
23-1

23. STREAMS AND FILES

A stream is an object that provides an interface to a physical or logical device. The stream object
contains local data and methods that operate on the stream object. Medley’s general-purpose I/O
functions take a stream as one of their arguments. Not every device is capable of implementing every
I/O operation, while some devices offer special functions for that device alone. Such restrictions and
extensions are noted in the documentation of each device. The majority of the streams used in Medley
fall into two categories: file streams and image streams.

A file is a sequence of data stored on some device that allows the data to be retrieved at a later time.
Files are identified by a name specifying their storage devices. Input or output to a file is performed
through a stream to the file, using OPENSTREAM (below). In addition, there are functions that
manipulate the files themselves, rather than their data content.

An image stream is an output stream to a display device, such as the display screen or a printer. In
addition to the standard output operations, an image stream implements a variety of graphics
operations, such as drawing lines and displaying characters in multiple fonts. Unlike a file, the
"content" of an image stream cannot be retrieved. Image streams are described in Chapter 26.

This chapter describes operations specific to file devices: how to name files, how to open streams to
files, and how to manipulate files on their devices.

Opening and Closing File Streams

To perform input from or output to a file, you must create a stream to the file, using OPENSTREAM:

(OPENSTREAM FILE ACCESS RECOG PARAMETERS —) [Function]

Opens and returns a stream for the file specified by FILE, a file name. FILE can be either
a string or a symbol. The syntax and manipulation of file names is described at length in
the FILENAMES section below. Incomplete file names are interpreted with respect to the
connected directory (below).

RECOG specifies the recognition mode of FILE (below). If RECOG = NIL, it defaults
according to the value of ACCESS.

ACCESS specifies the "access rights" to be used when opening the file. Possible values are:

INPUT Only input operations are permitted on the already existing file. Starts
reading at the beginning of the file. RECOG defaults to OLD.

OUTPUT Only output operations are permitted on the initially empty file. Starts
writing at the beginning of the file. While the file is open, other users or
processes are unable to open the file for either input or output. RECOG
defaults to NEW.

BOTH Both input and output operations are permitted on the file. Starts
reading or writing at the beginning of the file. RECOG defaults to
OLD/NEW. ACCESS = BOTH implies random access (Chapter 25), and
may not be possible for files on some devices.

23-2

 INTERLISP-D REFERENCE MANUAL

APPEND Only sequential output operations are permitted on the file. Starts
writing at the end of the file. RECOG defaults to OLD/NEW. ACCESS =
APPEND may not be allowed for files on some devices.

Note: ACCESS = OUTPUT implies that you intend to write a new or different
file, even if a version number was specified and the corresponding file
already exists. Any previous contents of the file are discarded, and the
file is empty immediately after the OPENSTREAM. If you want to write
on an already existing file while preserving the old contents, the file
must be opened for access BOTH or APPEND.

PARAMETERS is a list of pairs (ATTRIB VALUE), where ATTRIB is a file attribute (see
SETFILEINFO below). A non-list ATTRIB in PARAMETERS is treated as the pair (ATTRIB
T). Generally speaking, attributes that belong to the permanent file (e.g., TYPE) can only
be set when creating a new file, while attributes that belong only to a particular opening
of a file (e.g., ENDOFSTREAMOP) can be set on any call to OPENSTREAM. Not all devices
honor all attributes; those not recognized by a particular device are simply ignored.

In addition to the attributes permitted by SETFILEINFO, the following attributes are
accepted by OPENSTREAM as values of ATTRIB in its PARAMETERS argument:

DON’T.CHANGE.DATE If VALUE is non-NIL, the file’s creation date is not changed when the file
is opened. This option is meaningful only for old files opened for BOTH
access. You should use this only for specialized applications where the
caller does not want the file system to believe the file’s content has been
changed.

SEQUENTIAL If VALUE is non-NIL, this opening of the file need support only
sequential access; i.e., the caller intends never to use SETFILEPTR. For
some devices, sequential access to files is much more efficient than
random access. Note that the device may choose to ignore this attribute
and still open the file in a manner that permits random access. Also
note that this attribute does not make sense with ACCESS = BOTH.

If FILE is not recognized by the file system, OPENSTREAM causes the error FILE NOT
FOUND. Ordinarily, this error is intercepted via an entry on ERRORTYPELST (Chapter 24),
which causes SPELLFILE (see the Searching File Directories below) to be called.
SPELLFILE searches alternate directories and possibly attempts spelling correction on the
file name. Only if SPELLFILE is unsuccessful will the FILE NOT FOUND error actually
occur.

If FILE exists but cannot be opened, OPENSTREAM causes one of several other errors:
FILE WON’T OPEN if the file is already opened for conflicting access by someone else;
PROTECTION VIOLATION if the file is protected against the operation; FILE SYSTEM
RESOURCES EXCEEDED if there is no more room in the file system.

23-3

STREAMS & FILES

(CLOSEF FILE) [Function]

Closes FILE and returns its full file name. Generates an error, FILE NOT OPEN, if FILE
does not designate an open stream. After closing a stream, no further input/output
operations are permitted on it.

If FILE is NIL, it is defaulted to the primary input stream if that is not the terminal
stream, or else the primary output stream if that is not the terminal stream. If both
primary input and output streams are the terminal input/output streams, CLOSEF returns
NIL. If CLOSEF closes either the primary input stream or the primary output stream
(either explicitly or in the FILE = NIL case), it resets the primary stream for that direction
to be the corresponding terminal stream. See Chapter 25 for information on the primary
input/output streams.

WHENCLOSE (below) allows you to "advise" CLOSEF to perform various operations when a
file is closed.

Because of buffering, the contents of a file open for output are not guaranteed to be
written to the actual physical file device until CLOSEF is called. Buffered data can be
forced out to a file without closing the file by using the function FORCEOUTPUT (Chapter
25).

Some network file devices perform their transactions in the background. As a result, it is
possible for a file to be closed by CLOSEF and yet not be "fully" closed for a small time
period afterward. During this time the file appears to be busy and cannot be opened for
conflicting access by others.

(CLOSEF? FILE) [Function]

Closes FILE if it is open, returning the value of CLOSEF; otherwise does nothing and
returns NIL.

In the present implementation of Medley, all open streams to files are kept in a registry of "open files".
This registry does not include nameless streams, such as string streams (below), display streams
(Chapter 28), and the terminal input and output streams; nor streams explicitly hidden from you, such
as dribble streams (Chapter 30). This registry may not persist in future implementations of Medley,
but at the present time it is accessible by the following two functions:

(OPENP FILE ACCESS) [Function]

ACCESS is an access mode for a stream opening (see OPENSTREAM), or NIL for any access.

If FILE is a stream, returns its full name if it is open for the specified access, otherwise
NIL.

