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Abstract

Thoughts about messaging and a relationship to grammar. Some old

ideas, rephrased, some new ideas, incomplete.

Introduction

Two almost inrelated ideas, and one theme.
Lets start with an obvious observation: natural language is used to trans-

mit messages, from one human mind to another. Language carries messages.
Painfully obviously. Now pair this with another idea: message-passing algo-
rithms are a good way of solving NP-complete graphical constraint satisfaction
problems. This pairing suggests a wild insight: that a collection of human minds,
working together, are using message passing as a technique for collectively solv-
ing some di�cult problem. To what degree can this insight be developed into a
formal theory of the mind, and speci�cally, a formalm theory of the collective,
social mind? I don't know, and what follows below will be mostly unrelated to
that, and will instead tackle grammar again, the grammar of natural language.

Grammar via Belief Propagation

This is a reprise of a recurring theme. The goal is to �nd e�ective and tractable
computational strategies for extracting meaning from natural language. The
current work concerns itself with a very basic layer, that of extracting a lexical
grammar, describing the syntax of the language, and a crude level of semantics
that follows there from. By a �lexical grammar�, it is meant that sentences of
the language can be broken down into words, and that the relatioinship between
words can be obtained from a lexicon, that is, from a dictionary where each word
can be looked up to discover the grammatical relationships that word can engage
in. It is useful to note that such lexicons are redily extended to include idioms,
set phrases, institutional expressions, colocations; such multi-word constructions
do not alter the underlying concept.

Lexicality implies that language can be analyzed in terms of words (or set
phrases, etc.). But language is also fundamentally statistical and probabilisitic:
there is no ultimate, �nal truth to syntax and semantics, but only likely mean-
ings and interpretations. In this setting, lexicality means not only that language

1



can be viewed as a graph of relationships between words, but also that the graph
can be factored into local components. Speci�cally, each local component con-
sists of a word, and the other nearby words that it may interact with: a word,
and its syntactico-semantically-nearest neighbors.

Modern probability theory has a standard formulation using the terminol-
ogy and notation of statistical mechanics. In this formulation, one begins by
asserting that the universe is described by a summation over all possibilities: ev-
erything that might happen, can happen, with some associated probability. This
sum is called the partition function; it is symbolized by Z, and the partitioning
is simply the statement each possibility has a probability. For natural language,
this just means that every possible sequence of words (a �sentence�) occurs with
some probability; ungrammatical sentences have a low, approximately vanishing
probability.

It is a theorem of Boltzmann that partition functions can be written as sums
over exponentials, and that the most likely possibility is given by maximizing
the entropy. This is not an assumption that has to be arti�cially forced onto
the system; rather, it is the factual statement that, if you believe in probability,
then there is no other way: it is a theorem. Combining natural language with
probability then suggests that it is fruitful to articulate the statistical mechanics
thereof.

In what follows, the formal grammar of choice is Link Grammar.[1, 2] This
choice is made for several reasons. First, one may argue that the actual choice
of a grammar formalism is immaterial, as all grammars are e�ectvely inter-
convertable between one-another by algorithmic means. Thus, the choice of for-
malism boils down to convenience; what notational system is most convenient?
Here, Link Grammar stands out. First, it is e�ectively a form of dependency
grammar, and so is natural to linguists trained in that tradition. Second, by
expressing grammar in terms of link types, it leverages type theory, and has a
very natural bridge to categorial grammars and pregroup grammars: link types
are just the type-theoretical types of the relationships that categorial gram-
mars articulate. As categorial grammars are normally considered to be a form
of phrase-structure grammars, exposing the relationships as types provides the
natural bridge between the phrase-structure and dependency grammar schools
of thought. Finally, Link Grammar is appealing from the tradition of mathemat-
ics: Link Grammar is a tensor algebra. Lexical entries are tensors, and lexical
entries are composed into sentences in exactly the same way that one composes
tensors in a tensor algebra. It is precisely this tensorial nature that then en-
ables Curry�Howard correspondance; Link Grammar is the �internal language�
of monoidal categories.

The next section articulates the statistical mechanics Link Grammar. This
presents Link Grammar as both a constraint-statistfaction problem as well as a
maximum entropy problem. This is followed by a section looking at the belief-
propagation aglorithm, inspired by and developed along the lines described by
Mézard and Mora[3].
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A Frequentist Model of Language

The goal of this section is to formulate a model of language, simultaneously
invoking both its graph-theoretical and statistical properties. This mostly re-
quires the introduction and review of fairly mainstream ideas and notation, and
an articulation of the notation so that it's meaning becomes clear.

