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22.   PERFORMANCE ISSUES
 

This chapter describes a number of areas that often contribute to performance problems
in Interlisp-D programs.  Many performance problems can be improved by optimizing
the use of storage, since allocating and reclaiming large amounts of storage is
expensive.  Another tactic that can sometimes yield performance improvements is to
change the use of variable bindings on the stack to reduce variable lookup time.  There
are a number of tools that can be used to determine which parts of a computation cause
performance bottlenecks.

Storage Allocation and Garbage Collection

As an Interlisp-D applications program runs, it creates data structures (allocated out of
free storage space), manipulates them, and then discards them.  If there were no way of
reclaiming this space, over time the Interlisp-D memory (both the physical memory in
the machine and the virtual memory stored on the disk) would fill up, and the
computation would come to a halt.  Actually, long before this could happen the system
would probably become intolerably slow, due to "data fragmentation," which occurs
when the data currently in use are spread over many virtual memory pages, so that
most of the computer time must be spent swapping disk pages into physical memory.
The problem of fragmentation will occur in any situation where the virtual memory is
significantly larger than the real physical memory. To reduce swapping, it is desirable
to keep the "working set" (the set of pages containing actively referenced data) as small
as possible.

It is possible to write programs that don’t generate much "garbage" data, or which
recycle data, but such programs tend to be overly complicated and difficult to debug.
Spending effort writing such programs defeats the whole point of using a system with
automatic storage allocation.  An important part of any Lisp implementation is the
"garbage collector" which identifies discarded data and reclaims its space.  There are
several well-known approaches to garbage collection.  One method is the traditional
mark-and-sweep garbage collection algorithm, which identifies "garbage" data by
marking all accessible data structures, and then sweeping through the data spaces to
find all unmarked objects (i.e., not referenced by any other object).   Although this
method is guaranteed to reclaim all garbage, it takes time proportional to the number of
allocated objects, which may be very large.  (Some allocated objects will have been
marked during the "mark" phase, and the remainder will be collected during the
"sweep" phase; so all will have to be touched in some way.)  Also, the time that a mark-
and-sweep garbage collection takes is independent of the amount of garbage collected; it
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is possible to sweep through the whole virtual memory, and only recover a small
amount of garbage.

For interactive applications, it is not acceptable to have long interruptions in a
computation for the purpose of garbage collection.  Interlisp-D solves this problem by
using a reference-counting garbage collector.  With this scheme, there is a table
containing counts of how many times each object is referenced.  This table is
incrementally updated as pointers are created and discarded, incurring a small
overhead distributed over the computation as a whole.  (Note: References from the stack
are not counted, but are handled separately at "sweep" time; thus the vast majority of
data manipulations do not cause updates to this table.)  At opportune moments, the
garbage collector scans this table, and reclaims all objects that are no longer accessible
(have a reference count of zero).  The pause while objects are reclaimed is only the time
for scanning the reference count tables (small) plus time proportional to the amount of
garbage that has to be collected (typically less than a second).  "Opportune" times occur
when a certain number of cells have been allocated or when the system has been
waiting for the user to type something for long enough.  The frequency of garbage
collection is controlled by the functions and variables described below.  For the best
system performance, it is desirable to adjust these parameters for frequent, short
garbage collections, which will not interrupt interactive applications for very long, and
which will have the added benefit of reducing data fragmentation, keeping the working
set small.

One problem with the Interlisp-D garbage collector is that not all garbage is guaranteed
to be collected.  Circular data structures, which point to themselves directly or
indirectly, are never reclaimed, since their reference counts are always at least one.
With time, this unreclaimable garbage may increase the working set to unacceptable
levels.  Some users have worked with the same Interlisp-D virtual memory for a very
long time, but it is a good idea to occasionally save all of your functions in files,
reinitialize Interlisp-D, and rebuild your system.  Many users end their working day by
issuing a command to rebuild their system and then leaving the machine to perform
this task in their absence.  If the system seems to be spending too much time swapping
(an indication of fragmented working set), this procedure is definitely recommended.

