
MILES { a Modular Inductive Logic Programming

Experimentation System

Irene Stahl Birgit Tausend

Institut f�ur Informatik, Universit�at Stuttgart, Breitwiesenstr. 20-22, D-70565 Stuttgart

stahl@informatik.uni-stuttgart.de tausend@informatik.uni-stuttgart.de

January 10, 1994

Abstract

In this paper, we give a short technical description of the prototypical

system MILES. MILES is a toolbox of ILP-methods and operators. It provides

a
exible and powerful environment for handling, maintaining and inductively

transforming a knowledge base of Horn clauses with respect to the examples. It

is designed to support researchers in ILP in rapid prototyping of ILP methods

and systems.

1 Introduction

The task of inductive logic programming (ILP) is to learn logic programs from

classi�ed examples in the presence of background knowledge. In recent years, a large

variety of algorithms that tackle this problem have been developed and investigated.

They mainly di�er in the way the hypothesis space is searched, the operators for

generalising or specialising hypotheses, the particular bias used to prune the search

space, and the ability to recover from an overly strong bias.

In order to compare the di�erent approaches and to experiment with known and

new operators, control mechanisms, biases, heuristics and methods for shifting the

bias, we developed MILES. MILES is a toolbox for experiments with ILP systems

and methods. It o�ers a
exible representation for examples, background knowledge

and hypotheses as well as procedures for handling and maintaining the knowledge

base. It contains a large range of generalisation, specialisation and reformulation

operators, procedures for initializing and evaluating the knowledge base, and a

generic control for testing various combinations of operators.

MILES can be used for di�erent goals. First, it allows to investigate the e�ects of

the available operators on the knowledge base without specifying a speci�c con-

trol mechanism. Secondly, it facilitates the construction of speci�c ILP-systems by

adding a control mechanism that uses some of the operators. A third class of exper-

iments can be done by specifying a parametric ILP-system and studying the e�ects

of di�erent instantiations.

The generic control of MILES is a parametric ILP-system of that kind. It yields dif-

ferent speci�c ILP-methods according to its parameter instantiations. The operators

and tools available in MILES allow to experiment with a large range of instanti-

ations of the algorithm. They help to rapidly develop and test new approaches to

ILP.

In the following, we give a short overview of the representation and operators of

MILES. Then we describe the generic control, and give some example instantiations.

At last, we present the X user interface of MILES, and conclude.

1

2 The Representation of MILES

The MILES system is an environment for inductive logic programming. Before we

present the di�erent inductive operators, we describe the knowledge base the oper-

ators work on.

The knowledge base of MILES consists of

� positive and negative examples,

� Horn clauses that constitute the background knowledge and hypotheses,

� information on argument types.

To realise closed-loop learning, we choose the same representation for the back-

ground knowledge and hypotheses. Examples and rules are stored as higher-order

facts with a unique identi�er. A depth-bounded iterative-deepening theorem prover

allows to interpret the rules, and to deduce the examples from the theory.

2.1 Examples

An example is stored in the knowledge base as

ex(ID; Fact; Class)

where ID is the unique identi�er. Fact is a ground unit clause, and Class either +

for positive or � for negative examples.

MILES o�ers procedures for reading, storing and deleting examples. As only those

procedures are visible to the user of the system, the actual implementation can be

changed independently.

2.2 Horn Clauses

Both clauses of the background knowledge and hypothesis clauses are stored in the

knowledge base as

known(ID;Head;Body; Clist; Label; evaluation(::::))

where ID is the knowledge base key, and Head and Body are the head and the

body of the clause. Clist contains an alternative, but equivalent list representation

of the clause that is advantageous for some operators. For example, for a clause

with head H and body B

1

; ::; B

n

Clist is [H : p;B

1

: n; ::; B

n

: n]. Label allows to

distinguish between background and hypothesis clauses. It may for example refer to

the generating operator of the clause, or to the source �le. The argument evaluation

contains information on the applicability of the clause in proving the examples.

Again, MILES o�ers a set of procedures for manipulating clauses. These procedures

are the interface for the user, such that the actual implementation might be changed.

2.3 Argument Types

The speci�cation of argument types for a predicate is optional and might be elicited

automatically, if examples for the predicate are present. Argument types are stored

as facts

type restriction(p(V

1

; ::; V

n

); [type

1

(V

1

); ::; typen(V

n

)])

Each type type

i

is de�ned by clauses in the knowledge base of MILES. Besides

the method for determining argument types mechanically, there are procedures for

2

comparing types on generality, and for determining the type of a variable within a

clause. These procedures can be employed during the generalisation or specialisation

of hypotheses.

