
World Models

Draft Version 0.2 - 19 Nov 2016

Abstract

A description of how OpenCog currently implements self-awareness and world-
awareness, together with a sketch of how this could be improved and expanded.
The short-term goal is to create a robot (embodied chatbot) that can hear and see,
and carry on conversations about what it can see and hear, as well as to carry out
conversations about the self. These conversations can be verbal, and can also have
physical-body performance components: body and face expressive movements,
such as smiling or waving a hand.

1 Introduction
In order for a robot to have reasonably competent conversations about the world around
it, three things need to happen: the robot has to be able to see and hear; the robot needs
to have an internal model of the world around it; and, finally the robot needs to have
some basic language capability. The internal model and it’s relationship to the senses
and to language is the primary topic of this review.

Internal model

The core idea of the internal model is shown in figure 1. More abstractly, it is a set
of software structures that describe the the world that the robot sees. The description
must be sufficiently abstract that the robot can perform basic reasoning about the world.
Consider, for example, spatial reasoning: if Alice is standing behind Bob, and Carol is
in front of Bob, then Alice is farther away than Carol. All of this needs to be represented
such that basic rational reasoning about distances can take place. Almost any example
of reasoning will do: ’if cats are animals, and animals are things, then cats are things’.

The internal model must also be abstracted in such a way that it is not too hard
to map natural language onto the model. Words in a sentence or question need to be
matched up to specific objects in the model, so that the different parts of the model pro-
vide a “meaning” or a “grounding” for the words. There needs to be a correspondence
between nouns and objects, and also between prepositions (“in”, “near”, “next to”,
“of”, “with”, ...) and the relationships between the objects in the internal model. That
is, the internal model must also have a natural “prepositional” or “relational” structure.
This extends to all word classes in natural language: verbs must correspond to actions
that might be performed on objects in the internal model. Adjectives must correspond

1

Figure 1: Self and World Models

The internal model is a highly simplified representation of the world and of the self. It
provides the software with a specific data structure that can be reasoned about and ma-
nipulated. Here, the robot Sophia thinks simplified thoughts, much as this illustration
simplifies the idea of a representation. (Robot credit: Hanson Robotics Sophia. House image credit: Small
House Bliss, The Cypress Laneway House .)

to attributes that an internal object might posses. And so on. The internal model needs
to naturally correspond to natural language, so that basic reasoning and basic language
are possible.

The internal model must also be abstracted in such a way that it can be kept up
to date as new sensory information comes in. This means that raw video must be
converted into a representational form, with objects (people, their position, movement,
and facial expressions) picked out from the raw video. Similarly, raw audio must be
converted into representations of the form “heard a loud bang” or “there is a quiet
rushing sound”, etc.

Symbolic Representation

It is assumed that everything described here can be accomplished with a symbolic
representation. That is, there is an explicit network of vertexes and edges, joined to
form a graph, that encodes the knowledge, explicitly and overtly. Thus, it is assumed
that the core architecture is not a neural net, nor that the basic process is that of deep
learning, where data is represented implicitly, not explicitly.

In the end, this assumption may not matter very much: a symbolic representation
can still have floating point numerical weights and probabilities attached, and result
in a network that is so complex that it challenges easy comprehension: the distinction
between neural and symbolic can be blurry. None-the-less, by picking a symbolic
representation, the goal is to have a system whose internal state can be examined,
reviewed, debugged and manipulated. In the end, some of that manipulation might
employ deep-learning techniques; however, that is not the starting point.

Thus, the core symbolic representation should be thought of as a large, complex
graph, such as that shown in figure 2. By having an explicit symbolic representation,

2

http://www.hansonrobotics.com/robot/sophia/
https://smallhousebliss.com/2016/02/02/smallworks-cypress-laneway-house/

Figure 2: Concept Graph

An example of a symbolic representation of conceptual data. This kind of represen-
tation is commonly employed in symbolic knowledge representation systems, such as
in John Sowa’s Concept Graphs, Dick Hudson’s Word Grammar or in Igor Mel’čuk’s
Meaning-Text Theory. Note that each circle and arrow may itself be a graph with ad-
ditional structure: for example, the circle labeled “Drama” may be represented by the
abstract concept 42, which can be expressed as English or Chinese words, each of these
possibly having multiple synonyms, grammatical properties and relationships to other
words and concepts. Thus, properly speaking, the graph is a hypergraph. The point
is that labelled bubbles, such as “Drama”, or arrow relationships, such as “Acted in”,
are themselves undefined and have no meaning, unless they are themselves expressed
(grounded) by thier relationships to yet other objects, some of which may be concrete,
sensory entities or physical (motor) movements. Typical graphs are more complex, and
the relationships may be assigned probabilistic strength and confidence weights. (Image
credit: Unknown)

3

https://en.wikipedia.org/wiki/Conceptual_graph
https://en.wikipedia.org/wiki/Word_grammar
https://en.wikipedia.org/wiki/Meaning%E2%80%93text_theory

one has the benefit, and requirement, of having an explicit software layer that can
access, query and update the internal model, both from the language side, and the
sensory side. Such conceptual graphs can be manipulated in a style similar to the
widely-known “model-view-controller” paradigm. Software “controllers” can change
and edit the model, while a structured query system can present “views” of the model
to the language subsystem.

Outline

This document proceeds by fleshing out the above definitions in greater detail. Some
of the early statements may seem overly simplistic or pedantic; this seems needed, so
that the later stages are clear.

The first step is to review the overall concept of an “internal model”, and the “con-
trol language” used to interface with it. This is followed by a section reviewing the
current prototype. After this, difficulties with natural language are discussed. There
are multiple software issues encountered during development; these are discussed, and
possible solutions are proposed.

The work described here has been chartered by Hanson Robotics, and is specifically
intended to interface with the robots manufactured by Hanson, such as Sophia and
others.

1.1 Robot architecture overview
XXX TODO: This section to be written in a later version. A conceptual diagram of the
system is shown in figure 3.

2 Internal Models
The basic premise elaborated here is that interacting with the world requires the cre-
ation of an internal model of the world: in systems theory, this is sometimes called “the
good regulator theorem.” An internal model provides the system software with a natu-
ral API, a natural representation, that various different software components can agree
on, and use, and manipulate, and reason with. Two depictions of models are given in
figures 1 and 4.

