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Abstract 
We outline the common features of teaching autistic 
children and computers various forms of reasoning. 
Peculiarities of autistic reasoning about mental world and 
under adjustment of action to a particular environment are 
addressed. We discuss how our experience accumulated 
while teaching children with autism in the above domains 
can be applied to the design of software intelligent systems. 

Introduction   

The study of the phenomena of autism is an interesting 
example of overlapping between AI and cognitive 
sciences. Development of the logical AI is necessary to 
characterize deviations of autistic reasoning. An early 
development of autism as a cognitive system is a very 
appealing object of study for logical AI because of its 
simplicity and compactness. The reasoning of children 
with mild autism in certain domains is quite naïve and 
simple whereas the reasoning of control children of the 
same physical age, by the time they are verbal, is already 
fairly complex for computational simulation. Hence 
exploration of the phenomenology of autistic reasoning 
stimulates both disciplines; and they need to complement 
each other to rehabilitate autistic reasoning.  
      It is well known that most autistic children readily 
interact with software and prefer such interaction over 
communication with other people (see e.g. Green 1996, 
Eigsti & Shapiro 2003). Naturally, they may learn a lot 
from this software in terms of reasoning, only if it is 
sufficiently intelligent. A brute-force or domain-specific 
solution, which AI sometimes adopt, attempting to resolve 
a number of hard problems, is not very helpful for building 
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an intelligent software for autistic rehabilitation. Such a 
software must have a robust and adequate model of a 
domain being taught and implement reasoning in a 
sufficiently correct and complete manner to lead the 
learning process. Otherwise, if a model is inadequate or a 
reasoning implementation is insufficiently expressive, a 
trainee with autism would likely lose interest in interacting 
with such a software system (Leekam & Prior 1994, 
Galitsky 2005). Hence the domain of rehabilitation of 
autistic reasoning stimulates advancement in the state-of-
art of automated reasoning. 

Teaching children with autism vs designing 
intelligent systems 
The issue of training to overcome various deficiencies of 
autistic reasoning has been addressed in a number of 
studies (Green 1996; Baron-Cohen 2000). There is a series 
of peculiar techniques developed to teach children with 
autism certain forms of reasoning, mainly reasoning about 
mental states and actions, reasoning about generic actions, 
default and defeasible reasoning, deductive, inductive, 
abductive and analogical reasoning patterns, probabilistic 
decision-making etc (Galitsky 2003). Skills of reasoning in 
some of these domains are lacking in every child with 
autism (Howlin 1998). 
      Teaching by analogy is the standard technique for both 
junior students and adults in a majority of subject domains. 
However, autistic trainees experience significant 
difficulties learning from examples; they can imitate some 
forms of behavior and actions of other people, but do it 
without understanding. Also, visual programming tools is 
an efficient way to introduce abstract and general 
programming concept, they are quite efficient for both 
education of programming and efficient software 
development. In spite of the appeal to use visual 
programming tools by control (normal) trainees, autistic 



children do not learn abstract reasoning patterns from them 
most of times. 
      Hence in terms of reasoning patterns, controls learn by 
induction and analogy, and reinforce learning results by 
deduction (explicit rules) in most of real-world domains 
(excluding e.g. mathematics). At the same time, autistic 
trainees learn by deductive rules most of the time, and 
other reasoning patterns play auxiliary roles only (Galitsky 
2005).  
      Therefore, teaching autistic trainees in any domain 
must be preceded by formulating exact and explicit rules. 
Otherwise, the teaching approach which might be adequate 
for a control trainee would be unacceptable for an autistic 
trainee, as our experience shows (Galitsky & Goldberg 
2003). Teaching a new entity to a child with autism, one 
needs to make sure that all entities the current one refers to 
are fully conceptually understood. On the contrary, a child 
from a control group is ready to acquire a new entity in the 
environment where some features are uncertain, assuming 
she can learn them later. 
      The idea of this study is to explore the similarity 
between formulating domain knowledge in a way 
acceptable by a computer on one hand and formulation of 
this knowledge to be acquired by an autistic trainee on the 
other hand. We enumerate the commonalities in cognitive 
demands of computers and autistic trainees with respect to 
teaching them knowledge representation and reasoning in 
real-world domains: 
1) All concepts have to be clearly and explicitly defined. 

A basis of indefinable concepts may be selected, but 
a programmer/teacher should be aware that a 
computer or trainee will not be able to freely operate 
and provide explanations with these concepts from 
the basis. For example, when taught the rules for 
basic mental states of the mental world (knowledge 
and intention), followed by the rules for derived 
mental / communicative actions (derived from this 
basis), autistic trainees are capable of explaining 
what is pretending and deceiving (derived) but not 
what is knowledge and intention (basic). 