MILES contains procedures for initializing a knowledge base from �les, saving and

restoring the state of a knowledge base, and inspecting rules and examples.

3 The Operators of MILES

MILES contains �ve di�erent kinds of operators.

� generalisation operators which generalise a single clause or sets of clauses

� specialisation operators which specialise a single clause or sets of clauses

� reformulation operators which perform an equivalent reformulation of the

knowledge base

� preprocessing operators which initialize the knowledge base and hypotheses

� evaluation operators which measure the quality of the knowledge base

In the following, we give a short description of the implemented operators.

3.1 Generalisation Operators

Generalisation operators generalise single clauses or sets of clauses with respect

to a generalisation model. Generalisation models formally de�ne a generality rela-

tion between clauses and sets of clauses. Several generalisation models have been

proposed in ILP, such as �-subsumption [Plo70], generalised subsumption [Bun88],

relative subsumption [Plo71, MF90] and logical implication. These generalisation

models de�ne the search space for the generalisation operators.

3.1.1 Least General Generalisations

Given a set of clauses, their least general generalisation (lgg) with respect to the

generalisation model is of special interest for learning procedures. MILES contains

lgg-operators for all generalisation models except for logical implication. However,

in that case no unique or �nite lgg needs to exist.

Three lgg-operators with respect to �-subsumption have been implemented:

the complete lgg-operator [Plo70] which involves the costly reduction under �-

subsumption, a weaker version nr lgg that works without reduction and an operator

headed lgg which is specially suited for Horn clauses and fails if the input clauses

have incompatible heads. An alternative generalisation operator with respect to

�-subsumption is the gti-operator that realizes generalisation through intersection

[Jun92]. In contrast to lgg, the generalised clause is at most as long as the shortest

input clause.

With respect to stronger generalisation models, two operators have been imple-

mented. The �rst, gen msg computes the least general generalisation with respect

to generalised subsumption [Bun88]. As the background knowledge is involved, it

generally results in complex clauses that have to be reduced in additional steps.

The same holds for the second operator, rlgg, that determines the least general

generalisation with respect to relative subsumption [Plo71, MF90]. It is realised by

Muggleton und Feng's algorithm [MF90].

3

3.1.2 Inverse Resolution

Inverse resolution operators aim to invert single or multiple deductive resolution

steps. According to the clauses given as input, V- and W-operators can be distin-

guished.

Given a parent clause B and a resolvent C, V-operators determine the missing

parent clause. Depending on whether the resolution literal in B is positive or neg-

ative, the missing parent clause is a generalisation with respect to generalised

subsumption or realitive subsumption [Jun93]. The operators absorption [MB88]

and saturation [Rou91] realised in MILES invert generalised subsumption, whereas

identification [MB88] and inverse derivation [Mug90] invert relative subsump-

tion. The G

1

-operator [Wir89] integrates both.

W-operators start with a set of resolvent clauses fB

1

; :::;B

n

g and construct a clause

A and clauses fC

1

; :::;C

n

g such that B

i

results from resolving A with C

i

on a �xed

literal L in A. Since L is resolved away in B

i

and nothing is known about its

predicate symbol, a new predicate is invented. Three W-operators are realised in

MILES. The intraconstruction-operators of [MB88] and [Rou91] are a special case

as the new predicate literal is assumed to be negative in A. The more general G

2

-

operator [Wir89] allows for both L being positive and negative in A.

3.1.3 Truncation

Truncation operators generalise clauses by dropping body literals. They realise a

very simple generalisation with respect to �-subsumption. Combined with saturation

or inverse derivation, and inverse substitution, truncation operators allow for com-

plete generalisations with respect to generalised or relative subsumption [Jun93].

That is, they allow to construct every clause that is more general than the input

clause.

Heuristics and the knowledge about properties of logic programs control which body

literals are actually removed. MILES contains �ve di�erent truncation operators.

The �rst, truncate facts, is based on the observation that every body literal sub-

sumed by a fact in the knowledge base is true regardless of the current proof.

Therefore, the literal can be removed from the clause without changing the success

set of the program.

The second operator, truncate unconnected, starts from a similar observation de-

scribed in [Rou91]. Unconnected literals, that is, literals that share no variables

with the clause head or other connected literals, can be skipped without a�ecting

the success set of the clause

1

.