Garbage collection in Interlisp-D is controlled by the following functions and variables:

(RECLAIM)  [Function]

Initiates a garbage collection.  Returns 0.

(RECLAIMMIN N)  [Function]

Sets the frequency of garbage collection.  Interlisp keeps track of the number of
cells of any type that have been allocated; when it reaches a given number, a
garbage collection occurs.  If N is non-NIL, this number is set to N.  Returns the
current setting of the number.
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RECLAIMWAIT  [Variable]

Interlisp-D will invoke a RECLAIM if the system is idle and waiting for your
input for RECLAIMWAIT seconds (currently set for 4 seconds).

(GCGAG MESSAGE)  [Function]

Sets the behavior that occurs while a garbage collection is taking place.  If
MESSAGE is non-NIL, the cursor is complemented during a RECLAIM; if
MESSAGE=NIL, nothing happens.  The value of GCGAG is its previous setting.

(GCTRP)  [Function]

Returns the number of cells until the next garbage collection, according to the
RECLAIMMIN number.

The amount of storage allocated to different data types, how much of that storage is in
use, and the amount of data fragmentation can be determined using the following
function:

(STORAGE TYPES PAGETHRESHOLD)  [Function]

STORAGE prints out a summary, for each data type, of the amount of space
allocated to the data type, and how much of that space is currently in use.  If
TYPES is non-NIL, STORAGE only lists statistics for the specified types.  TYPES
can be a litatom or a list of types.  If PAGETHRESHOLD is non-NIL, then
STORAGE only lists statistics for types that have at least PAGETHRESHOLD
pages allocated to them.
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STORAGE prints out a table with the column headings Type, Assigned, Free
Items, In use, and Total alloc.  Type is the name of the data type.  Assigned
is how much of your virtual memory is set aside for items of this type.
Currently, memory is allocated in quanta of two pages (1024 bytes).  The
numbers under Assigned show the number of pages and the total number of
items that fit on those pages.  Free Items shows how many items are available
to be allocated (using the create construct, Chapter 8); these constitute the
"free list" for that data type.  In use shows how many items of this type are
currently in use, i.e., have pointers to them and hence have not been garbage
collected.  If this number is higher than your program seems to warrant, you
may want to look for storage leaks.  The sum of Free Items and In use is
always the same as the total Assigned items.  Total alloc is the total number
of items of this type that have ever been allocated (see BOXCOUNT, in the
Performance Measuring section below).

Note: The information about the number of items of type LISTP is only
approximate, because list cells are allocated in a special way that
precludes easy computation of the number of items per page.

Note:  When a data type is redeclared, the data type name is reassigned.
Pages which were assigned to instances of the old data type are labeled
**DEALLOC**.

At the end of the table printout, STORAGE prints a "Data Spaces Summary"
listing the number of pages allocated to the major data areas in the virtual
address space: the space for fixed-length items (including datatypes), the space
for variable-length items, and the space for litatoms.  Variable-length data types
such as arrays have fixed-length "headers," which is why they also appear in the
printout of fixed-length data types.  Thus, the line printed for the BITMAP data
type says how many bitmaps have been allocated, but the "assigned pages"
column counts only the headers, not the space used by the variable-length part
of the bitmap.  This summary also lists "Remaining Pages" in relation to the
largest possible virtual memory, not the size of the virtual memory backing file
in use.  This file may fill up, causing a STORAGE FULL error, long before the
"Remaining Pages" numbers reach zero.

STORAGE also prints out information about the sizes of the entries on the
variable-length data free list.  The block sizes are broken down by the value of
the variable STORAGE.ARRAYSIZES, initially (4 16 64 256 1024 4096
16384 NIL), which yields a printout of the form:

variable-datum free list: 
le 4       26 items;    104 cells.
le 16      72 items;    783 cells.
le 64      36 items;    964 cells.
le 256     28 items;   3155 cells.
le 1024     3 items;   1175 cells.
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le 4096     5 items;   8303 cells.
le 16384    3 items;  17067 cells.
others      1 items;  17559 cells.

