
Manual for GoDiS

DRAFT

Sta�an Larsson

Mar
h 31, 2005

2

Contents

1 Introdu
tion 9

2 Getting started 11

2.1 Running an existing GoDiS appli
ation 11

2.2 Copying and modifying an existing GoDiS appli
ation 11

3 Elements of the information-state approa
h to dialogue man-

agement 13

3.1 The information state approa
h 13

3.2 TrindiKit and the information state approa
h 14

3.3 Toolkits, dialogue systems and appli
ations 15

3.4 Genre-spe
i�
 systems: GoDiS-IOD and GoDiS-AOD 15

4 Elements of Issue-based dialogue management 17

4.1 Total Information State . 17

4.1.1 Information state proper 17

4.1.2 Module interfa
e variables 20

4.1.3 Resour
e interfa
e variables 20

3

4 CONTENTS

4.2 Dialogue moves . 20

4.2.1 Core dialogue moves in GoDiS-IOD 20

4.2.2 Grounding moves . 21

4.2.3 Additional moves in GoDiS-AOD 21

4.3 Dialogue Move Engine . 22

4.3.1 Update module . 22

4.3.2 Sele
tion module . 22

4.4 Resour
e interfa
e . 22

4.5 Dialogue plans . 23

4.5.1 A
tion sequen
es and a
tions 23

4.5.2 A
tions
onne
ted to dialogue moves 23

4.5.3 Resour
e-related a
tions 24

4.5.4 Some example plans . 26

4.6 Formal semanti
 representations 26

4.6.1 Propositions . 27

4.6.2 Questions . 28

4.6.3 Domain ontology (semanti
 sortal restri
tions) 29

5 Non-DME modules used by GoDiS 31

5.1 Simple text input module . 31

5.2 Text input with simulated re
ognitions s
ore 32

5.3 Nuan
e ASR input . 32

5.4 A simple interpretation module 32

5.5 A simple generation module . 32

CONTENTS 5

5.6 Simple text output module . 33

5.6.1 Nuan
e Vo
alizer output 33

6 The
omponents of a GoDiS appli
ation 35

6.1 File stru
ture . 35

6.2 The GoDiS appli
ation spe
i�
ation �le 36

6.2.1 Sele
ting a GoDiS variant 36

6.3 The start �le . 36

6.4 Resour
es and the GoDiS resour
e interfa
e 37

6.5 The domain resour
e . 37

6.5.1 Dialogue plans . 37

6.5.2 Sortal restri
tions . 38

6.5.3 Sortal hierar
hy . 38

6.6 The devi
e/database resour
e . 39

6.7 The lexi
on resour
e . 39

6.8 The spee
h re
ognition grammar resour
e 39

A Installation instru
tions 41

A.1 Downloading and installing TrindiKit 41

A.1.1 Prerequisites . 41

A.1.2 Installing a CVS
lient . 42

A.1.3 Downloading and unzipping TrindiKit 42

A.1.4 A

essing TrindiKit via anonymous CVS 42

A.1.5 Installing TrindiKit . 43

6 CONTENTS

A.1.6 TrindiKit dire
tory stru
ture (after installation) 43

A.2 Downloading and installing GoDiS 44

A.2.1 Prerequisites . 44

A.2.2 A

essing GoDiS via anonymous CVS 44

A.2.3 Installing GoDiS . 45

A.2.4 GoDiS dire
tory stru
ture 45

B Downloading and installing additional software 47

B.1 Installing Java . 47

B.1.1 Windows . 47

B.2 Downloading and installing OAA 48

B.3 Installing Nuan
e ASR . 48

B.3.1 Windows . 48

B.3.2 UNIX/Linux . 48

B.4 Installing Nuan
e Vo
alizer . 48

B.4.1 Windows . 48

B.4.2 UNIX/Linux . 48

C Using GoDiS with Nuan
e v8.0 and Vo
alizer 49

C.1 Getting Nuan
e and Vo
alizer to run on your
omputer 49

C.1.1 Testing Nuan
e ASR . 49

C.1.2 Testing Vo
alizer . 50

C.2 Con�guring your GoDiS appli
ation to use Nuan
e 50

C.3 Running Nuan
e and Vo
alizer with your appli
ation 50

CONTENTS 7

This manual is a work in progress.

8 CONTENTS

Chapter 1

Introdu
tion

This do
ument is intended as a manual for depeloping appli
ations for GoDiS,

an Issue-based dialogue system. For an explanation of the issue-based theory

and its implementation in GoDiS, see ?

.

9

10 CHAPTER 1. INTRODUCTION

Chapter 2

Getting started

First, you need to download and install TrindiKit and GoDiS. See Appendix ??

for instru
tions. Optionally, you may also want to install OAA and any spee
h

re
ognition and/or TTS engine that is installed on your
omputer

1

. It is also

very useful to have a text editor su
h as Ema
s installed.

2.1 Running an existing GoDiS appli
ation

To run the GoDiS VCR appli
ation using text input and output, open the �le

start-v
r-text.pl lo
ated in you GoDiS dire
tory under godis-apps/domain v
r

and
onsult it. When the prolog prompt reappears, type \run." and press re-

turn. When the user input prompt ($U>) appears, you may type e.g. \add

a program" (without quotes). Top the dialogue e.g. by typing \bye". If you

don't want to see the rules and information states, stop the dialogue and type

\quiet.". To see the rules again, type \verb." (for \verbose mode).

2.2 Copying and modifying an existing GoDiS

appli
ation

A good way to get started on your own appli
ation is to
opy an existing appli-

ation dire
tory and su

essively repla
ing the appli
ation
omponents.

1

Note that you need to rebuild your TrindiKit installation after you have installed OAA,

Nuan
e v8.0 or Nuan
e Vo
alizer.

11

12 CHAPTER 2. GETTING STARTED

Chapter 3

Elements of the

information-state approa
h

to dialogue management

In this se
tion, we brie
y outline the information state approa
h to dialogue

management. We also explain the relation between toolkits, dialogue systems,

and dialogue system appli
ations. For a more in-depth presentation of the

information state appora
h, see ?

o

r ?

.

