
Language Learning Diary - Part Two

Linas Vepstas

February-August 2021

Abstract

The language-learning effort involves research and software development to
implement the ideas concerning unsupervised learning of grammar, syntax and se-
mantics from corpora. This document contains supplementary notes and a loosely-
organized semi-chronological diary of results. The notes here might not always
makes sense; they are a short-hand for my own benefit, rather than aimed at you,
dear reader!

Introduction
Part two of the diary on the language-learning effort has three major sections. These
are summarized here. This part has been closed, and part three has been started (there
will be no further updates here.)

Experiments with random grammars. Feb-May 2021.

Attempt to run the full learning calibration pipeline on a randomly-generated grammar.
This pipeline creates a random grammar, creates a random corpus with this grammar,
runs the learning pipeline, learns a grammar, and then compares the learned grammar
to the original one.

The goal of doing this is to be able to perform “calibration”: by comparing the
input and output grammars for fidelity, we could explore the parameter space, and find
the best tuning for the learning pipeline. This sounds good in principle, it failed in
practice.

Doing this entailed numerous bug fixes and some new code to get everything work-
ing (so that’s a good thing). A bit of interesting mathematics popped up: merging is
a non-commutative operation. When merging words into a word class, one must also
merge connectors into connector classes. The initial idea was that merges can be done
as (quasi-)linear operations: Attached to each word is a vector, and creating a word-
class is as simple as summing vectors. Or possibly intersecting the basis elements, and
then summing only those parts where the basis overlap (thus, the quasi-linear merge.
This is needed, because non-overlapping vectors correspond to different word senses,
and we need for factor those out.

One might imagine that merging connectors is as simple as creating vectors for
those, the so-called “shape” vectors, and summing those. Because of how shapes

1

are created, one might think that one could merge words, then shapes, or first shapes
and only then words, and get the same thing. Not so: the merge operation is non-
commutative. The result depends on the order it’s done in. This is interesting, but
troublesome.

The goal of merging is to find two things that are similar, and then place them in
a common class. Since the “things” are word-disjunct pairs, one wishes to find some
unambiguous, unique way of merging them. This seems not to be the case: there
is some kind of “torsion” or “curvature” in the system. It’s not clear how to even
characterize this concept clearly. An unambiguous merge seems to be asking for some
kind of flattening or abelianization of the merge procedure. It’s not clear how to do
this.

Mathematically, the formalities are still opaque. The notation for word-disjunct
pairs is awkward. The notation for the linearizations are awkward. When I think about
linearization, it feels very geometric: as if one is working with some tangent space to
some manifold. But there’s no manifold, and the analogies quickly falter. Progress
requires a much clearer, a much more concrete description of what’s going on with this
network.

The experiments ended with confusion. Besides the above non-commutative as-
pect to merging, it became clear that many different initial grammars are effectively
equivalent, in that they generate similar, if not identical corpora. Thus, the naive idea
of calibration fails: one can’t just learn the input grammar; at best one can learn the
class of that grammar. But, as of now, we don’t have any clear way of defining a “class
of equivalent grammars”, or more broadly, “a class of very similar grammars”.

A secondary problem was that the random grammar didn’t resemble a natural lan-
guage grammar. That was not the intent. It was hoped that by picking a Zipfian dis-
tribution of vocabulary words, a Zipf distribution of disjuncts, throwing in some syn-
onyms into the mix, the result would resemble a natural language. This was not the
case. Despite having done a lot of distributional studies of English, it seems that I still
don’t know how to characterize a natural language very well. I don’t know how to
measure the complexity of a grammar, or the complexity of a corpus. There are formal
questions: how can one tell when two grammars are isomorphic? Almost isomorphic?
There are practical questions: what is the best way to factor the word-disjunct matrix?

In the end, it all got muddy, with now easy, obvious way of moving forward.

Back to English. July 2021

The advantage of working with English is that one can develop a gut-feel as to whether
one is making progress. It’s hard to look at a random grammar, and decide “does that
make sense?” So, back to English. Earlier English experiments went so swimmingly
well, that surely moving forward should be easy!

An embarrassing problem was immediately encountered: Setting the merge thresh-
old at some apparently innocuous value, that would result in similar words getting
merged immediately resulted in chaos and failure. This is very unlike the earlier exper-
iments, where things went quite very well. Something went wrong. What is it?

Well, several things.

2

• Merging requires a merge threshold. Earlier experiments searched for this thresh-
old carefully, and then applied it. Here, we complacently picked one, based on
past experience and gut-sense, and it was set too low.

• Earlier merges used an overlap strategy, of assuming that similar words might
have different disjunct sets just because some words were just too thinly sampled,
to have seen such disjuncts. This seems like a good idea, but is perhaps naive. If
one word-disjunct pair has been observed 100 times, and given another, similar
word, that word-disjunct pair has been observed zero times, well, that might
not be due to under-sampling. 100 is really different than zero, and assigning a
fraction of the 100 to the merge cluster is perhaps a bad idea. There is a semi-
formal proof that merging in this way will always reduce the MI. So if the goal
is entropy maximization, the overlap merge strategy is a bad idea.

• Some confusion regarding the above ensues. The MI between words is explored,
and compared to the MI between merged classes. After a lot of work, it really
does become clear that overlap merging always makes grammatical class MI’s
worse, and that a pure intersection merge always maximizes MI.

• It was expected that using Shapes would improve similarity scores. After some
work, it seems that this is not the case - they mostly seem to make things worse.
It’s not at all clear which this is so. Shapes should have helped, but they don’t!

• To keep calculations relatively fast, trimmed datasets were used. It now seems
that trimming damages the data. This is still a problem. Trimming seems like it
should help learning, but again, it seems like it doesn’t. The causes of this are
still not intuitively clear.

The biggest thing that went wrong was that, when using MI as a measure of similarity,
some rather dis-similar words had a high MI. How can that be? Turns out that if one
compares a very large vector (a word with lots of disjuncts, i.e. a word with a large
support) to another word with a very short vector (a word with only one disjunct, for
example), the result can be a very high MI. Yet this is obviously not what we want:
short vectors should not be similar to long vectors. This prompts an exploration of
other kinds of similarity measures.

Similarity Smackdown, July-August 2021

The poor merge results prompted a step back, to judge different similarity measures
(metrics). Twelve ad hoc “part of speech” clusters were defined. They were ad hoc
in the sense of being hand-picked out of the first few thousand words with the highest
observation counts. The various similarity measures were used to computer the inter-
cluster and intra-cluster similarity. The quality of the metrics was assessed based on
their ability to discriminate between clusters, by taking the ratio of the RMS sizes of
the clusters to the RMS cluster separations. Higher discrimination is judged as being
better.

Nine different similarity measures were evaluated:

3

• Mutual information

• Joint probability

• Variation of information

• Normalized variation of information

• Cosine distance

• Log cosine distance

• Vector overlap (plain Jaccard)

• Conditional Jaccard distance

• Probability Jaccard distance.

These were compared one datasets with and without shapes, at seven different levels
of trimming (so, 14 datasets total). The results were as follows:

• Trimming is consistently deleterious to results. However, using the full dataset
blows up both RAM and compute time. The best compromise, for the given
datasets, appear to be to discard all words that have a small number of observa-
tion counts, and to discard sections with an observation count of less than two.

• Shapes mostly fail to improve similarity measurements, for any of the simi-
larity measures. Using shapes makes all vectors more similar (smaller RMS
intra-cluster, but also smaller RMS inter-cluster). The overall effect of shapes is
mixed: they seem to improve things only for highly-trimmed datasets. Given that
shapes add a large computational burden, they seem to offer no benefit. (They
sharply increase the amount of time needed to compute similarity, and can triple
the RAM usage.)

• The best overall similarity measure was vector overlap. Second place overall
goes to Conditional Jaccard (which uses probabilities in the Jaccard min/max
formula) Third place goes to Probability Jaccard. MI is consistently in fifth
place.

A few comments. Although the motivation for these experiments was the large MI
between short and long vectors, the experiments actually eliminated short vectors. That
is, the hand-picked clusters consisted of words with relatively high counts, and thus
relatively long vectors.

The failure of Probability Jaccard to dominate is also surprising. The Wikipedia
article explains that it is in some sense optimal: it provides “maximally consistent
sampling”. This appears not to help us. It is also very computationally intensive; its
the slowest similarity measure of all.

4

February 2021 - Closed Loop Calibration
Part two of the diary on the language-learning effort starts with the new task of of closed
loop learning. The idea of closed loop learning is that the accuracy of the learned
grammars can be very closely monitored and measured, thus allowing the learning
algorithms to be tuned for speed and measured for accuracy. The closed loop is a basic
five-step process:

1. Generating random but controlled grammars

2. Generate a text corpus from these grammars

3. Learn a new grammar from the corpus

4. Compare the controlled-grammar to the learned-grammar

5. Tune algorithms and procedures, and repeat.

The step-by-step instructions can be found in the file “README-Calibration.md”.

February 2021
Restart the project, finally making some headway. ToDo items:

• Describe how the “uniform random sampling of sentences” is performed.

• Enable weighted random sampling of sentences.

• Fix multi-sense bug in gen-dict.scm circa line 85

First run. Instructions in “README-Calibration.md”. Lots and lots of bugs fixed and
lots of pipeline was automated.

March 2021
First real experiment, in expt-7/expt-8/expt-9. The dict in expt-7 fails to generate the
correct corpus, because the generator does not expand synonyms (this is a combinato-
rial explosion and it just doesn’t do that.) Expanded by hand in expt-8. Same data, new
scripts and config in expt-9.

Issues:

• After MST parsing, the grammar is correct, in that (I think) it will produce ex-
actly the same corpus. However, the rules are different (and more verbose).
TODO: check that the same corpus is actually produced. How? Answer: gener-
ate the corpus, and compare...

• After MST (MPG) parsing, the verbs link to obj-determiner instead of object.
Why? Was there a cutoff that was missed? The corpus is just .. tiny.

5

• After (gram-classify-greedy-discrim 0.5 4) the right clusters are produced, but
the connectors are not clustered; they need to be. TBD.

• Result: the correct corpus is produced (via manual checking), however, extra
sentences are produced, which are missing the verb. This is because the wall
links to the two determiners, and the wall can be skipped. However, the sentence
with the verb has a higher MI. (11.51 instead of 8.92. See below.) This is due to
a bug. See below.

Here’s the result:

linkparser> the squirrel a dog

Found 1 linkage (1 had no P.P. violations)

Unique linkage, cost vector = (UNUSED=0 DIS=-8.92 LEN=2)

+-----------TB-----------+

+---TB---+---TE---+ +-TE-+

| | | | |

LEFT-WALL.2 the.1 squirrel.3 a.1 dog.3

linkparser> the squirrel saw a dog

Found 1 linkage (1 had no P.P. violations)

Unique linkage, cost vector = (UNUSED=0 DIS=-11.51 LEN=4)

+--------------TB--------------+

| +-----TC-----+

+---TB---+---TE---+---TF--+-TD-+-TE-+

| | | | | |

LEFT-WALL.2 the.1 squirrel.3 saw.4 a.1 dog.3

Hypothesis: The MI of wall-verb is lower than the MI of wall-determiner. Thus,
the planar parser always picks the wall-determiner. Lets find out.

Heh. There is no MI wall-verb! Ouch. This was due to bad sampling; fixed
github.com/opencog/opencog commit 895226228 Mar 16 2021. Sheesh.

Expt-10
expt-10, this is fixed. The parse trees are now very rich. Generated sentences:

• length 4 - none

• length 5 - the expected ones.

• 6 - LEFT-WALL LEFT-WALL plus valid sentence

• 7 - none

• 8 - LEFT-WALL the mouse saw the dog chased a bird

6

• 9 - double left wall

• 10 - the LEFT-WALL a cat saw the dog chased a squirrel – and also a triple-left-
wall.

WTF. what’s with the crazy multi-left-wall!? Heh. Here we go:

+---------------------TI-------------------+

+------------------TB-----------------+ |

| +------TI-----+ | |

| +---TB--+--TC-+--TO--+-TE-+-TC-+

| | | | | | |

LEFT-WALL.2 LEFT-WALL.2 a.1 mouse.5 saw.3 a.1 cat.5

Expt-11
So... expt-11 places a period at the end of every sentence. That terminates the infinite-
recursive lengths being generated to only finite-length sentences. There is a total of
three different parses. All have exactly the same cost. These are as follows:

Found 3 linkages (3 had no P.P. violations)

Linkage 1, cost vector = (UNUSED=0 DIS=-15.67 LEN=10)

+-------------------TH-------------------+

| +------------TJ-----------+

+------TG------+ +----TE----+

+---TF---+--TD-+---TI--+--TC--+--TD-+-TJ-+

| | | | | | |

LEFT-WALL.2 the.1 dog.3 chased.4 the.1 cat.3 ..5

Linkage 2, cost vector = (UNUSED=0 DIS=-15.67 LEN=11)

+-------------------TH-------------------+

| +------------TJ-----------+

+------TG------+------TB------+----TE----+

+---TF---+--TD-+---TI--+--TC--+--TD-+-TJ-+

| | | | | | |

LEFT-WALL.2 the.1 dog.3 chased.4 the.1 cat.3 ..5

Linkage 3, cost vector = (UNUSED=0 DIS=-15.67 LEN=12)

+-------------------TH-------------------+

| +------------TJ-----------+

| | +--------TK-------+

+------TG------+ | +----TE----+

+---TF---+--TD-+---TI--+--TC--+--TD-+-TJ-+

| | | | | | |

LEFT-WALL.2 the.1 dog.3 chased.4 the.1 cat.3 ..5

7

Notable in the above:

• Only one parse, the third one, links the main verb to a wall. And then its the right
wall, not the left wall.

• The determiners seem to be over-linked, and judged to play a too-important role.

• The output grammar is much more highly detailed and constrained than the in-
tended grammar.

Questions:

• What happens if there are a lot more verbs? Would this make the determiners
less important, more important, or have no effect? (My guess is “no effect”)

• To downgrade the importance of determiners would seem to require having sen-
tences without them in it.

TBD:

• Waiting on completion of link-generator so that multiple-sense corpora can be
generated. (enabled in lg pull req #1175) Or something like that ... what is the
right strategy here? Need to rethink to avoid combinatorial explosion, while also
verifying category contents.

• Fix bug to allow multiple-sense word definitions in multiple dict locations.

• Dict generation should auto-handle placing a period at the end of the sentence.

Expt-12
Start work on a single-sense random dictionary. Hit assorted issues with the scripts.

Results:

• non-classified dict has 134391 disjuncts, 11 uni-classes including left-wall. These
are raw disjuncts.

• classified dict (i.e. that on which grammatical classification has been performed)
has 11286 disjuncts

Time to generate 50 sentences, and all possible sentences, in seconds.

8

length time for 50 time for all num sents
3 3 3 108
4 3 3 779
5 4 4 7107
6 5 8 67935
7 13 31 673812
8 43 370 6855920
9 140

10 638
11 963
12 2180
13 3364
14 5850

Data is semi-meaningless, scripts were broken, data processing would start before
data was fully loaded. Try again. Upon restart, the number of sentences generated
is order of magnitude lower. Presumably due to corrected clustering; above clustered
incomplete lists of disjuncts and thus over-generalized.

Expt-13, expt-14, expt-15
Try again with the same initial corpus. Expt-13 overflowed with fake warning message,
so I couldn’t see the log; thus expt-14 is an exact rerun. “Exact” in the sense of using
the same config. However, the random sampling of pairs during pair counting was
different.

Then expt-15 uses exactly the same corpus, with a period at the end of sentence
placed manually.

Columns:

• length: length of sentence

• time to generate all sentences, in seconds (expt-13)

• num: number of sentences generated (expt-13)

• expt-14: number of sentences generated

• corpus: number of sentences in input corpus. Capped at 25K sentences for the
longer sentences. Second number is how many could have been generated.

• expt-15: redo, but with a period at the end of the sentence.

9

length time for all num expt-13 expt-14 corpus expt-15
3 3 19 21 10 24
4 2 142 163 23 104
5 2 1130 1356 75 485
6 2 9732 12090 254 2294
7 5 86872 111633 892 10845
8 13 794320 1054583 3402 51673
9 143 7393748 10134151 12728 248242

10 2558 69781807 98702133 25000/48364 1198418
11 25000/187541 5807783
12 25000/733525 28246686

Expt-13 and expt-14 differ only in how the pair-counts were collected (they are
randomly different samplings of pairs). Both wildly over-sample the corpus.

The expt-13/14 input corpus lacks periods at the ends of sentences. This seems
to be the most likely explanation for the over-generation; i.e. last time a period was
lacking, the same thing happened. So expt-15 takes exactly the same corpus - identical
copy, and adds a period. This does sharply cut down on the number of sentences,
especially the long ones, but still over-generates.

General processing stats:

expt-14 expt-15
time, pair-counting 109 minutes 107 minutes

pair aid 236/293 259/318
pair dimensions 11 x 10 11x10

pair counts 27367456 29988408
pair sparsity 0.0 0.0
pair entropy 5.96=2.90+3.06 6.14=3.08+3.08

pair MI 0.0014 0.012
time, mpg-parsing 12 minutes 19 minutes

mpg aid 246691 201594/298813
mpg dim 11 x 111712 12 x 97203

mpg counts 1067417 1159801
mpg sparsity 3.19 3.49

mpg MM^T support 134663 104049
mpg MM^T count 2341493237 9220550155

mpg MM^T entropy 2.95 0.232
gram dim 3 x 103552 4 x 92299

gram count 880090 1080580
gram sparsity 1.60 2.46
gram entropy 11.58=11.30+1.09-MI 8.83=8.75+1.15-MI

gram MI 0.806 1.08
dict records 102644 67140

10

Issues:

• There seems to be a dataset issue: both the disjunct pairs and gram pairs have
1/3rd of them without counts on them. .. They are not being saved, after clus-
tering (clustering causes deletion of many disjuncts, and alteration of counts on
all disjuncts.) I’m guessing this failure results in bad MI’s? Anyway, its a bug is
fixed in the new clustering shell scripts.

After above fix, verify export. gram-1 is a re-export of the original expt-13 run, while
gram-4 is export of the fixed run. (Both start with the same disjuncts. I think there’s
nothing stochastic/random during processing, so it should be repeatable...)

expt-13/gram-1 expt-13/gram-4
gram dim 3 x 103325 4 x 111320

gram count 881340 939886
gram sparsity 1.60 1.92
gram entropy 11.57=11.29+1.09-MI 11.89=11.61+1.17-MI

gram MI 0.806 0.894
dict records 101922 117807

So .. similar but not the same. How about sentence generation? expt-13-gram-1 and
expt-13-gram-1a are identical (the 1a version is from a re-export; so we’re exporting
the same stuff).