This information can be useful in determining if the variable-length data space
is fragmented.  If most of the free space is composed of small items, then the
allocator may not be able to find room for large items, and will extend the
variable datum space.  If this is extended too much, this could cause an ARRAYS
FULL error, even if there is a lot of space left in little chunks.
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(STORAGE.LEFT)  [Function]

Provides a programmatic way of determining how much storage is left in the
major data areas in the virtual address space.  Returns a list of the form
(MDSFREE MDSFRAC 8MBFRAC ATOMFREE ATOMFRAC), where the
elements are interpreted as follows:

MDSFREE The number of free pages left in the main data space (which
includes both fixed-length and variable-length data types).

MDSFRAC The fraction of the total possible main data space that is free.

8MBFRAC The fraction of the total main data space that is free, relative
to eight megabytes.

This number is useful when using Interlisp-D on some early
computers where the hardware limits the address space to
eight megabytes.  The function 32MBADDRESSABLE returns
non-NIL if the currently running Interlisp-D system can use
the full 32 megabyte address space.

ATOMFREE The number of free pages left in the litatom space.

ATOMFRAC The fraction of the total litatom space that is free.

Note:  Another important space resource is the amount of the virtual memory backing
file in use (see VMEMSIZE, Chapter 12).  The system will crash if the virtual memory file
is full, even if the address space is not exhausted.

Variable Bindings

Different implementations of lisp use different methods of accessing free variables.  The
binding of variables occurs when a function or a PROG is entered.  For example, if the
function FOO has the definition (LAMBDA (A B) BODY), the variables A and B are
bound so that any reference to A or B from BODY or any function called from BODY will
refer to the arguments to the function FOO and not to the value of A or B from a higher
level function.  All variable names (litatoms) have a top level value cell which is used if
the variable has not been bound in any function.   In discussions of variable access, it is
useful to distinquish between three types of variable access: local, special and global.
Local variable access is the use of a variable that is bound within the function from
which it is used.  Special variable access is the use of a variable that is bound by
another function.  Global variable access is the use of a variable that has not been
bound in any function.  We will often refer to a variable all of whose accesses are local
as a "local variable."  Similarly, a variable all of whose accesses are global we call a
"global variable."
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In a "deep" bound system, a variable is bound by saving on the stack the variable’s
name together with a value cell which contains that variable’s new value.  When a
variable is accessed, its value is found by searching the stack for the most recent
binding (occurrence) and retrieving the value stored there.  If the variable is not found
on the stack, the variable’s top level value cell is used.

In a "shallow" bound system, a variable is bound by saving on the stack the variable
name and the variable’s old value and putting the new value in the variable’s top level
value cell.  When a variable is accessed, its value is always found in its top level value
cell.
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The deep binding scheme has one disadvantage: the amount of cpu time required to
fetch the value of a variable depends on the stack distance between its use and its
binding.  The compiler can determine local variable accesses and compiles them as
fetches directly from the stack.  Thus this computation cost only arises in the use of
variable not bound in the local frame ("free" variables).  The process of finding the value
of a free variable is called free variable lookup.

In a shallow bound system, the amount of cpu time required to fetch the value of a
variable is constant regardless of whether the variable is local, special or global.  The
disadvantages of this scheme are that the actual binding of a variable takes longer
(thus slowing down function call), the cells that contain the current in use values are
spread throughout the space of all litatom value cells (thus increasing the working set
size of functions) and context switching between processes requires unwinding and
rewinding the stack (thus effectively prohibiting the use of context switching for many
applications).

Interlisp-D uses deep binding, because of the working set considerations and the speed
of context switching.  The free variable lookup routine is microcoded, thus greatly
reducing the search time.  In benchmarks, the largest percentage of free variable lookup
time was 20 percent of the total ellapsed time; the normal time was between 5 and 10
percent.

One consequence of Interlisp-D’s deep binding scheme is that users may significantly
improve performance by declaring global variables in certain situations.  If a variable is
declared global, the compiler will compile an access to that variable as a retrieval of its
top level value, completely bypassing a stack search.  This should be done only for
variables that are never bound in functions, such as global databases and flags.

