
Language Learning Diary - Part Four

Linas Vepstas

Sept 2021 - Dec 2021

Abstract

The language-learning effort involves research and software development to
implement the ideas concerning unsupervised learning of grammar, syntax and se-
mantics from corpora. This document contains supplementary notes and a loosely-
organized semi-chronological diary of results. The notes here might not always
makes sense; they are a short-hand for my own benefit, rather than aimed at you,
dear reader!

Introduction
Part Four of the diary on the language-learning effort continues work on the English
dataset.

Summary Conclusions
A summary of what is found in this part of the diary:

• Connector sequences or “disjuncts” are the “jigsaw pieces” extracted from max-
imum planar spanning-graph (MPG) parses of English sentences. How many
connectors are there on a typical jigsaw piece? Answer: 2.25 on average. These
are closely modeled by a log-normal distribution. This is good news for English,
where we expect nouns to typically have 1, 2 or 3 connectors, and verbs and
prepositions to have 2,3,4. Adjectives, adverbs and determiners typically have
only 1 connector. Thus the observed distribution matches what one would expect
to find.

• The number of words having any given number of connector sequences also
follows a log-normal distribution.

• The merger of some top-ranked similar words is explored in detail. For example,
the merger of “is”-”was” into one word-class. It seems to go well.

• It appears that there are cliques or almost-cliques of similar words. That is, not
just word pairs, but groups of 3 or 4 or more words that are all similar to one-
another. This suggests that such “in-groups” of similar words should be merged.

1

A half-dozen different such in-groups are explored in detail. They look pretty
good.

• The above leads to a break-through, an important advance in the theory. One
must merge together not only groups of similar words, but only those disjuncts
that are shared by a majority of the words in the in-group. This is a two-step
process: first, an in-group of similar words is selected. Then, one looks to see
what traits (disjuncts) the members of that in-group have in common. Only those
traits that most group members share are voted into the group. This solves an
important clustering problem: it generalizes, without generalizing over-broadly.
I think this is a major advance in the theory, here.

• I believe that the result of merging as described above corresponds (strongly) to
word-senses. (Or it should correspond.) This remains unexplored.

• How big should an in-group be? The sizes of a dozen different groups are ex-
plored, as a function of the similarity between group members. It appears that,
as one loosens the restrictions on group membership, the size of the group grows
at first very slowly (not at all) and then grows explosively. The ideal group size
is then the largest group below the explosive-growth threshold.

• A good judgment of similarity is needed. This was explored in great depth in
the Diary Part Three. The mutual information (MI) survives as a good way of
judging similarity. Below, it is discovered that an even better judgment is given
by the average of the MI and the log-frequency. That is, extremely rare words
can have a huge MI, but this is boring, because the words are rare. We want
to know what words are common (frequent) and also have a large MI. This is
provided by the average. Pulling it all together, this results in a square-root in
the expression:

rankedMI (w,u) = log2
f (w,u)√
f (w) f (u)

where f is effectively a dot-product. See below for details. This is... surpris-
ing, unheard-of in the literature (I’ve never seen it before). Its got some nice
properties, including being scale free (thus suggesting it lives on a projective
space. Perhaps some information-theoretic analog of the Fubini-Study metric?
Mathematically, its quite intriguing.) Again, this is a pretty big break-through,
as compared to earlier efforts.

• The above ranked-MI is explored in considerable detail for the English dataset.
It looks pretty good.

• This part of the diary ends with the first mega-merge, where the top two-thousand
most similar and most highly ranked words (similarity measured by ranked-MI)
are merged together according to the in-group algo above. It “works”, in that it
doesn’t crash, and the results still look reasonable after a few thousand merges
(and many days of CPU time.) Thus, the time is ripe for exploring in detail the
results of this merge. This is done in the next part, Diary Part Five. But first,

2

an assortment of “minor” (but difficult) bugs have to be fixed (and mostly have
been!? Tune in next week for the continuing adventures...)

To recap: two important things are found. First, there appears to be a major break-
through: the in-group shared-trait merge algorithm is discovered, and it seems very
promising. Next, averaging together the MI with the word-frequency gives the rankd-
MI similarity, which seems to provide an ideal way of ranking frequent similar words.

TODO List
Some items previously explored, but worth looking at again, with the latest datasets.

• Words with the lowest self-MI - what are they? What do they mean?

Expt-4/5/6 – Miscellany – Sept 2021
Diary Part Three carried out the bulk of experiment-4 with trimming until it was discov-
ered that trimming to a minimum support of two is even better. Assorted data analysis
was done. There are still a few more interesting questions about those datasets.

Length of disjuncts
For a given length of disjunct, how many sections have a disjunct of that length?
(Counted with multiplicity) Previously, in Diary Part Two page 14 this was a Gaus-
sian, centered at 8. But this was for a fake language, not for English. Based on what
we expect for English, 8 is an alarmingly large number. So, some graphs:1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 1 2 3 4 5 6 7 8 9

P
ro

b
a

b
ili

ty

Length

data
N(0.81,0.27)

Distribution of Disjunct Lengths

1Data for graphs prepared with ‘utils/similarity-graphs.scm‘

3

The above shows the number of disjuncts of a given length. That is, fixing the
length, just count how many disjuncts there are. Also shown is an eyeballed fit using
the log-normal distribution. As before, this is defined as

N (x; µ,σ) =
1

xσ
√

2π
exp

(
− (lnx−µ)2

2σ2

)
In this graph, shown is µ = 0.81 and σ = 0.27. Note that exp0.81 ≈ 2.25 and so
we can take the average length of a disjunct as 2.25. This is really pretty nice for
English, I guess – we expect common-sense lengths: transitive verbs with a length of
2 (subject, object); common nouns with a length of 2 (determiner, verb-connector) or
3 (determiner, adjective, verb connector); both determiners and modifiers (adjectives,
adverbs) should have a length of 1. Punctuation, ditransitive verbs, quotations, etc.
have more complex structure. So above looks healthy.

How about the observation count of the number of words that have some disjunct
length? Below:

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 1 2 3 4 5 6 7 8 9

P
ro

b
a

b
ili

ty

Length

number
support

count

Distribution of Section vs. Disjunct Lengths

So this shows three very similar curves. These are:

number: How many disjuncts there are of a given length.

support: How many sections there are, with that section having a disjunct of the given
length.

count: The number of observations of sections having a disjunct of the given length.

Recall that a “section” is just a word-disjunct pair. Thus, “support” is when we tally
1 if a section exists, else 0, and “count” is how many times that particular pair was
observed.

Looking at that graph, all three have almost the same log-normal distribution, with
the mean inching ever so slightly lower. The nice behavior persists.

4

One last graph: for any given disjunct length, how many unique words are there
that have a disjunct with that length? Shown below.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 1 2 3 4 5 6 7 8 9

P
ro

b
a

b
ili

ty

Length

data
N(0.78,0.43)

Distribution of Words given a Disjunct Length

So its similar to the above, but wider. Note that any given word might be counted
repeatedly, since it might have disjuncts of various different lengths. So, to read this
graph correctly: there are very few words having disjuncts of length 8 (two of them, to
be precise). Most words don’t have that many disjuncts. Here’s the table:

length num words
1 5446
2 14146
3 7762
4 3776
5 1080
6 338
7 66
8 2
9 0

10 2
11 2

That is, there are 5446 words that have disjuncts of length 1, and 14146 words with
disjuncts of length 2, and so on. Recall this dataset has a total of 15083 words, and so
apparently, there are some words that do NOT have any disjuncts of length 2! This is
somewhat surprising. I wonder what those are. Lets take a quick look.