If FILE is a file name (a symbol), FILE is processed according to the rules of file
recognition (below). If a stream open to a file by that name is registered and open for the
specified access, then the file’s full name is returned. If the file name is not recognized, or
no stream is open to the file with the specified access, NIL is returned.

If FILE is NIL, returns a list of the full names of all registered streams that are open for
the specified access.

23-4

 INTERLISP-D REFERENCE MANUAL

(CLOSEALL ALLFLG) [Function]

Closes all streams in the value of (OPENP). Returns a list of the files closed.

WHENCLOSE (below) allows certain files to be "protected" from CLOSEALL. If ALLFLG is T,
all files, including those protected by WHENCLOSE, are closed.

File Names

A file name in Medley is a string or symbol whose characters specify a "path" to the actual file: on
what host or device the file resides, in which directory, and so forth. Because Medley supports a
variety of non-local file devices, parts of the path could be device-dependent. However, it is desirable
for programs to be able to manipulate file names in a device-independent manner. To this end,
Medley specifies a uniform file name syntax over all devices; the functions that perform the actual file
manipulation for a particular device are responsible for any translation to that device’s naming
conventions.

A file name is composed of a collection of fields, some of which have specific meanings. The functions
described below refer to each field by a field name, a literal atom from among the following: HOST,
DEVICE, DIRECTORY, NAME, EXTENSION, and VERSION. The standard syntax for a file name is
{HOST}DEVICE:<DIRECTORY>NAME.EXTENSION;VERSION. Some host’s file systems do not use all
of those fields in their file names.

HOST Specifies the host whose file system contains the file. In the case of local
file devices, the "host" is the name of the device, e.g., DSK or FLOPPY.

DEVICE Specifies, for those hosts that divide their file system’s name space
among mutiple physical devices, the device or logical structure on
which the file resides. This should not be confused with Medley’s
abstract "file device", which denotes either a host or a local physical
device and is specified by the HOST field.

DIRECTORY Specifies the "directory" containing the file. A directory usually is a
grouping of a possibly large set of loosely related files, e.g., the personal
files of a particular user, or the files belonging to some project. The
DIRECTORY field usually consists of a principal directory and zero or
more subdirectories that together describe a path through a file system’s
hierarchy. Each subdirectory name is set off from the previous
directory or subdirectory by the character ">"; e.g.,
"LISP>LIBRARY>NEW".

NAME This field carries no specific meaning, but generally names a set of files
thought of as being different renditions of the "same" abstract file.

EXTENSION This field also carries no specific meaning, but generally distinguishes
the form of files having the same name. Most files systems have some
"conventional" extensions that denote something about the content of
the file. For example, in Medley, the extension DCOM, LCOM or DFASL
denotes files containing compiled function definitions.

23-5

STREAMS & FILES

VERSION A number used to distinguish the versions or "generations" of the files
having a common name and extension. The version number is
incremented each time a new file by the same name is created.

Most functions that take as input "a directory" accept either a directory name (the contents of the
DIRECTORY field of a file name) or a "full" directory specification—a file name fragment consisting of
only the fields HOST, DEVICE, and DIRECTORY. In particular, the "connected directory" (see below)
consists, in general, of all three fields.

For convenience in dealing with certain operating systems, Medley also recognizes [] and () as host
delimiters (synonymous with {}), and / as a directory delimiter (synonymous with < at the beginning
of a directory specification and > to terminate directory or subdirectory specification). For example, a
file on a Unix file server UNX with the name /usr/foo/bar/stuff.tedit, whose DIRECTORY
field is thus usr/foo/bar, could be specified as {UNX}/usr/foo/bar/stuff.tedit, or
(UNX)<usr/foo/bar>stuff.tedit, or several other variations. Note that when using [] or () as
host delimiters, they usually must be escaped with the reader’s escape character if the file name is
expressed as a symbol rather than a string.

Different hosts have different requirements for vaild characters in file names. In Medley, all
characters are valid. However, in order to be able to parse a file name into its component fields, it is
necessary that those characters that are conventionally used as file name delimiters be quoted when
they appear inside of fields where there could be ambiguity. The file name quoting character is " ’ "
(single quote). Thus, the following characters must be quoted when not used as delimeters: >, :, ;, /,
and ’ itself. The character . (period) need only be quoted if it is to be considered a part of the
EXTENSION field. The characters },], and) need only be quoted in a file name when the host field of
the name is introduced by {, [, and (, respectively. The characters {, [, (, and < need only be quoted if
they appear as the first character of a file name fragment, where they would otherwise be assumed to
introduce the HOST or DIRECTORY fields.

The following functions are the standard way to manipulate file names in Medley. Their operation is
purely syntactic—they perform no file system operations themselves.

(UNPACKFILENAME.STRING FILENAME) [Function]

Parses FILENAME, returning a list in property list format of alternating field names and
field contents. The field contents are returned as strings. If it is a stream, its full name is
used.

Only those fields actually present in FILENAME are returned. A field is considered
present if its delimiting punctuation is present, even if the field itself is empty. Empty
fields are denoted by "" (the empty string).

Examples:

(UNPACKFILENAME.STRING "FOO.BAR") =>
 (NAME "FOO" EXTENSION "BAR")

(UNPACKFILENAME.STRING "FOO.;2") =>
 (NAME "FOO" EXTENSION "" VERSION "2")

(UNPACKFILENAME.STRING "FOO;") =>
 (NAME "FOO" VERSION "")

(UNPACKFILENAME.STRING

23-6

 INTERLISP-D REFERENCE MANUAL

 "{ERIS}<LISP>CURRENT>IMTRAN.DCOM;21")
 => (HOST "ERIS" DIRECTORY "LISP>CURRENT"
 NAME "IMTRAN" EXTENSION "DCOM"
 VERSION "21")

(UNPACKFILENAME FILE) [Function]

Old version of UNPACKFILENAME.STRING that returns the field values as atoms, rather
than as strings. UNPACKFILENAME.STRING is now considered the "correct" way of
unpacking file names, because it does not lose information when the contents of a field are
numeric. For example,

(UNPACKFILENAME ’STUFF.TXT) =>
 (NAME STUFF EXTENSION TXT)

but

(UNPACKFILENAME ’STUFF.029) =>
 (NAME STUFF EXTENSION 29)

Explicitly omitted fields are denoted by the atom NIL, rather than the empty string.

Note: Both UNPACKFILENAME and UNPACKFILENAME.STRING leave the
trailing colon on the device field, so that the Tenex device NIL: can be
distinguished from the absence of a device. Although
UNPACKFILENAME.STRING is capable of making the distinction, it
retains this behavior for backward compatibility. Thus,

(UNPACKFILENAME.STRING ’{TOAST}DSK:FOO) =>
 (HOST "TOAST" DEVICE "DSK:" NAME "FOO")

(FILENAMEFIELD FILENAME FIELDNAME) [Function]

Returns, as an atom, the contents of the FIELDNAME field of FILENAME. If FILENAME is a
stream, its full name is used.