3.1 The information state approa
h

The basi
 idea behind the \information state approa
h" is fairly simple. To

begin with, we regard dialogue as a kind of game, where
ertain dialogue moves

are possible. A
ommon kind of dialogue move is a verbal utteran
e. Ea
h move

in a dialogue has e�e
ts on some kind of state
ontaining information, and ea
h

new move is sele
ted based on su
h a state. This is the basi
 idea, and it
an

be made more
on
rete, e.g., by
onsidering the information state as (a part of)

a mental state of some agent.

Dialogue is not, however, merely talking; it is also thinking. Thinking
an also,

at least to some extent, be regarded as su

essive updates to an information

state. To model thinking in this way, we use information state update rules

whi
h have the form of
onditionals: if x holds of the
urrent state, then modify

the state by applying operation y. For example, one
ould implement a rule

13

14CHAPTER 3. ELEMENTSOF THE INFORMATION-STATE APPROACHTODIALOGUEMANAGEMENT

saying that \if p is in the
urrent state, and p ! q is also in the
urrent state,

then add q to the state". This amounts to a forward-
hanining modus ponens

rule. In keeping with the \dialogue as game" terminology, we
an regard update

rules as \silent moves".

We make one
rui
ial, and perhaps not obvious, assumption about the relation

between dialogue moves and update rules. The relation between dialogue moves

and information states
an be
aptured
ompletely by update rules. That is, we

don't have any representation of the pre
onditions and e�e
ts of dialogue moves

beyond what is given in the update rules. The e�e
ts of a dialogue move M

will typi
ally be represented in a rule whi
h has as a pre
ondition that M was

performed re
ently, and has not yet been integrated.

Given what we have said so far, the information state is essentially a \bla
k-

board" stru
ture [REF to hearsay II et
℄. However, we assume that the infor-

mation state is not just an unstru
tured jumble of information; it is an obje
t

of a
ertain datatype. In obje
t-oriented programming, one de�nes
lasses of

obje
ts, and for ea
h
lass a set of methods. A datatype is similar to a
lass;

however, when de�nining datatypes we make a distin
tion between operations

(whi
h modify obje
ts of that type) and relations, fun
tions and sele
tors (whi
h

do not modify obje
ts).

To sum up, the information state update approa
h to dialogue management

views utteran
es as dialogue moves whi
h update, and are sele
ted on the basis

of, a stru
tured information state by means of update rules. As su
h, this ap-

proa
h is fairly general and allows the implementation of many di�erent theories

of dialogue.

3.2 TrindiKit and the information state approa
h

How does TrindiKit relate to all this? A
tually, TrindiKit
urrently makes

some assumptions not inherent in the information state update appoa
h. For

one thing, it requires that modules in a dialogue system do not
ommuni
ate

dire
tly with one another, but only via the information state. The purpose of

this is to some extent ideologi
al; we belileve it is generally a good idea to have

all the information pro
essed in the system visible, both to other modules and

to the designer of the system. If we for
e all
ommuni
ation to go via the infor-

mation state, we guarantee that by looking and the su

essive updates to the

information state we
an
ompletely
apture all the intera
tions between the

modules of our system. There are also other advantages; for example, keeping

all information in the IS means that the modules don't have to have any infor-

mation about ea
h other; all they need to know is ehere to read and where to

write in the IS. This, in e�e
t, means that one module
an be ex
hanged for

3.3. TOOLKITS, DIALOGUE SYSTEMS AND APPLICATIONS 15

another without
ausing disturban
es or requiring modi�
ations in other mod-

ules. Unfortunately, this strategy of keeping all information in the IS has one

major disadvantage: the IS tends to be
ome a bottlene
k, slowing down the

system. There are various ways of improving the situation, whi
h we will not go

into here; suÆ
e to say that we are
onsidering lifting this limitation in future

releases of TrindiKit.

An additional requirement posed by TrindiKit is that the algorithms
ontrol-

ling the internal distribution of work in the system (i.e., when ea
h module

should start and stop working) is separate from algorithms for updating the in-

formation state and sele
ting dialogue moves. This simply makes sense to us as

a design prin
iple, and again the argument is modularity. Doing things this way

allows us to modify the
ontrol algorithm of a dialogue system independently

of any other
omponents.

Are there any theories whi
h
annot be implemented using this approa
h? Well,

a basi
 requirement is of
ourse that the theory is or
an be formalized

3.3 Toolkits, dialogue systems and appli
ations

3.4 Genre-spe
i�
 systems: GoDiS-IOD and GoDiS-

AOD

16CHAPTER 3. ELEMENTSOF THE INFORMATION-STATE APPROACHTODIALOGUEMANAGEMENT

Chapter 4

Elements of Issue-based

dialogue management

This se
tion is intended to give a brief overview of theGoDiS system and how

it works.

4.1 Total Information State

4.1.1 Information state proper

The Information State (IS) is the main
omponent of the Total Information

State (TIS).

There is a basi
 division of IS into a re
ord of information private to the system,

and a re
ord representing shared information.

Agenda The �eld /private/agenda is of type Sta
k(A
tion). In general,

we try to use datastru
tures whi
h are as simple as possible; a sta
k is the

simplest ordered stru
ture so it is used as a default datastru
ture where order

is needed as long as it is suÆ
ient for the purposes at hand. The agenda is read

by the sele
tion rules to determine the next dialogue move to be performed by

the system.

17

18CHAPTER 4. ELEMENTSOF ISSUE-BASED DIALOGUEMANAGEMENT

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

private :

2

6

6

6

6

6

6

4

agenda : OpenQueue(A
tion)

plan : OpenSta
k(PlanConstru
t)

bel : Set(Prop)

tmp :

�

usr : Tmp

sys : Tmp

�

nim : OpenQueue(Pair(DP, Move))

3

7

7

7

7

7

7

5

shared :

2

6

6

6

6

6

6

6

6

4

om : Set(Prop)

issues : OpenSta
k(Question)

a
tions : OpenSta
k(A
tion)

qud : OpenSta
k(Question)

pm : OpenQueue(Move)

lu :

�

speaker : Parti
ipant

moves : Set(Move)

�

3

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Tmp=

2

6

6

6

6

6

6

4

om : Set(Prop)

issues : OpenSta
k(Question)

a
tions : OpenSta
k(A
tion)

qud : OpenSta
k(Question)

agenda : OpenQueue(A
tion)

plan : OpenSta
k(PlanConstru
t)

3

7

7

7

7

7

7

5

Figure 4.1: GoDiS-AOD Information State type

Plan The /private/plan is a sta
k of plan
onstru
ts. Some of the update

rules for managing the plan have the form of rewrite rules whi
h pro
ess
omplex

plan
onstru
ts until some a
tion is topmost on the plan. Other rules exe
ute

this a
tion in
ase it is a system a
tion or move it to the agenda in
ase it is a

move-related a
tion.