2) Definitions for concepts can be either procedural or 
declarative. A trainee can be taught a sequence of 
actions to achieve a goal, or a clause for a sequence 
of conditions an environment should satisfy to 
achieve this goal. To be capable of training in a 
declarative way, respective trainees’ skills have to be 
developed. For example, if a child with autism is 
requested to be at the top of a rock in the middle of a 
puddle with a fishing pol, the child needs some skills 
to determine the order of operations: put on rubber 
boots, take a fishing pole, cross the puddle, and climb 
the rock. In contrast to a control child who would 
acquire this skill independently on the basis of trial-
and-error, a child with autism needs a substantial 
guidance to learn how to search for a proper sequence 
of actions independently. 

3) All special cases should be addressed. For example, 
for an arbitrary predicate like want we would expect 

a smart trainee to operate with want(Who, What) with 
arbitrary Who and What. It is neither the case for a 
child with autism who does not understand that other 
people may want something,  

     When we refer to an autistic or computer software 
trainee, we assume medium-to-high-functioning 
individuals with autism and a standard software 
environment without sophisticated machine learning 
systems like explanation based generalization (Mitchell 
1986) or inductive logic programming (Muggleton & Firth 
1999). 

Programming behavior in the mental world 
Experience accumulated while helping autistic children to 
understand the mental world is valuable for building 
engineering applications where modeling of human agents’ 
attitudes is crucial. The chart (Figure 1) depicts the way we 
explain to autistic trainees how they should select a proper 
mental / communicative action. Firstly, the trainee selects a 
set of actions he can legally perform at the current step 
(physically available for him, acceptable in terms of the 
norms, etc.). Such an action may be explicitly wanted or 
not; also, this action may belong to a sequence of actions in 
accordance with a form of behavior which has been chosen 
at a previous step or is about to be chosen. In the former 
case, the trainee may resume the chosen behavior form or 
abort it.  
     Having a set of actions which are legal to be currently 
performed, the trainee applies a preference relation. This 
relation is defined on states and actions and sets the 
following order (1 is preferred over 2-5, 2 is preferred over 
3-5, etc.): 

• Explicitly preferred (wanted) action. 
• The action that leads to a desired state that is not 

current. 
• Action that eliminates an unwanted state that is 

current. 
• Action that does not lead to an unwanted state that 

is not current. 
• Action that does not eliminate a wanted state that 

is current. 
    Hence the trainee has an initial intention concerning a 
Chosen Action or State, assesses whether this condition 
currently holds, then selects the preferred Chosen Action, 
assumes that it has been executed, deduces the 
consequences, and finally analyses whether they are 
preferential. Naturally, the preference, parameters of 
trainee’s attitudes and multiagent interactions may vary 
from scenario to scenario. Before an action can be 
assumed, the trainee needs to check that a potential action 
is a valid mental formula. A valid mental formula is neither 
an axiom (such as an agent knows what it knows) nor 
implausible formula (such as pretending about someone 
else’s state). A resultant state comprises one or more 
explicitly wanted or unwanted states; the autistic trainee 
performs the comparative analysis of preferences on a 
state-by-state basis. 
    The same algorithm (Figure 1, Galitsky 2002) for the 



simulation of decision-making by human agents is used in 
solving engineering problems in such domains as solving 
constraint satisfaction problem in the environment of 
conflicting human and automatic agents, (scheduling for 
the broadcasting industry), automated synthesis of 

scenarios (e.g. for Internet advertisement), modeling 
mental states of investors for market predictions, extraction 
of the mental behavior patterns from the wireless-based 
location services data, and simulating relationships 
between economic agents (Galitsky 2003). 

 
Fig. 1: The algorithm for choice of mental/communicative action in the mental world. An agent takes into account possible actions of 
opponent agents using a similar architecture (Galitsky 2003).
      
     We have conducted evaluation of how the simulation-
based algorithm which turns out to be optimal for 
teaching children with autism outperforms the traditional 
modal logic-based approaches because of higher 
expressiveness of representation language operating on 
the level of behaviors, closer following the natural 
language set of mental entities and higher efficiency of 
search (Galitsky 2003). 