(PACKFILENAME.STRING FIELD1 CONTENTS1 ... FIELDN CONTENTSN) [NoSpread
Function]

Takes a sequence of alternating field names and field contents (atoms or strings), and
returns the corresponding file name, as a string.

If PACKFILENAME.STRING is given a single argument, it is interpreted as a list of
alternating field names and field contents. Thus PACKFILENAME.STRING and
UNPACKFILENAME.STRING operate as inverses.

If the same field name is given twice, the first occurrence is used.

The contents of the field name DIRECTORY may be either a directory name or a full
directory specification as described above.

PACKFILENAME.STRING also accepts the "field name" BODY to mean that its contents
should itself be unpacked and spliced into the argument list at that point. This feature, in
conjunction with the rule that fields early in the argument list override later duplicates, is
useful for altering existing file names. For example, to provide a default field, place BODY

23-7

STREAMS & FILES

first in the argument list, then the default fields. To override a field, place the new fields
first and BODY last.

If the value of the BODY field is a stream, its full name is used.

Examples:

(PACKFILENAME.STRING ’DIRECTORY "LISP"
 ’NAME "NET")
 => "<LISP>NET"

(PACKFILENAME.STRING ’NAME "NET"
 ’DIRECTORY "{DSK}<LISPFILES>")
 => "{DSK}<LISPFILES>NET"

(PACKFILENAME.STRING ’DIRECTORY "{DSK}"
 ’BODY "{TOAST}<FOO>BAR")
 => "{DSK}BAR"

(PACKFILENAME.STRING ’DIRECTORY "FRED"
 ’BODY "{TOAST}<FOO>BAR")
 => "{TOAST}<FRED>BAR"

(PACKFILENAME.STRING ’BODY "{TOAST}<FOO>BAR"
 ’DIRECTORY "FRED")
 => "{TOAST}<FOO>BAR"

(PACKFILENAME.STRING ’VERSION NIL
 ’BODY "{TOAST}<FOO>BAR.DCOM;2")
 => "{TOAST}<FOO>BAR.DCOM"

(PACKFILENAME.STRING ’BODY "{TOAST}<FOO>BAR.DCOM"
 ’VERSION 1)
 => "{TOAST}<FOO>BAR.DCOM;1"

(PACKFILENAME.STRING ’BODY "{TOAST}<FOO>BAR.DCOM;"
 ’VERSION 1)
 => "{TOAST}<FOO>BAR.DCOM;"

(PACKFILENAME.STRING ’BODY "BAR.;1"
 ’EXTENSION "DCOM")
 => "BAR.;1"

(PACKFILENAME.STRING ’BODY "BAR;1"
 ’EXTENSION "DCOM")
 => "BAR.DCOM;1"

In the last two examples, note that in one case the extension is explicitly present in the
body (as indicated by the preceding period), while in the other there is no indication of an
extension, so the default is used.

(PACKFILENAME FIELD1 CONTENTS1 ... FIELDN CONTENTSN) [NoSpread Function]

The same as PACKFILENAME.STRING, except that it returns the file name as a symbol,
instead of a string.

Incomplete File Names

In general, it is not necessary to pass a complete file name (one containing all the fields listed above) to
functions that take a file name as an argument. Interlisp supplies suitable defaults for certain fields
(below). Functions that return names of actual files, however, always return the full file name.

23-8

 INTERLISP-D REFERENCE MANUAL

If the version field is omitted from a file name, Interlisp performs version recognition, as described
below.

If the host, device and/or directory field are omitted from a file name, Interlisp uses the currently
connected directory. You can change the currently connected directory by by calling CNDIR (below)
or using the programmer’s assistant command CONN.

Defaults are added to the partially specified name "left to right" until a host, device or directory field is
encountered. Thus, if the connected directory is {TWENTY}PS:<FRED>, then

BAR.DCOM means
 {TWENTY}PS:<FRED>BAR.DCOM

<GRANOLA>BAR.DCOM means
 {TWENTY}PS:<GRANOLA>BAR.DCOM

MTA0:<GRANOLA>BAR.DCOM means
 {TWENTY}MTA0:<GRANOLA>BAR.DCOM

{THIRTY}<GRANOLA>BAR.DCOM means
 {THIRTY}<GRANOLA>BAR.DCOM

In addition, if the partially specified name contains a subdirectory, but no principal directory, then the
subdirectory is appended to the connected directory. For example,

ISO>BAR.DCOM means
 {TWENTY}PS:<FRED>ISO>BAR.DCOM

Or, if the connected directory is the Unix directory {UNX}/usr/fred/, then iso/bar.dcom means
{UNX}/usr/fred/iso/bar.dcom, but /other/bar.dcom means {UNX}/other/bar.dcom.

(CNDIR HOST/DIR) [Function]

Connects to the directory HOST/DIR, which can either be a directory name or a full
directory specification including host and/or device. If the specification includes just a
host, and the host supports directories, the directory is defaulted to the value of
(USERNAME); if the host is omitted, connection is made to another directory on the same
host as before. If HOST/DIR is NIL, connects to the value of LOGINHOST/DIR.

CNDIR returns the full name of the now-connected directory. Causes an error, Non-
existent directory, if HOST/DIR is not a valid directory.

Note that CNDIR does not necessarily require or provide any directory access privileges.
Access privileges are checked when a file is opened.

CONN HOST/DIR [Prog. Asst. Command]

Command form of CNDIR for use at the executive. Connects to HOST/DIR, or to the value
of LOGINHOST/DIR if HOST/DIR is omitted. This command is undoable. —Undoing it
causes the system to connect to the previously connected directory.

LOGINHOST/DIR [Variable]

CONN with no argument connects to the value of the variable LOGINHOST/DIR, initially
{DSK}, but usually reset in your greeting file (Chapter 12).

23-9

STREAMS & FILES

(DIRECTORYNAME DIRNAME STRPTR) [Function]

If DIRNAME is T, returns the full specification of the currently connected directory. If
DIRNAME is NIL, returns the value of LOGINHOST/DIR. For any other value of DIRNAME,
returns a full directory specification if DIRNAME designates an existing directory (satisfies
DIRECTORYNAMEP), otherwise NIL.

If STRPTR is T, the value is returned as an atom, otherwise it is returned as a string.

(DIRECTORYNAMEP DIRNAME HOSTNAME) [Function]

Returns T if DIRNAME is a valid directory on host HOSTNAME, or on the host of the
currently connected directory if HOSTNAME is NIL. DIRNAME may be either a directory
name or a full directory specification containing host and/or device.