2.0.1 AtomSpace

To achieve a unification of speech, behavior and perception, one must have a software
infrastructure that allows these to be represented in a unified way: that is, the data and
algorithms must reside in some unified location. From here on out, it is assumed that
this unified location is the OpenCog AtomSpace. This is stated explicitly, because,
in the course of discussion, various other technology platforms have been nominated.
Although one could debate the merits of alternative technologies, this will not be done
here.

4

https://en.wikipedia.org/wiki/Internal_model_(motor_control)
https://en.wikipedia.org/wiki/Good_regulator
http://wiki.opencog.org/w/AtomSpace

Figure 3: The PUMA Architecture

This diagram shows the Hanson Robotics PUMA architecture: it offers a hint of what
an embodied artificial intelligence architecture might look like. The architecture de-
scribed in this document is a horizontal slice through the above diagram; it is focused
primarily on how natural language interacts with models of the self, and of the world,
to drive behavior and conversation. (Diagram credit: Hanson Robotics).

2.0.2 Self Model

The self-model, and together with it, the controversial term “self-awareness”, is here
defined to simply be an internal model of the robot itself: both of low-level physical
variables, such as motor angles, as well as higher-order concepts such as “I smiled just
a few seconds ago”, or “I just said this-and-such”. A basic assumption taken in the
following is that the engineering and design of the self-model is not any different than
the engineering and design of the world-model: the data types and access methods are
the same for both. Thus, ideas like “I know that my arm is raised” are represented in
much the same way as “I know that there is a person standing in front of me.” Thus,
in what follows, the expression “internal model” or “model” will refer to both the self-
model and the world model, there being no particular difference. A simplified model
of the concept of a model is shown in figure 1.

2.0.3 World Model

Although the above argues that both the self-model and the world-model are special
cases of the internal model, this is merits discussion. The world model describes not
only inanimate objects, such as stacks of boxes seen in the corner of a room, but in-
cludes models of people and moving things. In the current software base, this is quite
shallow: it is just a list of the human faces currently visible to the video camera, and
their 3D coordinates. The model could include a lot more information: names to be as-
sociated with the faces, memories of past conversations with those faces, a personality

5

http://www.hansonrobotics.com/

Figure 4: A Control Theory Model

A typical depiction of a model, as described in control theory. This is considerably nar-
rower than the intended meaning for this document, but serves to illustrate the general
idea. Here, a forward model of an arm movement is shown. The motor command, u(t),
of the arm movement is input to a model of the arm and it’s motors and the predicted
position of the arm, x̃(t), is output. This shows how a model can be used to predict
hypothesized future movements. Inverse models can be used to convert desired po-
sitions into motor commands, or, more generally, desired outcomes can be converted
into specific actions to take, to acheive those outcomes. In this document, both uses,
and many more, are anticipated. In control theory, “plant” refers to the device under
control. (Image credit: Wikipedia, By Katie Amenabar, Brian Baum - Theories of Motor Control Class UMD Spring
2008, CC BY-SA 3.0.)

profile associated with each face. This can be expanded to a general model of “other”,
including stereotypes of profession, gender, cultural and geographical background, and
so on.

For most of this document, the distinction between models of self, other, and the
rest of the world does not matter: rather, the discussion centers on how to interface
such models to perceptions and to actions. An vitally important side topic is how to
automatically learn and update the model: this is discussed briefly, later, but is not a
primary topic.

2.0.4 State

The model is meant to implemented as “program state”. In the context of OpenCog,
this means that state is represented as set of Atoms in the AtomSpace: the AtomSpace
is, by definition, a container designed specifically for the purpose of holding and storing
Atoms. Much of this state is to be represented with the StateLink, and much of the rest
with EvaluationLinks and PredicateNodes. The precise details follow what is currently
the standard best-practices in OpenCog. That is, there is no particular proposal here to
change how things are already handled and coded in OpenCog, although a goal here is
to clarify numerous issues.

It is critically important that state be represented as Atoms, as, otherwise, there is
no other practical way of providing access to that state by all of the various subsystems
that need to examine and manipulate that state. This is an absolutely key insight that
often seems to be lost: if the state data is placed in some C++ or Python or Scheme
or Haskel class, it is essentially “invisible” to the very system that needs to work with
it. This applies to any kind of state: it could be chat state (words and sentences) or
visual state (pixels, 3D coordinate locations): if it is not represented as Atoms, then the
myriad learning and reasoning algorithms cannot effectively act on this state. This is
an absolutely key point, and is one reason why non-AtomSpace infrastructures are not

6

https://commons.wikimedia.org/w/index.php?curid=4350561
https://commons.wikimedia.org/w/index.php?curid=4350561
https://en.wikipedia.org/wiki/State_(computer_science)
http://wiki.opencog.org/w/Atom
http://wiki.opencog.org/w/StateLink
http://wiki.opencog.org/w/EvaluationLink
http://wiki.opencog.org/w/PredicateNode

being considered: they lack the representational uniformity and infrastructure needed
for implementing learning and reasoning.

However, the AtomSpace does have certain peculiar performance characteristics
and limitations that make it not suitable for all data: for example, one would never
want to put raw video or audio into it. Yet, one does need access to such data, and so
specific subsystems can be created to efficiently handle special-purpose data. A pri-
mary example of this is the SpaceTime subsystem, which represents the 3D locations
of objects in an OctTree format, as well as offering a time component. Although the
SpaceTime subsystem can store data in a compact internal format, it is not, however,
exempt from having to work with Atoms: data must be accessible as Atoms, and suit-
able query API’s must be provided. In this example: it is possible to query for nearby
time-like events, or to answer questions about whether one object is nearer or farther,
or maybe bigger or smaller, than another.

2.0.5 Data

When the system is turned off, the data encoded in the conceptual graphs of figure 2
must be stored in some way. This is accomplished by tying the system to a database.
The most natural encoding is that of an Entity-Attribute-Value (EAV) model: that is, a
graph database. Although there are numerous design issues related to graph and EAV
stores, this is outside of the domain of this document. The OpenCog AtomSpace is able
to, under the covers, connect to various different databases. It is sufficient to imagine
that graph components are stored as JSON-like fragments.

2.0.6 Model and Control

It is not enough to create an internal model of the world, and represent it as state: a
control API or control language must also be provided. The control is the active snippet
of code that performs the actions needed to update the internal model. It can be thought
of as the “control” aspect of the “model-view-controller” (MVC) paradigm from GUI
programming. There are both engineering and philosophical reasons for having a con-
trol API. The engineering reasons include code-reuse, error-checking, encapsulation
and ease-of-use. The philosophical reason is that a control API provides a shim be-
tween the world of (static) data, and the dynamics of action and movement. That is, as
events occur in time, and as the world is in flux, so must also be the internal model.