The third operator, truncate unconnecting, is only slightly di�erent. It drops a

body literal if all other literals remain connected [Rou91]. However, this slight dif-

ference leads to varying results, as the following example will show.

Example 1: If a clause

p(X) q(X;V 1); r(V 2); s(V 2; V 1)

is given, then truncate unconnecting removes the literal r(V 2), whereas

truncate unconnected does not change the clause.

The fourth truncation operator, truncate negation based, relies on the examples.

It removes a body literal if the remaining clause still excludes all negative examples

1

Except for the case that the clause has an empty success set.

4

[MF90]. Combined with an lgg-operation, negation-based truncation allows to re-

move redundant literals from the generalisation without sacri�cing correctness with

respect to the examples.

The last operator, truncate redundant, leaves out all literals within a saturated

clause that have been used for an elementary saturation step [Rou91]. This allows

to implement absorption [MB88].

Example 2: Let

C : bird(X) vulture(X);

D : has beak(X) vulture(X):

Then, saturation of D with respect to C yields

E : has beak(X) bird(X); vulture(X):

The truncate redundant-operator removes vulture(X) from E, resulting in the

same clause as an absorption between D and C.

3.2 Specialisation Operators

Specialisation operators specialise a single clause with respect to a generalisation

model, usually �-subsumption. Four specialisation operators are realised in MILES.

Three if them are part of Shapiro's re�nement operator �

0

[Sha83]. Given a clause

c, the specialisations of c that result from unifying variables within c, instantiating

variables with terms and adding body literals are determined. Our implementation

uses the argument types of the predicates involved, but it does not employ mode

information, in contrast to Shapiro's operator.

The second specialisation operator implemented in MILES specialises a clause with

a new predicate. It employs discrimination-based reduction [KNS92] to �nd the

minimal set of argument variables for the new predicate.

3.3 Reformulation Operators

Reformulation operators perform equivalent transformations of the knowledge base

that facilitate the learning task. The �rst operator realised in MILES is the

reduction of clauses with respect to �-subsumption [Plo70]. It helps to �nd the

shortest equivalent form of a given clause. This is important especially for opera-

tors that construct very long and complex clauses as e.g. rlgg [MF90]. However,

reduction with respect to �-subsumption is quite costly. MILES contains di�erent

approximations, namely the truncation operators, that remove redundant body lit-

erals without performing a complete reduction.

The second reformulation operator implemented in MILES is flattening [Rou91]. It

replaces n-ary functions with (n+1)-ary predicates throughout the knowledge base.

The resulting program is function-free and allows for deciding logical implication

and satis�ability. Furthermore, generalisation operators like saturation or absorp-

tion are more easily to apply as inverse substitutions are not necessary. The reverse

unflattening operator restores the n-ary functors from the (n+ 1)-ary predicates.

3.4 Preprocessing Operators

Preprocessing operators are designed to elicit information given implicitly within

the examples, and to initialize the hypothesis. The �rst operator determines the

argument types for all example predicates. Argument types can be described by

RUL-programs, and induced very e�ciently from the given examples by the method

5

described in [STW93]. The knowledge about types can be employed to prune the

search space during generalisation or specialisation.

The second preprocessing operator implemented in MILES determines a set of clause

heads that cover all positive examples in the knowledge base by the method de-

scribed in [STW93]. These clause heads give important structural information about

the disjunctive cases of the predicates. They can be used as initial hypothesis that

is specialised further.

3.5 Evaluation of the Knowledge Base

Evaluation operators measure the quality of the knowledge base according to di�er-

ent criteria. A very simple measures realised in MILES is the syntactic size of the

knowledge base.

A more complex operation evaluates the current theory with respect to the given

examples. It determines the evaluation of the clauses in the knowledge base, i.e.

the positive and negative examples they cover and the proofs of examples they

have been used in. This information stored for each clause can be used to compute

commonly employed measures as accuracy or information gain of the current theory

with respect to the examples.

Additionally, MILES contains predicates that check whether the current theory is

complete or consistent with respect to the examples. If neither is the case, procedures

that detect the culprit are implemented in MILES. The �rst one, fp [Sha83], imple-

ments an oracle-free version of Shapiro's contradiction-backtracing algorithm that

localises overgeneral clauses within a theory. These clauses need to be specialised to

make the theory consistent. The second one, ip [Sha83], implements Shapiro's algo-

rithm for diagnosing �nite failures on the examples. It returns a set of ground facts

that should be covered in order to make the theory complete. Both procedures can

be used to provide relevant input to the generalisation and specialisation operators

of MILES.