If DIRNAME includes subdirectories, this function may or may not pass judgment on their
validity. Some hosts support "true" subdirectories, distinct entities manipulable by the file
system, while others only provide them as a syntactic convenience.

(HOSTNAMEP NAME) [Function]

Returns T if NAME is recognized as a valid host or file device name at the moment
HOSTNAMEP is called.

Version Recognition

Most of the file devices in Interlisp support file version numbers. That is, you can have several files of
the exact same name, differing only in their VERSION field, which is incremented for each new
"version" of the file that is created. When the filesystem encounters a file name without a version
number, it must figure out which version was intended. This process is known as version recognition.

When OPENSTREAM opens a file for input and no version number is given, the highest existing version
number is used. Similarly, when a file is opened for output and no version number is given, a new
file is created with a version number one higher than the highest one currently in use with that file
name. You can change he version number defaulting for OPENSTREAM by specifying a different value
for its RECOG argument (see FULLNAME below).

Other functions that accept file names as arguments generally perform default version recognition,
which is newest version for existing files, or a new version if using the file name to create a new file.
The one exception is DELFILE, which uses the oldest existing version of the file.

The functions below can be used to perform version recognition without actually calling OPENSTREAM
to open the file. Note that these functions only tell the truth at the moment they are called, and thus
cannot be used to anticipate the name of the file opened by a comparable OPENSTREAM. They are best
used as helpful hints.

(FULLNAME X RECOG) [Function]

If X is an open stream, simply returns the full file name of the stream. Otherwise, if X is a
file name given as a string or symbol, performs version recognition, as follows:

23-10

 INTERLISP-D REFERENCE MANUAL

If X is recognized in the recognition mode specified by RECOG as an abbreviation for some
file, returns the file’s full name, otherwise NIL. RECOG is one of the following:

OLD Chooses the newest existing version of the file. Returns NIL if no file
named X exists.

OLDEST Chooses the oldest existing version of the file. Returns NIL if no file
named X exists.

NEW Chooses a new version of the file. If versions of X already exist, then
chooses a version number one higher than highest existing version;
otherwise chooses version 1. For some file systems, FULLNAME returns
NIL if you do not have the access rights necessary to create a new file
named X.

OLD/NEW Tries OLD, then NEW. Choose the newest existing version of the file, if
any; otherwise chooses version 1. This usually only makes sense if you
intend to open X for access BOTH.

RECOG = NIL defaults to OLD. For all other values of RECOG, generates
an error ILLEGAL ARG.

If X already contains a version number, the RECOG argument will never
change it. In particular, RECOG = NEW does not require that the file
actually be new. For example, (FULLNAME ’FOO.;2 ’NEW) may
return {ERIS}<LISP>FOO.;2 if that file already exists, even though
(FULLNAME ’FOO ’NEW) would default the version to a new number,
perhaps returning {ERIS}<LISP>FOO.;5.

(INFILEP FILE) [Function]

Equivalent to (FULLNAME FILE ’OLD). Returns the full file name of the newest version of
FILE if FILE is the name of an existing file that can be opened for input, NIL otherwise.

(OUTFILEP FILE) [Function]

Equivalent to (FULLNAME FILE ’NEW).

Note that INFILEP, OUTFILEP and FULLNAME do not open any files; they are pure predicates. They
are also only hints, as they do not imply that the caller has access rights to the file. For example,
INFILEP might return non-NIL, but OPENSTREAM might fail for the same file because you don’t have
read access to it, or the file is open for output by another user. Similarly, OUTFILEP could return non-
NIL, but OPENSTREAM could fail with a FILE SYSTEM RESOURCES EXCEEDED error.

Note also that in a shared file system, such as a remote file server, intervening file operations by
another user could contradict the information returned by recognition. For example, a file that was
INFILEP might be deleted, or between an OUTFILEP and the subsequent OPENSTREAM, another user
might create a new version or delete the highest version, causing OPENSTREAM to open a different
version of the file than the one returned by OUTFILEP. In addition, some file servers do not support
recognition of files in output context. Thus, the "truth" about a file can only be obtained by actually
opening the file; creators of files should rely on the name of the stream opened by OPENSTREAM, not

23-11

STREAMS & FILES

the value returned from these recognition functions. In particular, programmers are discouraged
from using OUTFILEP or (FULLNAME NAME ’NEW).

Using File Names Instead of Streams

In earlier implementations of Interlisp, from the days of Interlisp-10 onward, the "handle" used to
refer to an open file was not a stream, but rather the file’s full name, represented as a symbol. When
the file name was passed to any I/O function, it was mapped to a stream by looking it up in a list of
open files. This scheme was sometimes convenient for typing in file commands at the executive, but
was poor for serious programming in two ways. First, mapping from file name to stream on every
input/output operation is inefficient. Second, and more importantly, using the file name as the handle
on an open stream means that it is not possible to have more than one stream open on a given file at
once.

As of this writing, Medley is in a transition period, where it still supports the use of symbol file names
as synonymous with open streams, but this use is not recommended. The remainder of this section
discusses this usage of file names for the benefit of those reading older programs and wishing to
convert them to work properly when this compatibility feature is removed.

File Name Efficiency Considerations

It is possible for a program to be seriously inefficient using a file name as a stream if the program is
not using the name returned by OPENFILE (below). Any time that an input/output function is called
with a file name other than the full file name, Interlisp must perform recognition on the partial file
name to determine which open file is intended. Thus if repeated operations are to be performed, it is
considerably more efficient to use the full file name returned from OPENFILE.

There is a more subtle problem with partial file names, in that recognition is performed on your entire
directory, not just the open files. It is possible for a file name that previously denoted one file to
suddenly denote a different file. For example, suppose a program performs (INFILE ’FOO),
opening FOO.;1, and reads several expressions from FOO. Then you interrupt the program, create a
FOO.;2 and resume the program (or a user at another workstation creates a FOO.;2). Now a call to
READ giving it FOO as its FILE argument will generate a FILE NOT OPEN error, because FOO will be
recognized as FOO.;2.

Obsolete File Opening Functions

The following functions are now obsolete, but are provided for backwards compatibility:

(OPENFILE FILE ACCESS RECOG PARAMETERS) [Function]

Opens FILE with access rights as specified by ACCESS, and recognition mode RECOG, and
returns the full name of the resulting stream. Equivalent to (FULLNAME (OPENSTREAM
FILE ACCESS RECOG PARAMETERS)).

(INFILE FILE) [Function]

Opens FILE for input, and sets it as the primary input stream. Equivalent to (INPUT
(OPENSTREAM FILE ’INPUT ’OLD))

23-12

 INTERLISP-D REFERENCE MANUAL

(OUTFILE FILE) [Function]

Opens FILE for output, and sets it as the primary output stream. Equivalent to (OUTPUT
(OPENSTREAM FILE ’OUTPUT ’NEW)).

