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Abstract

The language-learning diary entertains a recurring theme of entropy

and various related principles. Although there are many, many, many

resources for these concepts, it seems convenient to put them here, all in

one place, in an overview form, as a handy quick-reference and refresher.

The content here is extracted from various texts.

1 Fast Overview

A generic fast overview. The rest of this text is organized as ...

1.1 Partition Function

See Wikipedia �Partition function�[6] for more.

� States denoted by σ (spins, from Ising model) with distribution p (σ).

� In machine learning, one writes x for σ. In probability theory, one writes
X = x for σ, where X is distribution, and x is a speci�c sampling of that
distribution. That is, p (σ) is the same thing as P (X = x).

� σ is an indexed set, withN elements. As such, one can pretend that it is
an N -dimensional vector, which is �ne �for most practical purposes�, but
in rare cases can lead to confusion.

� One is often (usually) interested in the large-N limit, i.e. N � 1 i.e.
N →∞ states.

� The �energy� of a state is E (σ) = − log p (σ) + const.

� The density of states is: ρ(E) =
∑
σ δ(E − E(σ))

� Total entropy is S (E) = log ρ (E)

� Both the energy and the entropy contain leading large-N term i.e. they
are extensive properties.
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� Without loss of generality, can write the Boltzmann distribution

p (σ|β) = 1

Z (β)
exp−N

∑
i

βiHi (σ)

where there are M parameters βi called order parameters, Lagrange mul-
tipliers, etc. and the Hi (σ) are constants of motion. �Without loss of
generality� means that any probability distribution can always be written
in the above form.

� In probability theory and information geometry, one often writes θ instead
of β as the parameter, and fi instead of Hi.

� In machine learning, one often writes w instead of β. In this case, w is a
�weight vector�, allowing a neural-net interpretation.

� The partition function is

Z (β) =
∑
σ

exp−N
∑
i

βiHi (σ)

� The above describes a �pure state�, where the parameters βi are �xed
constants.

1.2 Fisher Information Metric

See Wikipedia, �Fisher Information Metric: for details. For a �nite set of prob-
abilities, we have

� Normalization:
∑
i pi = 1

� Entropy: H =
∑
i pi log pi

� Metric: write ψi =
√
pi Then the normalization becomes

∑
i ψ

2
i = 1 is

an octant of a sphere. The �at space Eucliden metric, projected onto the
sphere, is the Fisher information metric.

2 Various de�nitions of entropy

XXX TODO there are other entropies, e.g. microcanonincal, etc. de�ne them
too.

2.1 From Banach norms

I've never seen the below set into writing before. I'm not sure what it means.
Given a set of probabilities pi, de�ne the sum

sq =
∑
i

pqi
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for some number q. The �rst derivative is

d

dq
sq

∣∣∣∣
q=1

=
d

dq

∑
i

exp q log pi

∣∣∣∣∣
q=1

=
∑
i

pqi log pi

∣∣∣∣∣
q=1

=
∑
i

pi log pi

which is the conventional entropy. The Banach space `q norm is

`q = [sq]
1/q

and so

d

dq
`q =

d

dq
exp

1

q
sq

=`q
d

dq

sq
q

=`q

(
−sq
q2

+
1

q

dsq
dq

)
Then evaluating at q = 1 one gets

d

dq
`q

∣∣∣∣
q=1

=−

(∑
i

pi

)2

+
∑
i

pi log pi

=− 1 +
∑
i

pi log pi

assuming that
∑
i pi = 1 for conventional probabilities.

This reinterprets the entropy as a kind of tangent vector. What is the
interpretation of that tangent vector? What does it �mean�?

3 Zipf's Law, Hidden variable models

Zipf's law can arise whenever one has that some (not necessarily all) of the or-
der parameters are �rapidly �uctuating�, or are �unknown�, or are �latent� and
must be �averaged over� to obtain a distribution. The primary reference for this
section is Schwab, et al, �Zipf's law and criticality in multivariate data with-
out �ne-tuning�.[4] See also Aitchison et al., �Zipf's Law Arises Naturally When
There Are Underlying, Unobserved Variables�[1] for a less physics-oriented ex-
position.

