular window to cause the tracing formation to print there.

TRACEREG ON [Variable]
The trace window is first created in the region TRACEREG ON.

Creating Breaks with BREAK1

The basic function of the break package is BREAKL, which creates a break. A break appears to be a
regular executive, with the prompt “:”, but BREAK1 also detects and interpretes break commands (see
the Break Commands section above).

(BREAK1 BRKEXP BRKWHEN BRKFN BRKCOMS BRKTYPE ERRORN) [NLambda Function]

If BRKWHEN (evaluated) is non-NI L, a break occurs and commands are then taken from
BRKCOMVS or the terminal and interpreted. All inputs not recognized by BREAKL are
simply passed on to the programmer’s assistant.

If BRKWHEN is NI L, BRKEXP is evaluated and returned as the value of BREAK1, without
causing a break.

When a break occurs, if ERRORN is a list whose CAR is a humber, ERRORMESS (see the
Signalling Errors section below) is called to print an identifying message. If ERRORN is a
list whose CAR is not a number, ERRORMESSI (see the Signalling Errors section below) is
called. Otherwise, no preliminary message is printed. Following this, the message
(BRKFN br oken) is printed.

Since BREAK1 itself calls functions, when one of these is broken, an infinite loop would
occur. BREAK1 detects this situation, and prints Break within a break on FN, and
then simply calls the function without going into a break.

14-11

MEDLEY REFERENCE MANUAL

14-12

The commands GO, ! GO, CK, ! OK, RETURN and 1 are the only ways to leave BREAKL. The
command EVAL causes BRKEXP to be evaluated, and saves the value on the variable
I VALUE. Other commands can be defined for BREAKL via BREAKMACRGCS (below).

BRKTYPE is NI L for user breaks, | NTERRUPT for Control-H breaks, and ERRORX for error
breaks. For breaks when BRKTYPE is not NI L, BREAK1 will clear and save the input
buffer. If the break returns a value (i.e., is not aborted via 1 or Control-D) the input buffer
is restored.

The fourth argument to BREAKL is BRKCOMS, a list of break commands that BREAKL
interprets and executes as though they were keyboard input. One can think of BRKCOVS
as another input file which always has priority over the keyboard. Whenever BRKCOMS =
NI L, BREAKL reads its next command from the keyboard. Whenever BRKCOVS is non-
NI L, BREAK1 takes (CAR BRKCOMS) as its next command and sets BRKCOMVS to (CDR
BRKCOWB) . For example, suppose you wished to see the value of the variable X after a
function was evaluated. You could set up a break with BRKCOVE = (EVAL (PRI NT X)
OK) , which would have the desired effect. If BRKCOVS is non-NI L, the value of a break
command is not printed. If you desire to see a value, you must print it yourself, as in the
above example. The function TRACE (see Chapter 15) uses BRKCOVES: it sets up a break
with two commands; the first one prints the arguments of the function, or whatever you
specify, and the second is the command GO, which causes the function to be evaluated and
its value printed.

Note: If an error occurs while interpreting the BRKCOMS commands, BRKCOVS is set to
NI L, and a full interactive break occurs.

The break package has a facility for redirecting ouput to a file. All output resulting from
BRKCOMS is output to the value of the variable BRKFI LE, which should be the name of an
open file. Output due to user type-in is not affected, and will always go to the terminal.
BRKFI LE is initially T.

BREAKMACROS [Variable]

BREAKVACRGS is a list of the form ((NAME; COML; ... COMWL,) (NAME, COMR,;
COMR,) . ..). Whenever an atomic command is given to BREAK1, it first searches the list
BREAKMACROS for the command. If the command is equal to NAME;, BREAKL simply

appends the corresponding commands to the front of BRKCOMS, and goes on. If the
command is not found on BREAKMACROS, BREAK1 then checks to see if it is one of the
built in commands, and finally, treats it as a function or variable as before.