(IOFILE FILE) [Function]

Opens FILE for both input and output. Equivalent to (OPENFILE FILE ’BOTH ’OLD).
Does not affect the primary input or output stream.

Converting Old Programs

At some point in the future, the Medley file system will change so that each call to OPENSTREAM
returns a distinct stream, even if a stream is already open to the specified file. This change is required
in order to deal with files in a multiprocessing environment.

This change will produce the following incompatibilities:

1. The functions OPENFILE, INPUT, and OUTPUT will return a stream, not a full file
name. To make this less confusing in interactive situations, streams will have a print
format that reveals the underlying file’s actual name.

2. Passing anything other than the object returned from OPENFILE to I/O operations
will cause problems. Passing the file’s name will be significantly slower than passing
the stream (even when passing the "full" file name), and in the case where there is more
than one stream open on the file it might even act on the wrong one.

3. OPENP will return NIL when passed the name of a file rather than the value of
OPENFILE or OPENSTREAM.

You should consider the following advice when writing new programs and editing existing programs,
so your programs will behave properly when the change occurs:

Because of the efficiency and ambiguity considerations described earlier, users have long been
encouraged to use only full file names as FILE arguments to I/O operations. The "proper" way to
have done this was to bind a variable to the value returned from OPENFILE and pass that variable to
all I/O operations; such code will continue to work. A less proper way to obtain the full file name,
but one which has to date not incurred any obvious penalty, is that which binds a variable to the
result of an INFILEP and passes that to OPENFILE and all I/O operations. This has worked because
INFILEP and OPENFILE both return a full file name, an invalid assumption in this future world.
Such code should be changed to pass around the value of the OPENFILE, not the INFILEP.

Code that calls OPENP to test whether a possibly incomplete file name is already open should be
recoded to pass to OPENP only the value returned from OPENFILE or OPENSTREAM.

Code that uses ordinary string functions to manipulate file names, and in particular the value
returned from OPENFILE, should be changed to use the the functions UNPACKFILENAME.STRING
and PACKFILENAME.STRING. Those functions work both on file names (strings) and streams
(coercing the stream to the name of its file).

Code that tests the value of OUTPUT for equality to some known file name or T should be examined
carefully and, if possible, recoded.

23-13

STREAMS & FILES

To see more directly the effects of passing around streams instead of file names, replace your calls to
OPENFILE with calls to OPENSTREAM. OPENSTREAM is called in exactly the same way, but returns a
STREAM. Streams can be passed to READ, PRINT, CLOSEF, etc just as the file’s full name can be
currently, but using them is more efficient. The function FULLNAME, when applied to a stream,
returns its full file name.

Using Files with Processes

Because Medley does not yet support multiple streams per file, problems can arise if different
processes attempt to access the same file. You have to be careful not to have two processes
manipulating the same file at the same time, since the two processes will be sharing a single input
stream and file pointer. For example, you can’t have one process TCOMPL a file while another process
is running LISTFILES on it.

File Attributes

Any file has a number of "file attributes", such as the read date, protection, and bytesize. The exact
attributes that a file can have is dependent on the file device. The functions GETFILEINFO and
SETFILEINFO allow you to access file attributes:

(GETFILEINFO FILE ATTRIB) [Function]

Returns the current setting of the ATTRIB attribute of FILE.

(SETFILEINFO FILE ATTRIB VALUE) [Function]

Sets the attribute ATTRIB of FILE to be VALUE. SETFILEINFO returns T if it is able to
change the attribute ATTRIB, and NIL if unsuccessful, either because the file device does
not recognize ATTRIB or because the file device does not permit the attribute to be
modified.

The FILE argument to GETFILEINFO and SETFILEINFO can be an open stream (or an argument
designating an open stream, see Chapter 25), or the name of a closed file. SETFILEINFO in general
requires write access to the file.

The attributes recognized by GETFILEINFO and SETFILEINFO fall into two categories: permanent
attributes, which are properties of the file, and temporary attributes, which are properties only of an
open stream to the file. The temporary attributes are only recognized when FILE designates an open
stream; the permanent attributes are usually equally accessible for open and closed files. However,
some devices are willing to change the value of certain attributes of an open stream only when
specified in the PARAMETERS argument to OPENSTREAM (see above), not on a later call to
SETFILEINFO.

The following are permanent attributes of a file:

BYTESIZE The byte size of the file. Medley currently only supports byte size 8.

LENGTH The number of bytes in the file. Alternatively, the byte position of the
end-of-file. Like (GETEOFPTR FILE), but FILE does not have to be
open.

23-14

 INTERLISP-D REFERENCE MANUAL

SIZE The size of FILE in pages.

CREATIONDATE The date and time, as a string, that the content of FILE was "created".
The creation date changes whenever the content of the file is modified,
but remains unchanged when a file is transported, unmodified, across
file systems. Specifically, COPYFILE and RENAMEFILE (see below)
preserve the file’s creation date. Note that this is different from the
concept of "creation date" used by some operating systems (e.g.,
Tops20).

WRITEDATE The date and time, as a string, that the content of FILE was last written
to this particular file system. When a file is copied, its creation date
does not change, but its write date becomes the time at which the copy
is made.

READDATE The date and time, as a string, that FILE was last read, or NIL if it has
never been read.

ICREATIONDATE
IWRITEDATE
IREADDATE The CREATIONDATE, WRITEDATE and READDATE, respectively, in

integer form, as IDATE (Chapter 12) would return. This form is useful
for comparing dates.

AUTHOR The name of the user who last wrote the file.

TYPE The "type" of the file, some indication of the nature of the file’s content.
The "types" of files allowed depends on the file device. Most devices
recognize the symbol TEXT to mean that the file contains just characters,
or BINARY to mean that the file contains arbitrary data.

Some devices support a wider range of file types that distinguish
among the various sorts of files one might create whose content is
"binary". All devices interpret any value of TYPE that they do not
support to be BINARY. Thus, GETFILEINFO may return the more
general value BINARY instead of the original type that was passed to
SETFILEINFO or OPENSTREAM. Similarly, COPYFILE, while
attempting to preserve the TYPE of the file it is copying, may turn, say,
an INTERPRESS file into a mere BINARY file.