Programming adjustment of action 

The experience teaching children with autism sheds a 
light on how to make reasoning by intelligent software 
more efficient. Teaching autistic children to make 
decisions concerning proper behavior, it is important to 
distinguish typical and atypical cases. Typical situations 
are assumed first, and a typical action (or response) is 
selected. However, it might be necessary to adjust the 

selected action be to specific (atypical) circumstances, if 
the assumption that the situation was typical is defeated 
by these circumstances. It is very important to teach 
children with autism a proper algorithm of how to adjust a 
selected action to an environment to avoid an exhaustive 
search through a totality of possible actions on one hand 
and nevertheless find an adequate action on the other 
hand. 
      This asymmetric approach of handling typical 
(immediate) and atypical (afterwards if necessary) cases 
is known as default reasoning and would be quite useful 
in software applications. Nowadays, default reasoning 
(and nonmonotonic reasoning in general) does not find a 
lot of applications in software. The flavor of handling 
typical and atypical (exception) behavior of a program 
can be followed in the implementation of try-catch 
approach. Having obtained the experience while teaching 
children with autism to handle exceptional situations, we 
come to the belief that the object-oriented programming 
would benefit from division of methods into typical which 
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are in use under normal operations, and atypical which are 
invoked under incorrect user operation. Firstly, IF 
conditions for typical method should precede those for 
atypical method. Secondly, it may be efficient not to 
invoke atypical methods directly at all but only do that 
when typical ones through exceptions. 
      Our attempts to teaching children with autism how to 
properly select actions and adjust them to context lead to 
the following environment (Figure 2). To demonstrate 
how actions are adjusted to environments, we use an 
interactive form where a sequence of default rules is 
represented as a series of drop-downs showing current 
circumstances (on the left) and respective drop downs (on 
the right) where actions are chosen by trainees. Selecting 
the items on the left, trainees imitate respective sequence 
of (changing) circumstances/ contexts, and the 

appropriate action adjustment (correct action) should be 
selected on the right. The links between the selections on 
the left and those on the right is implemented via default 
rules.  
    The forms serve as a main means to evaluate trainees’ 
performance choosing proper actions in artificial and real-
world environments. The exercises are built providing 
there is a single best solution (most adequate choice of 
actions) for each context. The focus of this exercise is to 
develop the capability of changing plans online. The user 
interface represents a decision-making procedure in 
changing environment. Autistic children enthusiastically 
interact with the form, extending existing environments 
by new circumstances and actions, and creating new 
environments (Galitsky & Peterson 2005). 
 

    
Fig. 2: The screen-shot of the form for teaching proper 
adjustment of action (Galitsky & Peterson 2005) 
 
We now proceed to enumeration of deviation of autistic 
reasoning while adjusting an action to a context. Notice, 
that failures of an intelligent system can be characterized 
in these terms as well:  
 

1. Non-toleration of novelty of any sort; 
2. Incapability to change plan online when 

necessary; 
3. Easy deviation from a reasoning context, caused 

by an insignificant detail; 

4. Lack of capability to distinguish more important 
from less important features for a given 
situation; 

5. Inability to properly perceive the level of 
generality of a feature appropriate for a given 
situation. 

    We present an example of a generalized default rule 
which is not handled properly by autistic reasoning. 
Unlike normal subjects, and similar to software systems, 
autistic subjects can hardly tolerate the 
Addit_features_of_envir_do_not_change_routine 
 when they have a Usual_intention to 
Follow_usual_routine: 

 



 
 
Usual_intention: 
Addit_features_of_envir_do_not_change_routine 
 
Follow_usual_routine 
 

    This default rule schema is read as follows: when there 
is a Usual_intention, and the assumption that 
Addit_features_of_envir_do_not_change_routine is 
consistent, then it is OK to Follow_usual_routine. There 
should be clauses specifying the situations where this 
assumption fails: 
Addit_features_of_envir_do_not_change_routine:- not ( 
alarm(fire) ∨ desire(DoSometrhingElse) ∨… ). 

    This clause (assumption) fails because of either 
external reasons or internal ones, and the list of potential 
reasons is rather long. We use the example of flying 
bird/penguin as a typical one for the nonmonotonic 
reasoning community, illustrating the problems of autistic 
reasoning (Table 1).   

Normal Autistic 
A child knows that birds fly. The child observes that 
penguins do not fly 

Child updates the list of 
exceptions for not 
property flies 

Child adds new rule that 
penguins do not fly 

The flying default 
rules stays intact. 

It is necessary to update the 
existing rule of flying and all 
the rest of affected rules 

The process of 
accepting new 
exceptions is not 
computationally 
expensive 

This process takes substantial 
computational efforts and, 
therefore, is quite undesirable 
and overloading. 

Observing a novelty 
and remembering 
exceptions is a 
routine activity 

Observing a novelty is stressful 

Table 1: comparison of belief update by normal and autistic 
reasoning    

    A good example here is that the autistic child (and an 
intelligent software system in even higher degree) runs 
into tremendous problems under deviation in an external 
environment which typical cognition would consider 
being insignificant.  