Consider �rst a word sequence w = (w1, · · · , wn) which can be taken to be
a sentence that is n words long; it need not be grammatical; that is, it need not
be a valid sentence. One possible way of de�ning the statistics of language is to
claim that the probability of this word sequence is

P (w) = lim
N→∞

1

N

N∑
i=1

δ (w,wi) (1)

where N is the number of sentences in a sample corpus representative of the
language, so that each wi is a grammatically valid sentence. The above states
that, basically, a word sequence w is valid if and only if it occurs in the sample
corpus; else it is not. This is a naive and simplistic de�nition of language,
dounded on a frequentist view of probability. It is inadequate on multiple fronts.
It's worth articulating these, lest they become an impediement later.

� The notation above assigned a �xed sentence length of n. This seems to be
a notational inconvenience, rather than a fundamental limitation. From
here on, sentences are assumed to be varying in length, and can be chosen
as desired.

� Morphology is ignored. For the most part, this should not be an impedi-
ment; Link Grammar is able to deal adequately with morpho-syntax, and
even enforce phonetic agreement, so this presents no particular stumbling
block.

� Semantic structure on a scale larger than one sentence is ignored. Most of
what follows will be focused on syntax, and the lower reaches of semantics,
and so this simpli�cation seems reasonable at this time.

� Corpora are assumed to be �nite in size. This is naturally the case for
natural language, but it can cause di�culties for certain mathematical
approaches, which are more naturally expressed in the continuum limit.
This is also glossed over, as it rarely presents any practical di�culties. By
contrast, formal languages with generative grammars are capable of pro-
ducing in�nite corpora, and so the distinction between �nite and in�nite
can be blurred.

� The above de�nition completely ignores the obvious fact that language is
compositional: one can form sentences from sentence fragments; phrases
can have meanings; language is a collection of recurring word-patterns
plainly visible at a sub-sentence level. Yet, one of the goals of research
into linguistics is to elucidate the compositional structure of language.
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For all of these various reasons, the above probabilistic description of language
is patently absurd. Yet it is often quoted as a foundational cornerstone, and
so is worth repeating here. Despite these abusrdities, one might like the �nal
formulation of language be such that eqn 1, or at least something similar, can
arise naturally from the theory.

For the remainder of this section, the assumption is made that the com-
postional nature of language can be adequately captured by means of a lexis.
This is closely related too the assumption that language is syntactic, but is,
in some sense, strictly weaker, or, at least, should be interpreted in a broader
setting. A lexical description of language is one where each word is associated
with a collection of properties and relations that specify how that word can
occur in grammatical contexts, and how rough, basic meaning can be pinned
down. This is in contrast to �syntax�, which is usually taken to be synonym
for the existence of a (planar) parse tree. The point here is that the graphical
structure of language need not be tree-like: the parse may contain loops; it may
contain non-planar edges between words, and it may contain relations operat-
ing at di�erent conceptual levels. For example, graphical relations enforcing
phonetic agreement might typically operate at a di�erent level than count and
tense agreement, and that in turn operates at a di�erent level than anaphora
agreement.

It is possible that natural language has structure that cannot be captured
by probabilistic graphical representations. That author, however, is currently
unable to imagine what this might be. Therefore, in all that follows, the as-
sumption is made that the entirety of meaning and structure in language can be
captured by graphs that encode functions and relations with statistical, proba-
bilistic properties.

Link Grammar

The remainder of this paper assumes that Link Grammar is well suited to cap-
ture most of the lexical, syntactic properties of language. There are multiple
reasons that this assumption seems justi�ed. These include:

� The Link Grammar formalism can be more-or-less directly related to de-
pendency grammars; it can be taken as a certain kind of dependency
grammar, and is rich enough that it can be mapped or translated to dif-
ferent styles of dependency.

� The Link Grammar formalism can be directly related to categorial and
pregroup grammar-style grammars; insofar as those can be taken as ex-
amples of phrase-structure grammar, a route exists to map Link Grammar
into phrase structure, and the kinds of phenomena exhibited there.

� Link Grammar bridges naturally to Lambek calculus. The link types of
Link Grammar can be interpreted as the types of type theory; the �dis-
juncts� of Link Grammar are manifestly tensorial, and so Link Grammar
can be taken as a kind of tensor algebra. As such, it can be understood via
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category theory: Link Grammar is the �internal language� of a monoidal
category. This makes it simultaneously very general, and abstractly pow-
erful.

To summarize, the Link Grammar formalism lies at the nexus of a multitude of
di�erent viewpoints and theories of language. One need not go very far, or work
particularly hard, to see how it captures di�erent linguistic (and mathematical)
phenomena and theories.