If the command is not the name of a defined function, bound variable, or LI SPX
command, BREAK1 will attempt spelling correction using BREAKCOVELST as a spelling
list. If spelling correction is unsuccessful, BREAK1 will go ahead and call LI SPX anyway,
since the atom may also be a misspelled history command.

For example, the command ARGS could be defined by including on BREAKVACRCS the
form:

(ARGS (PRI NT (VAR ABLES LASTPCS T)))

ERRORS AND DEBUGGING

(BREAKREAD TYPE) [Function]

Useful within BREAKMACROS for reading arguments. If BRKCOMS is non-NI L (the
command in which the call to BREAKREAD appears was not typed in), returns the next
break command from BRKCOVS, and sets BRKCOVS to (CDR BRKCOVS) .

If BRKCOVES is NI L (the command was typed in), then BREAKREAD returns either the rest
of the commands on the line as a list (if TYPE = LI NE) or just the next command on the
line (if TYPE is not LI NE).

For example, the BT command is defined as (BAKTRACE LASTPOS N L (BREAKREAD
"LINE) O T). Thus, if you type BT, the third argument to BAKTRACE is NI L. If you
type BT SUBRP, the third argument is (SUBRP) .

BREAKRESETFORVS [Variable]

If you are developing programs that change the way a user and Medley normally interact
(e.g., change or disable the interrupt or line-editing characters, turn off echoing, etc.),
debugging them by breaking or tracing may be difficult, because Medley might be in a
“funny” state at the time of the break. BREAKRESETFORMS is designed to solve this
problem. You put in BREAKRESETFORMS expressions suitable for use in conjunction with
RESETFORM or RESETSAVE (see Changing and Restoring System State below). When a
break occurs, BREAK1 evaluates each expression on BREAKRESETFORMS bhefore any
interaction with the terminal, and saves the values. When the break expression is
evaluated via an EVAL, OK, or GO BREAK1 first restores the state of the system with
respect to the various expressions on BREAKRESETFORMS. When control returns to
BREAK1, the expressions on BREAKRESETFORMS are again evaluated, and their values
saved. When the break is exited with an OK, GO, RETURN, or 1 command, by typing
Control-D, or by a RETFROMor RETEVAL you type in, BREAK1 again restores state. Thus
the net effect is to make the break invisible with respect to your programs, but
nevertheless allow you to interact in the break in the normal fashion.

All user type-in is scanned to make the operations undoable, as described in Chapter 13.
At this point, RETFROVs and RETEVALs are also noticed. However, if you type in an
expression which calls a function that then does a RETFROM this RETFROM will not be
noticed, and the effects of BREAKRESETFORNVS will not be reversed.

As mentioned earlier, BREAK1 detects “Break within a break” situations, and avoids
infinite loops. If the loop occurs because of an error, BREAKL simply rebinds
BREAKRESETFORMS to NI L, and calls HELP. This situation most frequently occurs when
there is a bug in a function called by BREAKRESETFORNVS.

SETQ expressions can also be included on BREAKRESETFORMS for saving and restoring
system parameters, e.g. (SETQ LI SPXH STORY N L), (SETQ DW M-LG NI L), etc.
These are handled specially by BREAK1 in that the current value of the variable is saved
before the SETQis executed, and upon restoration, the variable is set back to this value.

14-13

MEDLEY REFERENCE MANUAL

Signalling Errors

14-14

With the Medley release, Interlisp errors use the Xerox Common Lisp (XCL) error system. Most of the
functions still exist for compatibility with previous releases, but the underlying machinery has
changed. There are some incompatible differences, especially with respect to error numbers. All
errors are now handled by signalling an object of type XCL: CONDI Tl ON. This means the error
numbers generated are different from the old Interlisp method of registered numbers for well-known
errors and error messages for all other errors. The mapping from Interlisp erors to Lisp error
conditions is listed in the Error List sections below. The obsolete error numbers still generate error
messages, but they are useless.