4 Generic Control Mechanism

To test the e�ects of di�erent operator combinations, MILES contains a generic

control procedure that can be instantiated to actual ILP algorithms. It is basically

the same as the generic concept learning algorithmGENCOL [Rae92], except that it

o�ers the possibility to invent new predicates. Because of its vicinity to GENCOL, it

is called GENCON for GENeric CONtrol. Figure 1 shows the GENCON algorithm.

Twelve parameter procedures, underlined in �gure 1, control the hypothesis space,

the search paradigm and the decision criteria for predicate invention of GENCON.

The central idea of GENCON is to mark the hypotheses in partial sols as active

and passive. Active programs are subject to further generalisation or specialisation

steps, whereas passive ones have already been tried. Programs marked as passive

are potential starting points for predicate invention.

The parameter procdure initialize in �gure 1 initializes the set of partial solu-

tions partial sols to f(PS

1

;Mark

1

); :::; (PS

n

;Mark

n

)g. It should be based on the

examples present in the knowledge base.

The procedures Stop Criterion and Quality Criterion express the success cri-

terion of the algorithm. The procedure Stop Criterion decides whether the set

complete sols contains a satisfactory solution. In that case, the algorithm stops

and outputs one or all of the complete solutions depending on the implementation

of output. The procedure Quality Criterion checks whether the current hypothesis

PS is satisfactory and should be added to complete sols. In that case, it might

6

Given: B, E

�

, E

	

Algorithm:

partial sols := initialize(E

�

; E

	

; B)

all PS 2 partial sols marked active

complete sols := �

while not(Stop Criterion(complete sols)) do

PS := select(partial sols)

if Quality Criterion(PS)

then complete sols := complete sols [fPSg

partial sols := update(partial sols)

else if active(PS)

then one of (! partial sols := add(partial sols; spec(PS))

! partial sols := add(partial sols; gen(PS)))

all PS

0

2 spec(PS)(gen(PS)) marked active

else partial sols := add(partial sols; learn newp(PS))

mark PS as passive

partial sols := filter(partial sols)

Output: output(complete sols)

Figure 1: Generic Control of MILES: GENCON

be necessary to update partial sols with the procedure update. For example, to

implement a greedy covering strategy, both partial sols and complete sols contain

clauses as elements, the latter consistent, the �rst possibly overgeneral ones. The

Stop Criterion is full�lled as soon as the clauses in complete sols cover all positive

examples, whereas the Quality Criterion is true if the clause PS is consistent with

respect to the negative examples. In that case, partial sols needs to be reset to

containing only one active clause head to be specialised.

The procedures select, add and filter constitute the search paradigm. The proce-

dure select selects one of the current hypotheses to be generalised or specialised, add

adds the newly generated hypotheses to the set of partial solutions, and filter �l-

ters the most promising ones among them. For example, to implement breadth-�rst

search, select always chooses the �rst active element of partial sols, add appends

the new partial programs to partial sols, and filter is the identity.

Additionally, select controls when predicate invention is performed. If it chooses

active programs as long as any are present, and passive ones only after all programs

in partial sols have become marked passive, it implements �nite axiomatisability.

This is because as long as active programs are present the hypothesis space is not yet

completely explored. As soon as all programs in partial sols are marked passive,

the hypothesis space is exhausted and needs to be enlarged. If it selects passive

programs though active ones are present, it implements a heuristic criterion for

predicate invention. Active programs indicate further options for generalisation or

specialisation that are discarded in sake of a more promising new predicate.

The predicate one of decides whether the current hypothesis should be generalised

or specialised. A common implementation as e.g. in MIS [Sha83] generalises if PS

is incomplete, and specialises if PS is inconsistent. The generalisation and special-

isation operators gen and spec determine the generalisations and specialisations of

PS with respect to the bias.

The procedure learn newp corrects the overgeneral and/or overspeci�c partial so-

lution PS with new predicates. For �nding the de�nition of the new predicates, a

recursive call of the whole induction algorithm might be necessary.

7

GENCON provides a simple and very general control, but leaves most work to the

implementation of the parameter predicates. However, the large amount of operators

and heuristics in MILES that can be used to instantiate the parameters reduces this

implementational work a lot.

5 Simple Instantiations of the Generic Control

Currently, three instantiations of GENCON are included in the MILES toolbox,

one for RUL-programs, one for constrained programs, and a FOIL-like algorithm.

They demonstrate the interaction between the di�erent parameters of GENCON.