It is useful to think of the control API as a collections of “actions” or “verbs” that
can be applied to “objects” (see 5). In object-oriented programming, these “actions”
are usually called “methods” or “messages”. In what follows, these will be called
“verbs”. There is a reason for this (non-standard) term. Due to the nature of how data
is represented in the AtomSpace, it is the case that some given action can often be
applied to a large swath of the data. That is, most actions are NOT tightly coupled
to the data they are manipulating, but are quite general. This means that the object-
oriented paradigm does not work well with our concept of “internal model”. It is not
as-if there are many different kinds of objects, and they all need to have methods.
More accurately, there are only a few kinds, and many (most?) actions are in principle
(de facto?) capable of manipulating many (most?) kinds of state. The OO paradigm

7

http://wiki.opencog.org/w/SpaceServer
https://en.wikipedia.org/wiki/Octree
https://en.wikipedia.org/wiki/Entity%E2%80%93attribute%E2%80%93value_model
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Figure 5: Model and Control

Control Model

Verb State

The control API alters the model. It does so by applying “verbs” or “actions” to the
model state.

does not provide a good way of thinking about what goes on in the atomspace. More
generally, the OO paradigm does not naturally lend itself to the idea of editing graphs.

Another reason for why these “actions” can be called “verbs” is that they are really
“potential actions”: nothing happens until they are performed. However, they can still
be talked about, and reasoned about, and even learned: that is, the actions themselves
can also be represented with Atoms, thus allowing the reasoning subsystem to make
inferences such as “if I do X, then Y will happen” e.g. “if I stick out my tongue, people
will laugh, or maybe they will get offended”.

Verbs are themselves a form of data. In the same way that model state must be
represented graphically (in terms of OpenCog Atoms, or “atomese”), so too must the
verbs. That is, the “control API” is not some C++ code (or python or scheme or
Haskel...) but rather, it is also a collection of Atoms (a graph). The reason for this
is to allow the system to automatically generate new verbs, by means of learning, as
well as to reason about the results of actions. This allows actions to be combined and
composed, in sequential or parallel order, with different timing. That is, the actions
are primitives that can be composed into performances, that play out over time. Rep-
resenting these as atomese is how such composition and performance-scripting can be
achieved.

2.0.7 Control language

The idea of scripting actions to control behaviors leads naturally to modifiers, which
come in various forms, including “adjectives” and “adverbs”. So for example, if “arm”
corresponds to the atomese describing a robot arm, and “raise” is an action that can be
applied to “arm” (that is, the atomese for performing that action), then it is plausible
to want to say “raise the left arm quickly”. Here, “quickly” is the atomese needed for
modulating the rate at which the motors controlling the arm are run. Likewise, “left” is
the atomese specifier indicating which collection of motors are to be controlled.

Thus, the concept of a “control language” arises naturally within the system. The
control language is NOT English! Although it does have a grammar, the grammar is
NOT that of English.

8

Figure 6: Control Language

Physical motors

Self-model

adverb

Verb

Physical motors

Self-model

left

turn

Control Language Plant and Model

The control language can have a non-trivial grammar associated with it; for example,
one can “turn to the left”, but one cannot “turn to the eye-blink” – they eye-blink an-
imation not being valid with the turn directive. The language can control different
systems: the physical body or “plant”, the internal model (or self-model, in this case),
as well as models representing hypothetical future behavior, or even models that rep-
resent memories of the past. This is possible because the plant and models all use the
same representation scheme, and thus, the language can act on each equally well.

9

The need for a control language seems to be unavoidable: it is important to be able
to specify motor speeds, arm heights, etc. Now, if one had an object-oriented system,
then one would have a “motor” object (or an “arm” object composed of “motor” ob-
jects), which had a “slot” (or “method” or “message”) called “speed”. To control the
arm, one would send the “fast” message to the “speed” slot (or “speed” method) on
the “arm” instance. There’s nothing particularly wrong with this view, except for the
following points. If the OO language was C++, then the classes and methods must be
known at compile time: new classes, methods and messages cannot be dynamically
created, at run-time. If the OO language was JavaScript, then many of these issues
go away: JavaScript does allow new methods to be added, at run-time, to pre-existing
objects. Indeed, in many ways, OpenCog Atomese resembles JavaScript. In particular,
JavaScript members are similar to OpenCog Atoms, in that, at run-time, new members
and methods can be added to objects. One could also say that OpenCog Atomese is a
lot like JSON, in that one can specify arbitrary state structures in JSON.

There are also some important ways in which atomese differs from JavaScript or
JSON: atomese allows introspection, i.e. it allows for some atoms to control and op-
erate on other atoms, which is not possible in JSON. Atomese also provides a query
language, which JSON does not provide. To understand the atomese query system, one
might imagine writing a SparQL or SQL wrapper to query the contents of giant blobs
of JSON, or possibly dumping large blobs of JSON into Apache Solr or Lucene or
Cassandra. Postgres is able to do the former (with the JSONB column type); however,
SQL is itself not JSON, and there is no natural way to convert the one into the other.
Atomese also has other language features that are lacking in JavaScript. It is ProLog-
like, and has a DataLog-like subset. It is ML-like (CaML, Haskel) in that it has a type
system.

Anyway, the goal here is not to debate the design of atomese, but rather to indicate
that motor-control directives behave more like a language, than like an API: thus, it
is more correct to think of the system as offering a “control language” rather than a
“control API”.

2.0.8 Internal model vs. physical body

The control language needs to control two distinct things: it needs to control both the
internal model, and also the physical body! That is, a directive such as “raise the left
arm” can be used to update the internal model, and it can also be used to control the
motors on the actual physical body (“the plant”, in control-theory terminology). There
may also be more than one internal model: in control theory, it is not uncommon to
have a “forward model”, which is used to estimate what might happen if an action was
performed, and an “inverse model” as the interface to the physical body. Both of these
are distinct from the internal model, which models the current state. This is, in turn,
distinct from a model of some hypothetical future state.