The classes in gram-1 are <b f> <e j> and left-wall. The classes in gram-4 are the
same plus <i#uni> ... there was no word i in gram-1 !! Wow, that’s a big drop.

length time for all expt-13-gram-1 expt-13-gram-4
3 3 19 19
4 2 142 163
5 2 1130 1414
6 2 9732 13147
7 5 86872 125527
8 13 794320 1225346
9 143 7393748 12156101
10 2558 69781807 122141737

OK, so the numbers are dramatically larger. Apparently, this is due to the previously
dropped word i. Yikes!

Well, the above is massively under-counting – it is only sampling one random word-
draw per class. Since multiple words are in each class...

... anyway, this is nuts, because the connectors need to be classified, instead of
issuing new connector types. So more work before something meaningful is possible.

11

expt-13 vs expt-15 precision, recall
So now that we’ve got things working, lets look at precision and recall. Clearly preci-
sion will be terrible, but maybe recall will be excellent? Compare expt-13-gram-4 to
expt-15-gram-2 (which rebuilds after fixing the borked save.

Uhh .. No its not working yet, in the sense that the connector classes are being
mishandled. Those need to be grouped correctly before export. More work...

expt-16
Due to absence of left-wall in the above, breaking the dict-compare step, tried again,
generating a new dict with walls (after manually adding a wall to the dict of expt-15,
and ending punctuation to the dictionary.) Well ... clustering worked quite differently.
Here’s a summary.

Pair counting seems to be more-or-less the same, slightly higher MI=0.030 which
is still minuscule. MPG entropy, counts etc. look similar to the earlier runs.

Gram classification: only 2 words assigned to the same class. Oh, this used the
“disinfo” classifier, whereas the earlier runs used the “fuzz” classifier. That could ac-
count for everything, I guess. Lets take a look.

disinfo 3.0 4 discrim 0.5 4 fuzz 0.65 0.3 4
gram dim 11 x 75552 7 x 75667 7 x 75667

gram count 1011444 951215 960646
gram sparsity 3.37 2.77 2.77
gram entropy 11.48=10.01+3.15-MI 10.38=9.94+1.90-MI 10.45=9.91+2.06-MI

gram MI 1.68 1.46 1.52
dict records 80460 77735 77750

Clearly, the resulting clusters are sensitive to the parameters controlling classifica-
tion. The above parameters seemed reasonable for the large English dataset. They may
be unreasonable here!? But this is very unclear.

The MI’s are larger, across the board (vs. 0.8 or 0.9 before.) How about sentence
generation? We expect disinfo to be more accurate, since it did very little clustering.

length time disinfo disinfo time discrim discrim
3 61 60 3 18
4 67 523 3 107
5 131 5217 3 752
6 137 51368 3 5371
7 183 488376 5 37923
8 715 4514440 8 268248
9 37 1909447

10 262 13616410

12

Again, the discrim is under-counting, because of more categorization.
Next step: fix the conjoined clustering, with shapes.
Wow. So MM^T entropy with shapes is 5.03 which is huge compared to the dj-only

MM^T so it really is something new and different! With shapes, and with gram-disinfo,
there were no merges.

disjunct disinfo 3.0 4 shape disinfo 3.0 4
MM^T MI 5.03
gram dim 11 x 75552 12 x 75552

gram count 1011444 1015356
gram sparsity 3.37
gram entropy 11.48=10.01+3.15-MI 11.50=10.02+3.18-MI

gram MI 1.68 1.69
dict records 80460 80807

OK, so looks like shape created no categories at all. So how does that work out for
generation?

link-generator -l learned -c 123123123 -s 3

length corpus time for all expt-16-shape
3 4 38 61
4 21 69 566
5 50 147 5638
6 179 124 55546
7 621 172 531075
8 2246 642 4937036
9 8850
10 > 25K

OK, so wildly over-generating sentences, despite effectively no clustering being
done. Didn’t we do an experiment without clustering?? I can’t find it above. Why are
we over-generating? How to best explain it? Too small a vocabulary?

• Issue 1: given a fake-lang the generator is failing to generate all possible sen-
tences. Fixed in link-grammar pull req #1175

• Issue 2: there are “accidental” synonyms cause of 1 above: many POS’es are
shared in common between many words but are not completely sampled, thus
creating “accidental synonyms”.

OK, so back to that one, except this time, its in the shape of a bug...

13

Sections and disjuncts
The Sections that were learned in expt-16 have a surprising number of connectors on
them, averaging at 7.7 connectors per section. This seems way too large. What’s up
with that? Step one: get a more detailed view.

column 1 length

column 2: number of Section

column 3: number of ConnectorSeq

#

1 0 0

2 606 115

3 2311 780

4 3723 1904

5 5150 4066

6 8387 8183

7 13907 13896

8 17362 17362

9 15043 15043

10 9061 9061

11 4000 4000

12 1257 1257

13 0

So ... long disjuncts appear on one and only one word (as witnessed by identical counts
for length 8 and above). Short disjuncts might be shared with multiple words. This
implies that words are not mergeable, or rather, the distinct long sections are preventing
merger. Here a graph of above.

 100

 1000

 10000

 0 2 4 6 8 10 12 14

N
u

m
b

e
r

o
f

S
e

c
ti
o

n
s
/D

is
ju

n
c
ts

Length of Disjunct

Number of sections/disjuncts of given length

Sections
ConnectorSeqs

exp -(x-8)
2
 / 7

So its very Gaussian, both peak and tails. All these gaussians here and in earlier

14

results imply that central-limit theorems hold. And all kinds of other classical theorems
should hold. Have not been leveraging those theorems, so far. If we did, what would
we get? Note it’s Gaussian despite the fact that negative connector-seq lengths don’t
make sense! Right? What would a negative connector-seq length be? A repulsion? an
anti-connect statement? “Must never connect”?

What happens if we exclude Sections with a low observation count?

 100

 1000

 10000

 0 2 4 6 8 10 12 14

N
u

m
b
e
r

o
f
S

e
c
ti
o
n

s

Length of Disjunct

Number of sections of given length

All Sections
Sections w/count > 4

The above shows all sections, and sections that were observed 5 or more times.
Apparently, the long, complicated disjuncts are observed very rarely.

How should this be interpreted? Common sense seems to suggest that low-count
observations are “noise” and should be cut before any merging is performed. Doing so
will certainly increase the similarity of vectors. But are cuts really needed? Perhaps
the similarity measures can already deal with these? If so, then the only reason for cuts
would be performance, rather than accuracy.

How do these affect cosine-similarity vs MI-similarity? Clearly, for cosine-similarity,
low counts means short vector components, and so these will not contribute much
to the dot product. Likewise, the MI-similarity is built on a dot-product, so again,
these should not contribute much. Even more-so, since the MI-similarity never takes a
square-root of the dot product. It does, however, re-weight basis elements in a fashion
that I do not yet have a good intuition for. (Or rather, developed an intuition, and now
I’ve forgotten what it was... Hmmm.)

TODO: The Shapiro–Wilk test can be used to determine how close a distribution is
to a Gaussian. The Wikipedia article on it is as clear as mud.

April-May 2021
Before starting expt-17 with fixed sampling, it is time to ponder connector merging.
This is turning out to be non-trivial. The general upshot of the below is that the original
2019 concept for Shapes and CrossSections is a good, strong idea. However, assorted
non-commutativities arise, and how to resolve them appropriately is not entirely clear.
Thus, we embark on a journey of discovery...

But first: connector merging is needed because without it, the clustering fails to
adequately reduce the size of dictionaries. The meta question is this: if words A and
B are determined to be near-synonyms, and assigned to the same cluster, then what

15

should be done with connectors that have A or B in them? Should all such connectors
be automatically replaced by the cluster? The naive answer is, “yes, they should be”.

The less-naive response is “but multiple word-senses”. That is, A and B are not just
words, but are word-vectors, and vector B may be a linear combination of two different
word senses. One of these senses might be synonymous to A, and the other might be
completely different. Thus, we want to merge that part of vector B that is (nearly) co-
linear with A, while leaving behind a different vector B-prime that is associated with
some other word-sense for the word B. When encountering B in a connector, is that
B in the sense of wordclass-AB, or is it in the sense of B-prime? If the former, then
obviously, that connector should be updated to use wordclass-AB; otherwise, it needs
to be left alone, thus implicitly defaulting to B-prime.

TBD: Writing the above, it appears that the need for an explicit B-prime has been
overlooked. This could cause havoc, in allowing inappropriate linkages! This is im-
portant, and needs to be addressed ...

Connector merging
Some of the questions that arise with connector merging, to figure out:

• How would connector merging affect clustering results?

• If connectors are merged, then how should vectors be handled? (Naive vectors
no longer work, because the basis is now different.)

• What is the best or most correct merge algorithm?

Lets look at a toy model. Suppose the dict is

A: C+ & D+

B: C+ & D+

C: A- & E+

C: B- & F+

D: A- & G+

D: B- & G+

From this, conclude that A and B can be merged. However, the connectors on C cannot
be merged, the connectors on D can be merged. The final dict is then (with some abuse
of notation)

<wclass-AB>: C+ & D+

A B: <wclass-AB>

C: A- & E+

C: B- & F+

D: <wclass-AB>- & G+

Next suppose that we have

16

S: C+ & D+

T: C+ & D+

C: S- & J+

C: T- & F+

D: S- & H+

D: T- & G-

The determination to merge is now trickier. Naively, S can be merged into <wclass-AB>
but doing so would wreck the connector set on D, as it implies an (S- & G+) which
was not observed, and thus not mergeable. ... unless we are willing to create such new
unobserved cases.

Merging T looks OK.
Perhaps this looks bad because we are not doing shape vectors. The shape vector

for the above would be:

A: (C+ & D+) or (C:x- & E+) or (D:x- & G+)

B: (C+ & D+) or (C:x- & F+) or (D:x- & G+)

C: (A- & E+) or ...

C: (B- & F+) or ...

D: (A- & G+) or (A:C+ & x+)

D: (B- & G+) or (B:C+ & x+)

So the decision to merge A and B is less clear-cut, when using shapes (they are not
perfect synonyms). The shape variant of the S thing is

S: (C+ & D+) or (C:x- & J+) or (D:x- & H+)

T: (C+ & D+) or (C:x- & F+) or (D:x- & G+)

D: (S- & H+) or (S:C+ & x+)

D: (T- & H+) or (T:C+ & x+)

So using shapes weakens the decision to merge S into AB. The decision to merge T
remains strong. So it seems that shapes do offer a stronger foundation on which to
make merge decisions. They examine similarity (almost-synonymy) out to a greater
distance from the germ. It seems like they also allow things to continue to be treated
as vectors, instead of muddling the concept of vectors. After the AB-merge1 the result
would be:

<wclass-AB>: (C+ & D+) or (C:x- & E+) or (C:x- & F+) or (D:x- & G+)

A B: <wclass-AB>

C: A- & E+

1When using the “union-merge” strategy, as described in in src/gram-projective.scm. In practice,
the merge style used is typically merge-project, which would accept only a fraction of (C:x- & E+) and
(C:x- & F+) into the final vector.

17

C: B- & F+

D: (<wclass-AB>- & G+) or (<wclass-AB>:C+ & x+)

Now, given this merged-AB thing, when happens when we look at merging S? Well, S
is meh, T looks better. The vector for T is comparable to the vector for <wclass-AB>
so vector similarity works for that merge decision.

Conclude: the original plan from a few years ago works and holds water. Use shape
vectors for merge decisions. Once this is done, connectors can be swept up.

Non-commutativity
The above description pulls a sleight-of-hand, which presumes an algorithm that is able
to crawl across individual disjuncts, compare them, and update words with merged
word-classes. Such an algorithm can be written (and has been written/prototyped). It
leads to some confusion, because the shapes/cross-sections are no longer consistent.
Lets call the above the “connector sweep algorithm”, or “sweep” for short.

Starting with the above example:

<wclass-AB>: (C+ & D+) or (C:x- & E+) or (C:x- & F+) or (D:x- & G+)

the sections can be reconstructed from the cross-sections. The reconstructed sections
are

C: <wclass-AB>- & E+

C: <wclass-AB>- & F+

D: <wclass-AB>- & G+

Comparing, the reconstructed section on D is the same as what the sweep algo pro-
duced, but the sections on C are *not* what the sweep merge offers. That is, the sweep
is not commutative with the creation of shapes. This is a problem for maintaining the
consistency between sections and cross-sections as clusters grow. The lack of consis-
tency will cause merge judgments to diverge...

Thus, we have at least two algorithms:

• Sweep-merge, as described above, where connectors are replaced by merged-
connectors if and only if the the rest of the connector set is identical. This merge
algorithm is naively described, since it does not explain what to do if there are
multiple connectors in a connector set that might be merged. It’s also naive in
that it does not explain how counts (frequencies) are to be handled.

• Reshape-merge, which performs the basic projective merge on the germ-vectors,
and then reconstructs Sections from CrossSections, thus restoring consistency
between sections and cross-sections. It violates the intuitive correctness of the
sweep-merge, but only perhaps because the sweep-merge, as naively described
above, assumed the “union-merge” strategy of transferring observation counts
for vectors that are not perfectly co-linear. The projective-merge count transfers
recognize the non-colinearity, and obtain cluster centroids through weighting
formulas.

18

The above ruminations suggest that reshape-merge enjoys an advantage over sweep-
merge, as it keeps the section/cross-section duality consistent.

Anyway, the original 2019 plan for using shapes seems to have been a good plan.

Non-Commutativity, Again
The non-commutativity can be heightened with a slightly richer example. Consider

A: (P+ & Q+) or (R+ & S+) or (K- & B+)

B: (P+ & Q+) or (R+ & S+)

C: B- & T+

The dictionary entry of C is present to remind us of the fact that, if B+ appears as a
connector, then B- must also appear as a connector, somewhere.

Based on the first two sections, a decision might be made to merge, with the count
on (K- & B+) being small enough that it does not disrupt the merge decision. Ex-
panding this into it’s CrossSections, the full vectors are:

A: (P+ & Q+) or (R+ & S+) or (K- & B+)

B: (P+ & Q+) or (R+ & S+) or (K- & A:x+) or (C:x- & T+)

The merge result is then

<wclass-AB>: (P+ & Q+) or (R+ & S+) or (K- & B+)

<wclass-AB>: (K- & A:x+) or (C:x- & T+)

The cross-section leads to a reconstruction (reshape) of

A: K- & <wclass-AB>+

C: <wclass-AB>- & T+

How is this to be interpreted? Let’s explore some “common sense” reasoning.

Case A: The count on (K+ & B+) is so small that it is considered to be noise, and
is completely dropped before merging even starts. In this case, A and B are exactly
co-linear (are exact synonyms). The (naive) merge of A and B is completely unprob-
lematic, except that it leaves C without the ability to connect to anything. This can be
handled in one of two ways. One way is to notice that, by detailed balance, the counts
on this particular C section must also be tiny, and so this section can be dropped from
the dictionary.

Another way to avoid this dangling-connector problem is to presume that the dic-
tionary also includes

D: L- & B+

which would provide a place for that bar B to connect. but if this were the case, then
we did the cross-sections on B wrong. Fixing these would have given

<wclass-AB>: (P+ & Q+) or (R+ & S+) or (K- & B+)

<wclass-AB>: (K- & A:x+) or (C:x- & T+) or (L- & D:x+)

which then reshapes to

19

A: K- & <wclass-AB>+

C: <wclass-AB>- & T+

D: L- & <wclass-AB>+

This is now fully linkable, and there are no dangling pure-B connectors.
In conclusion, this seems self-consistent either way: either we can drop the A:(K+

& B+) section entirely, and, by detailed balance, we can drop D:(L- & B+) also; or
we can keep both, and doing it correctly leaves nothing dangling.

Note that we have to be careful with tracking in the merge algo: when reshaping to
get the C:<wclass-AB>- & T+ section, we have to be careful to notice that the C:B-
& T+ section was a donor, and so it should be removed (its counts driven to zero).
Otherwise, C would end with both these sections on it, and it would be a bit wonky.

Case B: The count on (K+ & B+) is small but not ignorable. It is small enough to
not block the merge decision. There are two issues to resolve. The first is easy: the
C:B- & T+ section should be recognized as a donor to C:<wclass-AB>- & T+, and
removed (its counts driven to zero). This is easy enough to determine at the time of the
merge.

The more difficult issue is what to do about the <wclass-AB>:(K- & B+) sec-
tion, which appears to have a dangling B connector, and the reshape of A:(K- &

<wclass-AB>+), which seems to be a double-count. The first leaves a dangling A,
the second leaves a dangling B. It seems fairly clear that these should be harmonized,
merged together, to give <wclass-AB>:(K- & <wclass-AB>+). It seems that this
can be reasonably inferred and performed at the time of creation, since the donors are
readily identified.

Case C: The count on (K+ & B+) is large, large enough to split. That is, A should be
understood to be the direct sum of two distinct word-senses, with one word-sense being
<wclass-AB> and the other being <A-prime>:(K+ & B+). So, if were were able to
be absolutely sure that A-prime was really a distinct word-sense, then we should trans-
fer none of the counts from the originating section A:(K+ & B+) to the <wclass-AB>
section.

So, starting with the vectors

A: (P+ & Q+) or (R+ & S+) or (K- & B+)[n]

B: (P+ & Q+) or (R+ & S+) or (K- & A:x+)[n] or (C:x- & T+)

where square-bracket-n is the count on that section, we create a merge result of the
form

<wclass-AB>: (P+ & Q+) or (R+ & S+)

<wclass-AB>: (C:x- & T+)

<A-prime>: (K- & B+)[n]

B: (K- & <A-prime>:x+)[n]

The cross-sections leads to a reconstruction (reshape) that appears to be self-consistent,
so I don’t see any problems here.

If we were to split [n] into some fractional parts, then this would reduce to a com-
bination of case B and the current case, so that should also work.

20

Connector counts
(TBD, this section needs to be harmonized with the new text above... the below was
written before the above was rewritten...) Lets go through above exercise, this time
with counts. Suppose the dict, with observation counts in square brackets, is

A: C+ & D+ [na]

B: C+ & D+ [nb]

C: A- & E+ [nca]

C: B- & F+ [ncb]

D: A- & G+ [nda]

D: B- & G+ [ndb]

The shapes, with counts, are

A: (C+ & D+)[na] or (C:x- & E+)[nca] or (D:x- & G+)[nda]

B: (C+ & D+)[nb] or (C:x- & F+)[ncb] or (D:x- & G+)[ndb]

C: (A- & E+)[nca] or ...

C: (B- & F+)[ncb] or ...

D: (A- & G+)[nda] or (A:C+ & x+)[na]

D: (B- & G+)[ndb] or (B:C+ & x+)[nb]

Merging A and B, with 100% of count transfer, gives

A B: (C+ & D+)[na+nb] or (C:x- & E+)[nca] or (C:x- & F+)[ncb] or (D:x- & G+)[nda+ndb]

C: (A- & E+)[nca] or ...

C: (B- & F+)[ncb] or ...