Both Aitchison and also Mora etal. �Are biological systems poised at criticality?�[3]
articulate relationships to Ising models.

3



3.1 Zipf's Law

A quick articulation of Zipf's law, based on [1] and [3]:

� Zipf's law is the statement that p (σ) ∼ 1/rank (σ).

� Converting to energy notation, where E = E (σ) = − log p (σ) as before,
one can write Zipf's law as

log rank (E) = E + const

� The rank of a given, �xed state σ can directly understood as the number
of states n (E) with energy less than E = E (σ). That is,

rank (σ) = n (E (σ)) =

∫ E(σ)

−∞
dE′ρ (E′)

where ρ(E) is the density of states, as before.

� Equivalently, the derivative of the rank is exactly the density of states:

�

d rank (E)

dE
= ρ(E) =

∑
σ

δ(E − E(σ))

� Combining the above expressions and solving gives that

log rank (E) = E + logPs (E)

where Ps (E) = e−En (E) is a smoothed, energy-weighted probability of
states. This relation is exact (i.e. is independent of Zipf's law).

� Zipf's law can thus be written as

Ps (E) = const.

This enables practical calculations on distributions (next section).

� Equivalently, Zipf's law may be written as

n (E) ∼ expE

That is, the number of states below energy E is expanding exponentially.

3.2 Deriving Zipf's Law

The derivation of Zipf's law from latent variables is given by Schwab etal.[4] and
is summarixed below. Aitchison etal.[1] claim to have a more general proof.
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� A �latent variable� θ (or a set θi of them) are hidden parameters that
govern the observed distribution; namely, that

p (σ) =

∫
dθ p (σ|θ) p (θ)

� Assume that some (maybe all, but at least one) of the order parameters
βi is a latent variable θi. That is, write θi for βi when βi is latent.

� Resuming the notation from the revious section, if the order parameter
has some distribution p (θ), then one has a �mixed state� and must write

p (σ) =

∫
dθ p (θ) e−NH(σ,β)

where the integral is over theK latent parameters:
∫
dθ =

∫
dθ1dθ2 · · · dθK

and H (σ, β) =
∑
i βiHi (σ) +

1
N logZ (β).

With some mild assumptions, one can approximate the above integral

� If p (θ) is smooth, if p (θ) does not depend on N and if p (θ) has non-
vanishing support at the saddle point β∗, then the above can be approxi-
mated using saddle-point methods, giving

E (σ) = − 1

N
log p (σ) =

∑
i

β∗iHi (σ) +
1

N
logZ (β∗)

� The saddle point β∗ is the solution to

1

N

∂ logZ (β)

∂βi

∣∣∣∣
β∗

= −Hi (σ)

when βi = θi is one of the hidden variables, and otherwise is just the overt,
non-hidden value βi.

� Note that β∗ = β∗ (σ) that is, β∗ is a function of σ. This comes from the
right-hand-side, above.

� The microcanonical entropy is given by

S ({Hi (σ)}) = inf
β

[∑
i

βiHi (x) + c (β)

]

� The �multi-dimensional form of the Gartner-Ellis theorem� (see [4]) states
that the microcanonical ensemble is given as the �Legendre-Fenchel trans-
form of the cumulant generating function�.
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� The cumulant generating function is

c (β) = lim
N→∞

1

N
logZ (β)− C

where C = 1
N log

∫
dσ

� Up to the overall constant C, one thus has Zipf's law

S ({Hi (σ)}) = E (σ)

The above is a quick proof that Zipf's law arises when there are one or more
hidden variables, allowing the energy to be written as a mixture of multiple
di�erent �models� Hi (σ), each of which might not, in itself, be Zip�an.

3.3 Proportion of Explained Energy Variance (PEEV)

The derivation above required that the distribution of the latent variables p (θ)
be non-zero smooth near the �xed point. The degree to which these need to be
smooth depends inversely in how peaked the components p (σ|θ) are. Aitchison
etal.[1] articulate how PEEV works to blend together latent distributions.

4 Graph Factorization and Belief Propagation

The graph factorization problem can be posed as a constraint problem. When
there are relatively few constraints, or when the coupling is weak, this can be
solved in O (N) time by belief propagation or message passing. The general
setting is outlined by Mezard and Mora in a very readable paper,[2] recaped
here.