There are 937 = 15083− 14146 words that do NOT have disjuncts of length two.
Looking over the list, they are junk. Here’s the top-10, their observation count and their
rank in the list of all words.

5

word count rank
DR 128 1996

********** 100 2344
Trelawney 97 2390

).= 96 2404
********* 79 2704

U. S 76 2786
http://pglaf.org 74 2844

THORNE 73 2868
CLOUSTON 66 3095

..... 58 3348

So .. these do look fairly skanky. The rankings are ... well, out of 15K words, these
rankings are fairly high. They are legitimate words, and are obviously seen fairly often
in the texts. Yet, presumably, they occur in some fairly specialized constructions. For
example, pglaf almost certainly appears in boilerplate, and as such this text will be very
rigid in its structure. Perhaps, then, not surprising that such rigidity might be missing
a common disjunct size.

Anyway, we conclude that the distributions look healthy and behave as expected.
There are no obvious faults to be seen.

Rankings of mergeable words
That top-40 list of words to merged – what is the ranking of those words? That is, when
we go to compute similarities, how deep should they be computed? Here, we assume
common-MI provides the merge suggestion, and ranking is by count, as always.

Ugh. Yes, I could, should provide graphs here. I’m lazy, so not today. Basically,
the large majority (maybe 90%?) of the top-100 ranked pairs involved words in the top-
200 count rankings. Exceptions are (i,ii) and (Old, New) the words of which are ranked
around 500, and (don’t,don’t), and (didn’t,don’t) whose words are ranked around 300,
(ii,iv) and (iii,iv) and (------,--------) whose words rank around 1000.

Conclude: it is safe to compute common-MI out to about 200 or so, and then merge
the top-100 out of this list.

Word Similarity with Shapes
Consistent merging requires that merging must be done with shapes. But we judged
word similarity without shapes. What happens if we judge word similarity with shapes?
After a quick look, it appears to be substantially similar. Many (most?) of the same
pairs show up in the top-60 list, with similar rankings. There are some notable differ-
ences, some apparently making things worse, others making things better.

Word Similarity without Shapes
FYI. Of the top-ranked 1200 words, there were 51990 word pairs with no overlap
whatsoever, and 668610 with some overlap. The total is as expected, a triangle-number:

6

668610 + 51990 = 720600 = 1200 * 1201 / 2.

Expt-7 – Merging – Sept 2021
Time to open a new chapter. We are ready to merge word-pairs, with a mostly-
trustworthy dataset. The goal here will be to merge just one word at a time, by hand,
and see what happens. We’re doing this because of the disastrously bad July 2021
merge attempt, which generated complete garbage, quite in contrast to the merges from
previous years.

Part of the reason for the failure of the July merge was that the merge threshold
was set much too low. Part of the problem is that the datasets had too much grunge in
them; they needed to be trimmed. Part of the problem is that the default merge used a
proxy for the common-MI value, based on ranking. Probably most of the failure can
be ascribed to the first part: the merge threshold was set too low.

We’ve never studied the merges carefully, before. Mostly, they seemed to “just
work”, and we unleashed the machinery, and let it go. The first time, it worked, the
second time, it failed. Anyway, now that we’ve got a better dataset, its worth looking
at these in detail.

Merge is-was
The top word-pair is “is-was”, from table on page 23 in Diary Part Three. Lets charac-
terize this. Before the merge:

property is was pair(is,was) total
log2 trMMT 33.624

log2 p(word) -7.763 -7.594 -
self-MI 5.888 6.067

MI(is, was) 5.824
common-MI(is, was) -1.854

support(word) 7482 9324 -
support union 11707

support intersection 5099
overlap 0.4355

count(word) 71894 94214 -
total Sections 855718

Now, merge the word, but do NOT merge the connectors. That will be a distinct ex-
periment. Issues that need to be addressed: Assorted marginals need to be recomputed.
These include:

• The support. This is done automatically, its in the code.

• The MMT marginals. This is done in the supplementary routines.

7

• New cached similarity score, or at least wipe out the old one. Not just for this
pair, but for all pairs with the contributing words. Not done yet.

After the merge, we have:

property is was pair(is,was) total
log2 trMMT 33.610

log2 p(word) -14.295 -11.957 -6.707
self-MI 11.560 9.318 5.974

MI(word, word) −∞ −∞ −∞

common-MI(is, was) −∞ −∞ −∞

support(word) 2383 4225 5099
fraction of support moved 0.6815 0.5469

support union 6608
support intersection 0

overlap 0
count(word) 8554 20808 136746

fraction of count moved 0.8810 0.7791
total Sections 850619

Perhaps the most interesting result is that more than 3/4ths of the count was moved
over to the merged class. Compared to how much of the support moved, its clear that
the merger involved the most-frequently observed sections.

Mystery result: Total number of disjuncts dropped from 205003 to 202922 (as
measured by ‘(pcs ’right-basis-size)‘) .. how can this happen? This suggests some
bug!? That’s a difference of 2081 ... oh, I see. The basis shrank, because pcs is NOT
looking at WordClassNodes... so there are 2081 disjuncts that got moved out of any
word, and into the new WordClassNode. (‘pcs‘ is from ‘make-pseudo-cset-api‘)
OK. Unexpected, but OK.

Merge is-was and connectors too
Merging connectors requires using shapes. This is, in fact, the right thing to do, and
was hard-won. But this changes everything. So lets track what’s going on.

Task Stats
time to load Sections 183 secs
RAM RSS after load 1.5g

time to explode 125 secs
RAM RSS after explode 3.4g

num words 15083
num disjuncts 205003
num shapes 838580

right basis size 1043583
num Sections 855718

num CrossSections 1922250

8

So ... How many CrossSections do the words “is” and “was” appear in? What are their

counts?

is was union intersection
Section support(word) 7482 9324 11707 5099
Section count(word) 71894 94214

CrossSection support(word) 18556 23671 35260 6967
CrossSection count(word) 167112 203939

Section+Cross support 26038 32995 46967 12066

Clustering merges 46967 sects+cross, as expected (this is the union support size;
but in the end only the intersection is merged).

Issue: the merge code wishes to recompute the MMT. The merge code was given
shapes to work with so it wants to recompute MMT w/ shapes, but this is not what
we’re using for similarity. At any rate, the pipeline needs to be redesigned to use
common-MI, instead of using an MI cutoff.

Expanded Clusters
Once a cluster has been formed, it will expand. How does this look like? The top 60
list contains pairs that merge punctuation: .–? and !–? and .–! There is also: It–He,
It–There, It–She, This–It, She–He, There–He, There–there. The question is: how does
the MI/common-MI change, as the cluster grows?