Other models are possible: this includes memories of past events, where some
remembered actions might be re-enacted: in this case, the remembered actions can
be replayed on a remembered model, to reconstruct what happened (for example, to
answer questions about those events). Another possibility is that of predicting the
future, where a sequence of actions are played out on a model of the hypothetical future,

10

https://www.postgresql.org/docs/current/static/datatype-json.html
https://en.wikipedia.org/wiki/Datalog
https://en.wikipedia.org/wiki/ML_(programming_language)
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Internal_model_(motor_control)#Forward_models

to see what might happen. In such a case, there might be a model of the audience, as
well as a model of the self: one is interested in predicting how the audience might react
to a particular action.

Rather than inventing a new language for each of these different systems, it is con-
venient to be able to use the same language. The endpoints will be different: in one
case, motors must be moved; in another case, the model must be updated. In either
case, the verbs, nouns, adjectives and adverbs should be the same. (In control theory,
this is termed the “efference copy”). This is possible as long as the different systems
use the same underlying design scheme: as long as the underlying hyper-graphs have
the same structure, they can be manipulated the same way, never mind that one might
represent the physical body, and another the self-model.

2.0.9 English language interfaces

Given the above description of the concept of “model” and “control language”, one
can now imagine that controlling the robot using the English language might not be too
hard: just translate English to the internal control language, and one is done! Thus, for
example, it is easy to imagine that simple English sentences, such as “Look left!” and
“Pretend you’re happy!”, can be converted to the control language.

There are several ways to accomplish this. There is a simple, brute-force approach:
create templates such as “Look ____” or “Pretend you’re ____” and implement a fill-
in-the-blanks algorithm. Simple string matching will suffice, and (for example) AIML
excels at this kind of string-search and string-matching. This approach is sufficient to
tell the robot to look in different directions, and to make different facial expressions.

A core premise of what follows is that brute-force string-matching or string-templating
is NOT sufficient for more complex, more abstract conversations. For that, a syntactic
analysis of the sentence is needed. Thus, although there is plenty of room and utility for
string-matching in the natural-language subsystem, this will NOT be the primary focus
of this document (nor is it used in the prototype). Complex conversational abilities are
anticipated, and so are planned for, from the start.

2.0.10 Dependency Grammar

When one has a syntactic analyzer, then translation, from a natural language (e.g. En-
glish) to the control language can be performed. This can be done by extracting the syn-
tax of a given English-language sentence, and re-writing it into an equivalent control-
language structure. Along the way, specific English-language words and phrases are
remapped to equivalent control-language atoms. But what syntactic analyzer, and what
theory of natural language should be used?

It appears that the most natural theory of morphology and grammar, in relation
to conceptual graphs, such as those of figure 2, is one or another form of depen-
dency grammar (DG). This is in contrast to phrase structure grammar (PSG), which,
although very popular in the United States, seems less suitable for practical use in
concept and action extraction. Particularly inspirational forms of dependency gram-
mars include Igor Mel’čuk’s Meaning-Text Theory (MTT) and Dick Hudson’s Word
Grammar (WG). A benefit of MTT is that it offers a clear, direct articulation of the

11

https://en.wikipedia.org/wiki/Dependency_grammar
https://en.wikipedia.org/wiki/Dependency_grammar
https://en.wikipedia.org/wiki/Phrase_structure_grammar
https://en.wikipedia.org/wiki/Meaning%E2%80%93text_theory
https://en.wikipedia.org/wiki/Word_grammar
https://en.wikipedia.org/wiki/Word_grammar

relationship between syntax and semantics, and how these can be transformed into one
another. Another key concept in MTT is the idea of a Lexical Function (LF): that is, a
function that tells you which word one should use to express a certain idea or relation.
A benefit of WG is that it offers the concept of “landmarks”, which control word-order
relationships in English.

De facto, the prototype uses the Link Grammar (LG) parser. This is done for sev-
eral reasons. It is a strong, stable, mature parser of English that works well, and is easy
to integrate, today. It also has a particularly elegant mathematical grounding, closely
related to that of categorial grammars and category theory. This grounding in category
theory helps make clear exactly how natural language morpho-syntax can be manipu-
lated into graphical representations using abstract theories and algorithms.

The model and control interfaces of the prototype connect directly to Link Gram-
mar. This is called out here, because the prototype explicitly and intentionally does
not use RelEx or Relex2Logic (R2L), for reasons explained later. RelEx is a depen-
dency parser layered on top of LG, generating standard CoNLL-style DG markup. R2L
is a layer on top of RelEx, used to extract logical relationships from factual English-
language statements. Both are OpenCog subsystems. The R2L subsystem is used in
OpenCog to perform natural reasoning on English statements, using the PLN subsys-
tem.

2.0.11 Link Grammar

The syntax of English-language sentences is extracted by parsing the input sentence
with the Link Grammar parser (wikipedia). There are certainly many other natural-
language parsers out there, including, famously, the Stanford parser, Google’s Parsey-
McParseface, and any number of phrase-structure parsers. Link Grammar is used be-
cause it fits particularly well with the theory of Atomese, and because it has particularly
high accuracy and very broad coverage.

The Link Grammar parser discovers relationships between the words in a sentence,
and marks up those relationships with links connecting pairs of words. These links
have a type or kind, indicating the relationship between the words – typically, subject,
object, adjectival-modifier, adverbial-modifier, prepositional-object and so on. This is
illustrated in figure 7. The relationships, taken together, can be understood to form a
directed graph, often a tree. Most links have an implicit directionality in them. The
graph does sometimes have cycles: these serve to constrain the parse choices.

The graph fully encodes the syntactic structure of the parsed sentence, as well as
a fair amount of the semantic structure, encoded in the so-called “disjuncts”. The
disjuncts are the graph-duals to the linkages. Thus, in the figure 7, it can be seen that
the word “look” has a link Wi to the left, and a link MVp to the right: these two form
a disjunct Wi- & MVp+, with the plus and minus signs indicating linkage to the right
and left. Given only this disjunct, and nothing else - not even the word itself, one can
already deduce that the word must be a verb, and that it must be an imperative, and
that it will take a preposition, and thus, a prepositional object. Thus, the disjunct Wi-
& MVp+ acts as a fine-grained part-of-speech, and this carries semantic information.
That is, the meaning of a word is correlated with the part-of-speech: this is obvious
simply by observing that dictionaries (Webster’s, OED) organize word-meanings by

12

https://en.wikipedia.org/wiki/Lexical_function
https://en.wikipedia.org/wiki/Link_grammar
http://wiki.opencog.org/w/RelEx_Dependency_Relationship_Extractor
http://wiki.opencog.org/w/RelEx2Logic_rules
http://wiki.opencog.org/w/Dependency_relations
http://www.abisource.com/projects/link-grammar/
https://en.wikipedia.org/wiki/Link_grammar

