Manual for GoDiS
DRAFT

Staffan Larsson

March 31, 2005

Contents

1 Introduction 9
2 Getting started 11
2.1 Running an existing GoDiS application 11
2.2 Copying and modifying an existing GoDiS application 11

3 Elements of the information-state approach to dialogue man-

agement 13
3.1 The information state approach 13
3.2 TRrRINDIKIT and the information state approach 14
3.3 Toolkits, dialogue systems and applications 15
3.4 Genre-specific systems: GoDIS-IOD and GoD1S-AOD 15

4 Elements of Issue-based dialogue management 17
4.1 Total Information State 17
4.1.1 Information state proper 17

4.1.2 Module interface variables 20

4.1.3 Resource interface variables 20

CONTENTS

4.2 Dialoguemoves L Lo Lo 20
4.2.1 Core dialogue moves in GoDI1S-IOD 20
422 Groundingmoves oL 21
4.2.3 Additional moves in GoDIS-AOD 21

4.3 Dialogue Move Engine 22
43.1 Updatemodule, 22
4.3.2 Selectionmodule o oL 22

4.4 Resource interface L 22

4.5 Dialogueplans L oo 23
4.5.1 Action sequences and actions 23
4.5.2 Actions connected to dialogue moves 23
4.5.3 Resource-related actions 24
454 Someexampleplans oL 26

4.6 Formal semantic representations 26
4.6.1 Propositions o 0o 27
4.6.2 Questions 28
4.6.3 Domain ontology (semantic sortal restrictions) 29

Non-DME modules used by GoDiS 31

5.1 Simple text input module oo oL 31

5.2 Text input with simulated recognitions score 32

5.3 Nuance ASRinput 32

5.4 A simple interpretation moduleo 32

5.5 A simple generation module L. 32

CONTENTS

5.6 Simple text output module oo

6 The

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

5.6.1

Nuance Vocalizer output

components of a GoDiS application

File structure

The GoDiS application specification file

6.2.1

Selecting a GoDiS variant

The start file

Resources and the GoDiS resource interface

The domain resource o

6.5.1

6.5.2

6.5.3

Dialogue plans
Sortal restrictions L.

Sortal hierarchy L

The device/database resource

The lexicon resource

The speech recognition grammar resource

Installation instructions

A.1 Downloading and installing TrindiKit

Al1

Al12

A13

Al4

A1l5

Prerequisites
Installing a CVSclient
Downloading and unzipping TrindiKit
Accessing TrindiKit via anonymous CVS

Installing TRINDIKIT

33

33

35

35

36

36

36

37

37

37

38

38

39

39

39

41

6 CONTENTS

A.1.6 TRINDIKIT directory structure (after installation)

A2 Downloading and installing GoDiS
A.2.1 Prerequisites
A.2.2 Accessing GoDI1S via anonymous CVS
A23 Imstalling GoDIS

A.2.4 GoDiS directory structure L

B Downloading and installing additional software
B.1 Installing Java
B.1.1 Windows
B.2 Downloading and installing OAA
B.3 Installing Nuance ASR
B.3.1 Windows o
B.3.2 UNIX/Linux
B.4 Installing Nuance Vocalizer
B.41 Windows

B.4.2 UNIX/Linux

C Using GoDiS with Nuance v8.0 and Vocalizer
C.1 Getting Nuance and Vocalizer to run on your computer
C.1.1 Testing Nuance ASR
C.1.2 Testing Vocalizer
C.2 Configuring your GoDiS application to use Nuance

C.3 Running Nuance and Vocalizer with your application

43

44

44

44

45

45

47

47

47

48

48

48

48

48

48

48

49

CONTENTS

This manual is a work in progress.

CONTENTS

Chapter 1

Introduction

This document is intended as a manual for depeloping applications for GoDiS,
an Issue-based dialogue system. For an explanation of the issue-based theory
and its implementation in GoDiS, see 7.

10

CHAPTER 1. INTRODUCTION

Chapter 2

Getting started

First, you need to download and install TrindiKit and GoDiS. See Appendix ??
for instructions. Optionally, you may also want to install OAA and any speech
recognition and/or TTS engine that is installed on your computer®. It is also
very useful to have a text editor such as Emacs installed.

2.1 Running an existing GoDiS application

To run the GoDiS VCR application using text input and output, open the file
start-vcr-text.pllocated in you GoDiS directory under godis-apps/domain vcr
and consult it. When the prolog prompt reappears, type “run.” and press re-
turn. When the user input prompt ($U>) appears, you may type e.g. “add

a program” (without quotes). Top the dialogue e.g. by typing “bye”. If you
don’t want to see the rules and information states, stop the dialogue and type
“quiet.”. To see the rules again, type “verb.” (for “verbose mode).

2.2 Copying and modifying an existing GoDiS
application

A good way to get started on your own application is to copy an existing appli-
cation directory and successively replacing the application components.

INote that you need to rebuild your TrindiKit installation after you have installed OAA,
Nuance v8.0 or Nuance Vocalizer.

11

12

CHAPTER 2. GETTING STARTED

Chapter 3

Elements of the
information-state approach
to dialogue management

In this section, we briefly outline the information state approach to dialogue
management. We also explain the relation between toolkits, dialogue systems,
and dialogue system applications. For a more in-depth presentation of the
information state apporach, see 7or 7.