(ERRORX ERXM [Function]

Calls CL: ERROR after first converting ERXMinto a condition. If ERXMis NI L the value of
* LAST- CONDI TI ON* is used. If ERXMis an Interlisp error descriptor, it is first converted
to a condition. If ERXMis already a condition, it is passed along unchanged. ERRORX also
sets a proceed case for XCL: PROCEED, which will attempt to re-evaluate the caller of
ERRORX, much as OK did in older versions of the break package.

(ERROR MESS,; MESS, NOBREAK) [Function]

Prints MESS; (using PRI N1), followed by a space if MESS, is an atom, otherwise a carriage
return. Then MESS, is printed (using PRI N1 if MESS, is a string; otherwise PRI NT). For
example, (ERROR “ NON- NUMERI C ARG’ T) prints

NON- NUMERI C ARG
T

and (ERROR ' FOO "NOT A FUNCTI ON') prints FOO NOT A FUNCTI ON. If both MESS,
and MESS, are NI L, the message printed is simply ERROR.

If NOBREAK = T, ERROR prints its message and then calls ERROR! (below). Otherwise it
calls (ERRORX ' (17 (MESS; . MESS,))), i.e, generates error number 17, in which

case the decision as to whether to break, and whether to print a message, is handled as
any other error.

If the value of HELPFLAG (see the Controlling When to Break section above) is BREAK! , a
break will always occur, irregardless of the value of NOBREAK.

If ERROR causes a break, the “break expression“ is (ERROR MESS; MESS, NOBREAK) .
Using the GO OK, , or EVAL break commands (see the Break Commands section above)
will simply call ERROR again. It is sometimes helpful to design programs that call ERROR
such that if the call to ERROR returns (as the result of using the RETURN break command),
the operation is tried again. This Irts you fix any problems within the break environment,
and try to continue the operation.

(HELP MESS, MESS, BRKTYPE) [Function]

Prints MESS, and MESS, similar to ERROR, and then calls BREAK1 passing BRKTYPE as the
BRKTYPE argument. If both MESS; and MESS, are NI L, Hel p! is used for the message.
HELP is a convenient way to program a default condition, or to terminate some portion of
a program which the computation is theoretically never supposed to reach.

ERRORS AND DEBUGGING

(SHOULDNT MESS) [Function]

Useful in situations when a program detects a condition that should never occur. Calls
HELP with the message arguments MESS and “ Shoul dn’t happen! ” and a BRKTYPE
argument of * ERRORX.

(ERROR!) [Function]

Equivalent to XCL: ABORT, except that if no ERRORSET or XCL: CATCH- ABORT isa found,
it unwinds to the top of the process.

(RESET) [Function]
Programmable Control-D; immediately returns to the top level.

LAST- CONDI TI ON [Variable]

Value is the condition object most recently signaled.

(SETERRORN NUMMESS) [Function]
Converts its arguments into a condition, then sets the value of * LAST- CONDI TI ON* to the
result.

(ERRORVESS U) [Function]

Prints message corresponding to its first argument. For example, (ERRORMESS '’ (17
T)) would print: T is not a LIST

(ERRORVESS1 MESS,; MESS, MESS;) [Function]
Prints the message corresponding to a HELP or ERROR break.

(ERRORSTRI NG X) [Function]

Returns as a new string the message corresponding to error number X, e.g.,
(ERRORSTRI NG 10) = “NON-NUMERI C ARG’.

Catching Errors

All error conditions are not caused by program bugs. For some programs, it is reasonable for some
errors to occur (such as file not found errors) and it is possible for the program to handle the error
itself. There are a number of functions that allow a program to “catch” errors, rather than abort the
computation or cause a break.

(ERRORSET FORMFLAG) [Function]

Performs (EVAL FORM . If no error occurs in the evaluation of FORM the value of
ERRORSET is a list containing one element, the value of (EVAL FORM . If an error did
occur, the value of ERRORSET is NI L.