Private beliefs In GoDiS, the �eld /private/bel, a set of propositions, is

used to store the results of database sear
hes. Of
ourse, the database (and the

domain knowledge, and the lexi
on)
an be seen as a part of the system's private

belief set, but in /private/bel we
hoose to represent only propositions whi
h

are dire
tly relevant to the task at hand and whi
h are the result of database

sear
hes. This is similar to seeing the database as a set of impli
it beliefs, and

database
onsultation as an inferen
e pro
ess where impli
it beliefs are made

expli
it. The reason for using a set is that a set is the simplest unordered

datastru
ture.

Questions Under Dis
ussion In GoDiS we de�ne Questions Under Dis-

ussion, or QUD, to be an open sta
k of questions that
an be addressed using

short answers. The open sta
k has some set-like properties, but also retains a

4.1. TOTAL INFORMATION STATE 19

sta
k stru
ture in
ase it should be useful for ellipsis resolution

1

.

Issues The �eld issues
ontains all questions whi
h have been raised in a dia-

logue (expli
itly or impli
itly) but not yet resolved. It thus
ontains a
olle
tion

of
urrent, or \live" issues. A suitable data stru
ture appears to be an open

sta
k, i.e., a sta
k where non-topmost elements
an be a

essed. This allows a

non-rigid modelling of
urrent issues and task-related dialogue stru
ture.

A
tions The only addition from IOD to AOD is the a
tions �eld whi
h has

been added to /shared and /private/tmp. We assume the a
tions sta
k is

an open sta
k, whi
h is the same stru
ture that we use for issues.

Shared Committments The �eld /shared/
om
ontains the set of propo-

sitions that the user and the system have mutually agreed to during the dialogue.

They need not a
tually be believed by either parti
ipant; the important thing is

that the DPs have
ommitted to these propositions, even if only for the purposes

of the
onversation.

To re
e
t that the
ontents need not be true, or even privately believed by

the DPS, and be
ause we are not using situation semanti
s (where there is a

distin
tion between fa
ts and propositions) we use the label \
ommitments" or

\
ommitted propositions", abbreviated as
om, instead of FACTS. These, then,

are propositions to whi
h the DPs are (taken to be) jointly
ommitted.

Latest utteran
e In /shared/lu we represent information about the latest

utteran
e: the speaker, and the move realized by the utteran
e. We assume for

the moment that ea
h utteran
e
an realize only one move. This assumption

will be removed in the next
hapter.

TMP

Temporary store To enable the system to ba
ktra
k if an optimisti
 assump-

tion turns out to be mistaken, relevant parts of the information state is kept

in /private/tmp. The qud and
om �elds may
hange when integrating an

ask or answer move, respe
tively. The plan may also be modi�ed, e.g., if a raise

a
tion is sele
ted. Finally, if any a
tions are on the agenda when sele
tion starts

1

Note that this is di�erent from the way Ginzburg ?

d

e�nes QUD, i.e. as
ontaining ques-

tions whi
h have been raised but not yet resolved, and thus
urrently under dis
ussion. For

reasons given in
hapter 5 of ?

,

we have divided Ginzburgs QUD into two stru
tures: QUD

and Issues.

20CHAPTER 4. ELEMENTSOF ISSUE-BASED DIALOGUEMANAGEMENT

(whi
h means they were put there during by the update module), these may

have been removed during the move sele
tion pro
ess.

Non-integrated moves Sin
e several moves
an be performed per turn,

GoDiS needs some way of keeping tra
k of whi
h moves have been interpreted.

This is done by putting all moves in latest moves in a queue stru
ture
alled

nim, for Non-Integrated Moves. This stru
ture is private, sin
e it is an internal

matter for the system how many moves have been integrated so far. On
e a

move is assumed to be grounded on the understanding level the move is added to

the /shared/lu/moves set. Sin
e the move has now been understood on the

pragmati
 level, the
ontent of the move will be a question or a full proposition

(for short answers, the proposition resulting from
ombining it with a question

on QUD).

Previous moves To be able to dete
t irrelevant followups, GoDiS needs to

know what moves were performed (and grounded) in the previous utteran
e.

These are stored in the /shared/pm �eld.

4.1.2 Module interfa
e variables

4.1.3 Resour
e interfa
e variables

4.2 Dialogue moves

While dialogue move types are often de�ned in terms of senten
e mood, speaker

intentions, and/or dis
ourse relations (see e.g. ?), we opt for a di�erent solution.

In our approa
h, the type of move realized by an utteran
e is determined by

the relation between the
ontent of the utteran
e, and the a
tivity in whi
h the

utteran
e o

urs.

4.2.1 Core dialogue moves in GoDiS-IOD

The following dialogue moves are used in GoDiS:

� ask(q), where q : Question

� answer(a), where a : ShortAns or a : Proposition

4.2. DIALOGUE MOVES 21

� greet

� quit

In inquiry-oriented dialogue, the
entral dialogue moves
on
ern raising and

addressing issues. This is done by the ask and answer moves, respe
tively. The

greet and quit moves are used in the beginning and end of dialogues to greet the

user and indi
ate that the dialogue is over, respe
tively.

4.2.2 Grounding moves

4.2.3 Additional moves in GoDiS-AOD

In addition to the dialogue moves listed above, GoDiS-AOD uses the following

two moves:

� request(�), where � : A
tion

�
on�rm(�), where � : A
tion

These two moves are suÆ
ient for a
tivities where a
tions are performed in-

stantly or near-instantly, and always su

eed. If these requirements are not

ful�lled, the
on�rm move
an be repla
ed by or
omplemented with a more

general report(�, Status) move whi
h reports on the status of a
tion �. Possi-

ble values of Status
ould be done, failed, pending, initiated et
.; report(�, done)

would
orrespond to
on�rm(�).