5.1 RUL-Programs

Regular unary logic (RUL) programs [YS91] are logic programs that allow to de-

scribe syntactic argument types. They contain only unary predicates and allow

for non-variable argument terms only in the clause heads. The head arguments of

clauses of the same predicate must di�er in their function symbol. Additionally,

every variable in a clause must occur exactly once in the head and once in the body.

The extensions of predicates de�ned by RUL-programs are regular sets. Therefore,

they can be e�ciently compared on generality. Regular unary predicates can be

sorted in a complete lattice with respect to set union and intersection of their

extensions. Methods for comparing regular predicates are included in the argument

type module of MILES.

To obtain an instantiation of GENCON for inducing RUL-programs, the parameters

are set as follows:

� initialize(E

�

; �;B) = f(heads(E

�

); active)g where the heads for E

�

are

de�ned as flgg

2

(fp(f(:::)) 2 E

�

g) j p predicate, f functor in E

�

g.

RUL-programs for argument types are induced from positive examples only.

Therefore, the second argument of initialize is the empty set.

� Stop Criterion(complete sols) � (jcomplete solsj = 1)

� select(partial sols) = the most speci�c active PS 2 partial sols, if any. Else

the most speci�c passive PS 2 partial sols.

� Quality Criterion(PS) � (B [PS ` E

�

) and PS is a RUL-program

� update(partial sols) = partial sols

� one of � if B [PS ` E

�

then specialise, else generalise

� add(partial sols; PSL) = partial sols [PSL

� spec(PS) : localise a clause C 2 PS where 9 V 2 vars(head(C)) �

vars(body(C)) and specialise C by adding a body literal p(V) that is true

for all example instantiations of the clause

� gen(PS) : localise a clause C 2 PS where

fe 2 E

�

j 9�head(C)� = eg � fe 2 E

�

j B [PS ` eg 6= �;

and remove its body literals.

2

[Plo70]

8

� learn newp(PS) : for each clause C 2 PS with V

C

= vars(head(C)) �

vars(body(C)) 6= �, and for each V 2 V

C

, add a literal newp

V

(V) to the

body of C. The instantiations E

�

V

= fnewp

V

(V)� j 9e 2 E

�

head(C)� = eg

are added to E

�

, and heads(E

�

V

) to PS.

� filter(partial sols) = partial sols

� output(complete sols) : remove and replace all equivalent new predicates, then

add the resulting clauses to the knowledge base of MILES. Removing equiv-

alently de�ned new predicates is necessary to improve the readability of the

program. The equivalence of new predicates can be checked with the methods

for comparing regular unary predicates.

5.2 Constrained Programs

The restriction to constrained clauses, that is clauses without existential variables,

is widely used in ILP and deductive data bases. In particular for ILP-systems this

restriction is very useful as it avoids the combinatorial problems with existential

variables.

The following parameter instantiation for GENCON leads to a method for inducing

constrained programs:

� initialize(E

�

; E

	

; B) = f(clause heads(E

�

); active)g where the clause

heads for the predicates in E

�

are determined as described in [STW93].

� Stop Criterion(complete sols) � (jcomplete solsj = 1)

� select(partial sols) = the �rst active PS 2 partial sols, if any. Otherwise the

passive PS 2 partial sols that covers the fewest negative examples.

� Quality Criterion(PS) � ((B [PS ` E

�

) ^ (B [PS 6` E

	

))

� update(partial sols) = partial sols

� one of � if B [PS ` E

�

then specialise, else generalise

� add(partial sols; PSL) = partial sols [PSL

� spec(PS) : localise an overgeneral clause C 2 PS with fp, and specialise C

by adding a constrained body literal.

� gen(PS) : localise a clause C 2 PS where

fe 2 E

�

j 9�head(C)� = eg � fe 2 E

�

j B [PS ` eg 6= �;

and greedily remove its body literals until the missing examples are covered.

� learn newp(PS) : localise an overgeneral clause C 2 PS with fp and spe-

cialise it with a constrained new predicate. Abductively add the instantiations

of the new predicate to the examples, and recursively invoke the algorithm on

them.

� filter(partial sols) = partial sols

� output(complete sols) = add the clauses in complete sols to the knowledge

base of MILES.

9

5.3 FOIL

FOIL [Qui90] learns function-free logic programs with a greedy-covering strategy

guided by the information gain heuristic. To obtain a FOIL-like algorithm as in-

stantiation of GENCON, the parameters are set as follows:

� initialize(E

�

; E

	

; B) = f(most general term(E

�

); active)g where the most

general term for E

�

is p(X

1

; ::; X

n

) for the target predicate p=n. E

�

must not

contain examples for di�erent predicates.