3.1 The information state approach

The basic idea behind the “information state approach” is fairly simple. To
begin with, we regard dialogue as a kind of game, where certain dialogue moves
are possible. A common kind of dialogue move is a verbal utterance. Each move
in a dialogue has effects on some kind of state containing information, and each
new move is selected based on such a state. This is the basic idea, and it can
be made more concrete, e.g., by considering the information state as (a part of)
a mental state of some agent.

Dialogue is not, however, merely talking; it is also thinking. Thinking can also,
at least to some extent, be regarded as successive updates to an information
state. To model thinking in this way, we use information state update rules
which have the form of conditionals: if holds of the current state, then modify
the state by applying operation y. For example, one could implement a rule

13

14CHAPTER 3. ELEMENTS OF THE INFORMATION-STATE APPROACH TO DIALOGUE MANA

saying that “if p is in the current state, and p — ¢ is also in the current state,
then add ¢ to the state”. This amounts to a forward-chanining modus ponens
rule. In keeping with the “dialogue as game” terminology, we can regard update
rules as “silent moves”.

We make one cruicial, and perhaps not obvious, assumption about the relation
between dialogue moves and update rules. The relation between dialogue moves
and information states can be captured completely by update rules. That is, we
don’t have any representation of the preconditions and effects of dialogue moves
beyond what is given in the update rules. The effects of a dialogue move M
will typically be represented in a rule which has as a precondition that M was
performed recently, and has not yet been integrated.

Given what we have said so far, the information state is essentially a “black-
board” structure [REF to hearsay II etc]. However, we assume that the infor-
mation state is not just an unstructured jumble of information; it is an object
of a certain datatype. In object-oriented programming, one defines classes of
objects, and for each class a set of methods. A datatype is similar to a class;
however, when definining datatypes we make a distinction between operations
(which modify objects of that type) and relations, functions and selectors (which
do not modify objects).

To sum up, the information state update approach to dialogue management
views utterances as dialogue moves which update, and are selected on the basis
of, a structured information state by means of update rules. As such, this ap-
proach is fairly general and allows the implementation of many different theories
of dialogue.

3.2 TrindiKit and the information state approach

How does TRINDIKIT relate to all this? Actually, TRINDIKIT currently makes
some assumptions not inherent in the information state update appoach. For
one thing, it requires that modules in a dialogue system do not communicate
directly with one another, but only via the information state. The purpose of
this is to some extent ideological; we belileve it is generally a good idea to have
all the information processed in the system visible, both to other modules and
to the designer of the system. If we force all communication to go via the infor-
mation state, we guarantee that by looking and the successive updates to the
information state we can completely capture all the interactions between the
modules of our system. There are also other advantages; for example, keeping
all information in the IS means that the modules don’t have to have any infor-
mation about each other; all they need to know is ehere to read and where to
write in the IS. This, in effect, means that one module can be exchanged for

3.3. TOOLKITS, DIALOGUE SYSTEMS AND APPLICATIONS 15

another without causing disturbances or requiring modifications in other mod-
ules. Unfortunately, this strategy of keeping all information in the IS has one
major disadvantage: the IS tends to become a bottleneck, slowing down the
system. There are various ways of improving the situation, which we will not go
into here; suffice to say that we are considering lifting this limitation in future
releases of TRINDIKIT.

An additional requirement posed by TRINDIKIT is that the algorithms control-
ling the internal distribution of work in the system (i.e., when each module
should start and stop working) is separate from algorithms for updating the in-
formation state and selecting dialogue moves. This simply makes sense to us as
a design principle, and again the argument is modularity. Doing things this way
allows us to modify the control algorithm of a dialogue system independently
of any other components.

Are there any theories which cannot be implemented using this approach? Well,
a basic requirement is of course that the theory is or can be formalized

3.3 Toolkits, dialogue systems and applications

3.4 Genre-specific systems: GoDiS-I0OD and GoDiS-
AOD

16CHAPTER 3. ELEMENTS OF THE INFORMATION-STATE APPROACH TO DIALOGUE MANA

Chapter 4

Elements of Issue-based
dialogue management

This section is intended to give a brief overview of theGoODIS system and how
it works.

4.1 Total Information State

4.1.1 Information state proper

The Information State (IS) is the main component of the Total Information
State (TIS).

There is a basic division of IS into a record of information private to the system,
and a record representing shared information.

Agenda The field /PRIVATE/AGENDA is of type Stack(Action). In general,
we try to use datastructures which are as simple as possible; a stack is the
simplest ordered structure so it is used as a default datastructure where order
is needed as long as it is sufficient for the purposes at hand. The agenda is read
by the selection rules to determine the next dialogue move to be performed by
the system.

17

18CHAPTER 4. ELEMENTS OF ISSUE-BASED DIALOGUE MANAGEMENT

AGENDA : OpenQueue(Action)
PLAN : OpenStack(PlanConstruct)
BEL : Set(Prop)
PRIVATE
TP USR : Tmp
sys : Tmp
| NIM : OpenQueue(Pair(DP, Move))
[com : Set(Prop)
ISSUES : OpenStack(Question)
ACTIONS : OpenStack(Action)
SHARED : QUD : OpenStack(Question)
PM : OpenQueue(Move)
LU SPEAKER : Participant
i i MOVES : Set(Move)]
COM : Set(Prop)
ISSUES : OpenStack(Question)
Tmp— ACTIONS : OpenStack(Action)
QUD : OpenStack(Question)
AGENDA : OpenQueue(Action)
PLAN : OpenStack(PlanConstruct)

Figure 4.1: GoDi1S-AOD Information State type

Plan The /PRIVATE/PLAN is a stack of plan constructs. Some of the update
rules for managing the plan have the form of rewrite rules which process complex
plan constructs until some action is topmost on the plan. Other rules execute
this action in case it is a system action or move it to the agenda in case it is a
move-related action.