D: (A- & G+)[nda] or (A:C+ & x+)[na]

D: (B- & G+)[ndb] or (B:C+ & x+)[nb]

Looking at the connectors on D, we see that they are mergeable, and that the counts
are consistent. So, based on this toy model, we can either try to merge connectors
directly, or we can, at a later date, merge connectors by reconstructing them from
merged shapes. Doing it either way should give the same counts: the operations are
commutative.

This is not entirely obvious. It seems to work for the toy example. It seems like the
toy example could be converted into a full proof. Yet ... are we missing something?
Best bet is to write the code both ways, and verify numerically that the operations are
commutative.

Fractional counts

Lets try again, this time with fractional counts. Suppose that instead of merging 100%
of B into A, we merge only a fraction 0≤ y≤ 1 of the count. This gives

21

A B: (C+ & D+)[na+y*nb] or (C:x- & E+)[nca] or (C:x- & F+)[y*ncb] or (D:x- & G+)[nda+y*ndb]

B: C+ & D+ [(1-y)nb] or (C:x- & F+)[(1-y)ncb] or (D:x- & G+)[(1-y)ndb]

C: (A- & E+)[nca] or ...

C: (B- & F+)[ncb] or ...

D: (A- & G+)[nda] or (A:C+ & x+)[na]

D: (B- & G+)[ndb] or (B:C+ & x+)[nb]

Then, apparently, the counts will be consistent if and only if the same fraction is used
when merging connectors.

Connector merging, with counts
To get all of the above correct, there is a series of unit tests. They work well, but one
of the more complex ones has become painfully difficult to understand and debug. It is
reviewed here. But first, a change of notation to make it more compact:

• The entry A:(B- & C+) will be written as (A, BC). Here, the parenthesis de-
note a pair (a matrix entry). The letter sequence is just the connector sequence
with the directional indicators ignored.

• Entries with word-classes, such as <wclass-AB>:(K- & B+) will be written as
({AB},KB). The word-class is denoted with set-notation curly braces. Similarly,
A:(K- & <wclass-AB>+) will be written as (A,K{AB}).

• Cross-sections, which were written above as D:(A:C+ & x+) will be written
as [D, <A, Cv>]. The angle brackets denote the shape, and the lower-case
v denotes the location of the variable in the connector sequence. The square
brackets just serve to remind that a cross-section is being discussed.

• A property called “detailed balance” is introduced. This is the idea that corre-
sponding sections and cross-sections should have exactly the same observation
count on them. Thus for example, given a section (A, BC) which was observed
N times, one expects that the two cross-sections derived from it, namely [B,

<A, vC>] and [C, <A, Bv>] are also both observed N times each. Prior to
any merging, detailed balance holds “automatically” or tautologically, as a trite
statement about how counting is done. The goal is that connector merging should
preserve detailed balance as a property. It is assumed to be a desirable property,
and is enforced in the code and unit tests.

• Counts will be denoted with a lower-case n written in front of the pair. Thus,
n(A, BC) would be the number of times that (A, BC) was observed.

First merge

The troublesome test is ’connector-merge-tricon.scm’. The relevant portion is as
follows. The dictionary is assumed to contain many entries; the troublesome subset is
this:

22

(j, abe)

(f, abe)

A decision is made to merge the vectors for e and j, based on other dictionary entries
not shown here. The “projective merge” strategy is used, so that a fraction 0 ≤ p ≤ 1
of the count is merged whenever one of the two vectors is missing an entry at a given
basis element. In this case, the merge, denoted with an arrow, is

none + (j, abe) -> p * ({ej}, abe) + (1-p) * (j, abe)

where ’none’ denotes that there is no section (e, abe) and so the projective merge
was used. That is, the count on (j, abe) is reduced to (1− p) of it’s earlier value,
and the remaining p is transferred over to ({ej}, abe). That is, the total counts are
preserved. That is,

n′ ({ej}, abe) = pn(j, abe)

where n′ denotes the count after the merge, and the unprimed n is the count before the
merge.

From the connector merging discussion above, we conclude that ({ej}, abe)

should be rewritten to ({ej}, ab{ej}). The count should be as above, that is:

n′ ({ej}, ab{ej}) = pn(j, abe)

The vector on e includes the cross-sections

[e, <j,abv>]

[e, <f,abv>]

These merge in a similar fashion:

[e, <j,abv>] + none -> p * [{ej}, <j,abv>] + (1-p) * [e, <j,abv>]

[e, <f,abv>] + none -> p * [{ej}, <f,abv>] + (1-p) * [e, <f,abv>]

From detailed balance, we deduce the two new sections

(j, ab{ej})

(f, ab{ej})

The counts on these are

n′ (j, ab{ej}) = pn(j, abe)

and
n′ (f, ab{ej}) = pn(f, abe)

From the connector merging discussion above, we conclude that (j, ab{ej}) should
be rewritten to ({ej}, ab{ej}). The first identity arrives at the same count as before,
so this rewrite appears to be self-consistent. Everything works out.

23

Second merge

The first merge is more-or-less straightforward. The trouble comes with the second
merge. Here, it is decided that the vector for f should be merged into {ej}. The
preservation of detailed balance creates subtleties and ambiguities.

The final count on ({ejf}, ab{ejf}) gets contributions from three sources:

• The starting count on ({ej}, ab{ej}), which is

n′ ({ej}, ab{ej}) = pn(j, abe)

as given above.

• A contribution from (f, ab{ej}), which was created in the first merge, via
detailed balance from the earlier cross-section [{ej}, <f, abv>]. This is
merged in it’s entirety into the the existing ({ej}, ab{ej}). The projection
merge is

({ej}, ab{ej}) + (f, ab{ej}) -> ({ejf}, ab{ej})

This merge absorbs the entire count on (f, ab{ej}) because ({ej}, ab{ej})

already exists. The contribution is thus n′ (f, ab{ej}) = pn(f, abe). Rewrit-
ing then promotes ({ejf}, ab{ej}) to ({ejf}, ab{ejf}).

• A contribution from (f, abe) via the projection merge

none + (f, abe) -> q * ({ejf}, abe) + (1-q) * (f, abe)

and then the subsequent rewrite of ({ejf}, abe) -> ({ejf}, ab{ejf}).
This contribution is qn′ (f, abe) = q(1− p)n(f, abe).

The total of these three contributions is then

n′′ ({ejf},ab{ejf}) =n′ ({ej}, ab{ej})+n′ (f, ab{ej})+qn′ (f, abe)

=pn(j, abe)+ pn(f, abe)+q(1− p)n(f, abe)

Note that this result is history-dependent: merging j into e first, then f gives a different
result than merging f into e, then j (and presumably different than the third possibility,
of merging f and j first, and only then adding e).

An open question is whether there is a way of performing the merges that are
history-independent, and what would that mean.

Again, additional details are in the test file ’connector-merge-tricon.scm’.

Connector Merging, Conclusion
After much work: there are ten unit tests, all passing, with the final fix in com-
mit 5e1d7dfb94867f22642d7cdf0621a833bb96092e of 24 May 2021 which fixes a
problem not found in the unit tests; it requires a real-world test-case. Need to run
(check-balance LLOBJ) to evoke it.

24

expt-19 (May 2021)
Moving on... expt-19 reuses the same corpus as expt-16, and, in order to be comparable
to earlier results, reuses the pair-counts and the mpg-parse disjuncts from expt-16.
Here’s the dataset statistics, from print-matrix-summary-report, without and with
shapes:

cset-only w/ shapes
rows 12 12

columns 75688 587172
entries 80832 701606
sparsity 3.4901 3.3281

avg. obs./disjunct 12.561 6.4922
entropy 0.7221 5.0270

MMT support 80832 701606
obs. count 3.9e9 15e9

Time to compute the pair-distances was about 0.03 to 1.5 seconds for the cset-only
vectors, and 6 to 16 seconds for the shapes. So, at least an order of magnitude slower.
That’s bad.

The entropy is much much higher, which I interpret as a good thing, indicating that
the data is of higher quality.

Using (gram-classify-greedy-disinfo psa 3.0 4), there weren’t any merges
that got done. That’s because similarity never got above 3.0. Here’s a table of all pos-
itive MI similarities, without shapes, and with. It’s sorted on the shape column when
the shape column MI is positive, otherwise sorted on the cset-only column.

25

pair MI cset-only MI w/ shapes
!-i −∞ 2.3578
g-i 3.2143 1.8643
a-i -2.388 1.2513
f-c 1.3032 1.1714
h-c 1.2824 1.0837
f-h 1.2800 1.0757
b-g 0.8982 1.0559

a-WALL −∞ 0.9799
j-b 0.3929 0.5846
j-g 0.3929 0.5265
d-f 0.8141 0.5170
e-b 0.3725 0.5066
d-c 0.7817 0.5026
e-j 0.2484 0.4612
e-g 0.3896 0.4503
d-h 0.8126 0.4446
e-d -0.320 0.0049
b-i 1.4862 -1.038
a-h 0.6048 -0.079
a-f 0.5596 -0.190
a-c 0.5544 -0.266
d-a 0.5501 -0.257
e-i 0.0819 -1.401
j-i 0.0185 -1.254

In general, any MI of less than 4 is ... pretty distant. Although that statement is true
for large-vocabulary systems; here the vocabulary is tiny: 12 words, so I guess an MI
greater than 1.0 is actually pretty good.

The distance ‘!-i‘ is alarming. I guess. Seems to indicate that ‘i‘ is usually at the
end of sentences. The ‘a-WALL‘ distance suggests that ‘a‘ is frequently at the start of
the sentence. If so, this is not obvious from casual inspection of the corpus.

A core problem is that this is a very mixed grammar: lots of ambiguity, lots of
word senses, no particular clean factorization. Just looking at it, its quite cloudy as to
the actual structure. In particular, although each word belongs to only one word-class,
the word-classes have lots of mixed, shared POS entries, and each POS is a seemingly
random (duhh) unstructured mess. For example:

• pos-e has single, divalent, trivalent disjuncts on it. Except for a few words, most
of English is not like that.

• pos-c has one disjunct. It’s identical to pos-d, which has two disjuncts.

• pos-e has a huge number of disjuncts on it, as do pos-i and pos-j. This seems to
allow very grammatically complex sentences to be generated, which “of course”
are going to be very hard to decode.

26

Overall, the grammar appears to be over-complex, and very unlike a natural language
grammar. it seems unlikely, just from eyeballing it, that the grammar could be untan-
gled without a very large, exhaustive examination of the corpus. This is a bad experi-
mental base.

Issues:

• Is there any sense in which the word “mixing” is appropriate, in it’s technical
sense (from ergodic theory?) Can we define mixing from the point of view of
disjunct ambiguity? Of the indiscernability of grammars given a corpus?

• Is the automatic grammar generation controlling sufficiently for word-senses?
Yes, there’s a tune-able parameter for that, but some disjuncts accidentally appear
in multiple POS, thus making those POS at least partly synonymous.

• Is the current automatic grammar generation API appropriate? It was based on
an intuitive sense of factorization, but the randomness seems to easily generate
ambiguous grammars.

• How does one measure the complexity of a grammar?

• Is there some easy way of writing down its factorizability?

• Is there a way of proving that two grammars are equivalent? If two different
grammars generate the exact same corpus, then is there some algorithm that can
transmute one grammar into the other? How is this found/discovered?

• How can one characterize human natural language grammars? That is, if an
artificial grammar is generated, how can we know if it is similar to a natural
human language? I don’t think the rainbow of human natural languages lines up
well (or at all) with the axes of tune-able parameters in the grammar generator.

Conclude: the expt-19 grammar is over-complicated, ambiguous, mixed, ugly. We
need to restart with a simple grammar.

Also conclude: I do not understand how the ambiguity of grammars works. I do not
really understand how factorization works. The artificial grammar generator “works”
but I don’t understand what it is generating. I don’t know how close it is to typical
human grammars. There’s a bit of a “back to the drawing board” moment here.

expt-20 (May 2021)
Start again, this time with a simple, relatively unambiguous, relatively unmixed gram-
mar. Perhaps even with a tiny artificial subset of English!? Just to make eyeballing
easier?

July 2021 - Projective Merge and Entropy Maximization
OK, Above work resulted in a bunch of automation scripts, and a few bug-fixes, a com-
pletion of the “shapes” work, but not much in the way of insight. So, restart processing

27

of English. A rather small corpus reveals a conceptual bug in the projective-merge
strategy, when used with mutual information. Projective merge works great (I think ..
I guess??) with cosine distance, but not MI. This section describes the problem, and
explores solutions.

The small corpus is the “run-2” corpus of the English work, its a truncated copy
of “tranche-1” consisting of 3026 articles, 426941 sentences, 8133834 word instances.
Word-pair counting went well (except for the handling error that truncated the corpus),
as did disjunct formation. The MM^T stats were computed for the disjuncts, including
shapes.2 Everything is fine (nominal) until merge. Projective merge fails dramatically
– unrelated words are being merged. Why?3

What’s the pair-wise MI? The MI here is called the “entropic similarity” in other
texts in this directory. It’s kind-of the same thing, once one adjusts definitions appro-
priately. Lets call it MI for short. Lets explore the top seven words that got merged,
shown in the table below.

Symmetric-MI
of to in he it that said

of 7.460 3.720 4.443 -1.74 -1.44 0.619 -1.43
to 6.848 3.019 0.449 -0.18 0.935 0.070
in 5.699 1.348 0.255 1.517 -0.53
he 3.968 1.854 1.691 1.198
it 2.405 0.819 0.646

that 3.664 0.468
said 3.223

Looks pretty reasonable, right? The self-MI of “it” is shockingly low. Some of the
other self-MI’s are on the low side, too. But whatever. Small dataset. Asking for an MI
> 3.0 for a merge to take place seems like it should provide good results.

The current code base for projective merge recommends a fraction of 0.187 for
merging “of” and “to”, which seems low, but acceptable. So lets do the merge, by hand
(see notes in ‘run-2/README‘ for details. The result is ‘(WordClassNode “of to”)‘.
What is the MI between this, and the other words? A disaster. See table below.

Symmetric-MI
of-to of to in he it that said

of-to 10.009 8.411 8.216 6.044 1.937 1.629 2.970 1.900
of 11.70 −∞ 5.294 -4.44 -3.34 1.012 -3.25
to 11.92 3.558 0.874 -0.25 1.432 -1.97

2It contains 6029 words, 98102 disjuncts, a total of 171922 word-disjunct pairs, has a sparsity of 11.748,
a total of 4006152 observations for an average of 23.302 per pair.

3One possible answer to this question is that there is a procedural error at play. It is this: the MM^T
marginals were computed for the full dataset, and then the dataset was trimmed to discard low-count rows
and columns. However, the full marginals were still used in computing the MI. This throws everything off,
because .. rows and columns are missing. The correct process would have been to recompute the MM^T
marginals after trimming! The MM^T marginals depend on the support marginals as well. Which were also
cached. This has lead to some confusion in the below. I think the results are unchanged, but I’m no longer
confident. 27 July 2021

28

OK, so what’s wrong with that? The naive expectation is that the MI(cluster, “of”)
and MI(cluster, “to”) should be low or negative. It’s not - its huge. The naive expecta-
tion is that the MI of the cluster to the non-preposition words should remain near zero
(small positive or negative) and instead it got higher, not lower! Yow!

Note that the “of” and “to” vectors are the new vectors, with the projected parts
removed. Thus, the new MI (of,to)=−∞ is as expected: all overlap is now completely
gone. That the MI(of, non-prep) and MI(to, non-prep) has gotten lower is a good sign.

So what’s going wrong, here? Well, we failed to define the projective merge in such
a way that we minimize and maximize the assorted overlaps. So lets fix that.

Conclusion

The following sections explore the problem above. The answer, in retrospect, appears
to be obvious: of the parameterized projective merge, only the overlap merge max-
imizes entropy. Adding in any fraction of the union merge lowers the total mutual
information. It smears out the word-senses, and damages word-sense disambiguation.

If the answer is so obvious, then how did we get into this mess to begin with?
Well, it seemed, at the time, that, because the input data is so noisy, that the number
of observations is so incomplete, that there might be some advantage for extending
the overlap merge with some “small” fraction of the union merge. In retrospect, this
appears to have been a failed idea.

The overall concern is still valid: for a small corpus, there is a lot of noise, and
perhaps there does need to be some kind of generalization taking place. But perhaps
the smearing provided by the union merge is ... not a good idea ... at present. However
...

However, trying to always maximize the entropy runs the risk of stumbling into
local maxima, and being trapped by them. This is an old machine-learning problem:
how to avoid local maxima. The union merge might eventually be a good way of
jumping out of local maxima. However, at this time, I don’t understand what’s going
on clearly enough. It seems to have been a premature feature. Maybe. At any rate,
future work should set a baseline of pure overlap merges, zero union merges. If any
part of the union is to be mixed in, it should probably be quite small – well less than a
percent, rather than the 30% which almost all earlier work made use of.

If the union-fraction is greater than zero, then it should be kept small enough so that
the MI between the newly created cluster, and the remainder of the words that were put
into the cluster remains less than the cutoff MI that is used to determine if a merge is
to be undertaken. Examining the experimental data, below, indicates that this fraction
is indeed tiny: its about 0.003 (a third of a percent) for the case that was examined.

Rule of thumb: if there is a merge fraction, then if should be set to

f = 1/2max(MI(a,a),MI(b,b))−MIcut

where a,b are the two words to be merged, MI(a,a) is the self-MI and MIcut is the
cutoff, below which a merge will not be performed. Any fraction larger than this will
results in an MI between the new class, and the remainder of the words a,b that is
larger than the original MI(a,b) itself ... and that’s a disaster. This is a rule of thumb,

29

because, I guess a more precise value could be given, but getting it requires some more
algebra which I’m too lazy to do.

Similarity and Projection
Let’s review the definition for the MI, and the projection.

Entropic Similarity and Cosine Distance

This is a copy of what is in the ‘connector-sets-revised.pdf‘ paper, chapter 6 (pages
39-44). There some additional experimental data in the ‘diary-part-one.pdf‘, pages
102-103.

A word w is associated with a vector N (w,d j) where the d j are the disjuncts ob-
served on the word, and N is a count of the number of times that the word-disjunct pair
was observed.

For words w,u, define the dot product (inner product) between the words as

i(u,w) = ∑
d

N (u,d)N (w,d)

This can be turned into a bona-fide joint probability by writing

p(u,w) = i(u,w)/i(∗,∗)

where, as always, * denotes a wild-card – here, a sum over all words:

i(∗,∗) = ∑
u,w

i(u,w)

There is a corresponding marginal probability

p(w) = p(w,∗) = i(w,∗)
i(∗,∗)

The entropic similarity between two words is

MI (u,w) = log2
p(u,w)

p(u) p(w)

and written in this form, this is clearly the conventional (fractional) MI between two
words.