22CHAPTER 4. ELEMENTSOF ISSUE-BASED DIALOGUEMANAGEMENT

4.3 Dialogue Move Engine

4.3.1 Update module

Move integration

Grounding

Question a

ommodation

Plan exe
ution

Downdating QUD, ISSUES and ACTIONS

4.3.2 Sele
tion module

A
tion sele
tion

Move sele
tion

4.4 Resour
e interfa
e

The resour
e interfa
e
an be seen as a mediator between (domain-independent)

modules and (domain-spe
i�
) resour
es. The resour
e interfa
e makes it pos-

sible to
he
k and update resour
es is update rules. Sin
e the TIS is abstra
t

datastru
ture
ontaining obje
ts of various types, it makes sense that resour
es

that are
onne
ted to the TIS should also be regarded as obje
ts of
ertain

datatypes.

A straighforward solution to this would be to let ea
h resour
e
ontain a def-

inition of the type of that resour
e, i.e. a list of relations, fun
tions, sele
tors

and operations that
an be applied to the resour
e. However, it turns out that

this leads to a lot of redundan
y in the
ode sin
e ea
h resour
e obje
t of a

ertain type has to de�ne the same type. Instead, the de�nitions of resour
e

types reside in the resour
e interfa
e �le. The resour
e obje
t merely exports a

number of predi
ates in the normal Prolog way. The resour
e interfa
e spe
i�-

ation uses these predi
ates to de�ne the relations et
. that determine how the

resour
e
an be a

essed from the modules.

4.5. DIALOGUE PLANS 23

4.5 Dialogue plans

In this se
tion, we introdu
e a formalism for representing pro
edural plans as

sequen
es of a
tions. Dialogue plans are implemented in the domain resour
e

(see Se
tion ??).

4.5.1 A
tion sequen
es and a
tions

In the simplest
ase, a plan
onsists of a sequen
e of a
tions. More
omplex

plans may also in
lude e.g.
onditionals (if-then-else). In general, dialogue

plans are built from so-
alled plan
onstru
tors.

A
tion sequen
es have the form ha

1

; : : : ; a

n

i where a

i

: A
tion (1 � i � n).

All dialogue moves are a
tions, whi
h means they
an be in
luded in dialogue

plans. There are also more abstra
t a
tions whi
h however are
onne
ted to

dialogue moves. Third, there are a
tions for manipulating the information state

in various ways. Third, there are a
tions for a

essing resour
es, e.g. a
tions

enabling database
onsultation and intera
tion with devi
es.

In the following, q is a question, p is a proposition, and a is an a
tion or a
tion

sequen
e.

4.5.2 A
tions
onne
ted to dialogue moves

In GoDiS, there are three a
tion types
losely related to dialogue move types.

�ndout(q) Find the answer to q. This is typi
ally done by asking a question

to the user, i.e., by performing an ask move, and hoping for an answer. The

�ndout a
tion is not removed until the question q has been publi
ally resolved.

A question is publi
ally resolved when a resolving answer to the question is in

the set of jointly
omitted propositions (i.e. /shared/
om)

2

2

Although they have not yet been implemented in GoDiS, there are also in prin
iple other

ways of a
hieving publi
 resolvedness, e.g. that the system �nds the information by
onsulting

some resour
e or by inferring from its own private beliefs, and then provides this information

to the user. Note that it is ne
essary that the answer is
ommuni
ated to the user for the

�ndout a
tion to be
omplete.

24CHAPTER 4. ELEMENTSOF ISSUE-BASED DIALOGUEMANAGEMENT

raise(q) Raise the question q. This a
tion is similar to �ndout, ex
ept that it

is removed from the plan as soon as the ask-move is sele
ted. This means that

if the user does not answer the question when it has been raised, it will not be

raised again. This is useful e.g., for requesting optional information.

respond(q) Provide an answer to question q. This is done by performing an

answer move with
ontent p, where p is a resolving answer to q.

A
tions for manipulating the information state

bind(q)

prote
t(q)

forget(p)

forget all

forget ex
ept(p

assume(p)

assume issue(q)

4.5.3 Resour
e-related a
tions

onsultDB(q) For a typi
al information-ex
hange task, the appli
ation is a

stati
 database

3

.

The
onsultDB(q) a
tion (where q is a question) whi
h will trigger a database

sear
h whi
h takes all the propositions in /shared/
om and given this looks

3

Note that \stati
" here does not mean that the database
annot be updated. It only

means that it is not updated by the dialogue system.

4.5. DIALOGUE PLANS 25

up the answer to q in the database. The resulting proposition is stored in

/private/bel.

dev do(dev; �)

dev set(dev; var; val)

dev get(dev; var)

dev query(dev; q)

dev queryAll(dev; q)

hange domain

hange language

Conditionals

if then(p, a) If p is in /private/bel or /shared/
om, then repla
e if then(p,

a) with a; otherwise, delete it.

if then else(p, a

1

, a

2

) If p is in /private/bel or /shared/
om, then repla
e

if then(p, a

1

, a

2

) with a

1

; otherwise, repla
e it by a

2

.

26CHAPTER 4. ELEMENTSOF ISSUE-BASED DIALOGUEMANAGEMENT

4.5.4 Some example plans

(4.1) issue : ?x.pri
e(x)

plan: h

�ndout(?x:means of transport(x)),

�ndout(?x:dest
ity(x)),

�ndout(?x:depart-
ity(x)),

�ndout(?x:depart-month(x)),

�ndout(?x:depart-day(x)),

�ndout(?x:
lass(x)),

�ndout(?return),

if then(return, h �ndout(?x:return-month(x)),

�ndout(?x:return-day(x)) i),

onsultDB(?x:pri
e(x))

i

(4.2) a. a
tion : v
r add program

plan: h

�ndout(?x.
hannel to store(x))

�ndout(?x.date to store(x))

�ndout(?x.start time to store(x))

�ndout(?x.stop time to store(x))

dev do(v
r, 'AddProgram')

i

post : done('AddProgram')

4.6 Formal semanti
 representations

Here we des
ribe the syntax of the simple formal semanti
 representation
ur-

rently used in GoDiS

4

. This des
ription de�nes a set of
ontent types whi
h

are explained and exempli�ed below. The symbol \:" represents the of-type

relation, i.e., Expr : Type means that Expr is of type Type.