Global variable declarations should be done using the GLOBALVARS file package
command (Chapter 17).  Its form is (GLOBALVARS  VAR1 ... VARN).

Another way of improving performance is to declare variables as local within a function.
Normally, all variables bound within a function have their names put on the stack, and
these names are scanned during free variable lookup.  If a variable is declared to be
local within a function, its name is not put on the stack, so it is not scanned during free
variable lookup, which may increase the speed of lookups.  The compiler can also make
some other optimizations if a variable is known to be local to a function.

A variable may be declared as local within a function by including the form (DECLARE
(LOCALVARS VAR1 ... VARN)) following the argument list in the definition of the
function.  Local variable declarations only effect the compilation of a function.
Interpreted functions put all of their variable names on the stack, regardless of any
declarations.
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Performance Measuring

This section describes functions that gather and display statistics about a computation,
such as as the elapsed time, and the number of data objects of different types allocated.
TIMEALL and TIME gather statistics on the evaluation of a specified form.  BREAKDOWN
gathers statistics on individual functions called during a computation.  These functions
can be used to determine which parts of a computation are consuming the most
resources (time, storage, etc.), and could most profitably be improved.

(TIMEALL TIMEFORM NUMBEROFTIMES TIMEWHAT INTERPFLG —)  
[NLambda Function]

Evaluates the form TIMEFORM and prints statistics on time spent in various
categories (elapsed, keyboard wait, swapping time, gc) and data type allocation.

For more accurate measurement on small computations, NUMBEROFTIMES
may be specified (its default is 1) to cause TIMEFORM to be executed
NUMBEROFTIMES times.  To improve the accuracy of timing open-coded
operations in this case, TIMEALL compiles a form to execute TIMEFORM
NUMBEROFTIMES times (unless INTERPFLG is non-NIL), and then times
the execution of the compiled form.

Note:  If TIMEALL is called with NUMBEROFTIMES>1, the dummy form is
compiled with compiler optimizations on.  This means that it is not
meaningful to use TIMEALL with very simple forms that are optimized
out by the compiler.  For example, (TIMEALL ’(IPLUS 2 3) 1000)
will time a compiled function which simply returns the number 5, since
(IPLUS 2 3) is optimized to the integer 5.

TIMEWHAT restricts the statistics to specific categories.  It can be an atom or
list of datatypes to monitor, and/or the atom TIME to monitor time spent.  Note
that ordinarily, TIMEALL monitors all time and datatype usage, so this
argument is rarely needed.  

TIMEALL returns the value of the last evaluation of TIMEFORM.

(TIME TIMEX TIMEN TIMETYP)  [NLambda Function]

TIME evaluates the form TIMEX, and prints out the number of CONS cells
allocated and computation time.  Garbage collection time is subtracted out.
This function has been largely replaced by TIMEALL.

If TIMEN is greater than 1, TIMEX is executed TIMEN times, and TIME prints
out (number of conses)/TIMEN, and (computation time)/TIMEN.  If
TIMEN=NIL, it defaults to 1.  This is useful for more accurate measurement on
small computations.
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If TIMETYP is 0, TIME measures and prints total real time as well as
computation time.  If TIMETYP = 3, TIME measures and prints garbage
collection time as well as computation time.  If TIMETYP=T, TIME measures
and prints the number of pagefaults.

TIME returns the value of the last evaluation of TIMEX.

(BOXCOUNT TYPE N)  [Function]

Returns the number of data objects of type TYPE allocated since this Interlisp
system was created.  TYPE can be any data type name (see TYPENAME, Chapter
8).  If TYPE is NIL, it defaults to FIXP.  If N is non-NIL, the corresponding
counter is reset to N.

(CONSCOUNT N)  [Function]

Returns the number of CONS cells allocated since this Interlisp system was
created.  If N is non-NIL, resets the counter to N.  Equivalent to (BOXCOUNT
’LISTP N).