Private beliefs In GoDIS, the field /PRIVATE/BEL, a set of propositions, is
used to store the results of database searches. Of course, the database (and the
domain knowledge, and the lexicon) can be seen as a part of the system’s private
belief set, but in /PRIVATE/BEL we choose to represent only propositions which
are directly relevant to the task at hand and which are the result of database
searches. This is similar to seeing the database as a set of implicit beliefs, and
database consultation as an inference process where implicit beliefs are made
explicit. The reason for using a set is that a set is the simplest unordered
datastructure.

Questions Under Discussion In GODIS we define Questions Under Dis-
cussion, or QUD, to be an open stack of questions that can be addressed using
short answers. The open stack has some set-like properties, but also retains a

4.1. TOTAL INFORMATION STATE 19

stack structure in case it should be useful for ellipsis resolution®.

Issues The field 1ISSUES contains all questions which have been raised in a dia-
logue (explicitly or implicitly) but not yet resolved. It thus contains a collection
of current, or “live” issues. A suitable data structure appears to be an open
stack, i.e., a stack where non-topmost elements can be accessed. This allows a
non-rigid modelling of current issues and task-related dialogue structure.

Actions The only addition from IOD to AOD is the ACTIONS field which has
been added to /SHARED and /PRIVATE/TMP. We assume the actions stack is
an open stack, which is the same structure that we use for ISSUES.

Shared Committments The field /SHARED/COM contains the set of propo-
sitions that the user and the system have mutually agreed to during the dialogue.
They need not actually be believed by either participant; the important thing is
that the DPs have committed to these propositions, even if only for the purposes
of the conversation.

To reflect that the contents need not be true, or even privately believed by
the DPS, and because we are not using situation semantics (where there is a
distinction between facts and propositions) we use the label “commitments” or
“committed propositions”, abbreviated as coM, instead of FACTS. These, then,
are propositions to which the DPs are (taken to be) jointly committed.

Latest utterance In /SHARED/LU we represent information about the latest
utterance: the speaker, and the move realized by the utterance. We assume for
the moment that each utterance can realize only one move. This assumption
will be removed in the next chapter.

T™MP

Temporary store To enable the system to backtrack if an optimistic assump-
tion turns out to be mistaken, relevant parts of the information state is kept
in /PRIVATE/TMP. The QUD and coM fields may change when integrating an
ask or answer move, respectively. The plan may also be modified, e.g., if a raise
action is selected. Finally, if any actions are on the agenda when selection starts

INote that this is different from the way Ginzburg ?defines QUD, i.e. as containing ques-
tions which have been raised but not yet resolved, and thus currently under discussion. For
reasons given in chapter 5 of 7, we have divided Ginzburgs QUD into two structures: QUD
and Issues.

20CHAPTER 4. ELEMENTS OF ISSUE-BASED DIALOGUE MANAGEMENT

(which means they were put there during by the update module), these may
have been removed during the move selection process.

Non-integrated moves Since several moves can be performed per turn,
GoODIS needs some way of keeping track of which moves have been interpreted.
This is done by putting all moves in LATEST_MOVES in a queue structure called
NiM, for Non-Integrated Moves. This structure is private, since it is an internal
matter for the system how many moves have been integrated so far. Once a
move is assumed to be grounded on the understanding level the move is added to
the /SHARED/LU/MOVES set. Since the move has now been understood on the
pragmatic level, the content of the move will be a question or a full proposition
(for short answers, the proposition resulting from combining it with a question
on QUD).

Previous moves To be able to detect irrelevant followups, GODIS needs to
know what moves were performed (and grounded) in the previous utterance.
These are stored in the /SHARED/PM field.

4.1.2 Module interface variables

4.1.3 Resource interface variables

4.2 Dialogue moves

While dialogue move types are often defined in terms of sentence mood, speaker
intentions, and/or discourse relations (see e.g. ?7), we opt for a different solution.
In our approach, the type of move realized by an utterance is determined by
the relation between the content of the utterance, and the activity in which the
utterance occurs.

4.2.1 Core dialogue moves in GoDiS-IOD
The following dialogue moves are used in GoDIS:

e ask(g), where ¢ : Question

e answer(a), where a : ShortAns or a : Proposition

4.2. DIALOGUE MOVES 21

e greet

e quit

In inquiry-oriented dialogue, the central dialogue moves concern raising and
addressing issues. This is done by the ask and answer moves, respectively. The
greet and quit moves are used in the beginning and end of dialogues to greet the
user and indicate that the dialogue is over, respectively.

4.2.2 Grounding moves

4.2.3 Additional moves in GoDiS-AOD

In addition to the dialogue moves listed above, GODI1S-AOD uses the following
two moves:

e request(a), where « : Action

e confirm(a), where a : Action

These two moves are sufficient for activities where actions are performed in-
stantly or near-instantly, and always succeed. If these requirements are not
fulfilled, the confirm move can be replaced by or complemented with a more
general report(a, Status) move which reports on the status of action a. Possi-
ble values of Status could be done, failed, pending, initiated etc.; report(a, done)
would correspond to confirm(a).