It’s worth comparing this to the cosine distance

θ (u,w) = arccos
p(u,w)√

p(u,u) p(w,w)

Note that they both start with the dot product in the numerator. The cosine distance
is invariant under rotations (orthogonal transformations) in Euclidean space. However,
probability space is not Euclidean, so it is a “category error” to work with cosine dis-
tance applied to probabilities. By contrast, the MI is “obviously correct” when working

30

with probabilities. In practice, the two are correlated. See page 43 of ‘connector-sets-
revised.pdf‘ for experimental data.

The code for computing this stuff can be found in the AtomSpace github repo,
https://github.com/opencog/atomspace/blob/master/opencog/matrix/symmetric-mi.scm
To avoid absurdly long compute times, this code uses the MM^T concept (described
in connector-sets) to perform and cache partial results that can be quickly combined to
obtain the desired MI value. Note, its impossible to pre-compute the MI for any but the
smallest vocabularies, as there are just too many words.

Projection Merge

Given two words (word-vectors), the projection merge create three new vectors: a
merged vector, and remainders of the two original vectors. This is most easily described
in terms of the basis vectors. Define the set of all disjuncts with non-zero counts on
word w:

D(w) = {d : N (w,d) 6= 0}
Given a real number 0≤ f ≤ 1, the merged vector g of the two words w,u has counts

N (g,d) =

N (w,d)+N (u,d) d ∈ D(w)∩D(u)
f N (w,d) d ∈ D(w)\D(u)
f N (u,d) d ∈ D(u)\D(w)

Clearly, the support for g is D(g) = D(w)∪D(u) whenever f > 0 and it is D(g) =
D(w)∩D(u) when f = 0. The two new words are u′ and w′ which are just the old
words, with the overlaps removed:

N
(
w′,d

)
=

{
0 d ∈ D(w)∩D(u)
(1− f)N (w,d) d ∈ D(w)\D(u)

and likewise for N (u′,d).
This projection merge is designed to preserve the total count:

N (g,d)+N
(
w′,d

)
+N

(
u′,d

)
= N (w,d)+N (u,d) (1)

This equation can be called “detailed balance”, as it is in thermodynamics.
The merged vector g is meant to correspond to a “grammatical class”; it is a vector

just as any other word-vector, but it is meant to capture the “average” of the two words it
is made out of. The role of the fraction f is to handle the situation of the words u and w
having multiple word-senses. The idea here is that the set D(w)∩D(u) captures those
disjuncts for which both u and w have the same word-sense (for example, the parts
of u and w that are nouns) whereas D(w)\D(u) and D(u)\D(w) are the disjuncts
that belong to other word-senses (e.g. the parts of u and w that are verbs). Due to
inadequate statistics and systemic noise, a non-zero f might help in smoothing out
erroneous assignments of disjuncts to word-senses. In the example above, a value of
f = 0.187 was used.

The projection described above is the same as that described and implemented
in https://github.com/opencog/learn/blob/master/scm/gram-projective.scm (as of this
writing).

31

Maximum Mutual Information
Well, obviously as the example above demonstrates, there’s something not quite right
with the projection merge, at least, when one works with mutual information.

The projection merge does seem to make sense (mostly) when one thinks of vectors
that inhabit Euclidean space: One can easily define the sum of two vectors; and to deal
with the fact that the word vectors are themselves sums of multiple senses, one can try
to project back out the parts that don’t have shared support. The problem with working
in Euclidean space is that the counts can go negative: the inner product on Euclidean
space really is the cosine (dot) product, and simple linear algebra sense some vector
components negative. This is undesirable, as it prevents counts from being interpreted
as statistical frequencies.

For probabilities, the correct goal is to maximize the mutual information (maximize
the entropy). There seem to be two ways to define the total MI of the system. One is
to write

MItot = ∑
u,w

p(u,w)MI (u,w)

Note that since both p and MI are symmetric, this has the effect of double-counting the
off-diagonal entries. This seems to underweight the diagonal. Another possibility is to
double-weight the diagonal:

MIalt = ∑
u≥w

p(u,w)MI (u,w)

Not clear, right now, which is better or more correct.
A bit of articulation helps clarify things. From the definition of MI, one has

MItot =∑
u,w

p(u,w)MI (u,w)

=∑
u,w

p(u,w) log2
p(u,w)

p(u) p(w)

=∑
u,w

p(u,w) log2 p(u,w)−∑
u,w

p(u,w) log2 p(u)−∑
u,w

p(u,w) log2 p(w)

=∑
u,w

p(u,w) log2 p(u,w)−2∑
w

p(w) log2 p(w)

=H joint −2Hmarg

where
Hmarg = ∑

w
p(w) log2 p(w)

is the “marginal entropy”.

Detailed balance

Detailed balance, eqn 1 means that the merge affects only the rows and columns of the
merged words. This is somehow “intuitively obvious”, but I’ll belabor the topic here,

32

to make sure we’re not making any mistakes. In the following, let a,b be the two words
to be merged, creating a category g.

Lemma: For w 6= a,b, the row and column sums are unaffected by the merge. That
is, one has i(w,∗) = i′ (w,∗).

Proof: Let a,b be the two words to be merged. Then for w 6= a,b, one has

i(w,a)+ i(w,b) =∑
d

N (w,d) [N (a,d)+N (b,d)]

=∑
d

N (w,d)
[
N (g,d)+N

(
a′,d

)
+N

(
b′,d

)]
=i(w,g)+ i

(
w,a′

)
+ i
(
w,b′

)
No other sums are affected, so that, for u,w 6= a,b one has

i(w,u) = i′ (w,u)

Therefore,

i(w,∗) =∑
u

i(w,u)

=i(w,a)+ i(w,b)+ ∑
u 6=a,b

i(w,u)

=i(w,g)+ i
(
w,a′

)
+ i
(
w,b′

)
+ ∑

u6=a,b
i(w,u)

=i′ (w,∗)

where the i′ sum includes (runs over) a′,b′ and g. �
This enables a key theorem.
Theorem: The total count i(∗,∗) is unaffected by the merge. That is, i′ (∗,∗) =

i(∗,∗) where the prime denotes the post-merge sum.
Proof: Split out the affected rows and columns. First, the corner case:

i(a,a)+ i(a,b)+ i(b,a)+ i(b,b) =∑
d
[N (a,d)+N (b,d)] [N (a,d)+N (b,d)]

=∑
d

[
N (g,d)+N

(
a′,d

)
+N

(
b′,d

)][
N (g,d)+N

(
a′,d

)
+N

(
b′,d

)]
=i(g,g)+ i

(
g,a′

)
+ i
(
g,b′

)
+ i
(
a′,g

)
+ i
(
a′,a′

)
+ i
(
b′,g

)
+ i
(
b′,b′

)
=i(g,g)+ i

(
a′,a′

)
+ i
(
b′,b′

)
+2i

(
g,a′

)
+2i

(
g,b′

)
Two of the terms vanish: i(a′,b′) = i(b′,a′) = 0, which is arrived at by noting that the
merge has arranged that N (a′,d) = N (b′,d) = 0 for d ∈ D(a)∩D(b).

Even if these terms did not vanish, one still arrives at

i(a,∗)+ i(b,∗) = i(g,∗)+ i
(
a′,∗

)
+ i
(
b′,∗

)
Plugging through,

33

i(∗,∗) =∑
u

i(u,∗)

=i(a,∗)+ i(b,∗)+ ∑
u6=a,b

i(u,∗)

=i(g,∗)+ i
(
a′,∗

)
+ i
(
b′,∗

)
+ ∑

u6=a,b
i(u,∗)

=∑
u′

i
(
u′,∗

)
=i′ (∗,∗)

Phew. That was complicated, given that the result seems obvious. �
Corollary: Likewise, for the probabilities: if a,b are the two words to be merged

into g,then p(a,∗)+ p(b,∗) = p(g,∗)+ p(a′,∗)+ p(b′,∗).
Proof: Divide by i(∗,∗). �
Corollary: The marginal probability of rows/columns not being merged is unaf-

fected by the merge. That is, p(w) = p′ (w) for w 6= a,b.
Proof:

p(w) = p(w,∗) = i(w,∗)
i(∗,∗)

=
i′ (w,∗)
i′ (∗,∗)

= p′ (w)

Follows from the lemma and the theorem above. �
Corollary: The mutual information of rows/columns not being merged is unaf-

fected by the merge. That is, MI (u,w) = MI′ (u,w) for u,w 6= a,b.
Proof:

MI (u,w) = log2
p(u,w)

p(u) p(w)

= log2
p′ (u,w)

p′ (u) p′ (w)
= MI′ (u,w)

Follows as before. �
From the above, it is clear that the MItot splits into an invariant part, and a part

affected by the merge. Write

MItot =
1
2 ∑

u,w
p(u,w)MI (u,w)

=
1
2 ∑

u,w=a,b
p(u,w)MI (u,w)+

1
2 ∑

u,w 6=a,b
p(u,w)MI (u,w)

=MImerge +MIinvariant

The focus is then on how MImerge changes. The change in the mutual information due
to merging is captured by the difference, defined as

S = ∑
u,w=g,a′,b′

p(u,w)MI (u,w)− ∑
u,w=a,b

p(u,w)MI (u,w) (2)

A suitable name for this would be the “relative entropy”, I guess. Seems reasonable.

34

Experimental Exploration
The goal of later sections will be to find the extrema (maxima, minima) of eqn 2 by
algebraic means: that is, to find a value for the parameter f that yields the projective
merge that maximizes the mutual information. As it turns out, a whole lot of rather
tedious algebra is required. Thus, its time for an experimental interlude. Given the
dataset above, we can vary the merge parameter by hand, and see what happens.

First, a review of the dataset and the computational techniques. The dataset is
‘r2-mpg-trim-40-8-5.rdb‘. It contains 6029 words and 98102 disjuncts, and a total
of 171922 word-disjunct pairs that were observed a total of 4006152 times. That is,
each word/disjunct pair was observed an average of 23.302 times. The dataset is very
sparse, with a log2 sparsity of 11.748. This is a trimmed dataset: all words with less
than 40 observations were discarded; all disjuncts with less than 8 observations were
discarded, and all pairs with less than 5 observations were discarded. See the experi-
ment README file for more info on row and column support, average lengths, etc.

Here are the probabilities and MI, before merge:

word-pair p(u,w) MI (u,w)
of,of 1.199e-3 7.460
of,to 7.599e-5 3.720
to,to 5.623e-4 6.848

The total probability is then 1.913e-3 and the weighted MI is 1.336e-2 and the
average MI is then 6.9829. To repeat:

∑
u,w=a,b

p(u,w) = 1.913×10−3

∑
u,w=a,b

p(u,w)MI (u,w) = 1.336×10−2

∑u,w=a,b p(u,w)MI (u,w)

∑u,w=a,b p(u,w)
= 6.9829

for a,b = o f , to.
Lets repeat this calculation, after merging, with f = 0.18715 as before.

pair p(u,w) MI (u,w)
of,of 4.831E-4 11.695
to,to 3.153E-4 11.923
g,g 7.465E-4 10.009
g,of 1.105E-4 8.4107
g,to 7.208E-5 8.2156
total 1.910E-3 10.431

35

The MI reported in the total column is the parameter-dependent entropy from
above:

S′ = ∑
u,w=g,a′,b′

p(u,w)MI (u,w)

where a′ is what’s left of the vector for the word “of”, after projection-merging the
common part. Likewise, b′ is what’s left of “to”. It is numerically confirmed that a′ and
b′ are orthogonal to each-other: that p(a′,b′) = 0 after the merge. This is as expected
— the common components have been merged. That p(g,a′) 6= 0 is not surprising:
an additional portion of a was merged into g, beyond what is strictly possible with the
overlap merge. That is, g and a′ are intentionally not orthogonal. That’s what this is
all about – finding out if something broader than a pure overlap merge is somehow
advantageous.

Annoyingly, the detailed balance seems to be a bit off — 1.910e-3 vs. 1.913e-3
before. That’s a fairly hefty amount of rounding error. Surprisingly large... There are
7620 sections and 7620 shapes being merged; calculations should be double-precision,
so this rounding error is irritating.

Anyway, that’s the baseline. Lets try a range of merge fractions. Again, to reiterate:
f = 0 corresponds to a pure overlap projection merge: the cluster g consists of only
those disjuncts that are shared in common by a and b. Setting f = 1 corresponds to the
union merge: all disjuncts on a and b are moved into g so that a′ and b′ are empty after
the merge. Other fractions 0 < f < 1 interpolate linearly between the overlap merge
and the union merge. The table below shows what happens.

frac total MI MI(g,g) MI(g,of) MI(g,to) p(of,of) p(g,of)
0.0 11.312 10.499 −∞ −∞ 7.312E-4 0

1e-6 11.312 10.499 -8.816 -9.011 7.311E-4 7.27E-10
1e-5 11.311 10.499 -5.494 -5.689 7.311E-4 7.267E-9
1e-4 11.310 10.498 -2.173 -2.368 7.310E-4 7.266E-8
0.001 11.297 10.495 1.1478 0.9527 7.297E-4 7.260E-7
0.002 11.285 10.492 2.1461 1.9510 7.282E-4 1.450E-6
0.005 11.253 10.482 3.4630 3.2679 7.239E-4 3.615E-6
0.01 11.207 10.465 4.4546 4.2595 7.166E-4 7.194E-6
0.02 11.129 10.433 5.4379 5.2428 7.022E-4 1.424E-5
0.05 10.943 10.340 6.7110 6.5159 6.599E-4 3.452E-5
0.1 10.714 10.203 7.6330 7.4379 5.922E-4 6.540E-5

0.187 10.431 10.009 8.4107 8.2156 4.831E-4 1.105E-4
0.3 10.184 9.8344 8.9426 8.7474 3.583E-4 1.526E-4
0.4 10.030 9.7367 9.2374 9.0423 2.632E-4 1.744E-4
0.7 9.7714 9.6468 9.7346 9.5394 6.580E-5 1.526E-4
0.95 9.7000 9.6849 9.9595 9.7644 1.828E-6 3.452E-5
0.99 9.6978 9.6950 9.9873 9.7922 7.312E-8 7.194E-6
1.0 9.6976 9.6976 −∞ −∞ 0 0

So, this numeric exploration of the post-merge mutual information reveals ... some-
thing that perhaps should have been obvious, in retrospect. Sigh.

36

In retrospect, it should be clear that the union merge serves only to make word-
sense disambiguation cloudier and mushier, by placing unrelated disjuncts into the
same class/cluster. This seemed somewhat harmless at some conceptual level, by em-
ploying the argument that the observed disjuncts are rather noisy, and that perhaps there
are commonalities that simply were not observed, due to insufficient sampling. This
may still be true, but, viewed from the MI angle, it is clear that anything beyond a pure
overlap merge is harmful to the entropy maximization.

Deriving the Entropy Extrema
The goal of this section is to find the extrema of the relative entropy as given in eqn
2. This requires a lot of algebraic calculation. The calculations below were undertaken
before the numeric exploration immediately above. The numerics show that this effort
was ... pointless. The entropy is maximized by doing the overlap merge, setting f = 0;
it’s it, that’s that. The below is simply not necessary. It’s kept below for, uhh, posterity.
Otherwise, its useless and can be skipped over.

Merge parameterization

It’s worth considering the most general merge that maintains detailed balance, and
symmetry between the two merged words. This is done by defining a merge vector - a
merge parameter for each disjunct, so that one gets a vector 0≤ f (d)≤ 1. The merged
class is then

N (g,d) =

f (d) [N (a,d)+N (b,d)] d ∈ D(a)∩D(b)
f (d)N (a,d) d ∈ D(a)\D(b)
f (d)N (b,d) d ∈ D(b)\D(a)

The above tries to distinguish the overlapping regions. But it is overly complicated,
since on the non-overlapping regions, the counts vanish. That is, N (b,d) = 0 when
d ∈ D(a)\D(b). Thus, its enough to write

N (g,d) = f (d) [N (a,d)+N (b,d)]

To maintain detailed balance as before, one must have

N
(
a′,d

)
= (1− f (d))N (a,d)

Note that the number of disjuncts is huge: in practice, a vocabulary of a few thousands
words might have hundreds of thousands of disjuncts.4 The vector f (d) is a large
vector.

In what follows, this full vector will be retreated from, going back to the original
vision of a projection merge. There are two reasons for this:

4The ‘run-2‘ dataset used in the example above had 6029 distinct words and 98102 distinct disjuncts.
This was a “trimmed” dataset, 40-8-5: all words with less than 40 observations were discarded. All disjuncts
with less than 8 observations were discarded, and all (word,disjunct) pairs with less than 5 observations
were discarded. I’ve been assuming that trimming filters out a lot of the noise in the dataset, without much
compromising the data integrity. However, this has not been shown experimentally, it just seems like it
should be so.

37

• The expressions get hopelessly non-linear and intractable,

• It is hard to imagine what sort of additional information might arrive, that would
distinguish one disjunct from another. Either a disjunct is associated with a or
with b or with both; there really aren’t any other possibilities.

However, until that point, a vector of independent f ’s will be assumed.

Variational problem

A change of notation is in order. Parenthesis have been useful to emphasize what
depends on what. Parenthesis are also convenient for plain-ASCII source code doc-
umentation. However, for the following, subscript notation will improve readability.
Let

fd ≡ f (d)

Nwd ≡ N (w,d)

Muw ≡MI (u,w)

The variational problem is then to obtain

∂S
∂ fd

I see no easy way out, other than to brute-force this. First, note that

∂

∂ fd
∑

u,w=a,b
p(u,w)MI (u,w) =

∂

∂ fd
[p(a,a)MI (a,a)+2p(a,b)MI (a,b)+ p(b,b)MI (b,b)]

= 0

since none of these have f (d) appearing in the expressions. Lets blast away.

∂S
∂ fd

= ∑
u,w=g,a′,b′

Muw
∂ puw

∂ fd
+ puw

∂Muw

∂ fd

So

∂ pgg

∂ fd
=

1
i∗∗

∂ igg

∂ fd

=
1

i∗∗

∂

∂ fd
∑
d

NgdNgd

=
2

i∗∗
fd (Nad +Nbd)

2

38

and

∂ pga′

∂ fd
=

1
i∗∗

∂

∂ fd
NgdNa′d

=
1

i∗∗
(Nad +Nbd)Nad

∂

∂ fd
fd (1− fd)

=
1

i∗∗
(Nad +Nbd)Nad (1−2 fd)

and

∂ pa′a′

∂ fd
=

1
i∗∗

∂

∂ fd
Na′dNa′d

=
N2

ad
i∗∗

∂

∂ fd
(1− fd)

2

=−2
N2

ad
i∗∗

(1− fd)

and

∂Muw

∂ fd
=

∂

∂ fd
log2

puw

pu pw

=
1

log2

[
1

puw

∂ puw

∂ fd
− 1

pu

∂ pu

∂ fd
− 1

pw

∂ pw

∂ fd

]
so

∂ pg

∂ fd
=

1
i∗∗

∂ ig∗
∂ fd

=
1

i∗∗

∂

∂ fd
∑
d

NgdN∗d

=
1

i∗∗

∂

∂ fd
NgdN∗d

=
1

i∗∗
N∗d [Nad +Nbd]

and

∂ pa′

∂ fd
=

1
i∗∗

∂ ia′∗
∂ fd

=− 1
i∗∗

N∗dNad

Putting all this together is painfully tedious. But it must be done. (Is there some

39

easier way I don’t see yet?)