The exploration below will not merge connectors.

word-pair MI common-MI
It He 4.174 -1.880
It There 4.251 -2.571
It She 4.124 -2.705
It This 4.351 -2.677

She He 4.385 -2.822
There He 3.851 -3.349
There there -3.459 -12.022

So, It–He gets merged first, and the MI’s are recalculated.

word-pair MI common-MI
It He −∞ −∞

It There 6.316 -3.175
It She -2.143 -11.642
It This 0.753 -8.946

cluster There 4.000 -2.507
cluster She 4.206 -2.307
cluster This 4.240 -2.473

She He 4.007 -5.679
cluster there -4.130 -11.231

9

Comparing, we see that the mergability scores of There, She, This improve, and
that is a good thing. The MI of what’s left of It has dropped to more of the other words,
although the affinity to There improves.

Next in line is She–cluster, according to the new rankings. So lets merge that.

word-pair MI common-MI
It She 2.664 -9.239

cluster There 3.979 -2.442
cluster She −∞ −∞

cluster This 4.214 -2.414
cluster It −∞ −∞

cluster He −∞ −∞

She He 8.815 -3.276
cluster there -4.213 -11.228

Interestingly, the remainder of what’s left to She-He has the MI shoot way up, and
the mergability of this remainder is relatively high. The MI between the cluster and
There, This is unaffected, or even goes up. The common-MI scores improve. Looks
like This is next, so do it.

word-pair MI common-MI
It This 5.047 -3.176

cluster There 3.989 -2.375
cluster This −∞ −∞

cluster there -4.015 -10.973

As before, two things pop out: the mergability of cluster-There improves, and what
is left of It-This is quite highly mergeable (just like He-She, last time).

What’s going on with these remainders? It’s worth taking a look. Below the diag-
onal are the MI’s after the formation of the cluster. Above the diagonal are the initial
MI’s, before clustering.

It He She There This
It 4.174 4.124 4.251 4.351

He −∞ 4.385 3.851 4.049
She 2.664 8.815 3.798 3.980

There 9.015 2.443 2.868 4.081
This 5.047 2.168 2.178 3.906

Before merging, these were all in the same ballpark. After merging, we see that the
He–She MI really popped! So did It–There. The rest are meh.

And again, the common-MI:

10

It He She There This
It -1.879 -2.705 -2.571 -2.677

He −∞ -2.822 -3.349 -3.358
She -9.239 -3.276 -4.178 -4.203

There -1.826 -8.586 -8.861 -4.095
This -6.799 -9.865 -10.555 -7.766

Before the merge, the It–He mergability suggestion was rather quite high; the rest
are OK, but lower down.

After the merge, the remaining It–There mergability ranking is now very high,
among the highest. The mergability ranking for He–She is decent... but a second-order
priority.

Revised clustering strategy
The above analysis suggests a revised clustering strategy. Let’s call it the “democratic”
strategy, or the “peer” strategy. It goes like this:

1. Find a word pair with the highest common-MI.

2. For each word in that initial pair, look for other words that have a regular MI that
is close to that particular word-pair, or better. “Close” means “no worse than 1.0
less”. Of these, maybe reject those with a common-MI of more than 5.0 less.

3. The above list of similar words defines the initial peer group.

4. Given the peer group, determine which disjuncts belong to it by voting: if more
than half the words share some common disjunct, then this disjunct will be ad-
mitted into the merged cluster.

5. Perform the merge, merging all of the words into the cluster, and accepting those
disjuncts that have been voted on.

The above would seem to create a more balanced cluster, as opposed to the agglomer-
ative merge. The problem with agglomeration was demonstrated above: what was left
on She–He and on It–There was really quite a lot, and probably should have been a part
of the main cluster. It wasn’t, because agglomeration threw these away, when forming
the initial He–It cluster. The democratic voting of step 4 appears to solve this problem.

Democratic voting also appears to address another old bugaboo: how to perform
“generalization”. The pure-intersection clustering performs no generalization whatso-
ever. The democratic voting allows generalizations to be admitted, when they weren’t
before. So this seems like a big win.

An open question is how general the generalization should be. Should it be a ma-
jority vote? Perhaps it should be an evaluation of the intra-cluster MI after the gener-
alization is made? Could there be some relaxation process, which picks and chooses
what disjuncts get admitted, so as to maximize the intra-cluster MI and to minimize
the extra-cluster (inter-cluster) MI? Right now, voting is easiest. Perhaps some kind of
relaxation algo might be better, in the future. The relaxation algo is certainly harder.

11

We can steal some ideas from the Tonnoni Phi spin-glass canon: the extra-cluster
MI should be best described by an ultrametric, so that the distance from the cluster,
to anything else, has the ultrametric property. Recall the definition of an ultrametric:
it is the distance between two leaves on a tree. Two leaves are close if they are on
the same branch; they are distant if they are on different branches. We want all words
in a cluster to not only be close, but to be “maximally far away” from anything else,
where “maximally far” s intended in the ultrametric sense. (The ultrametric appears in
the theory of spin glasses. It is the “obvious” metric for describing human brains in
a social network: Every neuron in my head is much more closely connected to every
other neuron in my head, than it is to your head. The only connection between my
head and yours is the fact that you are reading these words. That is both a spin-glass
ultra-metric, and also describes there the lest cruel cut can be made. Phew. Sorry for
the digression, but this seems important.)

Word-sense disambiguation
Issue: If we compute MI and common-MI using only Sections, and not Shapes, but
then do a proper merge (i.e. merging connectors) then we have a post-merge issue: the
new sections will have have disjuncts with the clustered connectors in them.

This appears to cause several issues, but does it?
First issue: When the MI’s get recomputed, the shape object will be used. So this

is a bug, we need to use the non-shape object when recomputing the MI. So this needs
to be passed around as a distinct argument to the functions.

Second issue: When the MI’s get recomputed, it might seem that connector se-
quences that should have been comparable are no longer being compared, because one
connector sequence has a plain word, while another has a WordClass. Upon further
reflection, this is NOT an issue. Connector merging means that all of the various con-
nector sequences have been updated (“correctly”) with the new WordClass, so the
sequences remain comparable. Those that have NOT been updated MUST be consid-
ered as belonging to a distinct word-sense.

In particular, that means that the correct connector merge code automatically han-
dles word-sense disambiguation: whatever has not been merged, including unmerged
connectors, MUST be understood to belong to a word-sense that is distinct from the
WordClass.

Conclude: no issue here, except to be careful in recomputing the MI.

Conclusion to Expt-7
Looks like everything works great. The functional review provoked a code review, both
the functional review and the code review pass, it seems that merging works great.
Caveat: at least the non-connector-merge variant works great. The connector-merge
code is really complicated, and was developed and debugged during the random-corpus
exploration phase. It was completed, with no known bugs, but it is just complicated
enough and squonky enough that perhaps there are issues. There is a test-suite of 13
unit tests. These pass. So I guess its pretty tight?

12

Examination of the agglomerative clustering strategy exposes it’s weakness (well-
known in the industry) However, unlike the conventional clustering algos, we have the
ability to pick and choose, via “democratic voting”, which disjuncts get admitted into
the cluster. This appears to address an important open issue, of (a) a way of perform-
ing generalization, and (b) a good way way of performing generalization. The earlier
fuzzy-mixin performed generalization, but it was fairly non-selective, and some naive
MI calculations seemed to indicate that it always made things worse. In particular, it
made word-sense disambiguation ugly. So this new democratic algo appears to be a
major conceptual improvement.