22CHAPTER 4. ELEMENTS OF ISSUE-BASED DIALOGUE MANAGEMENT

4.3 Dialogue Move Engine

4.3.1 Update module

Move integration
Grounding

Question accommodation
Plan execution

Downdating QUD, ISSUES and ACTIONS

4.3.2 Selection module
Action selection

Move selection

4.4 Resource interface

The resource interface can be seen as a mediator between (domain-independent)
modules and (domain-specific) resources. The resource interface makes it pos-
sible to check and update resources is update rules. Since the TIS is abstract
datastructure containing objects of various types, it makes sense that resources
that are connected to the TIS should also be regarded as objects of certain
datatypes.

A straighforward solution to this would be to let each resource contain a def-
inition of the type of that resource, i.e. a list of relations, functions, selectors
and operations that can be applied to the resource. However, it turns out that
this leads to a lot of redundancy in the code since each resource object of a
certain type has to define the same type. Instead, the definitions of resource
types reside in the resource interface file. The resource object merely exports a
number of predicates in the normal Prolog way. The resource interface specifi-
cation uses these predicates to define the relations etc. that determine how the
resource can be accessed from the modules.

4.5. DIALOGUE PLANS 23

4.5 Dialogue plans

In this section, we introduce a formalism for representing procedural plans as
sequences of actions. Dialogue plans are implemented in the domain resource
(see Section ?7).

4.5.1 Action sequences and actions

In the simplest case, a plan consists of a sequence of actions. More complex
plans may also include e.g. conditionals (if-then-else). In general, dialogue
plans are built from so-called plan constructors.

Action sequences have the form {ay,...,a,) where a; : Action (1 <1i < n).

All dialogue moves are actions, which means they can be included in dialogue
plans. There are also more abstract actions which however are connected to
dialogue moves. Third, there are actions for manipulating the information state
in various ways. Third, there are actions for accessing resources, e.g. actions
enabling database consultation and interaction with devices.

In the following, ¢ is a question, p is a proposition, and a is an action or action
sequence.

4.5.2 Actions connected to dialogue moves

In GODIS, there are three action types closely related to dialogue move types.

findout(¢) Find the answer to ¢. This is typically done by asking a question
to the user, i.e., by performing an ask move, and hoping for an answer. The
findout action is not removed until the question ¢ has been publically resolved.
A question is publically resolved when a resolving answer to the question is in
the set of jointly comitted propositions (i.e. /SHARED/COM)?

2 Although they have not yet been implemented in GoDIS, there are also in principle other
ways of achieving public resolvedness, e.g. that the system finds the information by consulting
some resource or by inferring from its own private beliefs, and then provides this information
to the user. Note that it is necessary that the answer is communicated to the user for the
findout action to be complete.

24CHAPTER 4. ELEMENTS OF ISSUE-BASED DIALOGUE MANAGEMENT

raise(¢) Raise the question ¢. This action is similar to findout, except that it
is removed from the plan as soon as the ask-move is selected. This means that
if the user does not answer the question when it has been raised, it will not be
raised again. This is useful e.g., for requesting optional information.

respond(g) Provide an answer to question ¢. This is done by performing an
answer move with content p, where p is a resolving answer to q.

Actions for manipulating the information state

bind(¢)

protect(q)

forget(p)

forget_all

forget_except(p

assume(p)

assume_issue(q)

4.5.3 Resource-related actions

consultDB(g) For a typical information-exchange task, the application is a
static database®.

The consultDB(¢) action (where ¢ is a question) which will trigger a database
search which takes all the propositions in /SHARED/COM and given this looks

3Note that “static” here does not mean that the database cannot be updated. It only
means that it is not updated by the dialogue system.

4.5. DIALOGUE PLANS 25

up the answer to ¢ in the database. The resulting proposition is stored in
/PRIVATE /BEL.

dev_do(dev, a)

dev_set(dev, var, val)

dev_get(dev, var)

dev_query(dev, q)

dev_queryAll(dev, q)

change_domain

change_language

Conditionals
if_then(p, a) If pisin /PRIVATE/BEL or /SHARED/COM, then replace if_then(p,

a) with a; otherwise, delete it.

if_then_else(p, a;, ax) If pisin /PRIVATE/BEL or /SHARED/COM, then replace
if_then(p, a1, a2) with a;; otherwise, replace it by az.

26CHAPTER 4. ELEMENTS OF ISSUE-BASED DIALOGUE MANAGEMENT

4.5.4 Some example plans

(4.1) ISSUE : ?z.price(z)
PLAN: (

findout(?z.means_of_transport(z)),
findout(?z.dest_city(z)),
findout(?z.depart-city(z)),
findout(?z.depart-month(z)),
findout(?z.depart-day(z)),
findout(?z.class(z)),
findout(?return),

if_then(return, (findout(?z.return-month(z)),

findout(?z.return-day(z)))),
consultDB(?z.price(x))

(4.2) a. ACTION : vcr_add_program
PLAN: (
findout(?z.channel to_store(z))
findout(?z.date_to_store(z))
findout(?z.start_time_to_store(z))
flndout(7x.st0p_time_t0_st0re(:c))

dev_do(vcr, "AddProgram’)

)

POST : done(’AddProgram’)

4.6 Formal semantic representations

Here we describe the syntax of the simple formal semantic representation cur-
rently used in GoD1S*. This description defines a set of content types which
are explained and exemplified below. The symbol “:” represents the of-type
relation, i.e., Expr : Type means that Expr is of type Type.

Atom types
Pred,,, where n = 0 or n = 1: n-place predicates, e.g., dest-city, month

Ind: Individual constants, e.g., paris, april
Var: Variables, e.g., z,y,...,Q, P, ...

41t should be noted that the GoD1S DME is independent semantic formalism, as long as the
appropriate semantic properties and relations are defined for an application. To implement
a GoDiS application with a different kind of semantics, the resource interface definitions
(resource_interfaces.pl) need to be modified.

