/* _________________________________________________________________________ | Copyright (C) 1982 | | | | David Warren, | | SRI International, 333 Ravenswood Ave., Menlo Park, | | California 94025, USA; | | | | Fernando Pereira, | | Dept. of Architecture, University of Edinburgh, | | 20 Chambers St., Edinburgh EH1 1JZ, Scotland | | | | This program may be used, copied, altered or included in other | | programs only for academic purposes and provided that the | | authorship of the initial program is aknowledged. | | Use for commercial purposes without the previous written | | agreement of the authors is forbidden. | |_________________________________________________________________________| */ /* Simplifying and executing the logical form of a NL query. */ :-op(500,xfy,--). :-op(359,xf,ject). write_tree(T):- numbervars80(T,1,_), wt(T,0), fail. write_tree(_). wt(T,D):- tab(D),fmt(T),!. wt((P:-Q),L) :- !, L1 is L+3, write(P), tab(1), write((:-)), nl, tab(L1), wt(Q,L1). wt((P,Q),L) :- !, L1 is L-2, wt(P,L), nl, tab(L1), put("&"), tab(1), wt(Q,L). wt({P},L) :- complex(P), !, L1 is L+2, put("{"), tab(1), wt(P,L1), tab(1), put("}"). wt(E,L) :- decomp(E,H,P), !, L1 is L+2, header80(H), nl, tab(L1), wt(P,L1). wt(E,_) :- write(E). header80([]). header80([X|H]) :- reply(X), tab(1), header80(H). decomp(setof(X,P,S),[S,=,setof,X],P). decomp(\+(P),[\+],P) :- complex(P). decomp(numberof(X,P,N),[N,=,numberof,X],P). decomp(X^P,[exists,X|XX],P1) :- othervars(P,XX,P1). othervars(X^P,[X|XX],P1) :- !, othervars(P,XX,P1). othervars(P,[],P). complex((_,_)). complex({_}). complex(setof(_,_,_)). complex(numberof(_,_,_)). complex(_^_). complex(\+P) :- complex(P). % Query execution. respond([]) :- reply('Nothing satisfies your question.'), nl. respond([A|L]) :- reply(A), replies(L). answer80(S1):- answer802(S1,S),respond(S). answer802((answer80([]):-E),[B]) :- !, holds_truthvalue(E,B). answer802((answer80([X]):-E),S) :- !, seto(X,E,S). answer802((answer80(X):-E),S) :- seto(X,E,S). get_ex_set(ExV):- nb_current(ex_set,ExV)->true;ExV=[]. bago(X,E,S):- get_ex_set(ExV),bago2(ExV,X,E,S). bago2(ExV,X,E,Set):- seto2(ExV,X,E,Set). seto(X,E,S):- get_ex_set(ExV),seto2(ExV,X,E,S). seto2(ExV,X,G^E,Set):- must(callable(E)), !,seto2(G^ExV,X,E,Set). seto2(ExV,X,E,Set):- findall(S,setof(X,ExV^satisfy(E),S),L),ll_to_set(L,Set),!. /* seto2(ExV,X,E,S):- % nop(ExV\==[]), !, (setof(X,ExV^satisfy(E),S)*->true;S=[]). seto2([],X,E,S):- term_variables(E,EVars), term_singletons(X+X+EVars,EOnlyVars), term_singletons(E,ESingles), term_singletons(X+X+ESingles,ESinglesNoX), locally(b_setval(ex_set,ESinglesNoX), (setof(X,EOnlyVars^satisfy(E),S)*->true;S=[])). */ holds_truthvalue(E,true) :- satisfy(E), !. holds_truthvalue(_E,false). yesno(true):-reply(' Yes. '). yesno(false):-reply(' No.'). replies([]) :- reply('.'). replies([A]) :- reply(' and '), reply(A), reply('.'). replies([A|X]) :- reply(', '), reply(A), replies(X). reply(N--U) :- !, write(N), write(' '), write(U). reply(X) :- write(X). must_be_callable(P):- notrace(( assertion(callable(P)),assertion(\+ is_list(P)))). :- b_setval(ex_set,[]). :- meta_predicate(satisfy(0)). :- export(satisfy/1). satisfy(P):- must_be_callable(P), fail. satisfy(M:P):- !, M:satisfy(P). satisfy((P,Q)) :- !, satisfy(P), satisfy(Q). satisfy((P;Q)) :- !, satisfy(P) ; satisfy(Q). satisfy((P*->Q;R)) :- !, satisfy(P) *-> satisfy(Q) ; satisfy(R). satisfy((P->Q;R)) :- !, satisfy(P) -> satisfy(Q) ; satisfy(R). satisfy((P->Q)) :- !, satisfy(P) -> satisfy(Q). satisfy(once(P)) :- !, once(satisfy(P)). satisfy({P}) :- !, satisfy(P), !. satisfy(X^P) :- !, ^(X,P). satisfy(\+P) :- !, \+ satisfy(P). satisfy(setof(X,P,S)) :- !, setof80(X,P,S). % satisfy(setof(X,P,S)) :- !, seto(X,P,S), S\==[]. satisfy(bagof(X,P,S)) :- !, bago(X,satisfy(P),S), S\==[]. satisfy(findall(X,P,S)) :- !, bago(X,satisfy(P),S). satisfy(numberof(X,P,N)) :- !, numberof(X,P,N). satisfy(X=Y) :- !, X>=Y. satisfy(X>Y) :- !, X>Y. satisfy(satisfy(P)):- !, must_be_callable(P), !, satisfy(P). satisfy(P) :- catch(call(P),E,(dmsg(call(P)-->E),break,fail)). % satisfy(P) :- P. :- module_transparent((^)/2). ^(X,P) :- get_ex_set(WazV), with_ex_v([X|WazV],satisfy(P)). ex_satisfy(X,P) :- get_ex_set(WazV), with_ex_v([X|WazV],satisfy(P)). % :- system:import((^)/2). with_ex_v(WazV,G) :- locally(b_setval(ex_set,WazV),G). +P :-!, satisfy_0(+P). satisfy_0(+P) :- exceptionto(P), !, fail. satisfy_0(+_P) :- !. % setof(C,(D^(continent(C),in_ploc(D,C)),E^(country(E),in_ploc(E,C),F^(numberof(G,(city(G),in_ploc(G,E)),F),F>3))),B) %WAS numberof(X,P,N) :- !, seto(X,satisfy(P),S), length(S,N). numberof(X,Ex^P,N) :- !, ex_satisfy((N,Ex),setof(X,P,S)), length(S,N). % numberof(X,Ex^P,N) :- !, locally(b_setval(ex_set,[Ex]),seto(X,P,S)), S\==[], length(S,N). numberof(X,P,N) :- setof(X,N^satisfy(P),S), S\==[], length(S,N). % setof80(X,P,S):- var(X),!,findall(E,seto(X,P,E),L),ll_to_set(L,S). setof80(X,P,S):- findall(E,seto(X,P,E),L),ll_to_set(L,S). ll_to_set(S0,S):- append(S0,F),list_to_set(F,S). into_set(S0,S):- flatten([S0],F),list_to_set(F,S). exceptionto(P) :- functor(P,F,N), functor(P1,F,N), pickargs(N,P,P1), exception(P1). exception(P) :- P, !, fail. exception(_P). pickargs(0,_,_) :- !. pickargs(N,P,P1) :- N1 is N-1, arg(N,P,S), pick(S,X), arg(N,P1,X), pickargs(N1,P,P1). pick([X|_S],X). pick([_|S],X) :- !, pick(S,X). pick([],_) :- !, fail. pick(X,X).