ERRORSET is a lambda function, so its arguments are evaluated before it is entered, i.e.,
(ERRORSET X) means EVAL is called with the value of X. In most cases, ERSETQ and
NLSETQ (below) are more useful.

14-15

MEDLEY REFERENCE MANUAL

Note: Beginning with the Medley release, there are no longer frames named ERRORSET
on the stack and any programs that explicity look for them must be changed.

Performance Note: When a call to ERSETQ or NLSETQ is compiled, the form to be
evaluated is compiled as a separate function. However, compiling a call to ERRORSET
does not compile FORM Therefore, if FORM performs a lengthy computation, using
ERSETQor NLSETQcan be much more efficient than using ERRORSET.

The argument FLAG controls the printing of error messages if an error occurs. If a break
occurs below an ERRORSET, the message is printed regardless of the value of FLAG

If FLAG = T, the error message is printed; if FLAG = NI L, the error message is not
printed (unless NLSETQGAGIs NI L, see below).

If FLAG = | NTERNAL, this ERRORSET is ignored for the purpose of deciding whether or
not to break or print a message (see the Controlling When to Break section above).
However, the ERRORSET is in effect for the purpose of flow of control, i.e., if an error
occurs, this ERRORSET returns NI L.

If FLAG = NOBREAK, no break will occur, even if the time criterion for breaking is met
(the Controlling When to Break section above). FLAG = NOBREAK will not prevent a
break from occurring if the error occurs more than HELPDEPTH function calls below the
errorset, since BREAKCHECK will stop searching before it reaches the ERRORSET. To
guarantee that no break occurs, you would also either have to reset HELPDEPTH or
HELPFLAG

(ERSETQFORM [NLambda Function]

Evaluates FORM letting a break happen if an error occurs, but 9" brings you back to the
ERSETQ Performs (ERRORSET ' FORMT), printing error messages.

(NLSETQFORM [NLambda Function]

Evaluates FORM witout breaking, returning NI L if an error occurs or a list containing
FORM if no error occurs. Performs (ERRORSET ' FORMNI L), without printing error
messages.

NLSETQGAG [Variable]

If NLSETQGAG is NI L, error messages will print, regardless of the FLAG argument of
ERRORSET. NLSETQGAG effectively changes all NLSETQs to ERSETQs. NLSETQGAG is
initially T.

Changing and Restoring System State

14-16

In Medley, a computation can be interrupted/aborted at any point due to an error, or more forcefully,
because a Control-D was typed, causing return to the top level. This situation creates problems for
programs that need to perform a computation with the system in a “different state”, e.g., different
radix, input file, readtable, etc. but want to be able to restore the state when the computation has
completed. While program errors and Control-E are “caught” by ERRORSETS, Control-D is not. The
program could redefine Control-D as a user interrupt (see Chapter 30), check for it, reenable it, and

ERRORS AND DEBUGGING

call RESET or something similar. Thus the system may be left in its changed state as a result of the
computation being aborted. The following functions address this problem.

These functions cannot handle the situation where their environment is exited via anything other than
a normal return, an error, or a reset. Therefore, a RETEVAL, RETFROM RESUNE, etc., will never be seen.

(RESETLST FORM, . .. FORM) [NLambda NoSpread Function]

RESETLST evaluates its arguments in order, after setting up an ERRORSET so that any
reset operations performed by RESETSAVE (see below) are restored when the forms have
been evaluated (or an error occurs, or a Control-D is typed). If no error occurs, the value
of RESETLST is the value of FORM, otherwise RESETLST generates an error (after
performing the necessary restorations).

RESETLST compiles open.

(RESETSAVE X YY) [NLambda NoSpread Function]

RESETSAVE is used within a call to RESETLST to change the system state by calling a
function or setting a variable, while specifying how to restore the original system state
when the RESETLST is exited (normally, or with an error or Control-D).