4.6. FORMAL SEMANTIC REPRESENTATIONS 27

Sentences

Expr : Sentence iff Expr : Proposition or Expr : Question or Expr : ShortAns

Expr : Proposition if

Expr : Predg or
e Expr = pred,(arg), where arg : Ind and pred; : Pred; or
e Expr = =P, where P : Proposition or

e Expr = fail(q), where ¢ : Question

Expr : Question if Expr : YNQ or Exzpr : WHQ or Expr : ALTQ
?P : YNQ if P : Proposition

?x.pred, (z) : WHQ if z : Var and pred, : Pred;

{yngq,,...,yng,} : ALTQ if yng; : YNQ for all i such that 1 <i<n

Ezpr : ShortAns if

e Expr = yes or

e Expr = no or

Ezxpr : Ind or

e Expr = —arg where arg : Ind

4.6.1 Propositions

Propositions are represented by basic formulae of predicate logic consisting of
an n-ary predicate together with constants representing its arguments, e.g.,
loves(john,mary).

In a dialogue system operating in a domain of limited size, it is often not nec-
essary to keep a full semantic representation of utterances. For example, a user
utterance of “I want to go to Paris” could normally be represented semantically

28CHAPTER 4. ELEMENTS OF ISSUE-BASED DIALOGUE MANAGEMENT

as e.g., want (user, go-to(user, paris)) or want(u, go-to(u,p)) & city(p)
& name(p, paris) & user(u). GODIS uses a reduced semantic representation
with a coarser, domain-dependent level of granularity; for example, the above
example will be rendered as dest-city(paris). This reduced representation is
in part a consequence of the use of keyword-spotting in interpreting utterances,
but can arguably also be regarded as a reflection of the level of semantic gran-
ularity inherent in the underlying domain task. As an example of the latter, in
a travel agency domain there is no point in representing the fact that it is the
user (or customer) rather than the system (or clerk) who is going to Paris; it is
implicitly assumed that this is always the case.

As a consequence of using reduced semantics, it will be useful to allow 0-ary
predicates, e.g., return, meaning “the user wants a return ticket”.

The advantage of this semantic representation is that the specification of domain-
specific semantics becomes simpler, and that unnecessary “semantic clutter” is
avoided. On the other hand, it severely restricts the possibility of providing
generic semantic analyses that can be extended to other domains.

If the database search for an answer to a question g fails the resulting proposition
is fail(g). We have chosen this representation because it provides a concise way
of encoding a failure to find an answer to ¢ in the database.

4.6.2 Questions

Three types of questions are handled by GODIS: y/n-questions, wh-questions,
and alternative questions. Here we describe how these are represented on a
semantic level; the syntactic realization is defined in the lexicon.

e y/n-questions are propositions preceded by a question mark, e.g., ?dest-
city(london) (“Do you want to go to London?”)

e wh-questions are lambda-abstracts of propositions, with the lambda re-
placed by a question mark, e.g., ?x.dest-city(z) (“Where do you want
to go?”)

e alternative questions are sets of y/n-questions, e.g. {?dest-city(london),
?dest-city(paris) } (“Do you want to go to London or do you want to go
to Paris?”)

4.6. FORMAL SEMANTIC REPRESENTATIONS 29

4.6.3 Domain ontology (semantic sortal restrictions)

GODIS uses a rudimentary ontology consisting of domain-dependent semantic
sortal categories. Sorts are useful e.g. for distinguishing non-meaningful propo-
sitions from meaningful ones. However, what is meaningful in one activity may
not be meaningful in another, and vice versa. Therefore, the sortal system is
implemented as a part of the domain knowledge. Another prominent use of
sorts is to determine whether an answer is relevant to (about, in Ginzburg’s
terminology) a certain question (see Section ?7).

Individuals and sorts

All members of Ind are assigned a sort. For example, the travel agency do-
main includes the sorts city, means_of_transport, class, etc. The individual
constant paris has sort city and flight has sort means_of_transport.

Sortal hierarchy

isa

Sortal correctness of propositions

The property of a proposition P being sortally correct is implemented in GoODIS
as sort-restr(P). A proposition is sortally correct if its arguments fulfil the
sortal constraints of the predicate. For example, the proposition dest_city(X)
is sortally correct if the sort of X is city. Sortal constraints of predicates are
implemented in the domain resource, as exemplified in (4.3).

(4.3) sort_restr(dest_city(X)) <+ sem_sort(X, city).

30CHAPTER 4. ELEMENTS OF ISSUE-BASED DIALOGUE MANAGEMENT

Chapter 5

Non-DME modules used by
GoDiS

This section describes the modules supplied with TrindiKit that are used by
GoDiS.

The TRINDIKIT package includes a couple of simple modules which can be used
to quickly build prototype systems.

e input_simpletext: a simple module which reads text input from the user
and stores it in the TIS

e output_simpletext: a simple text output module

e intpret_simplel: an interpretation module which uses a lexicon of key
words and phrases to interpret user utterances in terms of dialogue moves

e generate_simplel: a generation module which uses a lexicon of mainly
canned sentences to generate system utterances from moves

5.1 Simple text input module

The input module input_simpletext reads a string (until new-line) from the
keyboard, preceded by the printing of an input prompt. The system variable
INPUT is then set to be the value read.