� Stop Criterion(complete sols) � (B [complete sols ` E

�

), or the encoding

length of complete sols exceeds that of the examples.

� select(partial sols) = the best active PS 2 partial sols according to the

information gain heuristic, if any. Fails else.

� Quality Criterion(PS) � (B [PS 6` E

	

)

� update(partial sols) = f(most general term(E

�

r

); active)g for the positive

examples not yet covered by complete sols.

� one of : always specialise

� add(partial sols; PSL) = partial sols [PSL

� spec(PS) : specialise PS by adding a body literal

� gen(PS) : |

� learn newp(PS) : |

� filter(partial sols) : remove all clauses from partial sols violating the encod-

ing length restriction

� output(complete sols) = add the clauses in complete sols to the knowledge

base of MILES.

6 User Interface

The X user interface of MILES, X-MILES, is built on top of the ProXT interface of

QUINTUS prolog v3.1.1. ProXT is a prolog interface to the Motif widget set and

the X Toolkit (Xt). Widgets are ready-made graphical components for building user

interfaces, for example menus, dialog boxes, scroll bars and command buttons. The

X Toolkit provides routines for creating and using such widgets. ProXT provides

access from prolog to all the widgets in Motif and the Xt routines necessary for

using them [Qui91].

Figure 2 shows the complete X interface of MILES. It is separated in six di�erent

parts. The knowledge base area presents the examples and the current set of rules.

The editor area allows to edit, add or change examples and rules. The command area

provides direct access to prolog, whereas the message area displays system messages

about the state and the result of the computation. The function area contains groups

of learning operators that might be applied to the current knowledge base. The

argument area provides interactive facilities to specify the arguments of a learning

operator. In the following, the functionality of the separate parts is discussed in

detail.

10

Figure 2: X-MILES

Figure 3: The Command Area

6.1 Prolog Interaction in the Command Area

The command area provides direct access to prolog. It allows for example to di-

rectly invoke operators not yet included in the interface, to turn on the debugger

or to set spy points. These capabilities are an important precondition for the easy

extendability of MILES and X-MILES.

Figure 3 shows the command area in more detail. The central part is a single-line

editable window that allows to type in prolog commands as if directly at the prolog

prompt. Hitting the return key or pressing the OK! button invokes the command.

The status of the command line is indicated above. Input means that the command

line allows input, Yes that a command has been successfully performed, No that

it has failed, and Exit that it has been interrupted. The Clear button below the

command line empties the command input, whereas the Quit X-Miles button returns

to the prolog prompt.

6.2 Knowledge Base Area

The knowledge base of MILES consists basically of rules and examples. Accordingly,

the knowledge base area of X-MILES shown in �gure 4 contains an area for rules and

for examples. The status of the knowledge base is indicated next to the knowledge

base label. The status evaluated means that the rules are evaluated with respect

to the examples, i.e. their applicability and coverage has been determined, whereas

11

Figure 4: The Knowledge Base Area

Figure 5: A File Selection Dialog

not evaluated indicates that the knowledge base has been changed since the last

evaluation.

The utilities that apply to both examples and rules are realised as buttons in the

bottom row of the knowledge base area. Load and Save open a �le selection dialog as

e.g. in �gure 5. The �les to be loaded may be either .qof �les resulting from saving

a knowledge base, or prolog �les containing clauses, examples and type restrictions.

Save saves the current knowledge base in .qof format. The Clear button empties

the knowledge base of MILES.

12

Figure 6: Examining a Rule

6.3 Rule Area

The rule area displays the unique identi�er, the label, and head and body for each

clause in the knowledge base. Further information on rules can be obtained by

selecting a rule and pressing the Examine button in the title row. Figure 6 shows

the resulting window. It displays the type restriction of the clause head, if any, and

the evaluation of the clause.

Rules can be selected simply by a mouse click, or by the Select All and Unselect

All buttons in the button row below. The Delete button deletes all selected rules,

whereas Refresh updates the presentation of the rules according to the knowledge

base of MILES. This might be necessary if a command does not activate the refresh

callback.

The Label button provides a facility to change the label of the rules selected. For

example, �gure 7 shows how to change the label of two rules resulting from the

clause-heads operator to usr.