If X is atomic, resets the top level value of X to the value of Y. For example, (RESETSAVE
LI SPXH STORY EDI THI STORY) resets the value of LI SPXHI STORY to the value of
EDI THI STORY, and provides for the original value of LI SPXH STORY to be restored
when the RESETLST completes operation, (or an error occurs, or a Control-D is typed).

Note: If the variable is simply rebound, the RESETSAVE will not affect the most recent
binding but will change only the top level value, and therefore probably not have the
intended effect.

If X is not atomic, it is a form that is evaluated. If Y is NI L, X must return as its value its
“former state”, so that the effect of evaluating the form can be reversed, and the system
state can be restored, by applying CAR of X to the value of X. For example, (RESETSAVE
(RADI X 8)) performs (RADI X 8), and provides for RADI X to be reset to its original
value when the RESETLST completes by applying RADI X to the value returned by
(RADI X 8).

In the special case that CAR of X is SETQ the SETQ is transparent for the purposes of
RESETSAVE, i.e. you could also have written (RESETSAVE (SETQ X (RADI X 8))),
and restoration would be performed by applying RADI X, not SETQ to the previous value
of RADI X.

If Y is not NI L, it is evaluated (before X), and its value is used as the restoring expression.
This is useful for functions which do not return their “previous setting”. For example,

[RESETSAVE (SETBRK ...) (LIST ' SETBRK (GETBRK]

will restore the break characters by applying SETBRK to the value returned by (GETBRK) ,
which was computed before the (SETBRK ...) expression was evaluated. The
restoration expression is “evaluated” by applying its CAR to its CDR. This insures that the
“arguments” in the CDR are not evaluated again.

14-17

MEDLEY REFERENCE MANUAL

14-18

If Xis NI L, Y is still treated as a restoration expression. Therefore,
(RESETSAVE NI L (LI ST ' CLOSEF FILE))

will cause FI LE to be closed when the RESETLST that the RESETSAVE is under completes
(or an error occurs or a Control-D is typed).

RESETSAVE can be called when not under a RESETLST. In this case, the restoration is
performed at the next RESET, i.e., Control-D or call to RESET. In other words, there is an
“implicit” RESETLST at the top-level executive.

RESETSAVE compiles open. Its value is not a “useful” quantity.

(RESETVAR VAR NEW/AL UE FORM) [NLambda Function]

Simplified form of RESETLST and RESETSAVE for resetting and restoring global
variables. Equivalent to (RESETLST (RESETSAVE VAR NEW/ALUE) FORM) . For
example, (RESETVAR LI SPXH STORY EDI THI STORY (FQO)) resets LI SPXHI STORY to
the value of EDI THI STORY while evaluating (FOO). RESETVAR compiles open. If no
error occurs, its value is the value of FORM

(RESETVARSVARSLSTE, E, ... E) [NLambda NoSpread Function]

Similar to PROG except that the variables in VARSLST are global variables. In a deep
bound system (like Medley), each variable is “rebound” using RESETSAVE.

In a shallow bound system (like Interlisp-10) RESETVARS and PROG are identical, except
that the compiler insures that variables bound in a RESETVARS are declared as SPECVARS
(see Chapter 18).

RESETVARS, like GETATOWAL and SETATOWAL (see Chapter 2), is provided to permit
compatibility (i.e. transportablility) between a shallow bound and deep bound system
with respect to conceptually global variables.

Note: Like PROG RESETVARS returns NI L unless a RETURN statement is executed.