31

32 CHAPTER 5. NON-DME MODULES USED BY GODIS

5.2 Text input with simulated recognitions score

5.3 Nuance ASR input

5.4 A simple interpretation module

The interpretation module interpret_simplel takes a string of text, turns it
into a sequence of words (a “sentence”) and produces a set of moves. The
“grammar” consists of pairings between lists whose elements are words or se-
mantically constrained variables. Semantic constraints are implemented by a
set of semantic categories (location, month, means_of_transport etc.) and
synonymy sets. A synonymy set is a set of words which all are regarded as
having the same meaning.

The simplest kind of lexical entry is one without variables. For example, the
word “hello” is assumed to realize a greet move.:

(5.4) input_form([hello |, greet)

The following rule says that a phrase consisting of the word “to” followed by
a phrase S constitutes an answer move with content to(C') provided that the
lexical semantics of S is C', and C' is a location. The lexical semantics of a
word is implemented by a coupling between a synset and a meaning; the lexical
semantics of S is C, provided that S is a member of a synonymy set of words
with the meaning C'.

(5.5) input_form([to] S], answer(to(C)) ¢ lexsem(S, C), location(C).

To put it simply, the parser tries to divide the sentence into a sequence of phrases
(found in the lexicon), covering as many words as possible.

5.5 A simple generation module

The generation module generate_outputform takes a sequence (list) of moves
and outputs a string. The generation grammar/lexicon is a list of pairs of move
templates and strings.

(5.6) output_form(greet, ”Welcome to the travel agency!”).

5.6. SIMPLE TEXT OUTPUT MODULE 33

To realize a list of Moves, the generator looks, for each move, in the lexicon for
the corresponding output form (as a string), and then appends all these strings
together. The output strings is appended in the same order as the moves.

5.6 Simple text output module

The output module output_simpletext takes the string in the system variable
OouUTPUT and prints it on the computer screen, preceded by the printing of an
output prompt. The contents of the OUTPUT variable is then deleted. The mod-
ule also moves the contents of the system variable NEXT_MOVES to the system
variable LATEST_MOVES. Finally it sets the system variable LATEST_SPEAKER
to be the system.

5.6.1 Nuance Vocalizer output

34

CHAPTER 5. NON-DME MODULES USED BY GODIS

Chapter 6

The components of a
GoDiS application

This sections outlines the components of a GODIS application.

6.1 File structure

It is highly advisable to keep trindikit, godis and godis applications in separate
directories. This enables e.g. updating godis to a new version without touching
the applications.

o trindikit
e godis/
— godis-basic
— godis-grounding
— godis-iod
— godis-aod
e godis-apps/
— ver-godis

— ta~godis

35

36 CHAPTER 6. THE COMPONENTS OF A GODIS APPLICATION

6.2 The GoDiS application specification file

This file specifes datatypes, modules and resources used by your application, as
well as additional parameters.

Some applications may have variants, in which case each variant has a separate
specification file (and start file). For example, an application might have one

text-based variant and one speech-based variant.

MORE

6.2.1 Selecting a GoDiS variant

Depending on the properties of your application domain, there is a choice be-
tween different variants of GoDiS.

godis-basic: multiple simultaneous tasks, information sharing between
plans

e godis-grounding: as godis-basic, plus grounding

godis-iod: as godis-grounding, plus accommodation and associated ground-
ing strategies

godis-aod: as godis-iod, plus facilities for action-oriented dialogue

6.3 The start file

This file contains specification of directories and files that should be consulted
when running GoDIS. To load GoDIS, this file should be consulted.

When building a new application, this is where you specify which GoDIS ver-
sion to use, the home directory of you application, the name of the GoDIS
application specification file for your application, and any additional libraries
used by the application.

6.4. RESOURCES AND THE GODIS RESOURCE INTERFACE 37

6.4 Resources and the GoDiS resource interface

The methods available for a resource are not necessarily (or even usually) defined
in the resources itself. Rather, the resource defines a set of prolog predicates
which are utilized by the resource interface. This interface describes each re-
source as an object of some type, and for each type it defines a set of methods
(relations, functions, selectors, and operations). These methods are defined in
terms of the predicates exported from the resource itself.

6.5 The domain resource

6.5.1 Dialogue plans

In GoDiS, the domain resource includes a set of dialogue plans which contain
information about what the system should do in order to achieve its goals. In
dialogue, dialogue plans are loaded into the information state and executed by
update rules, which “consume” them step by step. Each plan is associated with
a goal which can either be a question or an action. If the user asks a question ¢,
there is an update rule which looks in the domain resource for a plan for dealing
with ¢, and if one is found, loads it into the information state.

See Sectionsec:dialogue-plans for an explanation of GODIS dialogue plans.

Dialogue plans are mainly specified using the predicate plan/2, but there are
also some additional predicates.

e plan(Goal, Plan)
e postcond(Action, Plan)

e depends(Q1, Q2)

In the domain resource, sequences of actions are represented by prolog lists.

The domain resource also specifies a domain-specific ontology which is used by
the dialogue move engine to determine e.g. question-answer relations (relevance
and resolvedness).

38 CHAPTER 6. THE COMPONENTS OF A GODIS APPLICATION

6.5.2 Sortal restrictions

GODIS uses a rudimentary system of domain-dependent semantic sortal cate-

gories. For example, the travel agency domain includes the sorts city, means_of_transport,
class, etc. All members of Ind are assigned a sort; for example, the individual

constant paris has sort city and flight has sort means_of_transport.

Sorts make it possible to distinguish non-meaningful propositions from mean-
ingful ones. However, what is meaningful in one activity may not be meaningful
in another, and vice versa. Therefore, the sortal system is implemented as a part
of the domain knowledge. In GODIS, the sorts are mainly used for determining
whether an answer is relevant to (about, in Ginzburg’s terminology) a certain
question (see Section ?7).