The View button allows to specify a subset of the rules to be displayed. This is

advantageous in case of large knowledge bases where creating and maintaining all

rule widgets might become costly. The view-rules dialog in �gure 8 displays all

existing labels and head predicates. They can be transfered by mouse clicks to the

viewed labels and head predicates area. Min and Max are the lower and upper

bounds for clause identi�cators to be displayed. The View button activates the

restrictions expressed in the viewed-part and by Min and Max, whereas View All

deactivates them and displays all rules.

13

Figure 7: Changing Rule Labels

Figure 8: The View Rule Dialog

6.4 Example Area

The design of the example area is almost identical to that of the rule area. For each

example, its unique identi�er, its classi�cation and the fact itsself is displayed. Select

All, Unselect All, Refresh and Delete work exactly as for rules. Instead of changing

the labels of a rule, the classi�cation of the selected examples can be changed by

pressing the +, - or ? button. The view-example dialog in �gure 9 is similar to that

for rules, except that only the existing predicates are displayed. This is because

examples are not labeled.

The knowledge base area is basically passive. It displays the contents of the knowl-

edge base, but allows only minor changes on them. For really changing rules and

14

Figure 9: The View Example Dialog

Figure 10: The Knowledge Base Editor

examples, an editor is necessary.

6.5 Knowledge Base Editor

The knowledge base editor shown in �gure 10 basically consists of a multi-line

editable and scrollable area. The buttons below allow to add new rules and examples

that have been typed in. Add Rule and Add Example perform a simple syntax check

and create a new unique identi�er under which the rule, respectively the example,

is stored. The label of the new rule defaults to usr, the classi�cation of the new

example to '?'.

Besides simply typing in new rules and examples, existing rules and examples can

be copied into the editor area by double clicking them in the knowledge base area.

After modi�cation, either they can be added as new rules or examples, or they are

used to overwrite the old de�nition. The latter is done with the Change Rule and

Change Example buttons.

6.6 Function and Argument Area

The function area provides access to the di�erent learning operators of MILES that

might be applied to the current knowledge base. Because the large range of available

operators cannot be displayed all at once, they are grouped together in menus that

pop up on pressing the according push button, as eg. in �gure 11.

15

Figure 11: The Function Area

Figure 12: The Argument Area

The arguments of an operator are speci�ed in the argument area shown in �gure

12. A special argument is Depth that allows to specify globally the depth bound

for operators like saturation or rlgg. Each of the twelve other argument positions

might be either edited directly, or �lled by �rst activating the toggle button Get

Id, and then clicking the rules or examples in the knowledge base area on which

the operator shall be applied. Of course, for specifying the arguments properly, one

must know the number and type of them for each operator.

These can be found in the con�guration �le xmiles functions.pl. This �le allows

to simply change or extend the function area of X-MILES. It contains easy-to-read

and easy-to-add descriptions of the available operator groups and operators.

An operator group is de�ned by the expression

group(<group-name>, [<operator-name>, <operator-name>,]).

This creates a push button labeled by <group-name> which pops up a menu of the

operator names on being pressed.

A single operator is de�ned by

operator(<operator-name>, <predicate-name>, InOutPattern,

InTypeChecks, OutPredicates, KBChanges)

The operator name must be one of the operator names in a group de�nition. The

predicate name is the name of the procedure in MILES that is called on selecting the

operator from the menu. InOutPattern speci�es the input- and output arguments

the predicate is called with. It is a list containing some of the following terms:

� xmArg1 - xmArg12 for input arguments. They are set to the values of the

according widgets in the argument area.

� xmDepth for the depth bound of the operator. It is set to the value of Depth

in the argument area.

16

Figure 13: The Specialisation Dialog

� xmOut for output arguments.

The input arguments can be checked on their type. InTypeChecks is a list of unary

predicates for each input argument, e.g. isRule or isExample.

The output argument is passed on to each of the predicates speci�ed in

OutPredicates. These might for example display several alternative solutions, or

write informative text to the message area.

Refreshing the knowledge base area is controlled by KBChanges. This is either [],

[rules] if the rule area needs to be refreshed, [examples] if the example area

needs a refresh, or [rules, examples] for both. This helps to avoid super
uous

refreshs.

As an example, in �gure 11 New Predicate is one of the operators of the re�nement

group. It is de�ned as follows:

operator('New Predicate', spec with newpred, [xmArg1,xmOut],

[isRule], resultAddNewpred, [rules]):

The procedure resultAddNewpred pops up the window in �gure 13 that displays

all potential specialisations with new predicates. The user might either select one

and add it to the knowledge base through the Add Rule button, or reject them all

by the None button.