The way in which some file devices (e.g., Xerox file servers) support a
wide range of file types is by representing the type as an integer, whose
interpretation is known by the client. The variable FILING.TYPES is
used to associate symbolic types with numbers for these devices. This
list initially contains some of the well-known assignments of type name
to number; you can add additional elements to handle any private file
types. For example, suppose there existed an NS file type MAZEFILE
with numeric value 5678. You could add the element (MAZEFILE
5678) to FILING.TYPES and then use MAZEFILE as a value for the
TYPE attribute to SETFILEINFO or OPENSTREAM. Other devices are, of

23-15

STREAMS & FILES

course, free to store TYPE attributes in whatever manner they wish, be it
numeric or symbolic. FILING.TYPES is merely considered the official
registry for Xerox file types.

For most file devices, the TYPE of a newly created file, if not specified in
the PARAMETERS argument to OPENSTREAM, defaults to the value of
DEFAULTFILETYPE, initially TEXT.

The following are currently recognized as temporary attributes of an
open stream:

ACCESS The current access rights of the stream (see the beginning of this
chapter). Can be one of INPUT, OUTPUT, BOTH, APPEND; or NIL if the
stream is not open.

ENDOFSTREAMOP The action to be taken when a stream is at "end of file" and an attempt is
made to take input from it. The value of this attribute is a function of
one argument, the stream. The function can examine the stream and its
calling context and take any action it wishes. If the function returns
normally, its should return either T, meaning to try the input operation
again, or the byte that BIN would have returned had there been more
bytes to read. Ordinarily, one should not let the ENDOFSTREAMOP
function return unless one is only performing binary input from the file,
since there is no way in general of knowing in what state the reader was
at the time the end of file occurred, and hence how it will interpret a
single byte returned to it.

The default ENDOFSTREAMOP is a system function that causes the error
END OF FILE. The behavior of that error can be further modified for a
particular stream by using the EOF option of WHENCLOSE (see below).

EOL The end-of-line convention for the stream. This can be CR, LF, or CRLF,
indicating with what byte or sequence of bytes the "End Of Line"
character is represented on the stream. On input, that sequence of bytes
on the stream is read as (CHARCODE EOL) by READCCODE or the string
reader. On output, (TERPRI) and (PRINTCCODE (CHARCODE EOL))
cause that sequence of bytes to be placed on the stream.

The end of line convention is usually not apparent to you. The file
system is usually aware of the convention used by a particular remote
operating system, and sets this attribute accordingly. If you believe a
file actually is stored with a different convention than the default, it is
possible to modify the default behavior by including the EOL attribute
in the PARAMETERS argument to OPENSTREAM.

BUFFERS Value is the number of 512-byte buffers that the stream maintains at one
time. This attribute is only used by certain random-access devices
(currently, the local disk, floppy, and Leaf servers); all others ignore it.

Streams open to files generally maintain some portion of the file
buffered in memory, so that each call to an I/O function does not

23-16

 INTERLISP-D REFERENCE MANUAL

require accessing the actual file on disk or a file server. For files being
read or written sequentially, not much buffer space is needed, since
once a byte is read or written, it will never need to be seen again. In the
case of random access streams, buffering is more complicated, since a
program may jump around in the file, using SETFILEPTR (Chapter 25).
In this case, the more buffer space the stream has, the more likely it is
that after a SETFILEPTR to a place in the file that has already been
accessed, the stream still has that part of the file buffered and need not
go out to the device again. This benefit must, of course, be traded off
against the amount of memory consumed by the buffers.

NS servers implement the following additional attributes for GETFILEINFO (neither of these
attributes are settable with SETFILEINFO):

READER The name of the user who last read the file.

PROTECTION A list specifying the access rights to the file. Each element of the list is of
the form (name nametype . rights). Name is the name of a user or group
or a name pattern. Rights is one or more of the symbols ALL READ
WRITE DELETE CREATE or MODIFY. For servers running services 10.0
or later, nametype is the symbol "--". , In earlyer releases it is one of the
symbols INDIVIDUAL or GROUP

Closing and Reopening Files

The function WHENCLOSE permits you to associate certain operations with open streams that govern
how and when the stream will be closed. You can specify that certain functions will be executed
before CLOSEF closes the stream and/or after CLOSEF closes the stream. You can make a particular
stream be invisible to CLOSEALL, so that it will remain open across user invocations of CLOSEALL.

(WHENCLOSE FILE PROP1 VAL1 ... PROPN VALN) [NoSpread Function]

FILE must designate an open stream other than T (NIL defaults to the primary input
stream, if other than T, or primary output stream if other than T). The remaining
arguments specify properties to be associated with the full name of FILE. WHENCLOSE
returns the full name of FILE as its value.

WHENCLOSE recognizes the following property names:

BEFORE VAL is a function that CLOSEF will apply to the stream just before it is
closed. This might be used, for example, to copy information about the
file from an in-core data structure to the file just before it is closed.

AFTER VAL is a function that CLOSEF will apply to the stream just after it is
closed. This capability permits in-core data structures that know about
the stream to be cleaned up when the stream is closed.

CLOSEALL VAL is either YES or NO and determines whether FILE will be closed by
CLOSEALL (YES) or whether CLOSEALL will ignore it (NO). CLOSEALL

23-17

STREAMS & FILES

uses CLOSEF, so that any AFTER functions will be executed if the stream
is in fact closed. Files are initialized with CLOSEALL set to YES.

EOF VAL is a function that will be applied to the stream when an end-of-file
error occurs, and the ERRORTYPELST entry for that error, if any, returns
NIL. The function can examine the context of the error, and can decide
whether to close the stream, RETFROM some function, or perform some
other computation. If the function supplied returns normally (i.e., does
not RETFROM some function), the normal error machinery will be
invoked.

The default EOF behavior, unless overridden by this WHENCLOSE
option, is to call the value of DEFAULTEOFCLOSE (below).

For some applications, the ENDOFSTREAMOP attribute (see above) is a
more useful way to intercept the end-of-file error. The
ENDOFSTREAMOP attribute comes into effect before the error machinery
is ever activated.

Multiple AFTER and BEFORE functions may be associated with a file;
they are executed in sequence with the most recently associated
function executed first. The CLOSEALL and EOF values, however, will
override earlier values, so only the last value specified will have an
effect.

DEFAULTEOFCLOSE [Variable]

Value is the name of a function that is called by default when an end of file error occurs
and no EOF option has been specified for the stream by WHENCLOSE. The initial value of
DEFAULTEOFCLOSE is NILL, meaning take no special action (go ahead and cause the
error). Setting it to CLOSEF would cause the stream to be closed before the rest of the
error machinery is invoked.

I/O Operations to and from Strings

It is possible to treat a string as if it were the contents of a file by using the following function:

(OPENSTRINGSTREAM STR ACCESS) [Function]

Returns a stream that can be used to access the characters of the string STR. ACCESS may
be either INPUT, OUTPUT, or BOTH; NIL defaults to INPUT. The stream returned may be
used exactly like a file opened with the same access, except that output operations may
not extend past the end of the original string. Also, string streams do not appear in the
value of (OPENP).