Atom types

Pred

n

, where n = 0 or n = 1: n-pla
e predi
ates, e.g., dest-
ity, month

Ind: Individual
onstants, e.g., paris, april

Var: Variables, e.g., x; y; : : : ; Q; P; : : :

4

It should be noted that the GoDiS DME is independent semanti
 formalism, as long as the

appropriate semanti
 properties and relations are de�ned for an appli
ation. To implement

a GoDiS appli
ation with a di�erent kind of semanti
s, the resour
e interfa
e de�nitions

(resour
e interfa
es.pl) need to be modi�ed.

4.6. FORMAL SEMANTIC REPRESENTATIONS 27

Senten
es

Expr : Senten
e i� Expr : Proposition or Expr : Question or Expr : ShortAns

Expr : Proposition if

� Expr : Pred

0

or

� Expr = pred

1

(arg), where arg : Ind and pred

1

: Pred

1

or

� Expr = :P , where P : Proposition or

� Expr = fail(q), where q : Question

Expr : Question if Expr : YNQ or Expr : WHQ or Expr : ALTQ

?P : YNQ if P : Proposition

?x:pred

1

(x) : WHQ if x : Var and pred

1

: Pred

1

fynq

1

; : : : ; ynq

n

g : ALTQ if ynq

i

: YNQ for all i su
h that 1 � i � n

Expr : ShortAns if

� Expr = yes or

� Expr = no or

� Expr : Ind or

� Expr = :arg where arg : Ind

4.6.1 Propositions

Propositions are represented by basi
 formulae of predi
ate logi

onsisting of

an n-ary predi
ate together with
onstants representing its arguments, e.g.,

loves(john,mary).

In a dialogue system operating in a domain of limited size, it is often not ne
-

essary to keep a full semanti
 representation of utteran
es. For example, a user

utteran
e of \I want to go to Paris"
ould normally be represented semanti
ally

28CHAPTER 4. ELEMENTSOF ISSUE-BASED DIALOGUEMANAGEMENT

as e.g., want(user, go-to(user, paris)) or want(u, go-to(u,p)) &
ity(p)

& name(p, paris) & user(u). GoDiS uses a redu
ed semanti
 representation

with a
oarser, domain-dependent level of granularity; for example, the above

example will be rendered as dest-
ity(paris). This redu
ed representation is

in part a
onsequen
e of the use of keyword-spotting in interpreting utteran
es,

but
an arguably also be regarded as a re
e
tion of the level of semanti
 gran-

ularity inherent in the underlying domain task. As an example of the latter, in

a travel agen
y domain there is no point in representing the fa
t that it is the

user (or
ustomer) rather than the system (or
lerk) who is going to Paris; it is

impli
itly assumed that this is always the
ase.

As a
onsequen
e of using redu
ed semanti
s, it will be useful to allow 0-ary

predi
ates, e.g., return, meaning \the user wants a return ti
ket".

The advantage of this semanti
 representation is that the spe
i�
ation of domain-

spe
i�
 semanti
s be
omes simpler, and that unne
essary \semanti

lutter" is

avoided. On the other hand, it severely restri
ts the possibility of providing

generi
 semanti
 analyses that
an be extended to other domains.

If the database sear
h for an answer to a question q fails the resulting proposition

is fail(q). We have
hosen this representation be
ause it provides a
on
ise way

of en
oding a failure to �nd an answer to q in the database.

4.6.2 Questions

Three types of questions are handled by GoDiS: y/n-questions, wh-questions,

and alternative questions. Here we des
ribe how these are represented on a

semanti
 level; the synta
ti
 realization is de�ned in the lexi
on.

� y/n-questions are propositions pre
eded by a question mark, e.g., ?dest-

ity(london) (\Do you want to go to London?")

� wh-questions are lambda-abstra
ts of propositions, with the lambda re-

pla
ed by a question mark, e.g., ?x.dest-
ity(x) (\Where do you want

to go?")

� alternative questions are sets of y/n-questions, e.g. f?dest-
ity(london),

?dest-
ity(paris)g (\Do you want to go to London or do you want to go

to Paris?")

4.6. FORMAL SEMANTIC REPRESENTATIONS 29

4.6.3 Domain ontology (semanti
 sortal restri
tions)

GoDiS uses a rudimentary ontology
onsisting of domain-dependent semanti

sortal
ategories. Sorts are useful e.g. for distinguishing non-meaningful propo-

sitions from meaningful ones. However, what is meaningful in one a
tivity may

not be meaningful in another, and vi
e versa. Therefore, the sortal system is

implemented as a part of the domain knowledge. Another prominent use of

sorts is to determine whether an answer is relevant to (about, in Ginzburg's

terminology) a
ertain question (see Se
tion ??).

Individuals and sorts

All members of Ind are assigned a sort. For example, the travel agen
y do-

main in
ludes the sorts
ity, means of transport,
lass, et
. The individual

onstant paris has sort
ity and
ight has sort means of transport.

Sortal hierar
hy

isa

Sortal
orre
tness of propositions

The property of a proposition P being sortally
orre
t is implemented in GoDiS

as sort-restr(P). A proposition is sortally
orre
t if its arguments ful�l the

sortal
onstraints of the predi
ate. For example, the proposition dest
ity(X)

is sortally
orre
t if the sort of X is
ity. Sortal
onstraints of predi
ates are

implemented in the domain resour
e, as exempli�ed in (4.3).

(4.3) sort restr(dest
ity(X)) sem sort(X ,
ity).

30CHAPTER 4. ELEMENTSOF ISSUE-BASED DIALOGUEMANAGEMENT

Chapter 5

Non-DME modules used by

GoDiS

This se
tion des
ribes the modules supplied with TrindiKit that are used by

GoDiS.

The TrindiKit pa
kage in
ludes a
ouple of simple modules whi
h
an be used

to qui
kly build prototype systems.

� input simpletext: a simple module whi
h reads text input from the user

and stores it in the TIS

� output simpletext: a simple text output module

� intpret simple1: an interpretation module whi
h uses a lexi
on of key

words and phrases to interpret user utteran
es in terms of dialogue moves

� generate simple1: a generation module whi
h uses a lexi
on of mainly

anned senten
es to generate system utteran
es from moves

5.1 Simple text input module

The input module input simpletext reads a string (until new-line) from the

keyboard, pre
eded by the printing of an input prompt. The system variable

input is then set to be the value read.