(PAGEFAULTS)  [Function]

Returns the number of page faults since this Interlisp system was created.

BREAKDOWN

TIMEALL collects statistics for whole computations.  BREAKDOWN is available to analyze
the breakdown of computation time (or any other measureable quantity) function by
function.

(BREAKDOWN FN1 ... FNN)  [NLambda NoSpread Function]

The user calls BREAKDOWN giving it a list of function names (unevaluated).
These functions are modified so that they keep track of various statistics.

To remove functions from those being monitored, simply UNBREAK (Chapter 15)
the functions, thereby restoring them to their original state.  To add functions,
call BREAKDOWN on the new functions.  This will not reset the counters for any
functions not on the new list.  However (BREAKDOWN) will zero the counters of
all functions being monitored.

The procedure used for measuring is such that if one function calls other and
both are "broken down", then the time (or whatever quantity is being measured)
spent in the inner function is not charged to the outer function as well.  
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BREAKDOWN will not give accurate results if a function being measured is not
returned from normally, e.g., a lower RETFROM (or ERROR) bypasses it.  In this
case, all of the time (or whatever quantity is being measured) between the time
that function is entered and the time the next function being measured is
entered will be charged to the first function.

(BRKDWNRESULTS RETURNVALUESFLG)  [Function]

BRKDWNRESULTS prints the analysis of the statistics requested as well as the
number of calls to each function.  If RETURNVALUESFLG is non-NIL,
BRKDWNRESULTS will not to print the results, but instead return them in the
form of a list of elements of the form (FNNAME #CALLS VALUE).

Example:

← (BREAKDOWN SUPERPRINT SUBPRINT COMMENT1)
(SUPERPRINT SUBPRINT COMMENT1)
←(PRETTYDEF ’(SUPERPRINT) ’FOO)
FOO.;3
←(BRKDWNRESULTS)
FUNCTIONS   TIME    #CALLS  PER CALL   %
SUPERPRINT  8.261    365    0.023     20
SUBPRINT   31.910    141    0.226     76
COMMENT1    1.612      8    0.201      4
TOTAL      41.783    514    0.081
NIL
←(BRKDWNRESULTS T)
((SUPERPRINT 365 8261) (SUBPRINT 141 31910) (COMMENT1 8
1612))

BREAKDOWN can be used to measure other statistics, by setting the following variables:

BRKDWNTYPE  [Variable]

To use BREAKDOWN to measure other statistics, before calling BREAKDOWN, set
the variable BRKDWNTYPE to the quantity of interest, e.g., TIME, CONSES, etc, or
a list of such quantities.  Whenever BREAKDOWN is called with BRKDWNTYPE not
NIL, BREAKDOWN performs the necessary changes to its internal state to conform
to the new analysis.  In particular, if this is the first time an analysis is being
run with a particular statistic, a measuring function will be defined, and the
compiler will be called to compile it.  The functions being broken down will be
redefined to call this measuring function.  When BREAKDOWN is through
initializing, it sets BRKDWNTYPE back to NIL.  Subsequent calls to BREAKDOWN
will measure the new statistic until BRKDWNTYPE is again set and a new
BREAKDOWN performed.
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BRKDWNTYPES  [Variable]

The list BRKDWNTYPES contains the information used to analyze new statistics.
Each entry on BRKDWNTYPES should be of the form (TYPE FORM FUNCTION),
where TYPE is a statistic name (as would appear in BRKDWNTYPE), FORM
computes the statistic, and FUNCTION (optional) converts the value of form to
some more interesting quantity.  For example, (TIME (CLOCK 2) (LAMBDA
(X) (FQUOTIENT X 1000))) measures computation time and reports the
result in seconds instead of milliseconds.  BRKDWNTYPES currently contains
entries for TIME, CONSES, PAGEFAULTS, BOXES, and FBOXES.