A factorizable graph is written in the form

p (~x) =
1

Z

∏
a

ψa

(
xi1(a), xi2(a), · · · , xik(a)(a)

)
Here, the vector ~x = (x1, x2, · · · , xN ) describes the state of the system, so
that each xi is some variable. Thus, p (~x) describes the probability of �nding
the system in state ~x. Its is assumed that the system must satisfy a set of
constraints, which are re�ected in the ψa, with the index a running over the
set of constraints. The constraints are assumed to run over only a subset of
the full vector ~x, so that, for �xed a, only k = k (a) variables are involved.
Which of these variables are involved are indicated by the indicator function
~i (a) = (i1 (a) , i2 (a) , · · · , ik (a)). The indicated variables for constraint a are
then xi1(a), xi2(a), · · · , xik(a).

Mezard describes how belief propagation can be used to quickly solve graph
factorization problems.[2]

I'm confused; belief propagation can also solve problems that don't have a
factorization, e.g. single-layer perceptrons. So, really, the point is that belief

6



propagation can be used to solve for probability distributions, and it works well
on factorizable distributions, too. Which is kind-of the only point of the quoted
paper. They illustrate for the speci�c case of the Ising mode.

XXX TODO: clean up this section.

5 Ising Models and Markov Random Fields

Ising models are a simple case of MRF. So cover them �rst.

5.1 Ising Models

Ising models with more than two states are called Potts models.
The Ising Hamlitonian can be derived as a minimum entropy model, by ap-

plying constraints that the probability of singletons and pairs must produce the
actual, observed frequency distribution of singletons and pairs. The technique
for forcing this agreement is called �lagrange multipliers�. XXX TODO �nd a
reference that explains how the below is actually done.

The primary issue is that the Hi (σ) depend on the full σ, which in general
makes the problem intractable. So instead, write the entropy as

S = −
∑
σ

p (σ) log p (σ)

and write σ as an indexed set; that is, σ = (σ1, σ2, · · · , σN ). Each σi can
be interpreted as a value at position i, for example, a word at position i in a
sentence, an amino acid in position i in a protein, etc. In a basic Potts model,
one has observed frequencies fa (i) which counts the frequency at which the
location i had the value σi = a and the pair frequencies fab (i, j) that location i
had σi = a and also location j had σj = b. ... Its common to ignore the position
dependence, i.e. to observe only the averages, independent of position...

The goal is to create a model such that the singleton constraints

fa (i) =
∑
σ1

∑
σ2

· · ·
∑
σN

p (σ1, σ2, · · · , σN ) δσi,a

and the pairwise constraints

fab (i, j) =
∑
σ1

∑
σ2

· · ·
∑
σN

p (σ1, σ2, · · · , σN ) δσi,aδσj ,b

are obeyed. Here, the δσi,a is the Dirac delta function, such that

δσi,a =

{
1 if σi = a

0 otherwise

This is done by �adding a multiple of zero� ... etc. XXXTODO show how this
is done.
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This causes the model probability to factorize:

p (σ) = p (σ1, σ2, · · · , σN ) =
1

Z

∏
i

φ (σi)
∏
jk

φ (σj , σk)

where each factor is given by a Boltzmann model

φ (σi) = exp−Hi (σi)

and
φ (σi, σj) = exp−Hij (σi, σj)

which now satis�es the constraints on the observed frequency counts.

5.2 Gauge �xing

The frequencies are not independent; one has constraints

fa (i) =
∑
j,b

fab (i, j)

which means that there's ambiguity in how the Hamiltonian is split up, i.e.
there is gauge invariance; and so one needs gauge �xing. This is usually done
by forcing

0 =
∑
i

Hi (σi)

and
0 =

∑
i,j

Hij (σi, σj)

XXX show the details of this; �rm it up.

5.3 Markov Random Fields

See Wikipedia, �Markov Random Field�[5] for more.
Factorization of the Hamiltonian into cliques.
Cliques correspond to synonyms. i.e. words (and word-phrases) that are

synonymous (i.e. can replace one-another with low energy.)
Cliques are the base-space for the sheaves; sheaves project down to cliques.
TODO �esh all this out.
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