Statistical Mechanics of Link Grammar

Lexical entries are then of the form

((w, d) , h)

where w is a word, d is a disjunct1 describing one of the grammatical rela-
tionships the word can engage in, and h is a �cost� or entropy associated with
this word-disjunct pair.2 It is convenient to write the cost as a function of the
word-disjunct pair: h = h (w, d) as only the lowest cost is meaningful, and it
does not make sense for a given disjunct to have more than one cost. Impossible
word-disjunct pairs have in�nite cost, rendering their probability zero. That is,
the probability of a word-disjunct pair, up to an overall normalization, can be
taken as

P (w, d) ∼ exp−h (w, d)

The probability of a word sequence w is then

P (w) =
1

Z

∑
(d1,··· ,dn)

n∏
j=1

P (wj , dj) ∆ (d1, · · · , dn)

where the formal grammar is encoded as a boolean satis�ability factor3

∆ (d1, · · · , dn) =

{
1 (d1, · · · , dn) is a valid parse

0 otherwise

The probabilistic aspects, that some parses are more likely than others, are
encoded in the lexical factors P (w, d). Replacing probabilities by their logs,
one can equivalently write

1A de�nition of �disjunct� will be given shortly; the next few paragraphs do not rely on a
precise de�nition, and hold true generally for any lexical formulation. In particular, one can
imagine that a disjunct is an n-gram or a skip-gram; this is useful, as it makes contact with
nueral-net/deep-learning approaches to language.

2A single word might be associated with multiple disjuncts. During grammatical analysis,
only one of these may be used at a time; thus the disjuncts are disjoined from one-another,
whence the name.

3This is just the indicator function for a predicate. Common alternate notation is I or 1.
There is an implicit assumption that a parse, if it exists, is unique. If this is not the case,
and multiple distinct parses exist with a given �xed d, then ∆ needs to count these with
multiplicity.
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P (w) =
1

Z

∑
d

∆ (d) exp−A (w, d)

using as shorthand d = (d1, · · · , dn) as the string of n disjuncts associated with
the n words w = (w1, · · · , wn). The sum is taken over all possible lists d of
disjuncts dj ; the ∆ term excludes those sequences that do not correspond to
valid parses in the formal grammar.4 The normalization Z is famously known
as the partition function.5

The A is the �action�6, given by

A (w, d) =

n∑
j=1

h (wj , dj)

As the cost h is in�nite for those words-disjunct pairs that do not occur in the
lexis, this sum excludes impossible pairings; no additional e�ort is needed to
otherwise exclude them.

Although the above formulation uses the word �disjunct� for dj , it was in-
tentionally vague; none of the development required a more precise de�nition.
In a lexical formulation, the term ∆ (d) can also be factorized locally, as it is
determined by a product of lexical elements. In the Link Grammar formulation,
the lexical elements are explicitly graphical: a vertex surrounded by half-edges
or connectors, with two half-edges required to make a full edge (link) connecting
two vertices. Algebraically, a disjunct is a list of connectors, which either can
connect, or not. That is, an arity-m disjunct is a conjunction of connectors c
written as

d = c1& · · ·&cm
with each connector being a half-link, that is, a link with a direction indicator:

c = (`, σ)

with ` ∈ L being one of the Link Grammar link types, and σ ∈ {−,+} being a
direction indicator.7 De�ne the conjugate direction indicator σ̄ as

σ̄ =

{
− if σ = +

+ if σ = −

4The summation
∑

d ∆ (d) has the form that makes it clear that ∆ has the form of an

integration measure. An obvious generalization is to replace it by a fuzzy or fractional measure.
5See Wikipedia.
6This word comes from physics, speci�cally, the Lagrangian formulation of classical me-

chanics.
7In standard link grammar, these direction indicators point to the left and right, respec-

tively, and encode the directional dependence of word order. For languages with free word-
order, it is convenient to use symbols for head and tail instead of, or in addition to the
direction indicators. Head/tail markings are also useful for indicating dependency directions,
when these are desired, or for indicating catena.
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Thus, two connectors ca and cb connect if the link types match, and the direction
indicators are conjugate. Thus, one may de�ne

δ (ca, cb) = δ (`a, `b) δ (σa, σ̄b)

A sentence is parsable when all connectors are connectable, and so

∆ (d) = ∆ (d1, · · · , dn) =
∏

dj=(cj1&···&cjm)

δ (cjk, cj′k′) (2)

with the product being over all of the individual connectors in each disjunct.
That is, ∆ = 1 if and only if every connector can be uniquely paired with some
other connector, and no dangling connectors remain. To avoid double-counting,
the product is meant to extend only over the links (edges) in the graph, with
one term per edge.