Clique Sizes (Oct 2021)
The democratic-voting idea suggests that an initial in-group needs to be selected. This
in-group will be a clique or an almost-clique. But how are we to find it? How similar
do words need to be, in order to belong to an in-group? Here, we explore the size of
the clique, vs. the allowed variation of MI within the clique.

Consider some given initial word-pair, and a threshold ε . The initial pair has
some initial value of common-MI S0. A search is performed to find words that have a
common-MI greater than S0−ε to at least 70% of the members of the current in-group.
To admit a third word into the ingroup, the common-MI must be greater than S0− ε to
both the current members. To admit a fourth word, the threshold must be exceeded to at
least two of the three current members, and so on. The formula is vote = b0.7n+0.5c
where n is the number of members in the current in-group. In general, the larger that ε

gets, the larger the ingroup will be. The process is not monotonic, since it depends on
the order in which words are added. For small ε , a tight-knit grouped might be formed.
As ε gets larger, one of the early members might be quite different, and becoming a
peer to it might be a challenge, thus decreasing the size of the in-group! These de-
creases are visible in the chart below. To avoid this effect, the words are ranked by
frequency first, so that the most frequent words are considered first.

Common-MI in-groups
The chart below shows the results for eight different initial word-pairs. All eight of
these appear in the top-15 list of pairs with the highest common-MI. Many are punctu-
ation; this is inevitable, as punctuation is very frequent.

13

10
0

10
1

10
2

10
3

 0 1 2 3 4 5 6 7 8 9 10

S
iz

e

Threshold

is - was
and - but

in - of
she - he

, - ;
. - ?
+ - -
i - ii

Size of Ingroup vs. Threshold

So... interesting ... There are two asymptotes: “she-he” and “in-of” are one, and
all the others land on the other. Note that the asymptotes are just lists of garbage
words. Still, its curious that there are two. Not shown in the graph: experimentally,
the asymptote is almost exactly given by exp(ε/2). Missing theory: why? Why the
natural exp? Why not something else, like 2ε ?

Some clusters grow easily - “she-he’” and “in-of” both grew quickly. “Is-was” took
longer to take off. Here are some samples, taken at the maximum value of ε at which
the results look good. That is, for larger ε , the ingroup starts looking ugly.

epsilon size ingroup
3.0 10 might must may should will could would had is was
3.0 7 when so for as that and but
3.4 13 from by with at on for as not that to and in of
1.6 5 they it I she he
5.0 9 : ! _ " ” . ###LEFT-WALL### , ;
5.0 10 : ! _ " ; ” ###LEFT-WALL### , . ?
5.9 7] ([* _ + —
6.7 8 R M $ D N p i ii
2.3 13 Yes We This They You What She And The He I It There

The initial seeds that start the ingroup appear as the last two members of the lists.
Note that some lists end up being similar, even though the seed-pairs are different.

The two collections of punctuation started with different seed pairs, but converged
to the same place. One started with comma-semicolon, the other started with period-
question-mark. Similar results for the prepositions. The “and-but” forms the seed in
the first group, but most of that group reappears in the ingroup around the seed “in-of”.
The last one is curious – its all sentence-starter words (That’s why they are capitalized).

14

The above does not teach a clear lesson in how to pick ε . Picking a fixed value does
not seem like a good idea. A reasonable merge strategy might be to start with ε = 1,
merge what there is, and then enlarge some more. As always, the question is when to
stop enlarging.... no answer for that, yet. There are two indicators: stop enlarging just
before the size of the group increases rapidly, and stop enlarging when the size of the
group suddenly drops. This seems to be viable – the calculations are relatively fast.

Plain-MI in-groups
Wait ... we did the wrong thing. The above used common-MI to determine similarity
to the in-group. Perhaps just the regular-MI should be used. That is, common-MI is
great for identifying the initial word-pair to form the seed of the clique, but perhaps
regular MI is better suited to actual similarity. Here are the graphs, again, this time
using regular MI. Note that the threshold goes negative. For example, for ε = 0 for the
initial seed “is-was”, there ae already four members of the ingroup. This means that
there ar two other words whose MI to “is” and “was” is higher than the MI between
“is” and “was”. Cool! Here’s the graph:

10
0

10
1

10
2

10
3

-2 -1 0 1 2 3 4 5 6 7 8

S
iz

e

MI-only Threshold

is - was
and - but

in - of
she - he

, - ;
. - ?
+ - -
i - ii

It - There

Size of Ingroup vs. Threshold

So this is very different than the earlier graph. Still all over the place. Lets take a
sample:

15

epsilon size ingroup
0.4000 10 doesn’t takes isn’t appears wasn’t wasn’t seems seemed is was

2.3 10 nor till until since than or for as and but
0.4 9 toward towards against through upon into from in of
1.1 7 thou it’s it’s we they she he
4.0 13 – ...] — : ! _ " ” . ###LEFT-WALL### , ;
5.4 16 – ’] — : ! _ " ; ” ###LEFT-WALL### , . ?
5.1 7 – {] ([+ —
7.9 11 b R Y $ E C D N p i ii
1.8 10 These Here That We This They She He It There

So this has a very different flavor. With common-MI, we saw words like “could
would should” being judged similar to “is was”. Here, we see “appears seems” showing
up, while “could would” is entirely absent (and continues to be absent until the ingroup
has size 25!) This means that – appearing and seeming is much more like being, but
desires and statements of ideals, like “could should” occur far more frequently in the
text. (High frequency words boost the common-MI but have no effect on plain MI.)
So these are two very different semantic directions to go off in! How to resolve this?
What, exactly, are we doing here?

The other groups seem to have a slightly different flavor, but nothing quite as dis-
tinct. Gut impulse is to say that common-MI is a better classifier, even though there’s
some semantically interesting stuff happening with regular-MI. But we are not yet
ready to pursue semantics; we’re still working on syntax.

In-group ranking spread
Words are added to the in-group one at a time, starting with the most-frequently oc-
curring words. By the time that the construction of the in-group is done, what is the
difference between the highest-ranked word in the in-group, and the lowest-ranked?
This is graphed below. It’s done with common-MI to determine in-group membership.

16

10
0

10
1

10
2

10
3

 10 100

In
d
e
x
 S

p
re

a
d

Size

is - was
and - but

in - of
she - he

, - ;
. - ?
+ - -
i - ii

Size of Ingroup vs. Index Spread

What this chart shows is that when the in-group has fewer than 10 members, all
of those members are within 100 of each other in the word-frequency ranking (with
exceptions as visible in the graph.) Note this is not a function, the lines can zig-zag left
and right. Some cliques are tighter than others.

Recommendations: if we’re going to compute similarity, do so in a band of about
200 from the diagonal.

Mid-level pairs
The above results were all for seed word-pairs that were top-ranked in terms of common-
MI. How about something from the middle? Here are some seed word-pairs whose
common-MI is about 4 less than the top-ranked pairs above. They are approximate in
the 10K’th position of all ranked pairs (ranked by common-MI). They still look pretty
good, in terms of English. Those that have an MI of 8 below the top-ranked pair start
looking like garbage. The only problem with this exploration is that ... pairs that are
10K down are ... far far from consideration. Words in them are likely to get swept up
much earlier.