Example:

←(SETQ BRKDWNTYPE ’(TIME CONSES))
(TIME CONSES)
←(BREAKDOWN MATCH CONSTRUCT)
(MATCH CONSTRUCT)
←(FLIP ’(A B C D E F G H C Z) ’(.. $1 .. #2 ..) ’(.. #3
..))
(A B D E F G H Z)
←(BRKDWNRESULTS)
FUNCTIONS  TIME    #CALLS  PER CALL   %
MATCH      0.036    1       0.036    54
CONSTRUCT  0.031    1       0.031    46
TOTAL      0.067    2       0.033 
FUNCTIONS  CONSES  #CALLS  PER CALL   %
MATCH      32       1      32.000    40
CONSTRUCT  49       1      49.000    60
TOTAL      81       2      40.500 
NIL

Occasionally, a function being analyzed is sufficiently fast that the overhead
involved in measuring it obscures the actual time spent in the function.  If you
were using TIME, you would specify a value for TIMEN greater than 1 to give
greater accuracy.  A similar option is available for BREAKDOWN.  You can specify
that a function(s) be executed a multiple number of times for each
measurement, and the average value reported, by including a number in the list
of functions given to BREAKDOWN.  For example, BREAKDOWN(EDITCOM EDIT4F
10 EDIT4E EQP) means normal breakdown for EDITCOM and EDIT4F but
executes (the body of) EDIT4E and EQP 10 times each time they are called.  Of
course, the functions so measured must not cause any harmful side effects, since
they are executed more than once for each call.  The printout from
BRKDWNRESULTS will look the same as though each function were run only once,
except that the measurement will be more accurate.

Another way of obtaining more accurate measurement is to expand the call to
the measuring function in-line.  If the value of BRKDWNCOMPFLG is non-NIL
(initially NIL), then whenever a function is broken-down, it will be redefined to
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call the measuring function, and then recompiled.  The measuring function is
expanded in-line via an appropriate macro.  In addition, whenever BRKDWNTYPE
is reset, the compiler is called for all functions for which BRKDWNCOMPFLG was
set at the time they were originally broken-down, i.e. the setting of the flag at
the time a function is broken-down determines whether the call to the
measuring code is compiled in-line.

GAINSPACE

If you have large programs and databases, you may sometimes find yourself in a
situation where you need to obtain more space, and are willing to pay the price of
eliminating some or all of the context information that the various user-assistance
facilities such as the programmer’s assistant, file package, CLISP, etc., have
accumulated during the course of his session.  The function GAINSPACE provides an
easy way to selectively throw away accumulated data:

(GAINSPACE)  [Function]

Prints a list of deletable objects, allowing you to specify at each point what
should be discarded and what should be retained.  For example:

←(GAINSPACE)
purge history lists ? Yes
purge everything, or just the properties, e.g., SIDE,
LISPXPRINT, etc. ?
just the properties
discard definitions on property lists ? Yes
discard old values of variables ? Yes
erase properties ? No
erase CLISP translations? Yes

GAINSPACE is driven by the list GAINSPACEFORMS.  Each element on GAINSPACEFORMS
is of the form (PRECHECK MESSAGE FORM KEYLST).  If PRECHECK, when
evaluated, returns NIL, GAINSPACE skips to the next entry.  For example, you will not
be asked whether or not to purge the history list if it is not enabled.  Otherwise,
ASKUSER (Chapter 26) is called with the indicated MESSAGE and the (optional)
KEYLST.  If you respond No, i.e., ASKUSER returns N, GAINSPACE skips to the next
entry.  Otherwise, FORM is evaluated with the variable RESPONSE bound to the value
of ASKUSER.  In the above example, the FORM for the "purge history lists"
question calls ASKUSER to ask "purge everything, ..." only if you had responded
Yes.  If you had responded with Everything, the second question would not have been
asked.

The "erase properties" question is driven by a list SMASHPROPSMENU.  Each element
on this list is of the form (MESSAGE . PROPS).  You are prompted with MESSAGE
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(by ASKUSER), and if your response is Yes, PROPS is added to the list SMASHPROPS.
The "discard definitions on property lists" and "discard old values of
variables" questions also add to SMASHPROPS.  You will not be prompted for any entry
on SMASHPROPSMENU for which all of the corresponding properties are already on
SMASHPROPS.  SMASHPROPS is initially set to the value of SMASHPROPSLST.  This
permits you to specify in advance those properties which you always want discarded,
and not be asked about them subsequently.  After finishing all the entries on
GAINSPACEFORMS, GAINSPACE checks to see if the value of SMASHPROPS is non-NIL,
and if so, does a MAPATOMS, i.e., looks at every atom in the system, and erases the
indicated properties.