∑
u,w=g,a′,b′

puw
∂Muw

∂ fd
=pgg

∂Mgg

∂ fd
+ pa′a′

∂Ma′a′

∂ fd
+ pb′b′

∂Mb′b′

∂ fd

+2pga′
∂Mga′

∂ fd
+2pgb′

∂Mgb′

∂ fd

=
1

log2
×

2
i∗∗

fd (Nad +Nbd)
2−2

pgg

pg
· 1

i∗∗
N∗d (Nad +Nbd)

−2
N2

ad
i∗∗

(1− fd)−2
pa′a′

pa′
·
(
− 1

i∗∗
N∗dNad

)
−2

N2
bd

i∗∗
(1− fd)+2

pb′b′

pb′
·
(

1
i∗∗

N∗dNbd

)
+2

1
i∗∗

(Nad +Nbd)Nad (1−2 fd)+2
pga′

pa′
· 1

i∗∗
N∗dNad +2

pga′

pb′
· 1

i∗∗
N∗dNbd

+2
1

i∗∗
(Nad +Nbd)Nbd (1−2 fd)+2

pgb′

pa′
· 1

i∗∗
N∗dNad +2

pgb′

pb′
· 1

i∗∗
N∗dNbd

Lets hope there are no mistakes. Gathering terms,

i∗∗
2

log2 ∑
u,w=g,a′,b′

puw
∂Muw

∂ fd
= fd

[
(Nad +Nbd)

2 +N2
ad +N2

bd−2(Nad +Nbd)
2
]

−
pgg

pg
N∗d (Nad +Nbd)+

pa′a′

pa′
N∗dNad +

pb′b′

pb′
N∗dNbd

−N2
ad−N2

bd

+(Nad +Nbd)
2

+
pga′

pa′
N∗dNad +

pga′

pb′
N∗dNbd

+
pgb′

pa′
N∗dNad +

pgb′

pb′
N∗dNbd

=2(1− fd)NadNbd

+N∗dNad

[
−

pgg

pg
+

pa′a′ + pga′ + pgb′

pa′

]
+N∗dNbd

[
−

pgg

pg
+

pb′b′ + pga′ + pgb′

pb′

]
Huf. This appears to be quadratic rational in f because

pgg =
1

i∗∗
∑
d

NgdNgd

=
1

i∗∗
∑
d

f 2
d (Nad +Nbd)

2

40

while

pg =
1

i∗∗
∑
d

NgdN∗d

=
1

i∗∗
∑
d

fd (Nad +Nbd)N∗d

So those fractions are nasty. There seem to be two choices in front of us. These are

• Set fd = 1 for d ∈ D(a)∩D(b) and fd = f otherwise. This is the projection
merge.

• Set fd = f for all d. This seems to be pointless; it smears together multiple word
senses.

Abandon the second option. To disentangle the location of f in the various quantities,
some additional notation is needed.

July 2021 - Bad Merge Redux
Variation on above theme. After merging the first two words with the overlap merge,
the MI to additional words gets large, and so merges to those are proposed, too. This is
presumably some bug. What’s the bug? Attempt to find out, below.

The problem dataset is ‘r2-mpg-trim-40-8-5.rdb‘ (the same trimmed dataset as
before, above.) Using the merge strategy ‘(gram-classify-greedy-mifuzz star-obj

5.0 0 4)‘ i.e. MI cutoff of 5.0, zero fraction and min obs count of 4, the following is
printed:

(bad) merger MI
be have 5.5520

be-have him 5.6404
be-have do 7.8926
be-have this 6.3487
be-have all 7.0597
be-have her 7.4523

The be-have merger is plausible. The remaining ones are not.
Lets look at the MI before merger. As before, load ‘mi-tools.scm‘ to load scaffold-

ing to make this easy. It is

Symmetric MI - csets+shapes
be have him do this all her

be 7.349 5.552 1.464 3.107 -0.29 0.684 1.316
have 6.922 0.010 2.953 -0.93 0.242 -0.24
him 2.201 0.830 0.181 0.500 1.961
do 5.242 0.431 0.723 0.683
this 6.245 1.223 1.011
all 4.421 0.573
her 2.942

41

The above is the MI for disjuncts plus shapes. It all looks pretty darned reasonable.
Lets check to see what’s going on with the csets-only, without the shapes. This

requires a batch-transpose recompute.

Symmetric MI - csets only
be have him do this all her

be 8.709 5.643 4.284 4.608 -1.70 3.119 2.909
have 8.267 1.772 4.655 -3.98 1.234 -0.14
him 7.538 3.334 1.737 3.240 6.082
do 8.306 -1.07 1.384 2.392
this 6.959 1.309 2.209
all 6.976 1.758
her 6.971

So that’s .. a wash. The shapes really lowered the MI on him, her. Made them
much much more distant. It lowered all the self-MI’s. It lowered some cross-MI’s and
raised others, with no apparent overall effect.

How Shapes affect MI
The effect on him-her deserves further pondering. Without the shapes, it seems to be
saying that him-her are being used in sentences the same way. But, when shapes are
added, and the self-MI drops, this seems to be saying “hey, besides him/her, there are
other words in this cluster, besides just him/her”. That’s what I interpret this as saying.

Lets take a detour, and see if that is true. Table below shows top MI between “him”
and other words, ranked by cset-only-MI. A second column shows the corresponding
cset-only-MI to “her”, although this is no longer ranked. The third column shows the
cset+shape-MI to “him”.

42

cset-only cset+shape
him her him

him 7.538 6.081 2.201
me 7.190 5.808 1.860

example 7.012 6.618 1.178
us 6.938 5.716 1.758

them 6.904 5.714 1.884
speak 6.901 6.049 1.061

instance 6.894 6.499 0.113
happen 6.876 6.055 0.800

difference 6.819 −∞ 0.653
themselves 6.794 6.020 1.784

himself 6.631 5.716 1.817
live 6.630 5.808 1.155
why 6.490 4.140 -1.044
listen 6.436 5.986 0.967

herself 6.406 5.557 1.730
behind 6.345 4.678 1.280
myself 6.082 5.292 1.559

her 6.081 6.970 1.961
try 5.945 5.495 0.635
say 5.911 4.965 1.135

It’s OK, but a bit underwhelming. First, looking at the first column. It seem OK that
other pronouns are in there. The presence of a handful of verbs, nouns and prepositions
is not confidence-inspiring. One might have hoped that these would not be there. The
second column is OK, I guess... although “her” is also a possessive, and “him” is not.

The third column is peculiar. It looks at the cset+shape MI. It’s a lot lower. I’m
surprised by this; I was expecting the MI to be improved. There’s only a hint of a silver
lining: the MI to verbs, nouns and preps seems just a little lower, than it is to pronouns.
But just a smidgen. It’s not much. Overall, we conclude that the MI values fail to
distinguish between pronouns, verbs, nouns and preps.5

July 2021 - Vector Sizes and MI
Above, we see that, for a given dataset, the MI values (seem to) fail to distinguish
between pronouns, verbs, nouns and prepositions. This section explores why that is
the case. The results so far show that the MI between a large word-vector and a small

5So this is intermixed with a lot of confusion. The MM^T marginals (i.e. the values of ∑d N(w,d)N(∗,d))
were originally from the large dataset, kept as a cache. Then the dataset was trimmed, without recomputing
marginals. Then I caught the error. Then I discovered that the N(∗,d) values were cached, too. So, several
different mistakes – in some cases, the sum ran over the set of disjuncts d for the full set, and for some it did
not. The dot-product ∑d N(w,d)N(u,d) used in computing the MI always runs only over the disjuncts d in
the trimmed dataset. This is obviously not compatible with the cached marginals.

43

word-vector can be quite high, if most of the small (“short”) vector lies in the same
direction as the large (“long”) vector.6

This is...well, its good and bad, depending on what one wants. If the goal is to take
a short fragment and identify where it belongs, then this is unalloyed good. However,
if the dataset is small, and almost all words have short vectors, then this is bad. The
natural Zipfian distribution indicates that only a small fraction (ballpark of 10%) have
long vectors. Thus, it is not surprising that most short vectors will mostly align with
one of these long vectors.

There are several conclusions one can make:

• Don’t use small datasets with lots of short vectors. This is hard, because (1) the
Zipfian distribution means most vectors will be short, no matter the size of the
dataset. (2) it is CPU intensive to use large datasets.

• Don’t run merge algos on short vectors. This is already done, more or less: the
current merge algo considers merging only vectors of similar counts (and thus,
presumably of similar sizes.) Stop merging long before reaching down into the
short-vector regions of the dataset.

• Don’t trim datasets. The goal of trimming was to discard “noise”: i.e. infrequently-
observed word-disjunct pairs, with the general argument that such low-count
pairs are likely to be garbage. However, we have not shown that they actually are
“garbage”, and such low-count trimming might actually be discarding important
information. That is, trimming might be creating short vectors that incorrectly
align with large vectors, when the untrimmed variants would have shown that
they are quite different.

• Use a different measure of MI that emphasizes non-colinearity.

Terrible MI values
Here’s the disaster were looking at. The top-MI cset+shape words to “him” are these:7

6The word “length” is troublesome. In this paragraph, we are talking about “the size of the support” i.e.
the number of non-zero entries in the vector. This should not be confused with the root-mean-square length
of the vector, i.e. its Euclidean length. This confusion easily extends to “short” vs. “small” and “long” vs.
“large”. Hopefully, things will be clear from context.

7Use ‘(almi “him”)‘ from the tools file.

44

him
sink 4.452
fill 4.223

Instead 4.181
grow 3.613
1880 3.529

scoundrel 3.423
accepted 3.186

serve 3.179
appealed 3.018
springing 3.018

...14 more ...
him 2.201

Wow. That’s ugly. Bad. Wrong. None of the skipped 14 words are pronouns. The
self-MI for “him” is 25th on the list. Why isn’t the self-MI always the highest? How
should this be understood?

The word “her” is no better:

her
outstretched 5.855

flashing 4.946
appearances 4.710
Catherine 4.682
hybrids 4.307

jail 4.058
sink 3.909
his 3.903
fill 3.680

God’s 3.462
... 7 more ...

her 2.878

Here, the self-MI for “her” is 17th in the list. At least the possessive “his” appears
8th.

Close-up inspection
So what is going on here? Lets look close up.8 The word “him” has 404 Sections and
430 CrossSections. A random sample of the CrossSections looks mighty healthy:

8After the analysis in this section was performed, a procedural issue was detected. It’s not clear how this
affects results. The procedural problem is that the MM^T marginals were computed first, and then the dataset
was trimmed. For computing the MI, the MM^T marginals from the full dataset were used. I’m thinking that
they should have been recomputed after trimming.

45

at: (gazing- & him+) or (gazing- & the+)

upon: (came- & him+) or (came- & a+)

for: impossible- & (him+ or me+ or any+ or them+)

do: to- & (him+ or her+ or it anything in a something them what ? so with as the that this . ,)

The Sections look good too:

him: (assure- & that+) or (put- & in+) or (Let- & go+) or (turned- &out+)

How about the word “sink”? Wow, it is .. bad. It has one cross-section, and zero
sections:9

to: seemed- & sink+

The total observation count is 9, which is small. Just above the dataset cutoff. The
self-MI is MI(sink, sink)=12.27. The cross section is “seemed to xxx” where xxx can
be any of “like them Pierre grow her have go consider see be take feel say think him
make come sink fill me”. Count on “seemed to him” is 151. Count on the product is
∑d N(sink,d)N(him,d) = 9× 151 = 1359. So that’s perfect. ∑d N(sink,d)N(∗,d) =
10215 Since there is one d, we have ∑d N(∗,d) = 1135 which was verified manually.
The other marginal is ∑d N(him,d)N(∗,d) = 41576753 which was not verified. The
total count is 6842054908. Multiplying out:

log2
∑d N(sink,d)N(him,d)

∑d N(∗,d)N(∗,d)
= log2

1359
6842054908

=−22.263

log2
∑d N(sink,d)N(∗,d)

∑d N(∗,d)N(∗,d)
= log2

10215
6842054908

=−19.353

log2
∑d N(him,d)N(∗,d)

∑d N(∗,d)N(∗,d)
= log2

41576753
6842054908

=−7.362

and so
MI(sink,him) =−22.263+19.353+7.362 = 4.452

So the numerics verify. What does this teach us? A word with a single cross-section
can give us absurd MI values.

Lets compare this to the cosine distance. For that, we need:

∑
d

N(sink,d)N(him,d) = 1359

∑
d

N(sink,d)N(sink,d) = 81

∑
d

N(him,d)N(him,d) = 1161813

9It has zero sections because these were filtered out. The filter removes all sections with a count of less
than five. It seems that the word “sink” only appeared in a small handful of sentences. This makes it a rare
word.

46

and the cosine would be

cosθ =
∑d N(sink,d)N(him,d)√

(∑d N(sink,d)N(sink,d))(∑d N(him,d)N(him,d))

=
1359√

81×1161813
= 0.1401

which is a far more reasonable value. Why is the MI misleading us? What went wrong
here? What can we do to fix it?

What’s the problem?
Well, the primary problem with the above is that .. the MI is correct, but unwanted.
We have a word with a tiny sample - one disjunct, and that one disjunct overlaps nicely
with anything and everything else that has that disjunct in it.

To with: the cross-section came from the phrase “seemed to xxx”. It’s plausible to
assume that MI(sink,xxx) will be high for all other words xxx appearing in that phrase.
Indeed this is the case:

MI support
sink 12.37 1
fill 12.15 2

grow 11.51 3
consider 9.345 5

be 8.302 1040
have 6.931 863
feel 6.602 33
take 6.391 122

make 5.689 135
come 4.966 235

MI support
think 4.801 221
say 4.786 257
him 4.452 834
me 4.206 612
her 3.909 810
like 3.852 171

Pierre 3.611 31
go 3.555 231
see 2.984 329

them 1.617 372

The column labeled “support” is the length of the vector for that word (i.e. it is the
number of disjuncts observed for that word.) It appears to show that the length of the
vector has little impact on the MI. That is, it is the word “sink” and it’s single disjunct
that is in the drivers seat: it can overlap some very long vectors in such a way that a
high MI results.

What is meant by “high MI”? (Computing the average MI is impossible, as the
CPU demand to sum over all pairs is simply too high. We need to develop techniques
for estimating this from the distribution.)

The MI is high, because this word “sink” has nothing else it can match to. That is,
the vector for “sink” is so short, that it matches anything else that has that same vector
element in it. So, in that sense, the result is correct; it is just, perhaps, not quite what
we wanted.

What do we want, then?

47

Double check
The above focuses on the word “sink”. Perhaps its exceptional. How about the other
problematic words: “fill Instead grow 1880 scoundrel accepted serve appealed spring-
ing”? Let’s take a quick peak.

The word “fill” shows up in two cross-sections: “to: seemed- & fill+” and “up: fill-
& the+”, both with low counts (9 and 10) and no Sections.

The word “Instead” appears in one Section: “Instead: WALL- & ,+ & he+” and
one cross-section: “,: Instead- & he+” with counts of 6 and 14.

The word “grow” appears in three cross sections: “to: seemed- & grow+” and “up:
grow- & .+” and “to: began- & grow+” with counts of 18, 6 and 25. There are no
Sections.

The word “1880” appears in one Section: “1880: in- & ,+” with a count of 10.
The word “scoundrel” appears in two cross-sections: “a: am- & scoundrel+” and

“,: scoundrel- & but+”.
The word “accepted” appears in a number of Sections and cross-sections. Most of

these appear to be the result of parsing a sentence in the Project Gutenberg boilerplate,
something about accepting donations.

The word “serve” appears in one cross-section: “as: serve- & a+” with a count of
32.

We can safely conclude that “grow” is prototypical of the other problematic words.
All of the problematic words are those with very short vectors.

As noted before, the lack of Sections is due to this being a filtered dataset: Sections
with a count of 5 or less have been removed. Effectively, all of the above words are
rare, and occur only in a handful of sentences in the text.

This reinforces an apparent paradox: the corpus seems to be quite large: maybe
a quarter of a million sentences! (The exact count is not known, this is a damaged
dataset.) Even after filtering, there seem to be a lot of words (just over six thou-
sand!) Yet, there’s an average of 23 observations per word, which is not all that many.
This should be compared to mother-baby talk in human infants: by the age of two, a
baby will have heard a small vocabulary of hundreds of words, but with a sample of a
hundred-thousand or a million for each of these words.

The size of the datasets used here is deceiving. Also: one can presume that almost
all sentences in the Project Gutenberg corpus are distinct, with very few repeated sen-
tences. By contrast, in human mother-baby talk, there is a vast amount of repetition.
Now, most of this repetition is for auditory training, not syntactic training, but still, the
repetitiveness must surely be quite reinforcing.

Other kinds of mutual information
The above suggests that perhaps other measures should be examined. Intuitively, one
might want a measure that treats vectors of similar size as being more similar, than
those of dis-similar sizes.

(Conclusion for this section: (1) the conventional MI seems to work best, and (2)
never got around to making a size-sensitive distance in this particular section.)

48

Since we’re discarding cosine distance for a priori reasons (probabilities do not live
in Euclidean spaces), then only other MI-like constructions are allowed. One obvious
one is a Banach-like MIs measure:

MIs,t (w,u) = log2
(∑d Ns(w,d)Ns(u,d))(∑d Nt(∗,d)Nt(∗,d))
(∑d Ns(w,d)Nt(∗,d))(∑d Ns(u,d)Nt(∗,d))

= log2
(∑d ps(w,d)ps(u,d))(∑d pt(∗,d)pt(∗,d))
(∑d ps(w,d)pt(∗,d))(∑d ps(u,d)pt(∗,d))

where p(w,d)≡ N (w,d)/N (∗,∗) or where p(w,d)≡ N (w,d)/N (w,∗) as desired; the
normalization cancels out. The two exponents s and t are independent of one-another.
it’s not entirely clear if they should be forced to be equal, i.e. to set s = t or if it is
better to set t = 1 and allowing s to remain free. Even setting t = 0 is plausible. Set-
ting s = t = 1 gives the earlier MI. Setting s = t = 0 gives a Hamming-distance-like
MI that only considers those disjuncts that have a non-zero count. Setting s = t = 2
results in a weighting where the high-count disjuncts dominate, and thus naturally sup-
presses “noise”: the word-disjunct pairs with low observation counts. This assumes
that low-count word-disjunct pairs actually are “noise”. This has not been experimen-
tally established. In fact, one can go in the opposite direction: perhaps these carry
some kind of important signal. In this case, a weighting of s = t = 1/2 may provide a
good intermediate balance between s = t = 0 and s = t = 1. There’s a strange intellec-
tual appeal to an exponent of 1/2, in that it is “quantum mechanical”: it is the square
root of the probability. That this is meaningful in a statistical realm is demonstrated by
the Fisher information metric, which reduces to the flat-space Euclidean metric when
working with the square-root. This is “interesting”, the meaning of which is not yet
entirely clear to this author. (Asking about complex values of s seems like a step too
far, at this time.)