17

10
0

10
1

10
2

10
3

-2 0 2 4 6 8

S
iz

e

Threshold

is - was
spoke - sat
look - smile
town - earth

door - house

Size of Ingroup vs. Threshold

Shown for comparison is the old “is-was” group. Note that the ingroups are quite
large even for negative ε . This just says that these seed-pairs are likely to be swept up
in earlier in-group formations.

Let’s assess their health.

epsilon size ingroup
-0.7 5 looked had was spoke sat
0.6 3 glance look smile
-0.3 11 church United sea city country people house world most town earth
-0.6 5 end head same door house

Well ... mixed bag. In the first row, “had was” are likely to be swept up in some
other group, leaving “looked spoke sat” fairly healthy. In the third row, “most” is
likely be be swept up in some other in-group; what’s left looks OK. The last row looks
haphazard. Presumably “same” will end up in some other in-group, but what about
“end”?

At this point, there seems to be no choice: we have to run the earlier clusters, and
then see what’s left over. Perhaps this can be done manually? So we can get a better
idea? That requires running 10-20 clusters by hand, and then repeating this exercise.

Expt-8 Merging Farther (Oct 2021)
Resuming where expt-7 left off. This time, do merge with shapes, and get further down
the process. Lay groundwork for the cliques above.

One major issue is that, after merging connectors, all of the previous similarity
computations are rendered invalid. We need to loop over all merged connectors, and

18

recompute those similarities, if they are/were in the range of computable similarities...
then, after that we need to re-rank, to find the next items in the list.

Done. Fixed some bugs, seems to work well, happy and healthy ... code being
created in ‘agglo-rank.scm‘ based on results and outline. Nothing notable pops out,
other than it looks great! Yahoo! We’re rolling again!

Expt-9 Ranked Merge Development (Oct 2021)
So since expt-8 went so swimmingly, ranked merge development should go smoothly,
too, right? Heh. Not so lucky.

Confusion. We are calculating the marginal similarity as

P(w) =
∑d P(w,d)P(∗,d)
∑d P(∗,d)P(∗,d)

The normalization here is so that P(∗) = 1 which is what we want so that we can
interpret these things as probabilities.

What is the value of ∑d P(∗,d)P(∗,d) ? I think we want to add this as a constant
to common-MI. As a constant, it changes nothing, but it prevents common-MI from
being always negative. We don’t have it handy because we are not storing P’s, we are
storing N’s; we need to compute it. It is

Q =− log2 ∑
d

P(∗,d)P(∗,d) =− log2
∑d N (∗,d)N (∗,d)
(∑d N (∗,d))2

Wow. The mind boggles. Numerically, for the t1234 dataset, it is 11.946 which is
actually a healthy value.

The mind boggles because this is... well, its a scale parameter. It’s also a mean-
square. It’s a screwy matrix norm of some kind. It feels like there should be some kind
of physical interpretation for it. Some kind of graph spectral foo-bar, but I don’t know
what that is.

There’s a generic problem here: we’ve got some kind of graph spectral something-
or-other here, but I don’t know that theory. There’s a hint that its simple, elegant, and
should have some obvious interpretation. Fer Chris sake, the last figure of Part Three
was a Gaussian! There’s got to be some kind of generic theorems on this stuff.

Note the common-MI was not scale invariant. It was defined as

commonMI (w,u) = log2
f (w,u) f (∗,∗)√

f (w) f (u)

with
f (w,u) = ∑

d
P(w,d)P(u,d)

This suggests that scale invariance can be restored by adding Q...

19

Ranked MI
OK, so the above ruminations suggest that using ranked-MI is better than using com-
mon MI. We define this as

rankedMI (w,u) =commonMI (w,u)+Q

= log2
f (w,u)√
f (w) f (u)

This is now scale invariant, in that we can multiply f by any constant, and the ranked-
MI is unchanged. So its projective... Projective suggests that this is some information-
theoretic analog of the Fubini-Study metric, or something like that. What is the math-
ematics of this? What is the physical interpretation of it?

Ranking cutoffs
As a practical application, ranking works best if we add cut-offs: reject all pairs with
an MI of less than 4.0. This knocks out some pairs that have a high ranked-MI but
otherwise crappy MI.

There’s also another de facto filter at play: if we compute sims only for the top-200
words, any highly similar words that aren’t in the top-200 simply won’t appear. For
example, the roman numeral ‘(Word "i")‘ is ranked 458’th in the list of words, ‘(Word
"ii")‘ is ranked 701’th. They are highly similar: MI=12.52 and a ranked-MI of 9.05
which would have placed it fourth in the table below. But they are too far away from
the top-200 and so are never considered.

Worse: they are not even within the diagonal band that is 200 wide, and so will
never be considered... perhaps the band needs to get wider over time....

So, with that in mind: looking only at the top-200 words, there are 1338 pairs with
an MI of greater than 4.0. Accepting only those, here’s the list of the top-20 word pairs:

20

word-pair ranked-MI MI
— + 9.1671 9.3888
; , 9.1620 5.0377
is was 9.0605 4.6242

and but 9.0319 4.8387
. ? 8.9357 5.8409
! ? 8.9218 7.1206
It He 8.8665 4.9165
[+ 8.8158 9.7555
” " 8.2227 5.2267

No A 8.1991 4.7015
in of 8.1951 4.4320
It There 8.1493 4.6029
! . 8.0668 5.3339
‘ “ 8.0408 4.5713

the his 7.9914 4.2834
She It 7.9629 4.6488
This It 7.8279 4.4001

– ’ 7.8212 5.3334
She He 7.8169 4.8770

” ’ 7.7406 4.4218

I’m enjoying that both the left-slanting and the right-slanting single and double
quotes show up in this list correctly paired with each-other.

Lets take a look at what we missed with the MI cutoff. There are 310 words pairs
with an MI between 3 and 4. The top-5 in this list are:

word-pair ranked-MI MI
she he 8.1922 3.7175
and as 8.1079 3.4660
had was 7.7289 3.7725
and for 7.6961 3.6477
they he 7.5188 3.1174

Notable is the-a, which appears 8th in this list, with ranked-MI = 7.4818 and MI =
3.1485. Capitalized The A appear 15th with ranked-MI = 7.2114 and MI = 3.4420.

One more time, for MI between 2 and 3:

word-pair ranked-MI MI
###LEFT-WALL### , 7.9065 2.2994

he I 7.6618 2.0831
it he 7.4155 2.3143

You I 7.2956 2.0871
then he 7.2354 2.4393S

21

So this looks pretty reasonable until we get to the last entry, which is pretty crappy.
Except for that one, the next 15 look pretty decent. So ... things seem healthy.

What if we are more demanding? What if we insist on an MI of greater than 6,
which would knock out most of the words in the early list? Here we go:

word-pair ranked-MI MI
— + 9.1671 9.3888
! ? 8.9218 7.1206
[+ 8.8158 9.7555

— [7.5186 8.0631
should might 7.1761 6.2910

Yikes! The next four entitles are also punctuation. I think the corpus had a bunch
of ASCII-formatted tables in it. These are reasonable suggestions, but are actually ..
boring. So setting MI=4 for this dataset seems like the right thing to do.