(RESETFORMRESETFORMFORM, FORM, . . . FORM) [NLambda NoSpread Function]

Simplified form of RESETLST and RESETSAVE for resetting a system state when the
corresponding function returns as its value the “previous setting.” Equivalent to
(RESETLST (RESETSAVE RESETFORM) FORM FORM, ... FORM). For example,

(RESETFORM (RADI X 8) (FOO)). RESETFORMcompiles open. If no error occurs, it
returns the value returned by FORM,

For some applications, the restoration operation must be different depending on whether the
computation completed successfully or was aborted somehow (e.g., by an error or by typing Control-
D). To facilitate this, while the restoration operation is being performed, the value of RESETSTATE is
bound to NI L, ERROR, RESET, or HARDRESET depending on whether the exit was normal, due to an
error, due to a reset (i.e., Control-D), or due to call to HARDRESET (see Chapter 23). As an example of
the use of RESETSTATE,

(RESETLST

(RESETSAVE (I NFI LE X)

ERRORS AND DEBUGGING

(LI ST * [LAVBDA (FL)
(COND ((EQ RESETSTATE ' RESET)
(CLOSEF FL)
DELFI LE FL]
X))
FORMVE)

will cause X to be closed and deleted only if a Control-D was typed during the execution of FORVES.

When specifying complicated restoring expressions, it is often necessary to use the old value of the
saving expression. For example, the following expression will set the primary input file (to FL) and
execute some forms, but reset the primary input file only if an error or Control-D occurs.
(RESETLST
(SETQ TEM (1 NPUT FL))

(RESETSAVE NI L
(LI ST ’ (LAMBDA (X) (AND RESETSTATE (I NPUT X)))
TEM)

FORMS)

So that you will not have to explicitely save the old value, the variable OLDVALUE is bound at the time
the restoring operation is performed to the value of the saving expression. Using this, the previous
example could be recoded as:
(RESETLST
(RESETSAVE (I NPUT FL)

" (AND RESETSTATE (1 NPUT OLDVALUE)))
FORMB)

As mentioned earlier, restoring is performed by applying CAR of the restoring expression to the CDR,
so RESETSTATE and (1 NPUT OLDVALUE) will not be evaluated by the APPLY. This particular
example works because AND is an nlambda function that explicitly evaluates its arguments, so
APPLYing AND to (RESETSTATE (| NPUT OLDVALUE)) is the same as EVALing (AND RESETSTATE

(I NPUT OLDVALUE)). PROGN also has this property, so you can use a lambda function as a restoring
form by enclosing it within a PROGN.

The function RESETUNDO (see Chapter 13) can be used in conjunction with RESETLST and
RESETSAVE to provide a way of specifying that the system be restored to its prior state by undoing the
side effects of the computations performed under the RESETLST.

Error List

There are currently fifty-plus types of errors in Medley. Some of these errors are implementation
dependent, i.e., appear in Medley but may not appear in other Interlisp systems. The error number is
set internally by the code that detects the error before it calls the error handling functions, and is used
by ERRORMESS for printing error messages.

Most errors will print the offending expression as part of the error message. Error number 18
(Control-B) always causes a break (unless HELPFLAG is NI L). All other errors cause breaks if
BREAKCHECK returns T (see Controlling When to Break above).

The folloing error messages are arranged numerically with the printed message next to the error
number. X is the offending expression in each error message. The obsolete error numbers still
generate error messags, but they aren’t particularly useful. For information on how to use the
Common Lisp error conditions in your own programs, see Common Lisp: the Language by Steele.

14-19

MEDLEY REFERENCE MANUAL

14-20

10

11

12

13

14

Obsolete.
Obsolete.
St ack Overfl ow

Occurs when computation is too deep, either with respect to number of function calls, or number
of variable bindings. Usually because of a non-terminating recursive computation, i.e., a bug.
Condition type: STACK- OVERFLOW

RETURN t o nonexi stant bl ock: X
Call to RETURN when not inside of an interpreted PROG. Condition type: | LLEGAL- RETURN.
Xis not a LIST

RPLACA called on a non-list. Condition type: XCL: SI MPLE- TYPE- ERROR cul prit
. EXPECTED- TYPE ' LI ST

Device error: X

An error with the local disk drive. Condition type: XCL: SI MPLE- DEVI CE- ERROR nessage
Serious condition XCL: ATTEMPT- TO CHANGE- CONSTANT occur ed.