The property of a proposition P being sortally correct is implemented in GOD1S1
as sort-restr(P). A proposition is sortally correct if its arguments fulfil the sor-
tal constraints of the predicate. For example, the proposition dest_city(X)
is sortally correct if the sort of X is city. Sortal constraints of predicates are
implemented in the domain resource, as exemplified in (6.7).

(6.7) sort_restr(dest_city(X)) < sem_sort(X, city).

proposition restriction

dest_city (X) X € cIry

depart_city(X) X € arry

how (X) X € MEANS_OF_TRANSPORT
depart_month(X) | X € MONTH
depart_day(X) X € DAY

class(X) X € cLASS

price(X) X € PRICE

Table 6.1: Sortal restrictions on propositions in the Travel Agency domain

RELATE TO PROLOG CODE

6.5.3 Sortal hierarchy

The sortal restrictions on proposition is defined in terms of a hierarchy of se-
mantic sorts, defined by the sem_sort/2 relation. Since this hierarchy is also
useful for the lexicon resource, it is kept in a separate file (semsort_....pl).

As an example, we show the sortal hierarchy from the travel agency domain:

6.6. THE DEVICE/DATABASE RESOURCE 39

. .
paris

london
CITY
goteborg
plane
MEANS_OF_TRANSPORT{ boat
train
TOP .
january

MONTH{ february

pay{ 1,2,...,31
economy
business

PRICE{ Nat

CLASS

\

RELATE TO PROLOG CODE

6.6 The device/database resource
6.7 The lexicon resource

6.8 The speech recognition grammar resource

40 CHAPTER 6. THE COMPONENTS OF A GODIS APPLICATION

Appendix A

Installation instructions

This section describes the steps necessary to download and install GoDiS and
TrindiKit, the toolkit on which GoDiS is built.

A.1 Downloading and installing TrindiKit

TrindiKit can be accessed either via the TrindiKit webpage (http://www .ling.gu.se/projekt /trindi//trindikit/),
via the TrindiKit SourceForge website (http://sourceforge.net/projects/trindikit/),

or via anonymous CVS from sourceforge. The latter is prefereable if you want

to get the absolutely latest version; however, the documentation is not always

up to date and some parts of the toolkit may be incomplete. If you want a

well-documented release, the first two options are preferable.

A.1.1 Prerequisites

Trindikit runs under Windows, Unix and Linux. SICStus prolog 3.8 or later is
needed. In addition, you need the following;:

e JDK 1.4 - needed to compile the java OAA agents and the GUI and to
run the build script

¢ JRE 1.4 (Included in JDK) - needed to run the build script, see INSTAL-
LATION, and to use the java OAA agents and the GUI

41

42 APPENDIX A. INSTALLATION INSTRUCTIONS

In addition the following software is useful but not necessary:

e Nuance ASR 8 - speech recognition software, needed to use the module
input_nuance_oaa_basic.pl

e Nuance Vocalizer 1 - text-to-speech software, needed to use the module
output_nuance_oaa_basic.pl

e Open Agent Architecture (OAA) 2.2 (or later) - needed to use the TRINDIKIT
OAA facilities, and the modules input _nuance_oaa basic.pl and output_nuance_oaa basic.pl

A.1.2 Installing a CVS client

Windows For Windows, we recommend TortoiseCVS, a graphical CVS client
written in Java. I can be found at www.tortoisecvs.org. Download, unzip and
install.

UNIX /Linux
Include the following in your .rc.user.d/chs/environment file:

setenv CVS_RSH ssh

A.1.3 Downloading and unzipping TrindiKit

A.1.4 Accessing TrindiKit via anonymous CVS

Windows Right-click on the desktop, and select “CVS checkout”. A dialogue
box will appear, which should be filled in thus:

e Protocol: :pserver

e Server: cvs.trindikit.sourceforge.net
e Repository folder: /cvsroot/trindikit
e User name: anonymous

e Module: trindikit

Click “OK” and follow the instructions. If you are asked for a password, just
press “Return” or click “OK”.

A.1. DOWNLOADING AND INSTALLING TRINDIKIT 43

UNIX/LINUX cvs-d :pserver:anonymous@cvs.trindikit.sourceforge.net: /cvsroot /trindikit
login [supply no password if prompted] [to checkout our read-only version of

trindikit] cvs -d :pserver:anonymous@cvs.trindikit.sourceforge.net: /cvsroot /trindikit

checkout trindikit

A.1.5 Installing TrindiKit
Setting the TRINDIKIT environment variable

First, you need to set the TRINDIKIT environment variable.

Windows In the Start menu, Go to “settings” — “control panel” — “system”
— “advanced” — “Environment variables”. Under “System variables” click
“New” and fill in the fields thus:

e Variable name: TRINDIKIT

e Variable value: here, enter the path to the “dist” directory located in
your “trindikit” directory; the exact path depends on where you saved
TRINDIKIT when downloading it. Example: C:\MyCVS\trindikit\dist.

UNIX/LINUX setenv TRINDIKIT

Running the TrindiKit build script

Windows Open a DOS window (Start — Programs — Accessories = Com-
mand interpreter), go to the trindikit folder (using the cd command, e.g. cd
C:\MyCVS\trindikit), and type build all. If everything is okay, the system
should report that the build was successful.