For example, after performing

(SETQ STRM (OPENSTRINGSTREAM "THIS 2 (IS A LIST)"))

the following succession of reads could occur:

23-18

 INTERLISP-D REFERENCE MANUAL

(READ STRM) => THIS
 (RATOM STRM) => 2
 (READ STRM) => (IS A LIST)
 (EOFP STRM) => T

Compatibility Note: In Interlisp-10 it was possible to take input from a string simply by passing the
string as the FILE argument to an input function. In order to maintain compatibility with this feature,
Medley provides the same capability. This not terribly clean feature persists in the present
implementation to give users time to convert old code. This means that strings are not equivalent to
symbols when specifying a file name as a stream argument. In a future release, the old Interlisp-10
string-reading feature will be decommissioned, and OPENSTRINGSTREAM will be the only way to
perform I/O on a string.

Temporary Files and the CORE Device

Many operating systems have a notion of "scratch file", a file typically used as temporary storage for
data most naturally maintained in the form of a file, rather than some other data structure. A scratch
file can be used as a normal file in most respects, but is automatically deleted from the file system after
its useful life is up, e.g., when the job terminates, or you log out. In normal operation, you need never
explicitly delete such files, since they are guaranteed to disappear soon.

A similar functionality is provided in Medley by core-resident files. Core-resident files are on the
device CORE. The directory structure for this device and all files on it are represented completely
within your virtual memory. These files are treated as ordinary files by all file operations; their only
distinguishing feature is that all trace of them disappears when the Medley image is abandoned.

Core files are opened and closed by name the same as any other file, e.g., (OPENSTREAM
’{CORE}<FOO>FIE.DCOM ’OUTPUT). Directory names are completely optional, so files can also
have names of the form {CORE}NAME.EXT. Core files can be enumerated by DIRECTORY (see below).
While open, they are registered in (OPENP). They do consume virtual memory space, which is only
reclaimed when the file is deleted. Some caution should thus be used when creating large CORE files.
Since the virtual memory of an Medley workstation usually persists far longer than the typical process
on a mainframe computer, it is still important to delete CORE files after they are no longer in use.

For many applications, the name of the scratch file is irrelevant, and there is no need for anyone to
have access to the file independent of the program that created it. For such applications, NODIRCORE
files are preferable. Files created on the device lisp NODIRCORE are core-resident files that have no
name and are registered in no directory. These files "disappear", and the resources they consume are
reclaimed, when all pointers to the file are dropped. Hence, such files need never be explicitly deleted
or, for that matter, closed. The "name" of such a file is simply the stream object returned from
(OPENSTREAM ’{NODIRCORE} ’OUTPUT), and it is this stream object that must be passed to all
input/output operations, including CLOSEF and any calls to OPENSTREAM to reopen the file.

(COREDEVICE NAME NODIRFLG) [Function]

Creates a new device for core-resident files and assigns NAME as its device name. Thus,
after performing (COREDEVICE ’FOO), one can execute (OPENSTREAM ’{FOO}BAR
’OUTPUT) to open a file on that device. Medley is initialized with the single core-resident
device named CORE, but COREDEVICE may be used to create any number of logically
distinct core devices.

23-19

STREAMS & FILES

If NODIRFLG is non-NIL, a core device that acts like {NODIRCORE} is created.

Compatibility note: In Interlisp-10, it was possible to create scratch files by using file
names with suffixes ;S or ;T. In Medley, these suffixes in file names are simply ignored
when output is directed to a particular host or device. However, the function
PACKFILENAME.STRING is defined to default the device name to CORE if the file has the
TEMPORARY attribute and no explicit host is provided.

NULL Device

The NULL device provides a source of content-free "files". (OPENSTREAM ’{NULL} ’OUTPUT)
creates a stream that discards all output directed at it. (OPENSTREAM ’{NULL} ’INPUT) creates a
stream that is perpetually at end-of-file (i.e., has no input).

Deleting, Copying, and Renaming Files

(DELFILE FILE) [Function]

Deletes FILE if possible. The file must be closed. Returns the full name of the file if
deleted, else NIL. Recognition mode for FILE is OLDEST, i.e., if FILE does not have a
version number specified, then DELFILE deletes the oldest version of the file.

(COPYFILE FROMFILE TOFILE) [Function]

Copies FROMFILE to a new file named TOFILE. The source and destination may be on
any combination of hosts/devices. COPYFILE attempts to preserve the TYPE and
CREATIONDATE where possible. If the original file’s file type is unknown, COPYFILE
attempts to infer the type (file type is BINARY if any of its 8-bit bytes have their high bit
on).

COPYFILE uses COPYCHARS (Chapter 25) if the source and destination hosts have
different EOL conventions. Thus, it is possible for the source and destination files to be of
different lengths.

(RENAMEFILE OLDFILE NEWFILE) [Function]

Renames OLDFILE to be NEWFILE. Causes an error, FILE NOT FOUND if FILE does not
exist. Returns the full name of the new file, if successful, else NIL if the rename cannot be
performed.

If OLDFILE and NEWFILE are on the same host/device, and the device implements a
renaming primitive, RENAMEFILE can be very fast. However, if the device does not know
how to rename files in place, or if OLDFILE and NEWFILE are on different devices,
RENAMEFILE works by copying OLDFILE to NEWFILE and then deleting OLDFILE.

23-20

 INTERLISP-D REFERENCE MANUAL

Searching File Directories

DIRECTORIES [Variable]

Global variable containing the list of directories searched (in order) by SPELLFILE and
FINDFILE (below) when not given an explicit DIRLST argument. In this list, the atom
NIL stands for the login directory (the value of LOGINHOST/DIR), and the atom T stands
for the currently connected directory. Other elements should be full directory
specifications, e.g., {TWENTY}PS:<LISPUSERS>, not merely LISPUSERS.

LISPUSERSDIRECTORIES [Variable]

Global variable containing a list of directories to search for "library" package files. Used
by the FILES file package command (Chapter 17).

(SPELLFILE FILE NOPRINTFLG NSFLG DIRLST) [Function]

Searches for the file name FILE, possibly performing spelling correction (see Chapter 20).
Returns the corrected file name, if any, otherwise NIL.

If FILE has a directory field, SPELLFILE attempts spelling correction against the files in
that particular directory. Otherwise, SPELLFILE searches for the file on the directory list
DIRLST before attempting any spelling correction.

If NOPRINTFLG is NIL, SPELLFILE asks you to confirm any spelling correction done, and
prints out any files found, even if spelling correction is not done. If NOPRINTFLG = T,
SPELLFILE does not do any printing, nor ask for approval.

If NSFLG = T (or NOSPELLFLG = T, see Chapter 20), no spelling correction is attempted,
though searching through DIRLST still occurs.