Of course, long-term, this MI threshold needs to be auto-discovered. However,
4 has been working great for me for the last 5-6 years, so .. hey. It’s dataset-size
dependent, and all my datasets end up being as big as I can make them and still be
manageable.

Duplicate Cluster Names
OK, so, during merge, after 26 previous merges, we hit a merge of (‘###LEFT-WALL###‘,
‘:‘) which is reasonable, except that we’d already merged these two before, at iteration
12. So what is being merged now is presumably the left-overs of that earlier merge. Is
this sane? Is this a bug? Some details.

Previous: at round 12, merged‘###LEFT-WALL###‘, ‘:‘ from a start of ranked-MI
= 7.7349 MI = 4.1172.

At round 26, we merge (‘]‘, ‘:‘) because they have ranked-MI = 6.9107 MI =
8.5029. This apparently splits off enough of the colon that what is left over is now
similar to the left-overs from LEFT-WALL. (Although I’m confused? Didn’t the over-
lap merge pre-emptively remove all traces of similarity? So how did this come back?)

So, at round 27, we get ranked-MI = 7.0566 MI = 6.5282 for ‘###LEFT-WALL###‘,
‘:‘ and so these dregs get merged again. Surprise!

The confusion: the overlap merge should have clobbered the dot product, and left
the dregs completely orthogonal to the cluster. Because overlap merge means to sum
over all basis elements that are non-zero in common, which are the *only* basis ele-
ments contributing to the dot product. So, post-merge, the cosines should be exactly
zero. All three of them: the cluster should be orthogonal to each of the contributing
words, which are orthogonal to each-other. Further stripping out disjuncts from the
colon should not have changed it’s orthogonality to either the first cluster, or to the left
wall.

So it seems like we’ve got a bug somewhere. Is that correct? Is it possible that
connector merging brought these two back in parallel? Lets find out...

22

word-pair cosine overlap
###LEFT-WALL### : 0.3317 8.746e-4

class : 0.3584 0.0103
###LEFT-WALL### class 0.4809 9.610e-4

So some of the overlaps are tiny, but the cosine is huge! The only way this can
happen is if most of the disjuncts have very small counts, so that the vector length is
unaffected by them (these appear in the denominator of the cosine), while the overlap-
ping disjuncts are the ones with the high counts.

And indeed that is what happened! There are 56 entries in the overlap of left-wall
and colon, out of about 46K. All 56 of these are CrossSections. All have large counts.
All have Shapes involving a WordClassNode. Thus, although merger will orthogo-
nalize vectors, later connector merges can add back parallel components. Again: this is
a sheaf, and its got some kind of torsion or curvature. The connector-merge is a kind-of
parallel transport around a loop, and bends things around. I’m pretty sure this is the
right way to think about it, but actually writing out the formal mathematical details of
this would be quite the project. Almost surely a good exercise, as it will clarify what
the heck is going on, but .. a difficult one.

On with the show!

In-group Merge Results
Some early results. This uses quorum=0.7, so that a disjunct is placed in the cluster of
70% of the in-group shares that disjunct in common. The ingroup is selected according
to a bunch of hard-coded parameters in the code, see ‘cliques.scm‘ in the 12 Oct 2021
git tree for details.

in-group nwords top-rank-MI Q
- - 11.946

] ([* _ — + 7 9.1671 7.555
; , 2 9.1620 9.131

is was 2 9.0605 9.416
as that and but 4 9.0319 10.046

! " ###LEFT-WALL### . ? 5 8.9357 10.466
There I It He 4 8.8665 10.650

They She He It There 5 8.6036 10.675
from to in of 4 8.1951

’ ‘ “ 3 8.0408
this he a the his 5 7.9914
my her the his 4 7.8097

my this her a the his 6 7.8352

The Q reports the Q value defined up above. (its called ‘mmt-q‘ in the code). The
Q is that after the merge is performed. Thus, the first row is the initial Q of the starting
dataset.

23

There’s actually a bug in the code w.r.t. Q – because it is changing from merge to
merge, any cached similarity scores will use the old Q from earlier rounds. These will
no longer be correct for the new Q value, even though the MI is unchanged and the
logP marginals are unchanged. So we have to stop adding Q into the cached scores.
Ooops!

There’s another bug with voting. After an in-group is selected, as judged by MI,
it turns out that only a small number of disjuncts are shared by more than 70% of the
ingroup. Sometimes less than 1%! These are clustered, but then, out of what’s left, a
new very similar in-group is created, because the MI is still high. This is seen in the
last three lines of the table above, and also in the It-He lines in the table.

Heh. Now its stuck in an infinite loop, merging 0 sections each time around!
Solution would seem to be to kick out the most recent members from the in-group,

until at least 20% of the disjuncts of the smallest member are shared by all. The 20%
figure allows the smallest member to have five different word-senses (i.e. to belong to
five different clusters.)

We shall call this number the “commonality”, and request that the ingroup have a
minimal commonality. The code documentation explains this better than here.

In-group commonality
OK, so this needs further study. The failing in-group was ‘There‘ ‘It‘ ‘He‘ ‘They‘.
Initially, the following ranked-MI’s are observed: 2

There It He They
There 8.142 8.149 7.246 6.007

It 9.551 8.866 5.710
He 8.6763 5.969

They 6.938

After this, there are 5 rounds that merge as documented in the previous section.
At round 6, ‘He‘ ‘It‘ ‘I‘ ‘There‘ are merged, seeded by ‘It‘ and ‘He‘. At this time,

ranked-MI = 8.8665 MI = 4.9165 (‘It‘, ‘He‘) At this merge, approx 600 out of 6000
sections each are merged.

Round 7 is seeded by ranked-MI = 8.6036 MI = 10.873 (‘It‘, ‘There‘) and merges
‘There‘ ‘It‘ ‘He‘ ‘She‘ ‘They‘. Approx 20 sections each get merged, so this is already
a small number.

Round 8 is seeded by ranked-MI = 8.6293 MI = 10.875 (‘It‘, ‘There‘) and merges
‘There‘ ‘It‘ ‘He‘ ‘They‘ with less than 20 sections each contributing.

2Use this code:
(load-atoms-of-type ’SimilarityLink)
(define sap (add-similarity-api covr-obj #f "shape-mi")
(sap ’pair-count (Word "There") (Word "It"))

The first number is MI, the second is ranked-MI.

24

Round 9 starts with ranked-MI = 8.6296 MI = 10.878 (‘It‘, ‘There‘) and attempts to
merge ‘There‘ ‘It‘ ‘He‘ ‘They‘. The result of this attempt is zero sections contributing!
How is this possible?

If we stop there and look, we get:

There It He They
There 9.099 8.630 2.696 4.897

It 9.830 5.202 -3.004
He 8.292 2.590

They 5.672

The negative ranked MI at ‘It‘, ‘They‘ shows the problem. BTW, the regular MI is
-2.264 for these two. Recall that the ingroup is determined by stopping the addition of
members just before membership explodes. It says nothing about all of the members
in the in-group having to have a high MI. Perhaps it should?

Its clear that backing off the one word ‘They‘ will resolve the issue. It’s the one
halting progress. The quorum is set at 0.7, so majority vote requires b4×0.7+0.5c= 3
agreements. Obviously, none of these will come from ‘They‘, and so ‘There‘ ‘It‘ ‘He‘
would have to be unanimous. But they can’t be: they were already merged in round 7
and 8.