Figure 7: Example Link Grammar Parse

LEFT-WALL look.v to.r the left.n

Wi MVp

Js

Ds**c

+−−−−Js−−−+
+−−−Wi−−−+−MVp−+ +Ds∗∗ c+
| | | | |

LEFT−WALL look . v t o . r t h e l e f t . n

The above illustrates a parse of the sentence “Look to the left” (as post-script and
ASCII-graphics). It consists of a collection of typed links or edges connecting pairs of
words. LEFT-WALL is simply the start of the sentence; it is a pseudo-word, simply
the first word of the sentence. The Wi link points at the main verb of the sentence, and
indicates that it is an imperative. The MVp link attaches the verb to a verb-modifier, in
this case, to the preposition “to”. The Js link connects the preposition to it’s object,
in this case, the noun “left” (prepositions always have objects). The Ds**c link joins
the noun to the determiner “the”. Both Js and Ds indicate that the nouns is singular,
and the **c indicates that it begins with a consonant (that is, phonetic analysis is also
provided).

parts-of-speech. The disjunct offers a particularly fine-grained distinction, and thus is
more strongly correlated with meaning.

Note that there are “costs” or weights associated with different disjuncts. These can
be interpreted as log-probabilities, and so the parse system, as a whole, has probabilistic
or Markovian aspects associated with it. This plays a minor role, at this stage, but is
important in the long-run.

2.0.12 Graph rewriting

The translation process proceeds by taking the syntactic-parse graph, such as 7, and
converting it into an equivalent control-language graph, such as in figure 6. The con-
version of one graph into another is accomplished via graph-rewriting. The OpenCog
AtomSpace has a powerful and sophisticated graph-rewriting engine built into it, called
the “pattern matcher”; it can easily convert graphs of one shape into another, even when
the graphs contain variables in them (that is, use variables to represent subgraphs).

The graph rewriting is specified by writing down “rules” that indicate the shape of
the expected input graph, and the kind of output graph that should be generated, when
a match is found. These rules are usually specified in the form of a BindLink, which
can be thought of as an if-statement: “if graph p is recognized, then generate graph
q”. Alternately, they can be thought of as an implication p→ q, or, with variables,
p(x)→ q(x).

13

https://en.wikipedia.org/wiki/Graph_rewriting
http://wiki.opencog.org/w/Pattern_matching
http://wiki.opencog.org/w/SatisfactionLink_and_BindLink

To provide a worked example: to rewrite figure 7 into figure 6, one creates a rule
“IF word x has disjunct Wi- & MVp+ and word x is ’turn’ and word y has disjunct
Ds**c- & Js-, THEN create control-language graph ’turn(y)”’. The prototype con-
tains a rule of roughly this form.

2.0.13 Planning and rule selection

The next section describes the OpenCog rule selection and rule chaining subsystems.
Before doing so, it seems important to motivate these, and to provide several concrete
examples to keep in mind.

Classic examples of rule engines, and why they are needed, are provided by AIML
and ChatScript. These systems allow authors to script a large number of rules that,
when matched against a specific input pattern, provide a specific (verbal) response.
Because there are a large number of rules (often tens of thousands), it is impractical to
“try them all”; instead, these must be pruned down to a manageable set, usually to only
one, or a small set, and then applied.

AIML/Chatscript rules usually go only “one level deep”, or (with AIML SRAI)
they “forward-chain”. This essentially means that they are deterministic and reac-
tionary: they can only react to a given input. This should be contrasted to goal-seeking
behavior, which typically requires “backward chaining”: a desired end-result is speci-
fied, and the rule system must discover the rules that can achieve those results.

An example of goal-oriented behavior is this: the robot seeks to make the audience
laugh (the goal). Which, of the myriad performance rules it has available, are suitable
for achieving this goal?

A very different rule application scenario arises when only partial inputs are avail-
able to an ordinary forward-chaining system. For example, someone said something to
the robot, but it was not fully understood – possibly due to noise, bad speech-to-text
conversion, mumbling. It may be possible that the full text is available, but it is not clear
what the speaker meant. In this case, one needs a selection of fallback actions: perhaps
the statement cannot be responded to directly or in full (“raise your arm” except that
the robots arm is already raised: a reasonable action is to raise it even higher), or only
various sub-parts are understood (“mumble mumble turn left mumble”: a reasonable
action for the robot is to turn left). In these cases, one could try to write a rule that
covers every eventuality, every situation: but of course, this is legendarily impossible.
Yet, a response is required.

In this case, it is important to be able to pick out a set of fragmentary rules, all of
which might be partially appropriate for the situation, and then assemble a consistent,
non-conflicting subset of them, for performance. If several subsets of consistent rules
are available, the one with the highest likelihood or confidence can then be selected for
performance. This scenario is neither forward nor backward chaining; it is rather the
assembly of a fallback plan to (gracefully?) handle a new, unexpected scenario.

However, in the default mode of robot operation, a simple, direct stimulus-response
reaction chain is sufficient for most situations. Almost all of the prototype runs in the
forward-chained mode. Simple, direct rule application is sufficient for many or most
cases. Its just not enough to handle all cases.

14

2.0.14 Rule engine

A collection of rules require a rule engine to manage and apply them. OpenCog has
several forms of these, that can be used in various different situations. These are an
ad-hoc system, OpenPsi, and the chainers.

Rules can be applied, one-by-one, on an ad hoc basis, by calling cog-execute!,
for example. Typically one has already selected some rule; the rule is typically some
pattern or query, and if the query is satisfied, then the specified action is performed.

The OpenPsi subsystem maintains classes of rules, enabling goal-driven behavior.
Although the rules that OpenPsi manages are only applied one by one (one at a time),
the sorting of rules into distinct classes allows distinct goals, with distinct priorities
to be assigned to each. Thus, to reach a certain goal, it is possible to select sets of
rules that are most likely to achieve that goal. As the importance of various goals
change dynamically over time, different rules-sets can come into play; that is, the goals
modulate the selection of the rule-sets. In more poetic, psychologically-colored terms,
the OpenPsi subsystem allows the internal model to have a set of desires and “hopes”
and “emotions”, which can be used to control the rule-sets being deployed at a given
moment.