DIRLST is the list of directories searched if FILE does not have a directory field. If
DIRLST is NIL, the value of the variable DIRECTORIES is used.

Note: If DIRLST is NIL, and FILE is not found by searching the directories
on DIRECTORIES, but the root name of FILE has a FILEDATES
property (Chapter 17) indicating that a file by that name has been
loaded, then the directory indicated in the FILEDATES property is
searched, too. This additional search is not done if DIRLST is non-
NIL.

ERRORTYPELST (Chapter 14) initially contains the entry ((23 (SPELLFILE (CADR
ERRORMESS) NIL NOFILESPELLFLG))), which causes SPELLFILE to be called in case
of a FILE NOT FOUND error. If the variable NOFILESPELLFLG is T (its initial value),
then spelling correction is not done on the file name, but DIRECTORIES is still searched.
If SPELLFILE is successful, the operation will be reexecuted with the new (corrected) file
name.

23-21

STREAMS & FILES

(FINDFILE FILE NSFLG DIRLST) [Function]

Uses SPELLFILE to search for a file named FILE. If it finds one, returns its full name,
with no user interaction. Specifically, it calls (SPELLFILE FILE T NSFLG DIRLST), after
first performing two simple checks: If FILE has an explicit directory, it checks to see if a
file so named exists, and if so returns that file. If DIRLST is NIL, it looks for FILE on the
connected directory before calling SPELLFILE.

Listing File Directories

The function DIRECTORY allows you to conveniently specify and/or program a variety of directory
operations:

(DIRECTORY FILES COMMANDS DEFAULTEXT DEFAULTVERS) [Function]

Returns, lists, or performs arbitrary operations on all files specified by the "file group"
FILES. A file group has the form of a regular file name, except that the character * can be
used to match any number of characters, including zero, in the file name. For example,
the file group A*B matches all file names beginning with the character A and ending with
the character B. The file group *.DCOM matches all files with an extension of DCOM.

If FILES does not contain an explicit extension, it is defaulted to DEFAULTEXT; if FILES
does not contain an explicit version, it is defaulted to DEFAULTVERS. DEFAULTEXT and
DEFAULTVERS themselves default to *. If the period or semicolon preceding the omitted
extension or version, respectively, is present, the field is explicitly empty and no default is
used. All other unspecified fields default to *. Null version is interpreted as "highest".
Thus FILES = * or *.* or *.*;* enumerates all files on the connected directory; FILES
= *. or *.;* enumerates all versions of files with null extension; FILES = *.;
enumerates the highest version of files with null extension; and FILES = *.*;
enumerates the highest version of all files. If FILES is NIL, it defaults to *.*;*.

Note: Some hosts/devices are not capable of supporting "highest version" in
enumeration. Such hosts instead enumerate all versions.

For each file that matches the file group FILES, the "file commands" in COMMANDS are
executed in order. Some of the file commands allow aborting the command processing
for a given file, effectively filtering the list of files. The interpretation of the different file
commands is described below. If COMMANDS is NIL, it defaults to (COLLECT), which
collects the matching file names in a list and returns it as the value of DIRECTORY.

The "file commands" in COMMANDS are interpreted as follows:

P Prints the file’s name. For readability, DIRECTORY strips the directory
from the name, printing it once as a header in front of each set of
consecutive files on the same directory.

PP Prints the file’s name without a version number.

a string Prints the string.

READDATE, WRITEDATE

23-22

 INTERLISP-D REFERENCE MANUAL

CREATIONDATE, SIZE

LENGTH, BYTESIZE

PROTECTION, AUTHOR

TYPE Prints the appropriate information returned by GETFILEINFO (see
above).

COLLECT Adds the full name of this file to an accumulating list, which will be
returned as the value of DIRECTORY.

COUNTSIZE Adds the size of this file to an accumulating sum, which will be
returned as the value of DIRECTORY.

DELETE Deletes the file.

DELVER If this file is not the highest version of files by its name, delete it.

PAUSE Waits until you type any character before proceeding with the rest of
the commands (good for display if you want to ponder).

The following commands are predicates to filter the list. If the predicate is not satisfied,
then processing for this file is aborted and no further commands (such as those above) are
executed for this file.

Note: if the P and PP commands appear in COMMANDS ahead of any of the
filtering commands below except PROMPT, they are postponed until
after the filters. Thus, assuming the caller has placed the attribute
options after the filters as well, no printing occurs for a file that is
filtered out. This is principally so that functions like DIR (below) can
both request printing and pass arbitrary commands through to
DIRECTORY, and have the printing happen in the appropriate place.

PROMPT MESS Prompts with the yes/no question MESS; if user responds with No, abort
command processing for this file.

OLDERTHAN N Continue command processing if the file hasn’t been referenced (read or
written) in N days. N can also be a string naming an explicit date and
time since which the file must not have been referenced.

NEWERTHAN N Continue command processing if the file has been written within the
last N days. N can also be a string naming an explicit date and time.
Note that this is not quite the complement of OLDERTHAN, since it
ignores the read date.

BY USER Continue command processing if the file was last written by the given
user, i.e., its AUTHOR attribute matches (case insensitively) USER.

@ X X is either a function of one argument (FILENAME), or an arbitrary
expression which uses the variable FILENAME freely. If X returns NIL,
abort command processing for this file.

The following two commands apply not to any particular file, but globally to the manner
in which directory information is printed.

23-23

STREAMS & FILES

OUT FILE Directs output to FILE.

COLUMNS N Attempts to format output in N columns (rather than just 1).

DIRECTORY uses the variable DIRCOMMANDS as a spelling list to correct spelling and define
abbreviations and synonyms (see Chapter 20). Currently the following abbreviations are recognized:

AU => AUTHOR

- => PAUSE

COLLECT? => PROMPT " ? " COLLECT

DA
DATE => CREATIONDATE

TI => WRITEDATE

DEL => DELETE

DEL?
DELETE? => PROMPT " delete? " DELETE

OLD => OLDERTHAN 90

PR => PROTECTION

SI => SIZE
VERBOSE => AUTHOR CREATIONDATE SIZE

READDATE WRITEDATE

(FILDIR FILEGROUP) [Function]

Obsolete synonym of (DIRECTORY FILEGROUP).

(DIR FILEGROUP COM1 ... COMN) [NLambda NoSpread Function]

Convenient form of DIRECTORY for use in type-in at the executive. Performs
(DIRECTORY ’FILEGROUP ’(P COM1 ... COMN)).

(NDIR FILEGROUP COM1 ... COMN) [NLambda NoSpread Function]

Version of DIR that lists the file names in a multi-column format. Also, by default only
lists the most recent version of files (unless FILEGROUP contains an explicit version).