     We proceed to the phenomenon of Incapability to 
change a plan online when necessary. A characteristic 
example is that of an autistic child who does not walk 
around a puddle which is blocking her customary route to 
school, but rather walks through it and gets wet as a 
result. This happens not because the autistic child does 
not know that she would get wet stepping through a 
puddle, but because the underlying reasoning for puddle 

avoidance is not integrated into the process of reasoning. 
Let us consider the reasoning steps a default system needs 
to come through. 

    Initial plan to follow a certain path is subject to 
application (verification) by the following default rule:  

need(Child, cross(Child, Area)) : normal(Area) 

 

cross(Child, Area) 

abnormal(Area) :- wet(Area) ∨ muddy(Area) ∨  

        dangerous(Area). 

  Here we consider a general case of an arbitrary area to 
pass by, Area=puddle in our example above. The rule 
sounds as follows: “If it is necessary to go across an area, 
and it is consistent to assume that it is normal (there is 
nothing abnormal there, including water, mud, danger 
etc.) then go ahead and do it)”. A control individual 
would apply the default rule and associated clause above 
to choose her action, if the Area is normal. Otherwise, the 
companion default rule below is to be applied and 
alternative AreaNearBy is chosen. 

need(Child, cross(Child, Area)), abnormal(Area) : 
normal(AreaNearBy) 

 

cross(Child, AreaNearBy) 

   Note that formally one needs a similar default rule for 
the case something is wrong with AreaNearBy: 
abnormal(AreaNearBy). A control individual ignores it to 
make a decision with reasonable time and efforts; on the 
contrary, autistic child keeps applying the default rules, 
finds herself in a loop, gives up and goes across the 
puddle.  

     In other words, autistic reasoning literally propagates 
through the totality of relevant default rules and run into 
the memory/operations overflow whereas a normal human 
reasoning stops after the first or second rule is applied. 

Programming operations with hypotheses 

Our accumulated experience of teaching autistic children 
how to behave properly has contributed to the design of a 
rule-based machine learning system which automatically 
generates hypotheses to explain observations, verifies 
these hypotheses by finding the subset of data satisfying 
them, falsifies some of the hypotheses by revealing 
inconsistencies and finally derives the explanations for 
the observations by means of cause-effect links if 
possible. How can performance of such systems as 
inductive logic programming and explanation-based 
learning be improved by taking into account observations 
concerning operations with hypotheses by children with 
autism? We will outline the experimental settings and 
observations. 
 



 
Fig. 3: A hungry subject is suggested to eat cookies from the ten 
plates.  
 
In the hypotheses formation setting (Figure 3), the subject 
is notified that some cookies have an unpleasant taste in 
accordance to some rule that is not disclosed. The subject 
is required to eat all cookies with good (expected) taste 
and state that the rest of the cookies are altered. For the 
purpose of verification, a subject is encouraged to 
formulate the revealed rule when done with cookies.  
      When a trainee tries all cookies one-by-one, she 
discovers that cookies from plates 1,3,5,6,7,10 are normal 
and those from plates 2,4,8,9 are added an unpleasant 
taste. The objective of this experimental environment is to 
come up with an algorithm of forming, confirming and 
defeating hypotheses such that the least number of 
cookies with unpleasant taste is eaten. 
        A good way to do it some children invented is to find 
the common property of all good cookies and all bad 
cookies. Applying inductive procedure to positive and 
negative examples turns out to be a good advancement of 
both inductive logic programming and explanation-based 
learning, which generalize positive examples only.        

Conclusions  

The objective of this paper is to demonstrate that 
experimental cognitive science is relevant to a number of 
important AI problems in reasoning and machine 
learning. We focused on the domain of autistic reasoning 
which is a curious mixture of topics in AI and cognitive 
sciences. Having commented on the commonalities of 
teaching autistic children and teaching computers 
(programming) to solve real-world problems, we provided 
simplified illustration on how the experience of the 
former can be applied to the latter. Our claim is that it is 
significantly easier to teach control children to solve these 
problems than to teach children with autism, and, 
obviously, it is even more so for programming, where 
much more details have to be provided for robust 
functioning. 
      We illustrated that lessons learned in teaching 
reasoning about mental world, adjusting one’s action to 
an environment and can be naturally applied to improve 
the performance of machine reasoning in the respective 
domains. Hence we conclude that theoretical and 
experimental cognitive science of autistic reasoning might 
contribute to such traditionally “technical” areas as 

machine learning and reasoning. 
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