Via SET or SETQ Condition type: XCL: ATTEMPT- TO- CHANGE- CONSTANT

Attenpt to rplac NIL with X

Attempt either to RPLACA or to RPLACD NI L with something other than NI L. Condition type:
XCL: ATTEMPT- TO- RPLAC- NI L nessage

GO to a nonexi stant tag: X

GOwhen not inside of a PROG, or GOto nonexistent label. Condition type: | LLEGAL- GO t ag
File won’t open: X

From OPENSTREAM(see Chapter 24). Condition type: XCL: FI LE- WONT- OPEN pat hnane
X is not a NUMBER

A numeric function e.g., PLUS, TI MES, GREATERP, expected a number and didn’t get one.
Condition type: XCL: SI MPLE- TYPE- ERROR cul prit : EXPECTED TYPE ' CL: NUMBER

Synbol nane too | ong

Attempted to create a symbol (via PACK, or typing one in, or reading from a file) with too many
characters. In Medley, the maximum number of characters in a symbol is 255. Condition type:
XCL: SYMBCL- NAME- TOO- LONG

Synbol hash table full
No room for any more (new) atoms. Condition type: XCL: SYMBOL- HT- FULL
Stream not open: X

From an 1/0 function, e.g., READ, PRI NT, CLOSEF. Condition type: XCL: STREAM NOT- OPEN
stream

X is not a SYMBOL.

SETQ PUTPROP, GETTOPVAL, etc., given a hon-atomic argument. Condition type: XCL: SMPLE-
TYPE- ERROR cul prit : EXPECTED- TYPE ' CL: SYMBOL

15
16

17

18
19

20
21

22

23

24
25

26

27

28

29
30

ERRORS AND DEBUGGING

Obsolete
End of file X

From an input function, e.g., READ, READC, RATOM After the error occurs, the file will still be left
open. Condition type: END- OF- FI LE stream

X varyi ng nessages.

Call to ERROR (see Signalling Errors above). Condition type: | NTERLI SP- ERROR MESSAGE
Obsolete

Il'legal stack arg: X

A stack function expected a stack position and was given something else. This might occur if the
arguments to a stack function are reversed. Also occurs if you specified a stack position with a
function name, and that function was not found on the stack (see Chapter 11). Condition type:
| LLEGAL- STACK- ARG ar g.

Obsolete
Array space full

System will first initiate a garbage collection of array space, and if no array space is reclaimed,
will then generate this error. Condition type: XCL: ARRAY- SPACE- FULL.

File system resources exceeded: X

Includes no more disk space, disk quota exceeded, directory full, etc. Condition type: XCL: FS-
RESOURCE- EXCEEDED

File not found

File name does not correspond to a file in the corresponding directory. Can also occur if file name
is ambiguous. Condition type: XCL: FI LE- NOT- FOUND pathname

Obsolete
Invalid argument: X

A form ends in a non-list other than NI L, e.g.,, (CONS T . 3). Condition type: | NVALI D-
ARGUMENT- LI ST ar gunent

Hash table full: X
See hash array functions, Chapter 6. Condition type: XCL: HASH TABLE- FULL t abl e
Invalid argument: X

Catch-all error. Currently used by PUTD, EVALA, ARG FUNARG etc. Condition type: | NVALI D-
ARGUMENT- LI ST ar gunent

X is not a ARRAYP.

ELT or SETA given an argument that is not a legal array (see Chapter 5). Condition type:
XCL: SI MPLE- TYPE- ERROR cul prit : EXPECTED- TYPE ' ARRAYP

Obsolete
Stack ptr ahs been rel eased NOBI ND

A released stack pointer was supplied as a stack descriptor for a purpose other than as a stack
pointer to be re-used (see Chapter 11). Condition type: STACK- PO NTER- REALEASED nane

14-21

MEDLEY REFERENCE MANUAL

31

32
33
34

35

36
37
38

39

40
41

42

43
44

45

14-22

Serious condition XCL: STORAGE- EXHAUSTED occur ed.