How might this work out for “sink”?

D(w,∗) MI0 MI0.5 MI1 MI2

him 834 5.657 28.954 2.201 -13.495
me 612 4.382 27.300 1.860 -13.661

example 12 -0.056 19.292 1.179 -8.622
us 153 3.250 25.031 1.759 -11.774

them 372 4.235 26.589 1.884 -12.781
speak 58 1.271 21.562 1.061 -10.114

instance 19 2.295 20.724 0.114 -13.463
happen 17 0.605 19.379 0.800 -9.381

difference 20 -0.174 18.974 0.653 -8.862
themselves 17 0.683 21.598 1.785 -9.302

himself 95 2.671 24.065 1.817 -10.951
say 257 1.709 23.289 1.136 -11.831

The above table shows four different kinds of MI between “him” and the other
words shown. The D(w,∗) is the support for that word vector. Recall the definition
D(w,d) = 1 if N (w,d)> 0 and so D(w,∗) is just the sum – the size of the vector.

49

All of these seem to discriminate, but weakly. That is, its plausible to have a high
MI between “him me us them themselves himself” and a lower MI to “example speak
instance happen difference say” and all of these do this. The discrimination is imper-
fect. For MI0 “themselves” is lower than “instance speak say”, so these two clusters
overlap. That’s not good. For MI1 the lowest pronoun is “us” at 1.76 while the high-
est other word is “example” at 1.18, so these two clusters are separated. However,
the information content is not large: MI is measured in bits, there is less than one
bit difference. This is not big enough to get the clustering to work well, as currently
designed/implemented.

The huge values for MI0.5 are surprising. It doesn’t seem to be a great discriminator:
the width of the clusters is about the same as the distance between them. The lowest
pronoun for MI0.5 is “themselves” at 21.60; the highest non-pronoun is “speak” at
21.56. So this seems weaker than the usual MI for discrimination.

The negative values for M2 are surprising. Not sure what to make of that.
Table below shows cluster statistics. The pronoun cluster is “him me us them them-

selves himself” the “other” cluster is “example speak instance happen difference say”.

pronouns other
min MI0 0.6833 -0.174
max MI0 5.6577 2.2954
avg MI0 3.4799 0.9418
rms MI0 1.5628 0.9021

min MI0.5 21.598 18.974
max MI0.5 28.955 23.289
avg MI0.5 25.590 20.537
rms MI0.5 2.3741 1.5272
min MI1 1.7585 0.1135
max MI1 2.2012 1.1789
avg MI1 1.8844 0.8238
rms MI1 0.1479 0.3683
min MI2 -13.66 -13.46
max MI2 -9.302 -8.622
avg MI2 -11.99 -10.38
rms MI2 1.5296 1.7358

These are small, eyeballed clusters, but they provide a guide to discrimination.
Consider the difference between the averages in the two clusters, and the sum of the
rms of the two, and the ratio of these:

distance sum rms stddev
MI0 2.5381 2.4649 1.03

MI0.5 5.053 3.9013 1.30
MI1 1.0606 0.5162 2.05
MI2 1.610 3.2654 0.49

50

Thus we conclude – for this small, unbalanced, ad hoc sample, the conventional
MI provides the greatest amount of discrimination.

Length Matching
Above section has no considerations for negative matching – mismatches due to size
differences. That is, the foundation-stone is built on

∑
d

N (w,d)N (u,d)

where, by definition, the sum over the disjuncts d run over the set where both counts N
are non-zero. This suggests that perhaps, we could use a measure that includes negative
matching. This suggests using an MI inspired by the Jaccard distance (aka Tanimoto
distance).

Is this really needed? Maybe not – and here’s why. Merging words into clusters
(minimally) means that only the disjuncts in the intersection are merged. The intent
of this minimalist merge is to split up words having multiple meanings, associating a
collection of disjuncts with a particular meaning. But what this also implies is that
having a similarity measure that is likewise tuned to being able to pick out common
subsets is a good thing.

That said, it is worth exploring some alternate similarity measures in greater detail.

Flavors of Jaccard similarity

There are multiple variants of Jaccard similarity that apply to the current situation. This
leads to a bit of a naming crisis.

Ruzicka similarity

Given some arbitrary function f (w,d) of word-disjunct pairs (w,d), the Ruzicka simi-
larity for this problem is

JR (f ;u,w) =
∑d min(f (w,d) , f (u,d))
∑d max(f (w,d) , f (u,d))

The Jaccard similarity corresponds to the case where f (w,d) is either zero or one (is
the indicator function: is or is not in the set) so the Ruzicka similarity is a kind of
weighted Jaccard.

The corresponding distance is

J (f ;u,w) = 1− JR (f ;u,w)

Wikipedia suggests that this obeys the triangle inequality, i.e. is a true metric, but this
is not obvious to me.

There are several plausible functions from which f can be built. One is the raw
observation count N (w,d) and the other is the conditional probability of observing a

51

particular word-disjunct pair, for that word:

p(d|w) = N (w,d)
N (w,∗)

This is nicer than just using the plain counts, and here’s why. Consider first:

JR (N;u,w) =
∑d min(N (w,d) ,N (u,d))
∑d max(N (w,d) ,N (u,d))

If word u is a (perfect) synonym for w but is used only rarely, then the comparison of
the raw counts will lead to mostly-garbage. That is, if N (u,d) = αN (w,d) for some
constant α , these two vectors would come out as dis-similar, even though it is clear
that, for this case, we want them to be considered to be identical, as they are synonyms.
Thus, using raw N is just wrong, for the present case. By contrast, using the conditional
probability appears to provide the desired result: the two synonyms would be judged
to have perfect similarity.

The simplest, narrowest, original definition of the Jaccard similarity is the un-
weighted similarity given by f (w,d) = [N (w,d)> 0]. This just uses the support of
N to determine set membership.

The ‘add-similarity-compute‘ object provides three Jaccard methods:

• ‘jaccard‘ which implements JR (N;u,w)

• ‘cond-jacc‘ which implements JR (p;u,w)

• ‘overlap‘ which implements JR (N > 0;u,w)

Probability Jaccard

The “probability Jaccard” provides “maximally consistent sampling” per WP ref. It is
defined as

JP (u,w) = ∑
d

[
∑
c

max
(

N (w,c)
N (w,d)

,
N (u,c)
N (u,d)

)]−1

Note that
1− JP (u,w)

is a bona fide metric over the probability space.
How might this work for “sink” with one disjunct, and “him”, with 832 disjuncts

on it? The sum over d must necessarily run over just this one disjunct. The sum over c
runs over all 832 of them. For 831 of them, N(sink,c) = 0. Thus,

JP (sink,him) =

[
1+ ∑

c6=d

N (him,c)
N (him,d)

]−1

and clearly, this will judge these two words to be very different.

52

Entropic Similarity

The notation for entropy and MI being used here are susceptible to confusion, when
being compared to the contents of Wikipedia. To avoid confusion, a review is worth-
while. This was already presented in part one of the diary, section titled “Entropic
Similarity”, but is repeated here.

Given a count N (w,d) define the joint probability

pM (w,d) =
N (w,d)
N (∗,∗)

The subscript M is a reminder that these counts are obtained from MST/MPG parsing
(maximum spanning tree/maximum planar graph parsing).

The conditional probability of observing a word w given a fixed disjunct d is then

pM (w|d) = pM (w,d)
pM (∗,d)

That is, the conditional probability is just the fraction of all pairs having this disjunct.
The marginal probability of observing a word w is just the sum of observing it for

any disjunct:
pM (w)≡ pM (w,∗) = ∑

d
pM (w,d)

The above is all fine and everything, but inappropriate for comparing two words.
The inner product between two words w,u is

i(w,u) = ∑
d

N (w,d)N (u,d)

and can be written as a proper (joint) probability as

p(w,u) =
i(w,u)
i(∗,∗)

= ∑
d

pM (w,d) pM (u,d)

Note the absence of a subscript M; this is a different probability than above.
The marginal probability is then

p(w)≡ p(w,∗) = ∑
d

pM (w,d) pM (∗,d)

The fractional MI between two words is then

MI (w,u) = log2
p(w,u)

p(w) p(u)

and so is now manifestly compatible with Wikipedia.
This has the desirable property of giving the same score to synonyms. That is, if

N (u,d) = αN (w,d) for some constant α , then the two words u and w should be judged
as perfect synonyms, and so should be perfectly similar. Plugging through, we find that
the MI obeys this condition:

MI (u,u) = MI (w,w) = MI (u,w)

53

when N (u,d) = αN (w,d) holds.
The (fractional) joint entropy is

H (w,u) =− log2 p(u,w)

Note the minus sign.
Wikipedia then defines the “variation of information” d (u,w) as

d (u,w) = H (u,w)−MI (u,w)

= log2 p(w) p(u)−2log2 p(u,w)

It then claims that

0≤∑
w,u

p(w,u)d (w,u)≤∑
w,u

p(w,u) log2 p(w,u)

which is not manifestly obvious to me, but I guess it’s plausible. This suggests the
“normalized metric”

D(w,u) =
d (w,u)
H (w,u)

= 1− MI (w,u)
H (w,u)

Is this really always positive? If so, its not superficially obvious to me. This is the
fractional part of the “Jaccard distance”, arrived at when given the appropriate measure-
theoretic interpretation. There is also a different “metric”:

D′ (w,u) = 1− MI (w,u)
max(H (w) ,H (u))

Jaccard MI

This section defines a kind-of “Jaccard mutual information”, in a kind of ad hoc man-
ner, by inspiration. It’s not particularly well-founded; rather, its plausible. Except that
it’s not – it’s broken.

Define the support of a vector as

S (w) = {d : N (w,d)> 0}

so that the Jaccard union is
S (w)∪S (u)

How about the rest, then? Well, lets just try it out. Abusing the notation for conditional
probability, write

p(w;u,d) =
N (w,d)

∑d N (w,d)+N (u,d)

=
N (w,d)

N (w,∗)+N (u,∗)

54

Then define a Jaccard MI as

MIJ (w,u) = log2
(∑d p(w;u,d)p(u;w,d))(∑d p(∗;u,d)p(∗;w,d))
(∑d p(w;u,d)p(∗;u,d))(∑d p(u;w,d)p(∗;w,d))

Plugging through, this reduces to

MIJ (w,u) = log2
(∑d N(w,d)N(u,d))(∑d p(∗;u,d)p(∗;w,d))
(∑d N(w,d)p(∗;u,d))(∑d N(u,d)p(∗;w,d))

where

p(∗;w,d) = ∑
x

N (x,d)
N (x,∗)+N (w,∗)

which is computationally awkward.
Upshot is: the conventional dot product is not altered. The computation of this

Jaccard MI is far more complex and time consuming. Curiously, the obvious attempt
to simplify/approximate it just takes us back to the conventional MI.

The primary problem here is that this violates one of the desired properties for the
similarity of synonyms. That is, if N (u,d) = αN (w,d) for some constant α , then the
two words u and w should be judged as perfect synonyms, and the resulting similarity
should be perfect. This distance violates that.

July 2021 - Similarity Smackdown
So, above, we have a whole variety of different similarities. Lets see how they perform
on real data. This test is to be done on several datasets: ‘run-1-en_mpg-tranche-
123.rdb‘ and trimmed versions of this.10 Its our midsize English dataset. It’s pretty
big. The comparison will be between the top ten most frequent common nouns, the top
ten verbs, the top ten adjectives, the top ten pronouns, the top ten prepositions and the
top ten adverbs. The min, max, mean and rms similarity will be computed in-group,
for each group. This will be between the 10*9/2=45 pairs in each group. Next, the
min, max, avg and rms similarity between groups will be computed; this will run over
10*10=100 between-group pairs. This will be repeated for the trimmed dataset, too.
(Maybe several trims?) Should probably do this with and without shapes. This is a
pretty massive experiment, with a whole lot of compute going into it. This is going to
take a while, and spew a lot of data.

Lets go. The word categories (these are hand-picked):

10The ‘run-1-en_mpg-tranche-123.rdb‘ dataset contains 113M atoms. Of these, 391548 (391K) are
WordNodes

55

POS Difficult set
determiner the a that this an some any these those most -
preposition of to in with for at on by from up -

verb-ir was is had be have were are would been will -
verb-act said like do did know made see go came come -
pronoun I he it you him she they me them we -

possessive his her my their your its our ones +
adverb that as not no there about only then very just -

conjunction and but or so if than both either yet nor -
adjective all one other little even good great long old many -

WH-words which who when what where why how while whatever whose -
noun time man way eyes day hand head men face place -
aux can should could may must might shall cannot am has -

Note that some of these are ambiguous: “as” can be an adverb or preposition. “that”
can be an adverb or a determiner. As such, they might be excessively broad categories,
and might overlap a fair bit.

The table below defines an “easier” set, that is, hand-picked, because they seem
easier to me.

POS Easier set
determiner the a this an some any these those all most -
preposition in with for at on by from up out into -

verb-ir was is be have were are been has having being -
verb-act like do know see go come make say think want -
verb-past said did thought looked found took asked saw told knew -
pronoun I he it you him she they me them we -

possessive his her my their your its our ones +
adverb not no there about only then very just rather often -

conjunction and but or so if than both either yet nor -
adjective one little good great long old many young black hard -

WH-words which who when what where why how while whatever whose -
comparative better longer greater lower higher closer earlier larger older younger -

noun man eyes day hand head men room house night door -
aux had can could should would will may must might shall -

given Jack Ross God John Jim Demelza Mai Richard George Mary -
places England London Dallas Paris America Rome Canada Italy Ireland China -
titles Mr Mrs Miss King St Sir Dr Captain General Madame -

A better selection technique might be to start with the “difficult set” and kick out
the two outliers (according to conventional MI) and obtain an easier set that way.

Anyway, the experiments below were all performed with the difficult set.

56

Summary of Results
The sections below provide detailed results. To summarize, these are:

• MI beats the pants off of cosine similarity; of all the distance measures, cosine
similarity is in a distant last place.

• Surprisingly, three different metrics provide superior results to MI: overlap sim-
ilarity (unweighted Jaccard similarity), weighted Jaccard similarity and “proba-
bility” Jaccard similarity, in order of quality of results. These improve the inter-
intra-cluster separation by over 10% compared to using MI. (So - 10% is not a
lot, but we’ll take what we can.)

• This last result is ... surprising, and seems to contradict the naive belief in infor-
mation theory. How is this to be explained? Is there some deeper information-
theoretic explanation that has not been grasped?

• The experiment fails to measure the thing that originally inspired it: There are
word pairs with very high MI but very low overlap similarity, simply because
one of the word vectors is very short. The hand-picked clusters above contain no
short vectors!

• Surprisingly, the use of shapes makes the MI scores considerably worse. It’s
possible, but not likely, that this is due to dataset filtering problems. That ex-
periment still needs to be performed. Naive imagination suggests shapes should
have made everything better.

• Shapes do seem to make things better, when using the various forms of the Jac-
card distance. This is especially the case for the smaller/smallest datasets.

See also a different summary of results at the bottom, and another at the top.

Trimmed dataset (Poorly trimmed)
Above is to be run on the following datasets. Attention: The table immediately below
summarizes datasets generated with a poorly designed filtering operation. The prob-
lem is that the ‘add-zero-filter‘ was not run, resulting in words in Connectors that do
not appear in Sections. This not only alters product computations, but it also leads to
cross-sections whose head word doesn’t appear in a section. This turns out to skew
results, but not all that much - mostly less than a few percent. So these datasets appear
to be “pretty good”, but not entirely fully self-consistent. See further below for the re-
vised results. Funny thing: those revised results are also incompletely self-consistent.
They’re better, but it turns out a single pass of ‘add-zero-filter‘ is not enough. A recur-
sive multi-pass will be required.

57

file name total pairs words disjuncts sparsity entropy
r3-filt-1280-256-160-marg.rdb 78 28 70 4.65 -17.06

r3-filt-640-128-80-marg.rdb 6035 434 4238 8.25 -2.83
r3-filt-320-64-40-marg.rdb 15733 810 10808 9.120 0.4877
r3-filt-160-32-20-marg.rdb 40357 1687 27298 10.156 3.5924
r3-filt-80-16-10-marg.rdb 93758 2995 61359 10.937 6.6372

r3-filt-40-8-5-marg.rdb 213735 5422 137120 11.764 9.6489
r3-filt-20-4-2-marg.rdb 546345 10770 325604 11.903 13.326

r3-mpg-marg.rdb 28436901 377553 25698949 18.380 24.100
filt-640-128-80-shape 18507 1294 10737 9.552 0.7650
filt-320-64-40-shape 48818 2674 26981 10.529 4.7756
filt-160-32-20-shape 129247 5180 71280 11.480 8.5478
filt-80-16-10-shape 301284 9517 157543 12.281 12.164

filt-40-8-5-shape 693785 16668 351734 13.045 15.560
filt-20-4-2-shape 1794658 29080 876922 13.795 11.747

mpg-shape

The first two datasets do not have all of the words for all of the clusters. The
“marg” datasets use the Sections (pseudo-csets) only; the “shape” datasets include both
Sections and Cross-Sections. The number of words differ between the corresponding
datasets, because the filtering cut things in such a way that there are words appearing
in CrossSections that don’t have a matching Section (because that Section was cut by
the filter). That is, there are words in connectors that don’t appear in Sections.

XXX The above should not have happened; ‘add-linkage-filter‘ should have pre-
vented the above. Is there a bug? What’s up with that? Answer: above failed to
run ‘add-zero-filter‘ after the row-column filter, but before ‘add-linkage-filter‘. The
problem was that ‘add-linkage-filter‘ was given a list of words that had zero counts,
because the generic filter does not knock out rows whose counts are empty. All this is
recomputed further below.

r3-filt-640-128-80-marg.rdb – MI (for the poorly-filtered dataset)
So lets try it out. Attention: this is done with the poorly-filtered datasets above, but
apparently can still be taken to be “representative”. Better filtering changes results by
only a few percent, or less.