Conclude: we have two solutions: reject ingroup members with a negative MI to
other in-group members. Also apply the commonality requirement.

In-group merge results, restarted
As above, but restarting with a commonality of 20% and an absolute lower bound
of 1.0 for the ranked-MI. The Q value is the Q at the start of the merge. After the
merge is completed, Q is recomputed. Here, “kick” in the in-group column means the
last member is being kicked out. That is, in-groups start large, and then members are
kicked out until a suitable commonality is reached.

Here are the first four merges.

25

mrg in-group nwrd rank-MI Q overlap tot dj commonality
1 — + “ ” _ ’) 7 9.1671 11.946 106 42880 0.25%

kick) 6 181 40648 0.45%
kick ’ 5 107 38983 0.27%
kick _ 4 170 31074 0.55%
kick ” 3 644 18246 3.53%

1 — + 2 11.946 121 5014 2.41%
2 ; , 2 9.1620 5.506 14201 148717 9.55%
3 is was 2 9.0605 8.449 11776 46508 25.32%
4 but and that as 4 9.0319 8.851 3180 94563 3.36%

kick as 3 8829 83719 10.54%
4 but and 2 4842 55787 8.68%

Here are some merges further down the queue. Merge 18 appears to be the first one
accepting three items. If we had set commonality to 10%, then merge 4 would have
been the first.

mrg in-group nwrd rank-MI Q overlap tot dj commonality
18 could should will may 4 7.4589 10.908 1230 13959 8.81%

could should will 3 2617 12707 20.59%
19 are were had did 4 7.3664 10.912 1180 32338 3.65%

kick did 3 4666 29402 15.87%
19 are were 2 3436 14476 23.74%
20 there There 2 7.3611 10.922 210 6136 3.42%
21 There It This That 4 8.3244 10.951 115 4914 2.34%

kick That 3 409 4244 9.64%
21 There It 2 124 2732 4.54%
22 There She What ... 8 7.2281 10.950 34 12058 0.28%

kick When 7 71 10820 0.66%
kick We 6 91 9855 0.92%
kick This 5 45 8386 0.54%
kick They 4 71 7341 0.97%
kick You 3 196 5184 3.78%
There She 2 102 3639 2.80%

And still further down:

26

mrg in-group nwrd rank-MI Q overlap tot dj commonality
50 have had is 3 6.4826 11.228 452 29731 1.52%

have had 2 1 16896 0.01%
51 saw am took 3 5.6057 11.227 361 5112 7.06%

saw am 2 61 3761 1.62%
52 is used had ... 5 5.6081 11.230 8 26595 0.03%

kick still 4 15 24714 0.06%
kick nothing 3 338 23026 1.47%

52 is used 2 27 14055 0.19%
53 1 2 | 7.0466 11.226 219 2353 9.31%

1 2 216 853 25.32%
54 the whom which if ... 5 5.5613 11.226 52 100367 0.05%

kick what 4 122 96193 0.13%
kick if 3 1405 91768 1.53%

54 the whom 2 87 81711 0.11%

And again, further down:

mrg in-group nwrd rank-MI Q overlap tot dj commonality
95 H F 2 5.4067 11.374 110 519 21.19%
96 asked saying ”) 4 5.4208 11.373 4 14972 0.03%

3 55 12288 0.45%
96 asked saying 2 9 1474 0.61%
97 On on In during 4 4.9823 11.375 20 11105 0.18%

3 239 10517 2.27%
97 On on 2 120 9212 1.30%
98 S O 2 4.9756 11.374 38 634 5.99%
99 no been not nothing 4 4.9733 11.373 64 20906 0.31%

3 709 19476 3.64%
99 no been 2 30 7193 0.42%

100 didn’t didn’t took seemed 4 4.9436 11.372 64 3650 1.75%
3 384 2785 13.79%

100 2 351 1257 27.92%

Hmm. Thoughts about specific merges:

• There are some close shaves, e.g. merge 96 which proposes something ugly.
Then there’s merge 99 which doesn’t seem right. And there’s merge 100 which
is prettiest in its final form. Note that these are all late-stage merges.

• Merge 53 is due to some books including many tables.

General remarks:

27

• A commonality of 20% sometimes seems to high. Sometimes seems just right.
Worth trying 10% or 5%.

• A quorum of 0.7 is probably too high! Perhaps 0.5 would be better. That is, half
the members share at least 20% of traits.

• We want a quorum of the members to share a commonality of traits .. but the
relationship of both of these to the MI seems very unclear. These groups start
with very high MI, and yet, seem to have little in common. How is that? Is it
because we are counting commonality wrong?

• We are counting commonality by the number of disjuncts shared. But the MI
is computed by weighting high-count disjuncts highly, and low-count disjuncts
low. Is there a way to weight the commonality score likewise? But how, exactly?
How do we turn this into a scale-free number? The problem is that, by definition,
the count will be zero for some (this is how generalization happens.) I can’t think
of a worthy alternate variant of commonality.

Possible solutions:

• Looks like sometimes commonality drops as words are removed. This is is in-
teresting and .. useful. Seems like a good strategy would be to accept the largest
group before commonality drops! This is cool stuff!

• Perhaps it is time to reintroduce the noise floor, so that disjuncts with low counts
are swept up during the merge. ... DONE.

Sooo...

More In-group merge results
Again. Set quorum=0.5, commonality=20% and noise-floor = 4. The first five merge
results:

28

mrg in-group nwrd rank-MI Q overlap tot dj commonality
1 — + “ ” _ ’) 7 9.1671 11.946 83 14287 0.58%

kick) 6 160 13677 1.17 %
kick ’ 5 815 13152 6.20 %
kick _ 4 388 11162 3.48 %

1 — + “ ” _ 5
2 ; , 2 9.1620 3.762 3687 48332 7.63 %
3 is was 2 9.0605 7.036 4184 14950 27.99 %
4 but and that as 4 9.0319 7.483 4377 30763 14.23 %

kick as 3 3151 27116 11.62 %
4 but and that as 4
5 ? . LEFT-WALL to it :) 7 8.9357 8.143 54 75929 0.07 %

kick 6 354 75324 0.47 %
kick 5 2629 74470 3.53 %
kick 4 2051 65759 3.12 %

5 ? . LEFT-WALL to it 5

Clearly visible are two effects: the climb-back-up because commonality dropped,
and the much smaller total dj number, which means most dj’s really had a count of 4
or less. And we’re taking the vote away from them.

To be clear: the noise-floor says that any section with a count of equal or less
than the floor will be ignored during voting, and will be automerged, no matter what
the outcome of voting. (Perhaps we should have two distinct noise-floors: one for
adjusting counting, the other for merging?)

Nov-Dec 2021: The Big Merge
Ran a long-running merge. Working with Expt-9 as above, with the “final” merge algo
fully implemented and “debugged”, started a long-running merge sometime in Oct,
Nov and back-burnered it, kicking it along every now and then, monitoring progress.
Now its time to examine it and see what we got.