31

32 CHAPTER 5. NON-DME MODULES USED BY GODIS

5.2 Text input with simulated re
ognitions s
ore

5.3 Nuan
e ASR input

5.4 A simple interpretation module

The interpretation module interpret simple1 takes a string of text, turns it

into a sequen
e of words (a \senten
e") and produ
es a set of moves. The

\grammar"
onsists of pairings between lists whose elements are words or se-

manti
ally
onstrained variables. Semanti

onstraints are implemented by a

set of semanti

ategories (lo
ation, month, means of transport et
.) and

synonymy sets. A synonymy set is a set of words whi
h all are regarded as

having the same meaning.

The simplest kind of lexi
al entry is one without variables. For example, the

word \hello" is assumed to realize a greet move.:

(5.4) input form([hello ℄, greet)

The following rule says that a phrase
onsisting of the word \to" followed by

a phrase S
onstitutes an answer move with
ontent to(C) provided that the

lexi
al semanti
s of S is C, and C is a lo
ation. The lexi
al semanti
s of a

word is implemented by a
oupling between a synset and a meaning; the lexi
al

semanti
s of S is C, provided that S is a member of a synonymy set of words

with the meaning C.

(5.5) input form([toj S ℄, answer(to(C)) lexsem(S, C), lo
ation(C).

To put it simply, the parser tries to divide the senten
e into a sequen
e of phrases

(found in the lexi
on),
overing as many words as possible.

5.5 A simple generation module

The generation module generate outputform takes a sequen
e (list) of moves

and outputs a string. The generation grammar/lexi
on is a list of pairs of move

templates and strings.

(5.6) output form(greet, "Wel
ome to the travel agen
y!").

5.6. SIMPLE TEXT OUTPUT MODULE 33

To realize a list of Moves, the generator looks, for ea
h move, in the lexi
on for

the
orresponding output form (as a string), and then appends all these strings

together. The output strings is appended in the same order as the moves.

5.6 Simple text output module

The output module output simpletext takes the string in the system variable

output and prints it on the
omputer s
reen, pre
eded by the printing of an

output prompt. The
ontents of the output variable is then deleted. The mod-

ule also moves the
ontents of the system variable next moves to the system

variable latest moves. Finally it sets the system variable latest speaker

to be the system.

5.6.1 Nuan
e Vo
alizer output

34 CHAPTER 5. NON-DME MODULES USED BY GODIS

Chapter 6

The
omponents of a

GoDiS appli
ation

This se
tions outlines the
omponents of a GoDiS appli
ation.

6.1 File stru
ture

It is highly advisable to keep trindikit, godis and godis appli
ations in separate

dire
tories. This enables e.g. updating godis to a new version without tou
hing

the appli
ations.

� trindikit

� godis/

{ godis-basi

{ godis-grounding

{ godis-iod

{ godis-aod

� godis-apps/

{ v
r-godis

{ ta-godis

{ : : :

35

36 CHAPTER 6. THE COMPONENTS OF A GODIS APPLICATION

6.2 The GoDiS appli
ation spe
i�
ation �le

This �le spe
ifes datatypes, modules and resour
es used by your appli
ation, as

well as additional parameters.

Some appli
ations may have variants, in whi
h
ase ea
h variant has a separate

spe
i�
ation �le (and start �le). For example, an appli
ation might have one

text-based variant and one spee
h-based variant.

MORE

6.2.1 Sele
ting a GoDiS variant

Depending on the properties of your appli
ation domain, there is a
hoi
e be-

tween di�erent variants of GoDiS.

� godis-basi
: multiple simultaneous tasks, information sharing between

plans

� godis-grounding: as godis-basi
, plus grounding

� godis-iod: as godis-grounding, plus a

ommodation and asso
iated ground-

ing strategies

� godis-aod: as godis-iod, plus fa
ilities for a
tion-oriented dialogue

6.3 The start �le

This �le
ontains spe
i�
ation of dire
tories and �les that should be
onsulted

when running GoDiS. To load GoDiS, this �le should be
onsulted.

When building a new appli
ation, this is where you spe
ify whi
h GoDiS ver-

sion to use, the home dire
tory of you appli
ation, the name of the GoDiS

appli
ation spe
i�
ation �le for your appli
ation, and any additional libraries

used by the appli
ation.

6.4. RESOURCES AND THE GODIS RESOURCE INTERFACE 37

6.4 Resour
es and the GoDiS resour
e interfa
e

The methods available for a resour
e are not ne
essarily (or even usually) de�ned

in the resour
es itself. Rather, the resour
e de�nes a set of prolog predi
ates

whi
h are utilized by the resour
e interfa
e. This interfa
e des
ribes ea
h re-

sour
e as an obje
t of some type, and for ea
h type it de�nes a set of methods

(relations, fun
tions, sele
tors, and operations). These methods are de�ned in

terms of the predi
ates exported from the resour
e itself.

6.5 The domain resour
e

6.5.1 Dialogue plans

In GoDiS, the domain resour
e in
ludes a set of dialogue plans whi
h
ontain

information about what the system should do in order to a
hieve its goals. In

dialogue, dialogue plans are loaded into the information state and exe
uted by

update rules, whi
h \
onsume" them step by step. Ea
h plan is asso
iated with

a goal whi
h
an either be a question or an a
tion. If the user asks a question q,

there is an update rule whi
h looks in the domain resour
e for a plan for dealing

with q, and if one is found, loads it into the information state.

See Se
tionse
:dialogue-plans for an explanation of GoDiS dialogue plans.

Dialogue plans are mainly spe
i�ed using the predi
ate plan/2, but there are

also some additional predi
ates.

� plan(Goal, Plan)

� post
ond(A
tion, Plan)

� depends(Q1, Q2)

In the domain resour
e, sequen
es of a
tions are represented by prolog lists.

The domain resour
e also spe
i�es a domain-spe
i�
 ontology whi
h is used by

the dialogue move engine to determine e.g. question-answer relations (relevan
e

and resolvedness).

38 CHAPTER 6. THE COMPONENTS OF A GODIS APPLICATION

6.5.2 Sortal restri
tions

GoDiS uses a rudimentary system of domain-dependent semanti
 sortal
ate-

gories. For example, the travel agen
y domain in
ludes the sorts
ity,means of transport,

lass, et
. All members of Ind are assigned a sort; for example, the individual

onstant paris has sort
ity and
ight has sort means of transport.