The r3-filt-640-128-80-marg.rdb dataset is the first dataset big enough to measure.
The stats are for the MI. The cluster stats are:

58

cluster sz pr min pair min max pair max avg rms
wl-1-det 10 18 the . most −∞ this . any 5.646 3.437 1.581

wl-2-prep 10 38 of . up −∞ by . from 4.595 2.777 1.252
wl-3-verb-ir 10 21 was . be −∞ would . will 6.840 3.817 2.319

wl-4-verb-act 7 7 said . like −∞ do . did 8.289 5.482 1.782
wl-5-pronoun 10 30 I . him −∞ him . me 7.807 3.889 1.843
wl-6-posessive 3 3 her . my 5.60 his . her 6.934 6.238 0.546

wl-7-adverb 10 12 that . about −∞ not . only 5.960 1.917 2.487
wl-8-conj 8 10 and . than −∞ or . so 2.410 2.055 0.357
wl-9-adj 10 7 all . one −∞ good . great 9.674 5.514 2.772

wl-10-wh 5 5 who . when −∞ which . what 4.744 3.121 1.292
wl-11-noun 10 36 time . man −∞ eyes . hand 5.222 4.554 0.180
wl-12-aux 9 21 can . shall −∞ should . shall 8.342 6.771 0.692

This dataset is small enough that not all of the words in the cluster appear. The
‘sz‘ column counts how many of those words are present. The −∞ in the ‘min‘ col-
umn shows that this dataset has word-pairs with zero overlap. Yow! The ‘pr‘ column
counts how many good pairs there were (there should be 49=10x9/2, if they were all
comparable). The average and rms exclude such pairs.

Conclusion: this dataset is not big enough to sample many common English words.
It is big enough to classify at least some words into clusters, though.

How about between clusters? Worth a quick look.

clusters prs max pair max avg rms
1-det 2-prep 15 that . for 2.220 -1.90 0.944

1-det 5-pronoun 9 this . it 3.565 -0.08 2.279
1-det 7-adverb 20 any . no 6.980 1.671 2.267

1-det 9-adj 11 some . many 9.918 3.179 2.899
3-verb-ir 4-verb-act 31 been . come 9.886 4.036 2.021
3-verb-ir 5-pronoun 10 be . him 4.434 1.306 1.871

4-verb-act 5-pronoun 8 see . him 4.364 2.704 1.654
4-verb-act 11-noun 1 come . time 7.095 7.095 0.0

5-pronoun 6-posessive 5 him . her 6.451 4.739 2.189
7-adverb 8-conj 28 just . so 3.770 1.134 1.534
7-adverb 9-adj 13 only . other 4.478 2.319 1.504
8-conj 9-adj 11 either . one 8.629 1.960 3.318

There are 66=12x11/2 of these cluster pairs. The above samples just some of them.
it seems to show some problems with these hand-picked clusters: they overlap more
than imagined, and not surprisingly so. The only real surprise here is the “see-him”
pair.

59

r3-filt-40-8-5-marg.rdb – MI (for the poorly-filtered dataset)
A much bigger dataset than the above. Attention: this is done with the poorly-filtered
dataset described above. The results seem to still be “representative”; better filtering
changes them by a few percent, sometimes less.

The stats are for the MI. The cluster stats are:

cluster sz pr min pair min max pair max avg rms
wl-1-det 10 44 an . these −∞ these . those 8.501 2.095 2.900

wl-2-prep 10 45 of . up -1.39 by . from 4.238 2.586 1.330
wl-3-verb-ir 10 43 would . been −∞ were . are 6.348 2.013 2.476

wl-4-verb-act 10 45 see . came -3.31 go . come 7.579 2.917 1.976
wl-5-pronoun 10 45 I . him -6.96 him . me 6.796 0.771 4.555
wl-6-posessive 7 15 his . ones −∞ its . our 6.727 5.879 0.616

wl-7-adverb 10 43 no . about −∞ not . only 4.853 0.965 1.769
wl-8-conj 10 45 if . either -3.27 or . nor 4.744 1.378 1.451
wl-9-adj 10 43 even . great −∞ good . great 8.513 1.887 3.199

wl-10-wh 10 33 which . whose −∞ what . whatever 6.485 2.761 1.635
wl-11-noun 10 45 man . hand 1.827 man . day 3.912 3.046 0.412
wl-12-aux 10 43 cannot . has −∞ can . cannot 7.201 4.665 2.629

group mean and rms for 489 pairs 2.378 2.716

The green colors are the words that are the same as in the 640-128-80 dataset. Many
means and most rms are similar to the smaller dataset. So that’s good: the datasets are
reflective of one-another. The means are .. low, but perhaps not surprisingly low, as
they are a rather disparate collection of words...

Rather than reporting on all 66 inter-cluster distances, it seems simplest to provide
a single score: the grand-total average and rms of the inter-cluster scores. There are
4617 inter-cluster pairs, with a mean of -1.32 and rms of 3.007. Comparing to the intra-
cluster mean and rms, it looks like the difference is 3.70, or about 1.3 std-dev distance
between the two.

Inter-intra MI summary (for the poorly-filtered datasets)
Pursuing above, the table below records the inter and intra cluster average MI for the
datasets.

Attention: The table below is generated with the poorly-filtered datasets described
above. A table further below presents the same data for better-filtered datasets. Com-
paring tables, one sees they are mostly the same: most numbers change by a few per-
cent; some differences are as large as 10% and some are under one percent. So this is
mostly representative.

The big question here is why shapes make things worse; this remains a big unre-
solved question.

60

filename tot intra MI intra RMS tot inter MI inter RMS separation
filt-640-128-80-marg 208 3.967 2.042 556 1.312 2.609 1.15
filt-320-64-40-marg 296 3.700 2.139 1110 0.754 2.674 1.22
filt-160-32-20-marg 377 3.050 2.513 2120 -0.118 2.856 1.18
filt-80-16-10-marg 448 2.559 2.802 3429 -0.91 2.989 1.20

filt-40-8-5-marg 489 2.378 2.716 4617 -1.32 3.007 1.29
filt-20-4-2-marg 501 2.394 2.603 5656 -1.572 3.013 1.42

mpg-marg
filt-640-128-80-shape 311 2.489 1.947 2386 0.288 1.992 1.13
filt-320-64-40-shape 448 1.990 2.102 4349 -0.063 2.015 1.00
filt-160-32-20-shape 479 1.747 2.420 5367 -0.391 2.178 0.93
filt-80-16-10-shape 500 1.884 2.385 5885 -0.38 2.232 0.98

filt-40-8-5-shape 513 1.974 2.252 6245 -0.254 2.131 1.02
filt-20-4-2-shape 516 2.024 2.198 6266 -0.096 1.989 1.01

mpg-shape

The “separation” is the number of stddev between the intra and inter MI values.

Trimmed dataset
Redo of trimming, as explained above. These are more tightly trimmed, but still not
fully trimmed. See below for discussion. Time to perform the filtering is about 4200
seconds for each file.

Notation: filename-WW-DD-SS-foo where WW is the cutoff for the minimum time
this word has been observed. DD is the cutoff for the number of times a disjunct
has been observed, and SS is the cutoff for the number of times a given section has
been observed. This is in keeping with how the filter object is designed in the main
atomspace repo – these are the three filter parameters.

61

file name total pairs words disjuncts sparsity entropy
r3-zfil-640-128-80-marg 4006 409 2496 7.9934 -3.191
r3-zfil-320-64-40-marg 11157 749 6754 8.8247 0.2809
r3-zfil-160-32-20-marg 30675 1587 18840 9.9288 3.4436
r3-zfil-80-16-10-marg 73480 2816 43687 10.709 6.5297

r3-zfil-40-8-5-marg 172853 5076 101593 11.543 9.5523
r3-zfil-20-4-2-marg 470567 10110 261323 12.455 13.289
r3-mpg-marg.rdb 28436901 377553 25698949 18.380 24.100

zfil-640-128-80-shape 12340 437 6961 7.9455 -1.338
zfil-320-64-40-shape 34737 811 18274 8.7369 2.4048
zfil-160-32-20-shape 99342 1777 53238 9.8953 6.0846
zfil-80-16-10-shape 238735 3081 120546 10.603 9.6970

zfil-40-8-5-shape 566970 5483 277064 11.388 13.206
zfil-20-4-2-shape 1558158 10916 738026 12.336 17.160

mpg-shape

Some of the thinner datasets do not have all of the words for all of the clusters. The
“marg” datasets use the Sections (pseudo-csets) only; the “shape” datasets include both
Sections and Cross-Sections.

So here’s the trimming problem: the algo used is not yet fully recursive. So: first
round of trimming removes sections which have connectors that don’t appear as words
in the left-basis. This leaves some words with no sections on them. These are removed.
However, those words might still appear in some connectors. Thus a second round of
trimming is needed. And so on, and so on, until a stable collection is arrived at.

Some additional confusion: there might be words in the left basis that never appear
in connectors. These also have to be removed. When these are removed, corresponding
sections disappear as well, necessitating another recursive round. Yech. So lets proceed
without this, and see what happens. We can try again, later.

Notes: ‘r3-mpg-marg.rdb‘ is just a copy of ‘run-1-en_mpg-tranche-123.rdb‘
with MMT marginals for Sections only (no CrossSections).

Inter-intra MI summary
The table below records the inter and intra cluster average MI for the datasets.

This proceeds as follows. Given one cluster, the MI was computed for each pair of
words in the cluster. These were then averaged together to obtain the average cluster
MI, and also the RMS for that cluster. The averaging is unweighted (all word-pairs get
a uniform weight). Next, all of these cluster scores were averaged together, to give the
“intra MI” for the entire dataset. This second averaging was weighted by the number
of pairs in each cluster; the result is that all word-pairs get a uniform weight. The “tot”
column records the total number of pairs. In formulas:

intra = ∑
c∈C

∑
w,u∈c

MI(u,w)

where C is the set of all of the clusters.

62

The “inter MI” column computes the average MI over all word-pairs, where the
two words are in distinct clusters. That is, each word is in a different cluster:

inter = ∑
c∈C

∑
c′∈C;c′ 6=c

∑
w∈c;u∈c′

MI(u,w)

The “tot” column records the total number of such pairs.
The “separation” is the number of stddev’s between the intra and inter MI values.

The stddev is the larger of the two RMS’s.

filename tot intra MI intra RMS tot inter MI inter RMS separation
zfil-640-128-80-marg 202 4.077 2.029 548 1.475 2.604 1.000
zfil-320-64-40-marg 288 3.752 2.198 1094 0.834 2.654 1.100
zfil-160-32-20-marg 374 3.044 2.521 2104 -0.079 2.834 1.102
zfil-80-16-10-marg 448 2.576 2.791 3420 -0.886 2.985 1.160

zfil-40-8-5-marg 489 2.3831 2.711 4610 -1.315 2.990 1.237
zfil-20-4-2-marg 501 2.3970 2.601 5654 -1.565 3.009 1.317

mpg-marg 512 2.5315 2.385 6250 -1.101 2.604 1.395
zfil-640-128-80-shape 307 2.5024 1.863 2359 0.2723 1.975 1.129
zfil-320-64-40-shape 441 1.8892 2.012 4310 -0.204 1.959 1.041
zfil-160-32-20-shape 479 1.5841 2.350 5365 -0.547 2.091 0.907
zfil-80-16-10-shape 500 1.7075 2.290 5884 -0.551 2.151 0.986

zfil-40-8-5-shape 504 1.7782 2.176 6148 -0.437 2.044 1.018
zfil-20-4-2-shape 516 1.8864 2.134 6266 -0.233 1.937 0.993

mpg-shape

So we conclude:

• Less filtering gives better results.

• Shapes make all vectors more similar to each other. The RMS with shapes is
smaller, considerably smaller, with shapes, than without them.

• Unfortunately, this is true not only within clusters, but also between them! Shapes
fail to improve the discrimination between clusters. This is counter-intuitive.

• Shapes are stunningly disappointing; the reason for this is quite unclear. It may
be due to the faulty filtering, and so deserves one more round. Yet there’s a hint
that even better filtering still won’t improve things. So this is an open problem.

63

Inter-intra joint probability summary
The table below records the inter and intra cluster average joint probability for the
datasets. The joint probability is as defined previously; it is the normalized inner prod-
uct.

p(w,u) =
i(w,u)
i(∗,∗)

= ∑
d

pM (w,d) pM (u,d)

with

pM (w,d) =
N (w,d)
N (∗,∗)

Several problems arise when computing the “average probability” for words in a
cluster or between clusters. Some words are observed far more frequently than others,
and we really do want to adjust for that. Thus, it is best to compare the joint probability
divided by the marginal probabilities for each word:

p(w,u)
pM (w,∗) pM (u,∗)

where the wild-cards range over the disjuncts.
Next, computing the RMS for the above doesn’t really make sense, cause probabil-

ities cannot go negative. It seems better to compute the averages and RMS for log2 p,
that is, for

log2
p(w,u)

pM (w,∗) pM (u,∗)
This should be quite similar to the MI.

Here, “larger is better” – larger log2 numbers mean a better match.

filename tot intra joint intra RMS tot inter joint inter RMS separation
zfil-640-128-80-marg 202 3.295 2.621 548 0.563 2.677 1.020
zfil-320-64-40-marg 288 2.634 2.661 1094 -0.363 2.913 1.029
zfil-160-32-20-marg 374 1.6787 2.945 2104 -1.493 3.047 1.041
zfil-80-16-10-marg 448 1.1077 3.309 3420 -2.398 3.235 1.059

zfil-40-8-5-marg 489 0.8812 3.210 4610 -2.907 3.220 1.177
zfil-20-4-2-marg 501 0.7920 3.126 5654 -3.218 3.179 1.262

mpg-marg 512 0.7484 2.855 6250 -2.971 2.787 1.303
zfil-640-128-80-shape 307 2.1093 2.033 2359 0.0777 2.365 0.859
zfil-320-64-40-shape 441 1.5268 2.310 4310 -0.530 2.422 0.849
zfil-160-32-20-shape 479 1.0244 2.433 5365 -1.099 2.412 0.873
zfil-80-16-10-shape 500 0.8585 2.317 5884 -1.416 2.384 0.954

zfil-40-8-5-shape 504 0.6339 2.171 6148 -1.580 2.271 0.975
zfil-20-4-2-shape 516 0.3893 2.150 6266 -1.758 2.154 0.997

mpg-shape

64

So we conclude:

• Less filtering gives better results.

• Quality is close to the MI results, and only slightly poorer.

• Shapes offer no advantage; they’re a clear disadvantage.

Inter-intra variation of information summary
The table below records the inter and intra cluster average “variation of information”
for the datasets. This is defined as

V I (u,w) = H (u,w)−MI (u,w)

where H (u,w) is the log of the joint probability, as defined before:

H (w,u) =− log2 p(w,u)

Here, “smaller is better” – smaller numbers mean a better match. Per Wikipedia,
this is a metric (obeying the triangle inequality).

filename tot intra vi intra RMS tot inter vi inter RMS separation
zfil-640-128-80-marg 202 10.121 2.911 548 13.619 3.656 0.957
zfil-320-64-40-marg 288 11.583 3.725 1094 15.957 4.241 1.031
zfil-160-32-20-marg 374 13.206 4.739 2104 18.499 4.895 1.081
zfil-80-16-10-marg 448 14.451 5.516 3420 20.701 5.535 1.129

zfil-40-8-5-marg 489 15.044 5.678 4617 22.067 5.847 1.201
zfil-20-4-2-marg 501 15.064 5.480 5656 22.925 6.115 1.286

mpg-marg 512 15.294 5.309 6250 22.677 5.607 1.317
zfil-640-128-80-shape 307 12.469 3.178 2359 16.093 3.610 1.004
zfil-320-64-40-shape 441 14.340 3.995 4310 18.162 4.037 0.947
zfil-160-32-20-shape 479 15.235 4.682 5365 19.448 4.521 0.900
zfil-80-16-10-shape 500 15.550 4.526 5884 20.040 4.702 0.955

zfil-40-8-5-shape 504 15.769 4.310 6148 20.299 4.558 0.994
zfil-20-4-2-shape 516 16.067 4.260 6266 20.369 4.280 1.005

mpg-shape

So we conclude:

• A touch better than the joint-probability results above.

• Separation is not as good as MI, but are within 5% of the MI separation.

65

Inter-intra normalized variation of information summary
The table below records the inter and intra cluster average “normalized variation of
information” for the datasets. This is defined as

NV I (u,w) =
MI (u,w)
H (u,w)

where H (u,w) is the log of the joint probability, as defined before.
Here, “larger is better” – larger numbers mean a better match.

filename tot intra nvi intra RMS tot inter nvi inter RMS separation
zfil-640-128-80-marg 202 0.2925 0.145 548 0.1047 0.175 1.075
zfil-320-64-40-marg 288 0.2553 0.150 1094 0.0595 0.162 1.207
zfil-160-32-20-marg 374 0.2056 0.163 2104 0.0083 0.156 1.212
zfil-80-16-10-marg 448 0.1746 0.171 3420 -0.030 0.151 1.200

zfil-40-8-5-marg 489 0.1607 0.166 4617 -0.049 0.144 1.260
zfil-20-4-2-marg 501 0.1597 0.160 5656 -0.058 0.138 1.364

mpg-marg 512 0.1627 0.150 6250 -0.039 0.122 1.347
zfil-640-128-80-shape 307 0.1728 0.121 2359 0.0244 0.120 1.223
zfil-320-64-40-shape 441 0.1276 0.125 4310 -0.003 0.108 1.039
zfil-160-32-20-shape 479 0.1095 0.136 5365 -0.019 0.107 0.941
zfil-80-16-10-shape 500 0.1122 0.131 5884 -0.018 0.106 0.994

zfil-40-8-5-shape 504 0.1134 0.126 6148 -0.013 0.101 0.995
zfil-20-4-2-shape 516 0.1164 0.124 6266 -0.003 0.097 0.968

mpg-shape

So we conclude:

• Separation is a fair bit better than the un-normalized variation of information.

• Separation is about 10% better than the MI separation, for the plain sections.

• Separation is about 5% better than the MI separation, for the shapes.

Inter-intra cosine summary
The table below records the inter and intra cluster average cosine distance for the
datasets. Although this is “obviously” inappropriate for this work, it is the industry
standard benchmark, so we want to see how it stacks up.

66

filename tot intra cos intra RMS tot inter cos inter RMS separation
zfil-640-128-80-marg 404 0.1798 0.267 4646 0.0158 0.077 0.614
zfil-320-64-40-marg 475 0.1614 0.227 5741 0.0162 0.073 0.641
zfil-160-32-20-marg 484 0.1571 0.210 5844 0.0182 0.071 0.663
zfil-80-16-10-marg 501 0.1600 0.203 6054 0.0200 0.071 0.690

zfil-40-8-5-marg 507 0.1614 0.200 6163 0.0211 0.070 0.701
zfil-20-4-2-marg 516 0.1620 0.197 6270 0.0223 0.069 0.710

mpg-marg 516 0.1465 0.180 6270 0.0212 0.064 0.695
zfil-640-128-80-shape 404 0.1773 0.193 4646 0.0467 0.099 0.676
zfil-320-64-40-shape 475 0.1851 0.184 5741 0.0515 0.095 0.726
zfil-160-32-20-shape 484 0.1863 0.179 5844 0.0530 0.091 0.743
zfil-80-16-10-shape 501 0.1905 0.177 6054 0.0546 0.090 0.770

zfil-40-8-5-shape 507 0.1908 0.175 6163 0.0559 0.089 0.770
zfil-20-4-2-shape 516 0.1962 0.176 6270 0.0581 0.091 0.784

mpg-shape

So we conclude:

• This is not competitive with the probability-based methods, not even close.