You can change or add new entries to GAINSPACEFORMS or SMASHPROPSMENU, so that
GAINSPACE can also be used to purge structures that your programs have accumulated.

Using Data Types Instead of Records

If a program uses large numbers of large data structures, there are several advantages
to representing them as user data types rather than as list structures.  The primary
advantage is increased speed: accessing and setting the fields of a data type can be
significantly faster than walking through a list with repeated CARs and CDRs.  Also, 
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compiled code for referencing data types is usually smaller.  Finally, by reducing the
number of objects created (one object against many list cells), this can reduce the
expense of garbage collection.

User data types are declared by using the DATATYPE record type (Chapter 8).  If a list
structure has been defined using the RECORD record type (Chapter 8), and all accessing
operations are written using the record package’s fetch, replace, and create
operations, changing from RECORDs to DATATYPEs only requires editing the record
declaration (using EDITREC, Chapter 8) to replace declaration type RECORD by
DATATYPE, and recompiling.

Note: There are some minor disadvantages with allocating new data types:  First, there
is an upper limit on the number of data types which can exist.  Also, space for data
types is allocated a page at a time, so each data type has at least one page assigned to
it, which may be wasteful of space if there are only a few examples of a given data type.
These problems should not effect most applications programs.

Using Incomplete File Names

Currently, Interlisp allows you to specify an open file by giving the file name.  If the file
name is incomplete (it doesn’t have the device/host, directory, name, extension, and
version number all supplied), the system converts it to a complete file name, by
supplying defaults and searching through directories (which may be on remote file
servers), and then searches the open streams for one corresponding to that file name.
This file name-completion process happens whenever any I/O function is given an
incomplete file name, which can cause a serious performance problem if I/O operations
are done repeatedly.  In general, it is much faster to convert an incomplete file name to
a stream once, and use the stream from then on.  For example, suppose a file is opened
with (SETQ STRM (OPENSTREAM ’MYNAME ’INPUT)).  After doing this, (READC
’MYNAME) and (READC STRM) would both work, but (READC ’MYNAME) would take
longer (sometimes orders of magnitude longer).  This could seriously effect the
performance if a program which is doing many I/O operations.

At some point in the future, when multiple streams are supported to a single file, the
feature of mapping file names to streams will be removed.  This is yet another reason
why programs should use streams as handles to open files, instead of file names.

For more information on efficiency considerations when using files, see Chapter 24.
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Using "Fast" and "Destructive" Functions

Among the functions used for manipulating objects of various data types, there are a
number of functions which have "fast" and "destructive" versions.  You should be aware
of what these functions do, and when they should be used.

"Fast" functions:  By convention, a function named by prefixing an existing function
name with F indicates that the new function is a "fast" version of the old.  These usually
have the same definitions as the slower versions, but they compile open and run
without any "safety" error checks.  For example, FNTH runs faster than NTH, however, it
does not make as many checks (for lists ending with anything but NIL, etc).  If these
functions are given arguments that are not in the form that they expect, their behavior
is unpredictable; they may run forever, or cause a system error.  In general, you should
only use "fast"  functions in code that has already been completely debugged, to speed it
up.
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"Destructive" functions:  By convention, a function named by prefixing an existing
function with D indicates the new function is a "destructive" version of the old one,
which does not make any new structure but cannibalizes its argument(s).  For example,
REMOVE returns a copy of a list with a particular element removed, but DREMOVE
actually changes the list structure of the list.  (Unfortunately, not all destructive
functions follow this naming convention: the destructive version of APPEND is NCONC.)
You should be careful when using destructive functions that they do not inadvertantly
change data structures.