A.1.6 TrindiKit directory structure (after installation)

doc/api - api for the TRINDIKIT java classes

doc/manual - the trindikit manual

1ib - external programs and utilities

licenses - various licenses for external programs and utilities
test - for testing

44 APPENDIX A. INSTALLATION INSTRUCTIONS

src/prolog/trindikit - "core" TRINDIKIT

src/prolog/ae - ’agent environment’, used for running TRINDIKIT
asynchronously

src/prolog/examples - example dialogue systems

src/java - the TRINDIKIT java source tree, including OAA agents and the
GUI

dist/classes - the TRINDIKIT java class tree

dist/prolog/trindikit - "core" TRINDIKIT (with appropriate search paths
set)

dist/prolog/ae - ’agent environment’

examples - example dialogue systems built using TRINDIKIT

examples/bin - scripts for running example systems

examples/godis - an example system built using TRINDIKIT

A.2 Downloading and installing GoDiS

GoDiS currently has no webpage and is only available via anonymous CVS.

A.2.1 Prerequisites

SICStus Prolog 3.8 or later.

A.2.2 Accessing GoDiS via anonymous CVS

Make sure you have installed a CVS client (see Section A.1.2).

Windows Right-click on the desktop, and select “CVS checkout”. A dialogue
box will appear, which should be filled in thus:

Protocol: :ext

e Server: mozart.gslt.hum.gu.se

Repository folder: /users/gslt/cvs/repository

e User name: anonymous

Module: godis

A.2. DOWNLOADING AND INSTALLING GODIS 45

Click “OK” and follow the instructions.

UNIX/LINUX

[first time you have to login]

cvs -d :pserver:anonymous@mozart.gslt.hum.gu.se:/users/gslt/cvs/repository login

[supply no password if prompted]

[to checkout our read-only version of GoDiS]

cvs -d :pserver:anonymous@mozart.gslt.hum.gu.se:/users/gslt/cvs/repository checkout godis

A.2.3 Installing GoDiS
Setting the GODIS environment variable

Windows In the Start menu, Go to “settings” — “control panel” — “system”
— “advanced” — “Environment variables”. Under “System variables” click
“New” and fill in the fields thus:

e Variable name: GODIS

e Variable value: here, enter the path to the “dist” directory located in your
“godis” directory; the exact path depends on where you saved GoDiS when
downloading it. Example: C:\MyCVS\godis\dist.

Running the build script

Windows Open a DOS window (Start — Programs — Accessories — Com-
mand interpreter), go to the godis folder (using the cd command, e.g. cd
C:\MyCVS\godis), and type build all. If everything is okay, the system should
report that the build was successful.

A.2.4 GoDiS directory structure

46

APPENDIX A. INSTALLATION INSTRUCTIONS

Appendix B

Downloading and installing
additional software

B.1 Installing Java

B.1.1 Windows

RECOMMEND SOME JAVA DOWNLOAD!

Make sure that the PATH variable (under Windows) includes a path to the file
javac.exe. If not, search for the file by selecting Start — Search — Files and
folders. Then, manually edit the PATH variable as follows: In the Start menu,
Go to “settings” — “control panel” — “system” — “advanced” — “Environment
variables”. Select “PATH” and go to the end; add “;” followed by the path to
the javac.exe file.

47

48APPENDIX B. DOWNLOADING AND INSTALLING ADDITIONAL SOFTWARE

B.2 Downloading and installing OAA

B.3 Installing Nuance ASR
B.3.1 Windows

B.3.2 UNIX/Linux

B.4 Installing Nuance Vocalizer

B.4.1 Windows

B.4.2 UNIX/Linux

Appendix C

Using GoDiS with Nuance
v8.0 and Vocalizer

C.1 Getting Nuance and Vocalizer to run on
your computer

C.1.1 Testing Nuance ASR

*kr igng en license-manager
(jag tror att jag gjorde en bat-fil som hette start_nlm el. ngt)

*ppna ett dosfnster

*g till C:\Program\Nuance\v8.0.0\sample-packages o skriv
’recserver -package digits’ (el ngt annat igenknningspaket)

*ppna ett dosfnster till

*g till samma stlle, skriv ’Xapp -package digits lm.Addresses=localhost’

49

50APPENDIX C. USING GODIS WITH NUANCE V8.0 AND VOCALIZER

C.1.2 Testing Vocalizer

C.2 Configuring your GoDiS application to use
Nuance

C.3 Running Nuance and Vocalizer with your
application

Unfortunately, running GoDiS with Nuance and Volcalizer requires going through
a number of steps to get everything running.

Step 1: Compile your nuance grammars

Go to the directory where the .grammar files are and run the nuance-compile
script on them.

Example:

nuance-compile asrg _travel_english English.America.l -auto_pron lm.Addresses=localhost

Step 2: start the Nuance license manager

This is done by running the nlm script with your license number as argument.

Step 3: Start OAA

Go to your OAA installation, go to the runtime subdirectory, and run the fac
script.

This requires that OAA is installed, and that the file setup.pl is directly under
the C: directory. This is achieved by editing the file setupl.pl located in
the OAA runtime directory, changing the text ChangeMe to the name of your
machine.

C.3. RUNNING NUANCE AND VOCALIZER WITH YOUR APPLICATION51

Edit the setup-nuance script

This is a script that executes a number of commands automatically. To make
it work, you need to copy the script from an existing Nuance-connected GoDiS
application and change all paths in the file to match your installations. The file
should be stored in the application directory.

Run setup-nuanuce

Go to your application directory, and type setup-nuance.

If no error messages have appeared, you can now start your GoDiS application.