The OpenPsi subsystem was explicitly developed to offer more powerful and more
flexible rule management than several other popular control systems: behavior trees,
state machines and hidden Markov models. Behavior trees are popular in game AI sys-
tems; they allow game developers to craft explicit behaviors for game avatars. In the
end, though, behavior trees prove difficult to work with, because of the lack of goal-
directed behavior (which OpenPsi can provide). State machines are popular among
Hollywood animators, as they allow the animator to create responsive animations in a
modular fashion, that can be composed together to obtain new, surprising and effective
behaviors. They do not provide a way of specifying goal-directed behavior, nor the
modulation of behavior based on the current model state and desires. Hidden Markov
Models can be thought of as probabilistic state machines: they add a statistical compo-
nent to behavior. They are particularly useful and popular for automatically discerning
patterns in data. Thus, they are useful for learning. For the expression and selection of
rules, though, they offer no particular advantage.

The forward and backward chainers can be used to discover sequences of rules
that connect two endpoint-graphs. That is, given a particular starting graph, and a
particular ending graph, the chainers can explore different sequences of rules that might
result in a valid path between these two end-points. The chainers use traditional search
algorithms, essentially a variant of an A-star search algorithm variant. Currently, the
forward-backwards chainers are employed primarily for probabilistic reasoning (PLN),
and not in the robot control subsystem.

More efficient rule chaining can be done by means of parsing; that is, collections
of compatible rules can be discovered and assembled by applying parser theory (as
opposed to blind A-star search).

A proposal for a generic parser, suitable for rule selection and chaining, is given
in Appendix A. It is hoped that this approach can provide a more performant, more
directed and principled manner of making plans: that is, of discovering routes through
sets of rules that accomplish certain goals. Properly implemented, it can not only

15

http://wiki.opencog.org/w/Cog-execute!
https://en.wikipedia.org/wiki/Behavior_tree
https://en.wikipedia.org/wiki/Automata-based_programming
https://en.wikipedia.org/wiki/Hidden_Markov_model

replace blind search and rule chaining, but can also enable reasoning about plans. More
colloquially, it allows thinking about the future, and planning for it. In practical terms,
it allows faster responses to current situations.

2.0.15 Action performance

Once a natural language utterance has been converted into the internal language form,
a decision must be made as to what the robot should do next, if anything, as a result of
hearing that utterance. This decision, of what do do next, is modulated by OpenPsi. If
multiple actions are selected, they must be coordinated, in terms of timing, as well as
resolving any conflicts between them. This is meant to be done by the incompletely-
developed “Action Orchestrator”.

2.0.16 The language pipeline

Figure 8 illustrates the complete language pipeline, assembling together figures 6 and
7 for a typical imperative sentence. This illustrates only the “input” side; so, questions,
for example, will also generate a verbal output; the output side is not shown, although
it can roughly be imagined to be the “reverse” of this figure.

2.0.17 Semantics

The figure 8 distinguishes a semantic representation layer SemR, and a control-language
layer ContrL. The SemR layer provides a “normalized” description of the meaning of
some natural language expression, independent of the precise surface form of the sen-
tence. It provide a representation that is easier to work with, moving away from less
important syntactic details. Also, unlike the control language, it can avoid being closely
tied to the state representation.

The label SemR comes from “Meaning-Text Theory” (MTT), where it has a very
specific and well-defined meaning. There, it is a graphical network, showing all of the
relationships between concepts and ideas in some natural language text; it is supposed
to capture all of the semantic content of that text. MTT elaborates, in considerable
detail, exactly how to move from text (the MorphR format) to meaning (the SemR
format). However, there is are several things that MTT completely ignores: action, and
reasoning.

In order to perform actions, the semantic network must be re-interpreted as a “con-
trol language”, and that is exactly what is being done here. At this point in the design,
these two ideas are being intentionally conflated: it is not exactly clear how to untan-
gle the different requirements and needs. Note, however, the prototype does currently
distinguish the internal, “semantically normalized” from from the control language.

Another deficiency of MTT is that it ignores logical reasoning. That is, given a spe-
cific form of SemR, one would like to perform deductions and inferences. In the case
of OpenCog, this is to be done by PLN. However, the specific semantic representation
that seems to fit the needs of PLN the best, is NOT the specific semantic representation
that seems to fit the needs of performing embodied actions. This will be hotly debated

16

https://en.wikipedia.org/wiki/Meaning%E2%80%93text_theory

Figure 8: Language Pipeline

Dependency parse

Turn

to

MVp

left

the

Ds

Js

turn

left
Action

Semantic Normalization

Perform

animation

Update

self-model

Turn to the left! MorphR

SyntR

SemR

turn

left

Controlification

Action Orchestration

ControlL

The complete language pipeline, for imperative English sentences. This combines fig-
ures 6 and 7 into one. The input sentence, “Turn to the left!”, is parsed by a dependency
parser, generating a graph that shows the syntactic relations between words. Because
syntax is correlated with semantics, it becomes relatively straight-forward to transform
the syntactic graph into a normalized, semantic form. The semantic form is close to the
control language, but not the same. The control language is used to directly to perform
actions, such as moving motors or updating the self-model. The four steps shown here,
dependency parsing, semantic normalization, and action orchestration, can each be
taken to be rule-driven re-writes of graphs. That is, they are each achieved by applying
graph-rewriting to each graph, in turn.

The labels on the right, MorphR, SyntR and SemR are the standard names
that are given to each representation by Mel’čuk’s “Meaning-Text Theory” (MTT). In
MTT, SemR is short for “semantic representation”, while SyntR stands for the depen-
dency parse, and MorphR refer to a time-linear sequence of morphemes. Although
MTT develops the relationships between these three acronyms in considerable detail
and precision, it almost completely ignores the relationship between SemR and behav-
ior, the actual performance of actions. Thus, the label ControlL is new and specific to
this document. One very powerful concept in MTT, the “Lexical Function”, can be and
should be generalized to the idea of performing actions.

17

https://en.wikipedia.org/wiki/Meaning%E2%80%93text_theory
https://en.wikipedia.org/wiki/Lexical_function

in the months (years) to come; the exact nature of the best design remains a research
project.

Thus, within the system, there are really three distinct forms of semantic represen-
tation: the one that PLN uses, and is generated by the Relex2Logic component; the
one that the embodiment subsystem uses, currently somewhat ad hoc in design, and re-
ferred to as a “control language” in this document; and finally, external, academic con-
ceptions of what a semantic representation should be, ranging from Mel’čuk’s MTT, to
John Sowa’s “Conceptual graphs”, to many other proposals for semantic networks.