The con�guration �le provides large a part of the
exibility and extendability of

X-MILES. It allows to add or change operators without much knowledge about the

realisation of the interface.

6.7 System Messages

The message area displays system messages in a scrollable window. It serves as

a kind of protocol, as every prolog goal invoked through X-MILES is reported.

Additional information, for example Yes for success, is pre�xed with %. This allows

to consult the message �le in order to restore the knowledge base at a certain stage

of interaction.

To save the message �le, the Save botton below the message area in �gure 14 must

17

Figure 14: The Message Area

be used. It creates a �le xmProtokol.sav. The Clear button empties the message

window. This means the begin of a new logical X-MILES session.

7 Conclusions

MILES is a prototypical test-system for ILP. It o�ers a
exible and powerful en-

vironment of operators for handling, maintaining and inductively transforming a

knowledge base of Horn clauses with respect to the examples. It is designed to

support researchers in ILP in rapid prototyping of ILP-methods and -systems.

However, MILES itself is not an ILP-system in the sense that the user can sim-

ply input examples and get back a theory. Only instantiations of ILP-algorithms

generated on the top of MILES might show that behaviour. Thus, MILES is more

appropriate for people working on ILP-methods itself than for people applying them

in practice.

Future work will concentrate on predicate invention techniques and the integration

of a declarative representation language for biases that allows to express biased

generalisation and specialisation operators for GENCON more easily.

Acknowledgements

This work has been supported by the European Community ESPRIT project ILP

(Inductive Logic Programming).We want to thank Bernhard Jung, Markus M�uller

and Thorsten Volz for their implementational work on MILES and X-MILES.

References

[Bun88] W. Buntine. Generalized subsumption and its applications to induction

and redundancy. Arti�cial Intelligence, 36:149{176, 1988.

[Jun92] B. Jung. Generalisierungsoperatoren bei der induktiven logischen Pro-

grammierung. Diplomarbeit nr. 940, Fakult�at Informatik, Universit�at

Stuttgart, 1992.

[Jun93] B. Jung. On inverting generality relations. In Proc. of the Third Inter-

national Workshop on Inductive Logic Programming ILP-93, Technical

Report, IJS-DP-6707. J. Stefan Institute, 1993.

18

[KNS92] B. Kijsirikul, M. Numao, andM. Shimura. Discrimination-based construc-

tive induction of logic programs. In Proc. of the 10th National Conference

on AI, 1992.

[MB88] S. Muggleton and W. Buntine. Machine invention of �rst-order predicates

by inverting resolution. In Fifth International Conference on Machine

Learning. Morgan Kaufmann, 1988.

[MF90] S. Muggleton and C. Feng. E�cient induction of logic programs. In First

Conference on Algorithmic Learning Theory, Tokyo, 1990. Ohmsha.

[Mug90] S. Muggleton. Inductive logic programming. In First Conference on

Algorithmic Learning Theory, Tokio, October 1990. Ohmsha.

[Plo70] G. Plotkin. A note on inductive generalisation. In B. Meltzer and

D. Michie, editors, Machine Intelligence, volume 5, pages 153{163. Edin-

burgh University Press, Edinburgh, 1970.

[Plo71] G. Plotkin. A further note on inductive generalisation. In B. Meltzer

and D. Michie, editors, Machine Intelligence, volume 6, pages 101{124.

Edinburgh Univeristy Press, Edinburgh, 1971.

[Qui90] J. R. Quinlan. Learning logical de�nitions from relations. Machine Learn-

ing, 5:239{266, 1990.

[Qui91] Quintus Corporation, Palo Alto, California. Quintus Prolog X Window

Interface, February 1991.

[Rae92] L. De Raedt. Interactive Theory Revision: an Inductive Logic Program-

ming Approach. Academic Press, 1992.

[Rou91] C. Rouveirol. ITOU: Induction de Th�eories en Ordre Un. PhD thesis,

Universit�e Paris Sud, Centre d'Orsay, 1991.

[Sha83] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

[STW93] I. Stahl, B. Tausend, and R. Wirth. Two methods for improving inductive

logic programming systems. In Machine Learning: ECML-93, European

Conference on Machine Learning, Wien, Austria. Springer, 1993.

[Wir89] R. Wirth. Completing logic programs by inverse resolution. In Fourth

European Working Session on Learning. Pitman, 1989.

[YS91] E. Yardeni and E. Shapiro. A type system for logic programs. Journal of

Logic Programming, (10):125{153, 1991.

19