Following a garbage collection, if not enough words have been collected, and there is no un-
allocated space left in the system, this error is generated. Condition type: XCL: STORAGE-
EXHAUSTED

Obsolete
Obsolete
No nore data types avail able

All available user data types have been allocated (see Chapter 8). Condition type: XCL: DATA-
TYPES- EXHAUSTED

Serious condition XCL: ATTEMPT- TO CHANGE- CONSTANT occur ed.

In a PROG or LAMBDA expression. Condition type: XCL: ATTEMPT- TO- CHANGE- CONSTANT
Obsolete

Obsolete

X is not a READTABLEP.

The argument was expected to be a valid read table (see Chapter 25). Condition type:
XCL: SI MPLE- TYPE- ERROR cul prit : EXPECTED- TYPE ' READTABLEP

X is not a TERMIABLEP.

The argument was expected to be a valid terminal table (see Chapter 30). Condition type:
XCL: SI MPLE- TYPE- ERROR cul prit : EXPECTED- TYPE ' TERMIABLEP

Obsolete
Protection violation: X

Attempt to open a file that you do not have access to. Also reference to unassigned device.
Condition type: XCL: FS- PROTECTI ON- VI OLATI ON

Invalid pathnane: X

Illlegal character in file specification, illegal syntax, e.g. two ;s etc. Condition type:
XCL: I NVALI D- PATHNAME pat hnane

Obsolete
X is an unbound vari abl e

This occurs when a variable (symbol) was used which had neither a stack binding (wasn’t an
argument to a function nor a PROG variable) nor a top level value. The “culprit” ((CADR
ERRORMESS)) is the symbol. If DWIM corrects the error, no error occurs and the error number is
not set. However, if an error is going to occur, whether or not it will cause a break, the error
number will be set. Condition type: UNBOUND- VARI ABLE nane

Serious conditi on UNDEFI NED- CAR- OF- FORM occur ed.

Undefined function error. This occurs when a form is evaluated whose function position (CAR)
does not have a definition as a function. Condition type: UNDEFI NE- CAR- OF FORM f uncti on

46

47

48

49

50
51

52

ERRORS AND DEBUGGING

X varyi ng messages.

This error is generated if APPLY is given an undefined function. Culpritis (LI ST FN ARGS)
Condition type: UNDEFI NED- FUNCTI ON- | N- APPLY

CONTROL E

Control-E was typed. Condition type: XCL: CONTRCL- E- | NTERRUPT

Fl oating point underfl ow.

Underflow during floating-point operation. Condition type: XCL: FLOATI NG- UNDERFLOW
Fl oati ng point overfl ow.

Overflow during floating-point operation. Condition type: XCL: OVERFLOW

Obsolete

X is not a HASH TABLE

Hash array operations given an argument that is not a hash array. Condition type:
XCL: SI MPLE- TYPE- ERROR cul prit : EXPECTED- TYPE ' CL: HASH TABLE

Too many arguments to X
Too many arguments given to a lambda-spread, lambda-nospread, or nlambda-spread function.

Medley does not cause an error if more arguments are passed to a function than it is defined with.
This argument occurs when more individual arguments are passed to a function than Medley can
store on the stack at once. The limit is currently 80 arguments.

In addition, many system functions, e.g., DEFI NE, ARGLI ST, ADVI SE, LOG EXPT, etc, also
generate errors with appropriate messages by calling ERROR (see Signalling Errors above) which
causes error number 17. Condition type: TOO MANY- ARGUMENTS cal l ee : MAXI MUM
CL: CALL- ARGUMENTS-LIM T

14-23

MEDLEY REFERENCE MANUAL

[This page intentionally left blank]

14-24