It is from this that the interpretation as a tensor algebra arises: Each disjunct
d = dj can be thought of as a tensor having m indexes on it; each index
must be contracted with some other index on some other tensor. The tensor
indexes are always contracted pair-wise, and once connected (consumed) cannot
be connected to any other index.8 A parse is valid if and only if ∆ is a scalar,
having no remaining uncontracted indexes. Unlike symmetric tensor algebras,
the connectors are directional: they can contract only to the left, or to the right.

Implicit in the above is a further constraint that the parse graph be a pla-
nar graph, i.e. that there is a no-links-crossing constraint. This constraint is
very useful for controlling the combinatorial explosion of possible parses; un-
fortunately, it is a non-local constraint, and thus cannot be easily written in a
factorizable manner. Rather than tackling the di�culty of obtaining an ade-
quate notation for such a non-local constraint, it is easier, for now, to implicitly
keep this in the background. There are multiple techniques that can be used
when dealing with this; these, and planarity in general, are for now secondary
concerns.

Taking the logarithm, so as to turn products into sums, the constraint can
be written in the form

∆ (d) = ∆ (d1, · · · , dn) = exp−

 ∑
dj=(cj1&···&cjm)

Ξ (cjk, cj′k′)


where Ξ can be interpreted as a kinetic term, having a value of zero when cjk
can be contracted with cj′k′ and is in�nite otherwise.

In this form, the constraint can be pulled into the action A, rede�ning it as
a summation of local interactions:

A (w, d) =

n∑
j=1

h (wj , dj) +
∑

dj=(cj1&···&cjm)

Ξ (cjk, cj′k′)


8This is the content of the �no cloning� theorem.
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The intended reading of the above expression is that it is a summation over
Feynmann diagrams, with h corresponding to a m-point vertex (when the dis-
junct dj has arity m), and the Ξ terms corresponding to propagators connecting
vertices. The propagators are exactly the Link Grammar links, weighted in such
a way that they contribute zero to the action, when the link is allowed, and oth-
erwise contributing in�nity.

The partition function can then be formally written as

Z =
∑
w,d

exp−A (w, d)

with the summation over w running over all possible word-sequences of arbitrary
length. As is conventional in partition function formulations, it is convenient
to introduce external currents J so that variational principles can be used to
extract quantities of interest. Thus, for example, writing

Z [J ] =
∑
w,d

exp−A (w, d) + J · w

and taking a variation δJ along the direction w, the limit of the logarithmic
derivative gives the probability:

P (w) =
1

Z

δZ [J ]

δJ

∣∣∣∣
J=0

=
1

Z

∑
d

exp−A (w, d)

The �current� J is just an algebraic device, a trick, used to single out one par-
ticular word-sequence out of the in�nite sum. It is convenient to also introduce
other currents coupling to other parts of the action, so that the variational
principle can be used to extract other quantities of interest. The logarithm of
the partition function − lnZ is the free energy; standard algebraic variations
can be used to extract an entire zoo of �thermodynamic� variables, including
correlation functions, mean values, mean-square deviations and the like.

Grammar via Belief Propagation

The learning task begins by noting that the valid disjuncts are not known a

priori, they must be discovered. To accomplish this, [4]
Its a constraint-satisfaction problem. Equation 2 de�nes a factorization of

the constraints, that is, a factor-graph. For a given parse, the factor graph
is a bipartite graph, connecting elements d ∈ D (the disjuncts) to elements
` ∈ L (the links). In the factor graph, each link ` corresponds to a ver-
tex, and, of course, links are always arity-2. To be precise, the vertices of
the factor graph are taken from V = D ∪ L and the edges are taken from
E = {(d, `) |d ∈ D and d = c1& · · ·&cm and ck ∈ `}. This last just states that
an edge in the factor graph must connect some connector (half-link) on a dis-
junct to the link (as links are just pairs of half-links).
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XXX Need �gure here XXX.
Here are the belief-prop eqns:
The �rst step is to replace each possible connection-pair δ (cjk, cj′k′) by a be-

lief of the possibility p (cjk, cj′k′) of such a connection being present, interpreted
as a probability: 0 ≤ p ≤ 1 with the goal of eventually driving each connectable
pair to be zero or one. Similarly

x
if only one link-type, then its an unlablled dependency parse, and the so-

lution is mean-�eld or Markovian. To make it tractable use the page-rank
algorithm...

x
x but the sha�ness of it all ....
x
x if multiple link types....
x
The other thing to point out is due to loops, etc. it won't be naive belief

propagation, but it will be Survey Propagation, as mentioned there...

The End
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