2.0.18 Summary

There are additional important concepts that are required to correctly implement a fully
working system. Before discussing these, it is worth reviewing the current prototype, as
it illustrates the above concepts in a specific, concrete manner. The issues encountered
during prototyping also serve as an introduction to problems that must be solved in the
full system.

3 Prototype Review
The prototype of the above-described system is located in github, in the nlp/chatbot-eva
directory. It naturally splits into three pieces. These are:

• An implementation of the self-model and the control language.

• An English-to-control-language translation layer.

• A rule engine, to drive the system.

These are each reviewed, below. There are assorted design issues in each of these
subsystems; these issues serve to anchor the next stage of the design discussion. Thus,
it is important to understand how the current prototype works, as it makes clear both
the how and the why of a more sophisticated design.

3.0.1 Control language prototype

The control language is implemented in knowledge.scm. All of the previous discussion
is made concrete in this file, and a review of this file is strongly recommended. This is
where the “rubber meets the road”, where things actually happen.

Lines 80 thru 120 illustrate how spatial directions are grounded in specific x,y,z
coordinates. Lines 127 thru 132 associate specific English-language words to these
directions. Lines 135-139 group the control-language direction names into a single
kind (in this case, into the class “schema-direction”). This will be used later, to make
sure that the “look” and “turn” verbs can only take the direction-kind, as opposed to the
facial-expression-kind. This forms the foundation of a crude grammar for the control
language: it will not be legal to say “turn your head to face in the happy direction”.

Lines 145-149 give the two kinds to looking-turning control verbs. Lines 166-170
define the control-language grammar: the only valid way to move the robot head is

18

https://en.wikipedia.org/wiki/Conceptual_graph
https://en.wikipedia.org/wiki/Semantic_network
https://github.com/opencog/opencog
https://github.com/opencog/opencog/blob/21ad879d85d31013e59870b895bb0a0aef97242c/opencog/nlp/chatbot-eva
https://github.com/opencog/opencog/blob/21ad879d85d31013e59870b895bb0a0aef97242c/opencog/nlp/chatbot-eva/knowledge.scm

to specify either the “turn” or the “look” verb, followed by a direction-kind. (In the
current Blender animation subsystem, “turn” rotates the entire head (turning the neck)
while “look” only moves the eyes.)

Lines 173-213 duplicate the earlier portion of the file, and implement the control
language for the internal model (here called the “self-model”, because it is modeling
the robot itself).

Lines 216-306 define the control-adverbs, in one-to-one correspondence to the
Blender animation names for facial expressions. There is exactly *one* control-adverb
for each animation: it is not desirable to have synonyms in this layer. Line 316 de-
fines the one and only control-verb for facial expressions: this is the “perform a facial
animation” verb.

Lines 321-336 associate fifteen different English-language words with this one
control-verb. This is because, in English, synonyms are common and pervasive: it
is quite natural to say “Look happy!” “Act happy!” “Be happy!”, “Emote happiness!”,
“Portray happiness!” and mean the same thing. Thus, all of these different English-
language words are mapped to the same control-verb.

Lines 338-511 associate more than one hundred(!) different English-language
words with the fifteen-or-so different Blender animation names. For example, “per-
plexity”, “puzzlement” and “confusion” are all valid synonyms for the “confused” an-
imation.

Lines 520-531 group together the different Blender facial-expression animations
into a single animation-kind.

Lines 534-538 define the control-grammar for performing a facial animation: it
must necessarily consist of the single perform-facial-animation control-verb, and one
of the fifteen Blender facial-animation adverbs. No other combination is possible: thus
one cannot make the control-language statement “emote leftness”.

These control-grammar rules not only define what it is possible to do with the
robot, but they also disambiguate certain English-language expressions. Very specifi-
cally, one can say, in English, “Look left!” and “Look happy!”. The English-language
verb “look” is associated with both the control-language turn-verb (line 199) and also
the control-language express-verb (line 335). Which of these two meanings for the
English-language word “look” is intended becomes clear only after the English has
been translated into control-language. The control grammar allows only one, or the
other meaning, depending on how it is combined with the other control-words. In par-
ticular, this means that (in this prototype), the control-words are always and necessarily
unique and unambiguous in their “meaning”. The control words provide “grounding”
for meaning.

Lines 540-560 duplicate the above, but are used for controlling the self-model,
instead of controlling Blender.

Lines 570-680 (end of file) repeat the previous structures, but are used to control
the Blender gesture-animations (blinking, nodding, shaking, yawning). The very same
concepts apply.

19

https://en.wikipedia.org/wiki/Symbol_grounding_problem

3.0.2 Translation prototype

The translation consists of a set of hand-crafted rules that can recognize specific kinds
of English-language sentences, and convert these into internal “semantic representa-
tions”. These are implemented in the file imperative-rules.scm. For example, the En-
glish sentence “look left” is recognized by the look-rule-1 pattern, lines 176-189.
The sentence “look to the left” is recognized by the look-rule-2 pattern, lines 191-
208. Both of these patterns specify several synonyms for the English verb. The pattern
of the English sentences is recognized in lines 186-188 and lines 205-206. The lg-
links MVa, MVp, Js, Ju come from the Link Grammar parse of the sentence; these
are already illustrated in figure 7. There is a fair amount of monkey-business being
done to make these rules relatively easy to write. One issue is that the atomese rep-
resentation of the Link Grammar parses is fairly turgid (the RelEx Atomese format);
complexities arise due to the need to represent multiple distinct sentences, as well as
to distinguish the use of the same word in two different places in a sentence: these are
“word instances”. Thus, an imperative-sentence utility is provided in lines 130-172;
if that utility is not used, then the two look-rules are more verbose, and are shown in
lines 48-90 and 92-128. It is useful to compare these, to get the “big picture” of the
rule format.

Lines 221-249 implement a utility for handling single-word imperative sentences,
and lines 251-268 handle the various single-word imperatives.

Lines 272-286 implement a rule for sentences of the form “look happy”, while lines
290-308 implement a rule for sentences of the form “show happiness”. The difference
here is that “happy” is an adjective, while “happiness” is a noun. The sentences, al-
though short, are syntactically different: in English, one cannot correctly say “look
happiness” or “show happy”.