• Shapes improve the cosine distance! Even though this is still with non-optimal
filtering! Hypothesis: the shape vectors really do improve vector alignment (as
this clearly shows) but the extra MI terms dissolve it back out. That is, the shapes
do not carry any extra information not already present in the vectors.

• This may be a misinterpretation, though. By comparing inter scores with and
without shapes, we see that the shapes make the vectors more similar. This is
also the case for the intra scores. In particular, the RMS for the intra scores goes
down (cause they’re more similar) which makes the separation improve.

• Conclude: shapes make all vectors appear to be more similar.

Inter-intra log cosine summary
The table below records the inter and intra cluster average log2 cosine distance for the
datasets. This is similar to above, except that the log2 makes the numbers more directly
comparable to the probabilities. The cosine ranges from 0.0 to 1.0, with 1.0 meaning
“highly similar”. Thus, the log emphasizes dissimilarities. Larger values are better.

Doing this does alter the contributions to the averages: for the smaller datasets,
zero cosines are frequent. This is due to the dataset size: just not enough disjuncts.
These do contribute to the average cosine distance, but not to the log distance; they’re
discarded (since log zero is minus infinity). This seems to be an OK thing to do for the
present situation.

67

filename tot intra cos intra RMS tot inter cos inter RMS separation
zfil-640-128-80-marg 202 -2.168 1.716 548 -4.267 2.193 0.957
zfil-320-64-40-marg 288 -2.867 2.119 1094 -5.325 2.448 1.004
zfil-160-32-20-marg 374 -3.694 2.616 2104 -6.501 2.714 1.034
zfil-80-16-10-marg 448 -4.179 2.997 3420 -7.431 2.993 1.085

zfil-40-8-5-marg 489 -4.344 2.981 4610 -7.958 3.071 1.177
zfil-20-4-2-marg 501 -4.251 2.905 5654 -8.203 3.114 1.269

mpg-marg 512 -4.344 2.722 6250 -8.040 2.804 1.318
zfil-640-128-80-shape 307 -2.744 1.652 2359 -4.595 2.006 0.923
zfil-320-64-40-shape 441 -3.263 2.074 4310 -5.207 2.163 0.899
zfil-160-32-20-shape 479 -3.480 2.303 5365 -5.581 2.283 0.912
zfil-80-16-10-shape 500 -3.359 2.156 5884 -5.605 2.298 0.977

zfil-40-8-5-shape 504 -3.274 1.990 6148 -5.498 2.166 1.027
zfil-20-4-2-shape 516 -3.198 1.906 6266 -5.334 2.002 1.067

mpg-shape

So we conclude:

• (Looking at the ‘separation‘ column:) This is competitive with the joint-probability
scores, maybe even a hair better, and is just a little worse (about 8% worse) than
the MI scores.

• Unlike the plain cosine, the shapes make things worse. The log2 has the ef-
fect of magnifying differences (since the log is almost linear for high similarity,
but stretches the scale strongly for low similarity.) And yet, if we compare the
inter scores with and without shapes, it seems that shapes are making vectors
more similar. This is consistent with the non-log cosine, and the separation is
controlled by the RMS.

Inter-intra overlap summary
The table below records the inter and intra cluster average overlap similarity for the
datasets. This is provided per API for the ‘add-similarity-compute‘ object. The overlap
is simply the unweighted Jaccard similarity. This ranges from 0.0 to 1.0, with the
interpretation that 1.0 means very similar.

That is, define the indicator function as

σ (w,d) = [N (w,d)> 0]

Then the overlap similarity is

overlap(w,u) =∑
d

min(σ (w,d) ,σ (u,d))
max(σ (w,d) ,σ (u,d))

=
|S (w)∩S (u)|
|S (w)∪S (u)|

68

where the support of a vector is defined as

S (w) = {d : N (w,d)> 0}

The averages and RMS are computed for log2 overlap(w,u). This is done for two
reasons. One is that it makes the reporting scale similar to that for the probability,
above. The log is approx linear for high similarity, and thus emphasizes differences for
low similarity. As before, “larger is better” – larger log2 numbers mean a better match.

filename tot intra olap intra RMS tot inter olap inter RMS separation
zfil-640-128-80-marg 202 -3.281 1.454 548 -4.925 1.412 1.131
zfil-320-64-40-marg 288 -4.021 1.518 1094 -5.828 1.490 1.191
zfil-160-32-20-marg 374 -4.689 1.770 2104 -6.761 1.626 1.170
zfil-80-16-10-marg 448 -4.949 1.969 3420 -7.338 1.779 1.213

zfil-40-8-5-marg 489 -5.102 1.982 4610 -7.750 1.872 1.336
zfil-20-4-2-marg 501 -5.162 1.894 5654 -7.968 1.915 1.465

mpg-marg 512 -7.869 1.619 6250 -10.28 1.678 1.440
zfil-640-128-80-shape 307 -3.948 1.409 2359 -5.842 1.319 1.344
zfil-320-64-40-shape 441 -4.444 1.616 4310 -6.408 1.427 1.215
zfil-160-32-20-shape 479 -4.610 1.709 5365 -6.697 1.508 1.221
zfil-80-16-10-shape 500 -4.531 1.590 5884 -6.668 1.499 1.343

zfil-40-8-5-shape 504 -4.546 1.493 6148 -6.639 1.412 1.402
zfil-20-4-2-shape 516 -4.699 1.476 6266 -6.620 1.306 1.302

mpg-shape

So we conclude:

• For the shapeless sections, this provides superior separation to the MI scores. Its
about 10% or 15% better.

• With shapes, the separation is even better – about 15% to 40% better than the MI
scores.

• The separation with shapes is mostly better than that without, so this breaks a
trend.

• Shapes give the most improvement for the small datasets! They’re not useful,
once the dataset gets large.

• However, as before, the addition of shapes seems to make vectors more similar,
in general, no matter what kind they are.

69

Inter-intra Jaccard summary
The table below records the inter and intra cluster average “conditional Jaccard similar-
ity” for the datasets. This is provided by the ‘cond-jacc‘ method on the ‘add-similarity-
compute‘ object. This is the same as that defined, using above: its the Ruzicka simi-
larity for the conditional probabilities. To recap, so that I don’t have to scroll up and
re-read, the conditional Jaccard similarity is given by

JR (N;u,w) =
∑d min(p(w,d) , p(u,d))
∑d max(p(w,d) , p(u,d))

where p(w,d) = N (w,d)/N (∗,∗).
The conditional Jaccard similarity ranges from 0.0 to 1.0. As above, log2 is taken.

filename tot intra jac intra RMS tot inter jac inter RMS separation
zfil-640-128-80-marg 202 -3.508 1.760 548 -5.606 1.933 1.086
zfil-320-64-40-marg 288 -4.277 1.892 1094 -6.487 1.971 1.121
zfil-160-32-20-marg 374 -4.970 2.213 2104 -7.428 2.113 1.110
zfil-80-16-10-marg 448 -5.272 2.381 3420 -8.072 2.254 1.176

zfil-40-8-5-marg 489 -5.362 2.311 4610 -8.400 2.285 1.314
zfil-20-4-2-marg 501 -5.271 2.159 5654 -8.513 2.276 1.424

mpg-marg 512 -6.925 1.873 6250 -9.700 1.927 1.440
zfil-640-128-80-shape 307 -4.147 1.566 2359 -6.100 1.682 1.161
zfil-320-64-40-shape 441 -4.563 1.762 4310 -6.665 1.798 1.170
zfil-160-32-20-shape 479 -4.723 1.869 5365 -6.903 1.780 1.166
zfil-80-16-10-shape 500 -4.603 1.692 5884 -6.866 1.732 1.307

zfil-40-8-5-shape 504 -4.543 1.573 6148 -6.760 1.605 1.382
zfil-20-4-2-shape 516 -4.554 1.495 6266 -6.630 1.430 1.389

mpg-shape

So we conclude:

• For the shapeless sections, this provides almost as good separation as the over-
laps, and about 5% better than the MI scores.

• Using shapes seems to improve separability by a fair amount – again, bucking a
trend. Most of the improvement is in the smaller datasets.

• As before, using shapes seems to make all vectors more similar to one-another.

70

Inter-intra Probability Jaccard summary
The table below records the inter and intra cluster average “probability Jaccard dis-
tance” for the datasets. This is provided by the `add-similarity-compute` object,
by calling the 'right-prjaccmethod. The probability-Jaccard similarity ranges from
0.0 to 1.0. As above, log2 is taken.

filename tot intra prjac RMS tot inter prjac RMS separation
zfil-640-128-80-marg 202 -3.023 1.629 548 -5.029 1.812 1.107
zfil-320-64-40-marg 288 -3.765 1.768 1094 -5.905 1.879 1.139
zfil-160-32-20-marg 374 -4.466 2.086 2104 -6.851 2.020 1.144
zfil-80-16-10-marg 448 -4.792 2.295 3420 -7.501 2.171 1.181

zfil-40-8-5-marg 489 -4.887 2.238 4610 -7.840 2.214 1.319
zfil-20-4-2-marg 501 -4.813 2.107 5654 -7.966 2.224 1.418

mpg-marg
zfil-640-128-80-shape 307 -3.696 1.466 2359 -5.559 1.561 1.193
zfil-320-64-40-shape 441 -4.132 1.700 4310 -6.108 1.675 1.162
zfil-160-32-20-shape 479 -4.294 1.814 5365 -6.368 1.687 1.143
zfil-80-16-10-shape 500 -4.171 1.639 5884 -6.342 1.663 1.306

zfil-40-8-5-shape 504 -4.109 1.516 6148 -6.239 1.545 1.379
zfil-20-4-2-shape 516 -4.114 1.438 6266 -6.111 1.382 1.388

mpg-shape

So we conclude:

• For the shapeless sections, this provides the best separation of all, and is just a
tad better than the conditional Jaccard, above.

• For shapeless separation, this is about 5% to 10% better than MI.

• Adding shapes further improves separability, again bucking a trend.

This is stunningly painfully slow for the larger datasets, and so the algo needs to be
refactored to move common computations out of the inner loop. If this cannot be done,
then this also is useless.

Summary
Lets try to summarize the results above. The table below reproduces the separations
for the various different measures. The column titles are in the same order as in the
text. There are nine columns.

71

filename MI joint vi nvi cos logcos ovrlp condj prjac
zfil-640-128-80-marg 1.000 1.020 0.957 1.075 0.614 0.957 1.131 1.086 1.107
zfil-320-64-40-marg 1.100 1.029 1.031 1.207 0.641 1.004 1.191 1.121 1.139
zfil-160-32-20-marg 1.102 1.041 1.081 1.212 0.663 1.034 1.170 1.110 1.144
zfil-80-16-10-marg 1.160 1.059 1.129 1.200 0.690 1.085 1.213 1.176 1.181

zfil-40-8-5-marg 1.237 1.177 1.201 1.260 0.701 1.177 1.336 1.314 1.319
zfil-20-4-2-marg 1.317 1.262 1.286 1.364 0.710 1.269 1.465 1.424 1.418

mpg-marg 1.395 1.303 1.317 1.347 0.695 1.318 1.440 1.440
zfil-640-128-80-shape 1.129 0.859 1.004 1.223 0.676 0.923 1.344 1.161 1.193
zfil-320-64-40-shape 1.041 0.849 0.947 1.039 0.726 0.899 1.215 1.170 1.162
zfil-160-32-20-shape 0.907 0.873 0.900 0.941 0.743 0.912 1.221 1.166 1.143
zfil-80-16-10-shape 0.986 0.954 0.955 0.994 0.770 0.977 1.343 1.307 1.306

zfil-40-8-5-shape 1.018 0.975 0.994 0.995 0.770 1.027 1.402 1.382 1.379
zfil-20-4-2-shape 0.993 0.997 1.005 0.968 0.784 1.067 1.302 1.389 1.388

mpg-shape

So we conclude:

• In all cases, the less that the dataset is trimmed, the greater the separation be-
tween clusters. That is, trimming is unambiguously harmful to the quality of the
data.

• Cosine distance is stunningly bad. It’s in a league of it’s own. Other than that,
the scores are actually pretty similar, differing by at most dozens of percent.

• The MI is a middle-of-the-road measure. It is better than four columns: joint-
probability, variation of information, cosine, log cosine, but worse than the re-
maining four: normalized VI, overlap, conditional Jaccard and probability Jac-
card.

• Shapes have a mixed effect on the discrimination between clusters. They make
things much worse for the five worst metrics. They make things better for the
three best metrics, but only when the datasets are heavily trimmed. For the least-
trimmed dataset, shapes make things worse.

Ranking depends on the amount of trimming. Different rankings result, depending on
how much trimming one does. The table below shows first through fifth places for
rankings.

72

filename 1st 2nd 3rd 4th 5th
zfil-640-128-80-marg overlap prjac condj nvi joint
zfil-320-64-40-marg nvi overlap prjac condj MI
zfil-160-32-20-marg nvi overlap prjac condj MI
zfil-80-16-10-marg overlap nvi prjac condj MI

zfil-40-8-5-marg overlap prjac condj nvi MI
zfil-20-4-2-marg overlap condj prjac nvi MI

mpg-marg
zfil-640-128-80-shape overlap nvi prjac condj MI
zfil-320-64-40-shape overlap condj prjac MI nvi
zfil-160-32-20-shape overlap condj prjac nvi logcos
zfil-80-16-10-shape overlap condj prjac nvi MI

zfil-40-8-5-shape overlap condj prjac logcos MI
zfil-20-4-2-shape condj prjac overlap logcos vi

mpg-shape

So we conclude:

• Overlap is a clear winner, across the board.

• Conditional Jaccard and Probability Jaccard are close to overlap, both for the
plain disjuncts, and for the shapes.

• For the shape datasets, 4th and 5th place are very distant from 3rd place.

• From first principles, one would have concluded that prjac should have done
best, as it is in some sense “optimal”. Yet here, it rarely gets out of third place,
hitting second place only a few times. The fact that it is very computationally
expensive is a further strike against it.

• Overlap beats the dominant 2nd place holder by a fair bit. One upset: large
shapes. When overlap was in second place, it was by a slim margin.

• nvi makes a few showings, but does not seem to be worth considering any further.
When its not in 1st place, its pretty distant from overlap.

• condj seems to be overall second place, and a fairly strong contender.

Not visible in the above table are the above factoids, observed elsewhere:

• prjac is very compute intensive.

• Shapes consistently reduce the differences between vectors. Both inter-cluster
differences are smaller but also intra-cluster differences are also smaller. Both
RMS scores are pretty much always tighter, with shapes.

• Shapes have a mixed effect on discrimination between clusters. Discussed in the
paragraph above.

73

• Using shapes has a large impact on RAM and CPU usage. It takes a lot of time
to create them, they triple or quadruple RAM usage, and all vector similarity
computations take longer, because the vectors are longer.

• Most of the tables have no results for the full dataset. That’s because computing
with the full dataset is very CPU intensive. We conclude that a very mild amount
of trimming, to eliminate the onesie-twosie counts is likely to be well worth the
effort. Particularly notable is that the scores for overlap and condj are tied for
the full dataset, and MI is in a close 3rd place. Rerunning the experiment with
more lightly trimmed datasets might be worthwhile. (If rerun, then the “better”
clusters should be used. This will prevent direct comparison, but so what.)

To summarize: moving forward, it seems like we should eschew trimming, and use
overlap for the similarity measure. However, understanding conditional Jaccard is also
worthwhile. Retaining MI as a benchmark also seems prudent, given how much effort
has been sunk into it. If there’s time, then understanding how the “optimal” probability
Jaccard seems not optimal for this problem is worthwhile.

Apparently, the use of shapes is not worth the effort.

July 2021 - Big English
Attempt to do the big English data set again, “correctly”, this time. The corpus comes
in five parts, four from project Gutenberg, a fifth that is fan fiction. This naturally lends
itself to datasets of increasing size. Table below shows some stats.

74

Tranche 1 2 3 4 5
Ingestion of corpora for word-pair counting

Files 3027 4499 5712 5418 8221
Sentences 426941 547704 752788 694302 1003799

Sentences (cumulative) 426941 974645 1727433 2421735 3425534
Words 8133834 6632258 14677945 13217488 19532255

Words (cumulative) 8.134M 14.766M 29.444M 42.661M 62.194M
Wall-clock time (hours) 13.2 hr 31.0 hr 40.6

Highest RAM Usage 12GB 30GB 37GB
CPU time (hours) 51.4 hr 133 hr 199 hr
Atoms in database 29287757 56675645 76425718 104150297
RocksDB file size 2.0 GB 3.5 GB 4.75 GB 6.6 GB

Computation of MI for word pairs
Wall-clock time (hours) 1.51 hr 2.185 4.43 6.14 hr 9.25

Highest RAM usage 72 GB 96 GB
Left words (rows) 104879 140140 304085 397229 531345

Right words (columns) 105701 142101 306920 402896 538513
Unique word pairs 9.797M 14.573M 28.184M 38.011M 51.806M
Sparsity (log_2) 10.144 10.416 11.693 12.040 12.431

Total observation count 268.9M 492.6M 985.5M 1.431G 2.091G
Observations/pair 27.449 33.804 34.966 37.660 40.360

Entropy Total 17.827 17.889 18.378 18.503 18.631
Entropy Left 9.7963 9.8102 10.069 10.109 10.148

Entropy Right 9.5884 9.5463 9.8321 9.8801 9.9265
Total MI 1.5572 1.4677 1.5227 1.4863 1.4431

Atoms in database 20122297 29852254 57897670 78025983 106290028
RocksDB file size 2.34 GB 3.44 GB 6.11 GB 8.03 GB 12.08 GB

So... interestingly, the entropy is roughly independent of the dataset size. Sparsity
is high and increasing. That’s good.

Table below is for MPG (Max Planar Graph) Parsing.

Tranche 1 2 3 4 5
Time to load pairs 944 s 1501 s 3261 s 4214s 6488s

Wall-clock time (hours) 7.0 h 4.3 h 13.1 11.6
RAM to load pairs 41.3 67.8 93.1

Highest RAM usage 30.2 GB 47.9 92.6
CPU time (hours) 52.1 85.7 180.3 267
Atoms in database 36M 58M 113M 156M
RocksDB file size 4.43 GB 6.95 GB 13.8 GB 18.8GB

Wall-clock time is time to process that one particular tranche. Cumulative wall-
clock is that, plus the sum of the earlier ones.

75

Loading speed appears to be about 1GB/minute, or 1M atoms/min or 17K atom-
s/sec.

The End
This is the end of the diary. It spans the time period of February-August 2021. The
next part is Part Three.

76