Sorts make it possible to distinguish non-meaningful propositions from mean-

ingful ones. However, what is meaningful in one a
tivity may not be meaningful

in another, and vi
e versa. Therefore, the sortal system is implemented as a part

of the domain knowledge. In GoDiS, the sorts are mainly used for determining

whether an answer is relevant to (about, in Ginzburg's terminology) a
ertain

question (see Se
tion ??).

The property of a proposition P being sortally
orre
t is implemented inGoDiS1

as sort-restr(P). A proposition is sortally
orre
t if its arguments ful�l the sor-

tal
onstraints of the predi
ate. For example, the proposition dest
ity(X)

is sortally
orre
t if the sort of X is
ity. Sortal
onstraints of predi
ates are

implemented in the domain resour
e, as exempli�ed in (6.7).

(6.7) sort restr(dest
ity(X)) sem sort(X ,
ity).

proposition restri
tion

dest
ity(X) X 2
ity

depart
ity(X) X 2
ity

how(X) X 2 means of transport

depart month(X) X 2 month

depart day(X) X 2 day

lass(X) X 2
lass

pri
e(X) X 2 pri
e

Table 6.1: Sortal restri
tions on propositions in the Travel Agen
y domain

RELATE TO PROLOG CODE

6.5.3 Sortal hierar
hy

The sortal restri
tions on proposition is de�ned in terms of a hierar
hy of se-

manti
 sorts, de�ned by the sem sort/2 relation. Sin
e this hierar
hy is also

useful for the lexi
on resour
e, it is kept in a separate �le (semsortpl).

As an example, we show the sortal hierar
hy from the travel agen
y domain:

6.6. THE DEVICE/DATABASE RESOURCE 39

top

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ity

8

>

>

<

>

>

:

paris

london

goteborg

. . .

means of transport

8

<

:

plane

boat

train

month

8

<

:

january

february

. . .

day

�

1; 2; : : : ; 31

lass

�

e
onomy

business

pri
e

�

Nat

RELATE TO PROLOG CODE

6.6 The devi
e/database resour
e

6.7 The lexi
on resour
e

6.8 The spee
h re
ognition grammar resour
e

40 CHAPTER 6. THE COMPONENTS OF A GODIS APPLICATION

Appendix A

Installation instru
tions

This se
tion des
ribes the steps ne
essary to download and install GoDiS and

TrindiKit, the toolkit on whi
h GoDiS is built.

A.1 Downloading and installing TrindiKit

TrindiKit
an be a

essed either via the TrindiKit webpage (http://www.ling.gu.se/projekt/trindi//trindikit/),

via the TrindiKit Sour
eForge website (http://sour
eforge.net/proje
ts/trindikit/),

or via anonymous CVS from sour
eforge. The latter is prefereable if you want

to get the absolutely latest version; however, the do
umentation is not always

up to date and some parts of the toolkit may be in
omplete. If you want a

well-do
umented release, the �rst two options are preferable.

A.1.1 Prerequisites

Trindikit runs under Windows, Unix and Linux. SICStus prolog 3.8 or later is

needed. In addition, you need the following:

� JDK 1.4 - needed to
ompile the java OAA agents and the GUI and to

run the build s
ript

� JRE 1.4 (In
luded in JDK) - needed to run the build s
ript, see INSTAL-

LATION, and to use the java OAA agents and the GUI

41

42 APPENDIX A. INSTALLATION INSTRUCTIONS

In addition the following software is useful but not ne
essary:

� Nuan
e ASR 8 - spee
h re
ognition software, needed to use the module

input nuan
e oaa basi
.pl

� Nuan
e Vo
alizer 1 - text-to-spee
h software, needed to use the module

output nuan
e oaa basi
.pl

� Open Agent Ar
hite
ture (OAA) 2.2 (or later) - needed to use the TRINDIKIT

OAA fa
ilities, and the modules input nuan
e oaa basi
.pl and output nuan
e oaa basi
.pl

A.1.2 Installing a CVS
lient

Windows For Windows, we re
ommend TortoiseCVS, a graphi
al CVS
lient

written in Java. I
an be found at www.tortoise
vs.org. Download, unzip and

install.

UNIX/Linux ...

In
lude the following in your .r
.user.d/
hs/environment �le:

setenv CVS RSH ssh

A.1.3 Downloading and unzipping TrindiKit

A.1.4 A

essing TrindiKit via anonymous CVS

Windows Right-
li
k on the desktop, and sele
t \CVS
he
kout". A dialogue

box will appear, whi
h should be �lled in thus:

� Proto
ol: :pserver

� Server:
vs.trindikit.sour
eforge.net

� Repository folder: /
vsroot/trindikit

� User name: anonymous

� Module: trindikit

Cli
k \OK" and follow the instru
tions. If you are asked for a password, just

press \Return" or
li
k \OK".

A.1. DOWNLOADING AND INSTALLING TRINDIKIT 43

UNIX/LINUX
vs -d :pserver:anonymous�
vs.trindikit.sour
eforge.net:/
vsroot/trindikit

login [supply no password if prompted℄ [to
he
kout our read-only version of

trindikit℄
vs -d :pserver:anonymous�
vs.trindikit.sour
eforge.net:/
vsroot/trindikit

he
kout trindikit

A.1.5 Installing TrindiKit

Setting the TRINDIKIT environment variable

First, you need to set the TRINDIKIT environment variable.

Windows In the Start menu, Go to \settings"! \
ontrol panel"! \system"

! \advan
ed" ! \Environment variables". Under \System variables"
li
k

\New" and �ll in the �elds thus:

� Variable name: TRINDIKIT

� Variable value: here, enter the path to the \dist" dire
tory lo
ated in

your \trindikit" dire
tory; the exa
t path depends on where you saved

TrindiKit when downloading it. Example: C:nMyCVSntrindikitndist.

UNIX/LINUX setenv TRINDIKIT

Running the TrindiKit build s
ript

Windows Open a DOS window (Start ! Programs ! A

essories ! Com-

mand interpreter), go to the trindikit folder (using the
d
ommand, e.g.
d

C:nMyCVSntrindikit), and type build all. If everything is okay, the system

should report that the build was su

essful.