Some stats:

• Starting dataset was ‘run-1-t1234-tsup-1-1-1.rdb‘. This is copied to ‘run-1-
t1234-shape.rdb‘ and shapes are added. This is copied to ‘r9-sim-200.rdb‘
and the first 200x200 similarities are precomputed. This is copied to ‘r9-merge-
h.rdb‘ and similarities start being computed.

• Data file: ‘r9-merge-h.rdb‘ there’s also an earlier one with about 2/3rds the total
merges: ‘r9-merge-h-save1.rdb‘

• As above, parameters were quorum=0.5, commonality=20% and noise-floor =
4. AKA ‘(in-group-cluster covr-obj 0.5 0.2 4 200 100)‘ in the current code-
base per late-Oct mid-Nov git repo contents. This command was run maybe 20

29

or 30 times (??) by hand; each run was maybe 12 hours (??), I’d scan it, look for
obvious failures (there weren’t any), and then run it again. Each run picked up
where the last left off, and would run deeper.

• 18977 minutes total CPU (= 316 hours = 13 days) Of this time, 1988 minutes
spent in gc, or about 10.5%.

• 126 GB RAM resident (this grew slowly). The guile heap size is 7GB of which
6.7GB is free, so 387 MB in actual use. The RAM blowup is due to pattern
queries not being erased. (See below)

• Total of 124820805 atoms (thats 125M). RAM is 131717108 KB so thats 1.05KB/Atom
so that’s utterly normal.

• Most of the atoms are search queries that were not deleted! So that’s a bug. After
deleting the junk, have 7129235 atoms (that’s 7M), so very tolerable.

• 5190946 SimilarityLinks, (that’s more than 5M of them) so similarities between
approx 3222 words.

• 4467 MemberLinks and 1393 WordClassNodes.

General impressions: Glancing at output during run, can see just a handful of disjuncts
being peeled of each word, and getting merged. Often just one percent. Sometimes see
merges where 2/3rds of the disjunct of one word are merged with just a few percent of
the other words. Neither word class seems to be very desirable.

The last few dozen merges were ... curious. They were:

merged class Comments
line series synonyms

S Ap stray markup ?
$ 1.00 tables?
P 1.00 stray markup ?

1 1.00 B numbers
1.50 1 numbers

† 12mo tables?
\\\\\\\\\\\\\\\"that -- garbage punctuation

S Ag O Periodic table?
S R C 2 tables?

S 1 4 ?
S No W compass rose points?

Leewit captain fiction character title?

So these are not bad, but involve a lot of undue attention on stray markup. For the
’line series’ merge, the print says:

In-group size=2 overlap = 1 of 87 disjuncts, commonality= 1.15%

------ Assign: Merged 3 of 73 sections on `linè in 0.0 secs

------ Assign: Merged 1 of 17 sections on `series̀ in 1.0 secs

30

So although ’line series’ seems like a reasonable pair of synonyms, just a small handful
of sections are being peeled off of each one. The ’Leewit captain’ situation is a little
better:

In-group size=2 overlap = 3 of 37 disjuncts, commonality= 8.11%

------ Assign: Merged 19 of 25 sections on `Leewit̀ in 0.0 secs

------ Assign: Merged 3 of 31 sections on `captaiǹ in 0.0 secs

This has the “unbalanced” feel to it: most of ’Leewit’ gets merged into a handful of
sections on ’captain’, so that’s not very impressive.

Things worth exploring.
Great. So what have we actually got? Some questions about the dataset:

• Distribution: size of word-class vs. rank. This was previously examined in
“diary part one”, page 99, for a different collection of merge algorithms (and
earlier, different datasets). Do we still get something similar?

• Above, “size” might mean “number of words in the word-class” or it might mean
“number of disjuncts in word-class” or it might mean “number of disjuncts in
word-class with count weighting”. Oof. It would be nice to have a dashboard for
this, instead of lots of manual work.

• Distribution of word-senses. That is, how many words participate in more than
one word-class? If they do participate in more than one word-class, what is the
weight in each class?

• For words that belong to word-classes, what fraction of their weight remains
unassigned to any word-class?

• Distribution of MI of pairs of word-classes. We might hope that this is low, so
that different word-classes are different from one another.

• Distribution of self-MI of word-classes. One might hope that this is high, so
that the word-classes do not share much in common with other words or word-
classes.

• As above, but distribution of MI of pairs consisting of a word-class, and a word.

• Prior to starting the merge, there’s an MI between words and disjuncts. I don’t
recall examining that in detail, before. Then, after the merge, how does this
change?

That’s a lot of questions. Not clear which ones should be answered first.

31

Issues with the dataset
There are problems. Upon halt and reload of the dataset, the left-right partial sums are
not balanced. Total counts are off by a factor of two. This is a bug. Is it serious?

• Starting dataset was ‘run-1-t1234-tsup-1-1-1.rdb‘.

From diary part three, page 6, we had this as the starting point:

filename nwords ndisjuncts total pairs sparsity obs/pair MMT ent
run-1-t1234-tsup-1-1-1 15083 205003 855718 11.819 8.5462 16.352

The above is without shapes. With shapes, it was:

run-1-t1234-tsup-1-1-1 run-1-t1234-shape
nwords 15083 15083

ndisjuncts 205003 1043583
total pairs 855718 2777968
sparsity 11.819 12.468
total obs 22942644
obs/pair 8.5462 8.2588

MMT ent 16.352 18.222

But the file ‘r9-merge-h.rdb‘ shows

filename nwords ndisjuncts total pairs sparsity obs/pair MMT ent
r9-merge-h 16452 1110708 ? 14.491 20.836 18.246

The following differences are notable:

• This shows 16452-15083=1369 which is almost but not quite the number of word
classes, so wtf?

• The number of disjuncts is 1110708 - 1043583 = 67125 more of them. Seems
plausible.

• The reported pair count is inconsistent: 793550.0 817444.0

• Sparsity is about the same as the pre-merge value.

• Observations per pair is probably just wrong.

How does one recompute the reported stats, again? ... by running ‘marginals-mst-
shape.scm‘ aka ‘run/3-mst-parsing/compute-mst-marginals.sh‘

32

Expt-10 Merge exploration (Dec 2021)
The above generated a lot of confusion ... A number of bugs were found and fixed in
the merge code, and debugging continues. Once everything seems fully debugged and
stable, analysis of merge results will resume in the next part of the diary.

I did try restarting by copying ‘run-1-t1234-tsup-1-1-1.rdb‘ and recomputing
marginals. This solved nothing; the marginals (and the similarities) appear to be fine.
I’m currently using ‘r9-sim-200.rdb‘ for marginals plus the similarities for the top 200
most frequent words.

Objdump (Dec 2021)
And now for something completely different. So, this is a learning system. It should be
able to learn “anything”. This section describes a wild-n-crazy idea of pumping disas-
sembly through the system. Just to see what will happen. This might seem irrational,
and I don’t have any great hopes for it, but I’m curious to see ... what will pop out.

We’ll pump disassembled elf64 binaries through the system. Disassembly to be
done by objdump. It’s cleaned up a bit with split-objdump.pl in the run-common
directory. Yes, one could develop a very sophisticated graph of the control flow. This
won’t be done, as the short-term goal here is to see what’s possible with very little
effort, instead of building in complex a priori knowledge about what assembly is.

The End
This is the end of Part Four of the diary. The next part is Part Five.

33