A.1.6 TrindiKit dire
tory stru
ture (after installation)

do
/api - api for the TRINDIKIT java
lasses

do
/manual - the trindikit manual

lib - external programs and utilities

li
enses - various li
enses for external programs and utilities

test - for testing

44 APPENDIX A. INSTALLATION INSTRUCTIONS

sr
/prolog/trindikit - "
ore" TRINDIKIT

sr
/prolog/ae - 'agent environment', used for running TRINDIKIT

asyn
hronously

sr
/prolog/examples - example dialogue systems

sr
/java - the TRINDIKIT java sour
e tree, in
luding OAA agents and the

GUI

dist/
lasses - the TRINDIKIT java
lass tree

dist/prolog/trindikit - "
ore" TRINDIKIT (with appropriate sear
h paths

set)

dist/prolog/ae - 'agent environment'

examples - example dialogue systems built using TRINDIKIT

examples/bin - s
ripts for running example systems

examples/godis - an example system built using TRINDIKIT

A.2 Downloading and installing GoDiS

GoDiS
urrently has no webpage and is only available via anonymous CVS.

A.2.1 Prerequisites

SICStus Prolog 3.8 or later.

A.2.2 A

essing GoDiS via anonymous CVS

Make sure you have installed a CVS
lient (see Se
tion A.1.2).

Windows Right-
li
k on the desktop, and sele
t \CVS
he
kout". A dialogue

box will appear, whi
h should be �lled in thus:

� Proto
ol: :ext

� Server: mozart.gslt.hum.gu.se

� Repository folder: /users/gslt/
vs/repository

� User name: anonymous

� Module: godis

A.2. DOWNLOADING AND INSTALLING GODIS 45

Cli
k \OK" and follow the instru
tions.

UNIX/LINUX

[first time you have to login℄

vs -d :pserver:anonymous�mozart.gslt.hum.gu.se:/users/gslt/
vs/repository login

[supply no password if prompted℄

[to
he
kout our read-only version of GoDiS℄

vs -d :pserver:anonymous�mozart.gslt.hum.gu.se:/users/gslt/
vs/repository
he
kout godis

A.2.3 Installing GoDiS

Setting the GODIS environment variable

Windows In the Start menu, Go to \settings"! \
ontrol panel"! \system"

! \advan
ed" ! \Environment variables". Under \System variables"
li
k

\New" and �ll in the �elds thus:

� Variable name: GODIS

� Variable value: here, enter the path to the \dist" dire
tory lo
ated in your

\godis" dire
tory; the exa
t path depends on where you saved GoDiS when

downloading it. Example: C:nMyCVSngodisndist.

Running the build s
ript

Windows Open a DOS window (Start ! Programs ! A

essories ! Com-

mand interpreter), go to the godis folder (using the
d
ommand, e.g.
d

C:nMyCVSngodis), and type build all. If everything is okay, the system should

report that the build was su

essful.

A.2.4 GoDiS dire
tory stru
ture

46 APPENDIX A. INSTALLATION INSTRUCTIONS

Appendix B

Downloading and installing

additional software

B.1 Installing Java

B.1.1 Windows

RECOMMEND SOME JAVA DOWNLOAD!

Make sure that the PATH variable (under Windows) in
ludes a path to the �le

java
.exe. If not, sear
h for the �le by sele
ting Start ! Sear
h ! Files and

folders. Then, manually edit the PATH variable as follows: In the Start menu,

Go to \settings"! \
ontrol panel"! \system"! \advan
ed"! \Environment

variables". Sele
t \PATH" and go to the end; add \;" followed by the path to

the java
.exe �le.

47

48APPENDIX B. DOWNLOADING AND INSTALLING ADDITIONAL SOFTWARE

B.2 Downloading and installing OAA

B.3 Installing Nuan
e ASR

B.3.1 Windows

B.3.2 UNIX/Linux

B.4 Installing Nuan
e Vo
alizer

B.4.1 Windows

B.4.2 UNIX/Linux

Appendix C

Using GoDiS with Nuan
e

v8.0 and Vo
alizer

C.1 Getting Nuan
e and Vo
alizer to run on

your
omputer

C.1.1 Testing Nuan
e ASR

*kr igng en li
ense-manager

(jag tror att jag gjorde en bat-fil som hette start_nlm el. ngt)

*ppna ett dosfnster

*g till C:\Program\Nuan
e\v8.0.0\sample-pa
kages o skriv

're
server -pa
kage digits' (el ngt annat igenknningspaket)

*ppna ett dosfnster till

*g till samma stlle, skriv 'Xapp -pa
kage digits lm.Addresses=lo
alhost'

49

50APPENDIX C. USING GODIS WITH NUANCE V8.0 AND VOCALIZER

C.1.2 Testing Vo
alizer

C.2 Con�guring your GoDiS appli
ation to use

Nuan
e

C.3 Running Nuan
e and Vo
alizer with your

appli
ation

Unfortunately, running GoDiS with Nuan
e and Vol
alizer requires going through

a number of steps to get everything running.

Step 1: Compile your nuan
e grammars

Go to the dire
tory where the .grammar �les are and run the nuan
e-
ompile

s
ript on them.

Example:

nuan
e-
ompile asrg travel english English.Ameri
a.1 -auto pron lm.Addresses=lo
alhost

Step 2: start the Nuan
e li
ense manager

This is done by running the nlm s
ript with your li
ense number as argument.

Step 3: Start OAA

Go to your OAA installation, go to the runtime subdire
tory, and run the fa

s
ript.

This requires that OAA is installed, and that the �le setup.pl is dire
tly under

the C: dire
tory. This is a
hieved by editing the �le setup1.pl lo
ated in

the OAA runtime dire
tory,
hanging the text ChangeMe to the name of your

ma
hine.

C.3. RUNNING NUANCE AND VOCALIZERWITH YOURAPPLICATION51

Edit the setup-nuan
e s
ript

This is a s
ript that exe
utes a number of
ommands automati
ally. To make

it work, you need to
opy the s
ript from an existing Nuan
e-
onne
ted GoDiS

appli
ation and
hange all paths in the �le to mat
h your installations. The �le

should be stored in the appli
ation dire
tory.

Run setup-nuanu
e

Go to your appli
ation dire
tory, and type setup-nuan
e.

If no error messages have appeared, you
an now start your GoDiS appli
ation.