3.0.3 Action Performance

The connection between the semantic representation and the control language is made
in the file semantics.scm. There are not one, but two implementations here, exactly as
suggested by figure 6. One implementation converts the semantic representation into
the control language that is capable of “making motors turn” viz, launching Blender
animations. The other directly updates the self-model. The implementation is, once
again, in the form of a set of rules, that is, as BindLinks.

To simplify this dual implementation (to share common code), a generic rule tem-
plate is constructed in lines 55-92, and then three specific rules are built. Lines 94-111
generate the “control language” that was carefully reviewed in the section above, titled
"control language". The control-language snippet is attached to an anchor-point called
(AnchorNode "*-action-*"), which the Action orchestrator can pick up, and
perform, if desired (at this time, it is always performed, without question).

The self-model is updated directly, with two rules, at lines 113-133. When exe-
cuted, these two directly set a StateLink, recording the the robots current facial
expression and look-at direction. These later two rules are, strictly speaking, a bug:
the internal state should only be updated if the action orchestrator actually decided to
perform the action.

20

https://github.com/opencog/opencog/blob/21ad879d85d31013e59870b895bb0a0aef97242c/opencog/nlp/chatbot-eva/imperative-rules.scm
http://wiki.opencog.org/w/RelEx_OpenCog_format
https://github.com/opencog/opencog/blob/21ad879d85d31013e59870b895bb0a0aef97242c/opencog/nlp/chatbot-eva/semantics.scm

3.0.4 Rule engine

The file imperative.scm implements an ad hoc mini-rule-engine. It very simply cycles
through all of the rules described above, applying each in turn. It is invoked whenever
the language subsystem detects that an imperative sentence has been uttered.

It is intended that this ad hoc arrangement of rules be replaced by the OpenPsi rule
system. OpenPsi is described in greater detail further on in this document, at which
point the reason for it’s superiority as a rule-engine management system will become
apparent.

3.0.5 Glue code

Assorted ad hoc scaffolding is required to integrate the above systems into the generic
chat framework. it has no particular significance, other than that it is needed to make
things work. See, for example, bot-api.scm for this scaffolding.

The chatbot-eva.scm file defines a loadable scheme module that encapsulates all of
this code.

3.0.6 Self-model, World-model

The self-model is not in the OpenCog repo, but in the ros-behavior-scripting repo. The
file self-model.scm simply redirects there. The reason for this is that the self-model
is directly hooked up to the sensory and motor systems, and all of those are in the
ros-behavior-scripting repo; only the language-processing parts are in the OpenCog
repo. The self-model, together with the world-model, are central to the robot’s current
behavior subsystem. The combined self+world models encode only a small amount
of internal state: the visibility of faces in the video feed, and knowledge of the robots
current emotional state.

The file faces.scm contains several predicates, used to check if the the “room is
empty” or not. At this time, “the room” consists only of that part of the world that is
immediately visible to the video camera, and extends no further than that. It is intended
that this model is to be replaced by a more significant one.

The file self-model.scm contains the self-model, as well as a significant portion of
the room model. Notable portions include the following:

• Lines 57-60 indicating if the robot is asleep, awake or bored – the “some state”.
The actual state is stored in line 63. Lines 65-76 are predicates that return true
or false, in answer to questions: “is the robot sleeping?” “is the robot bored?” In
principle, one could say that these predicates are part of the control language for
the soma state. In practice, they are not very language-like: they are indivisible,
rather than having any grammatical structure to them.

• Lines 77-87 deal with the “current emotional state”, but, more accurately, should
be called “current facial expression.”

• Lines 88-122 deal with eye-contact state.

• Lines 124-176 deal with the chatbot state: is it talking, or listening?

21

https://github.com/opencog/opencog/blob/21ad879d85d31013e59870b895bb0a0aef97242c/opencog/nlp/chatbot-eva/imperative.scm
https://github.com/opencog/opencog/blob/21ad879d85d31013e59870b895bb0a0aef97242c/opencog/nlp/chatbot-eva/bot-api.scm
https://github.com/opencog/opencog/blob/21ad879d85d31013e59870b895bb0a0aef97242c/opencog/nlp/chatbot-eva/chatbot-eva.scm
https://github.com/opencog/ros-behavior-scripting
tps://github.com/opencog/opencog/blob/21ad879d85d31013e59870b895bb0a0aef97242c/opencog/nlp/chatbot-eva/self-model.scm
https://github.com/opencog/ros-behavior-scripting/blob/a00847af2ef07dfbc7769970fa6ca7a5cd192b69/src/faces.scm
https://github.com/opencog/ros-behavior-scripting/blob/a00847af2ef07dfbc7769970fa6ca7a5cd192b69/src/self-model.scm

• Lines 177-200 deal with the chatbot affect: was the last thing that the chatbot
heard friendly and positive, or is it negative?

• Lines 201-242 deal with whether anything has been heard. Currently, the robot
can only hear speech, and not other arbitrary noises in the room.

• Lines 244-294 deal with the setting of timestamps on the internal state. One
needs to know when, or, more importantly, how recently something happened.
The are candidates for being moved into the TimeServer, which offers greater
time-related capabilities.

• Lines 305-763 deal with the interaction with visible faces in the room. The
names of the various predicates are more-or-less self-explanatory. So,

– line 324: "Did someone recognizable arrive?"

– line 388: "Did someone leave?"

– line 421: "was room empty?"

– line 506: "Select random glance target"

– line 555: "Is interacting with someone?"

... and so on.

One major issue with the current design of these predicates is that they do not really
follow the conception of the control system being a “control language”: each of these
predicates is an indivisible whole, rather than a control-word that can be combined with
other control-words to achieve a desired effect. That’s OK for now, but is a potential
stumbling block for the future, as a true language would be more compact, and more
flexible, than some arbitrary grab-back hard-coded predicates.

4 Design Issues and Enhancements
During the prototype development, a number of design issues were encountered. These
are discussed here. All of these should be addressed in some way, either through ar-
chitecture changes or implementation improvements. A number of enhancments also
suggest themselves: these ask for additional development and pursuit.

4.1 Language Processing Issues
A fair number of issues crop up in the middle layers of the language input system.
These are reviewed here.

22

4.1.1 What is the correct semantic representation?

Although the label SemR was appropriated from MTT, that is not what is actually im-
plemented: its entirely ad hoc. During early stages of prototyping, it was assumed that
the surface representation would be provided by RelEx and the deep interface would
be generated by R2L; that is, that the output of R2L would provide the normalized
“semantic” format. This did not work out as hoped, for two different reasons.

First, semantically similar sentences were converted into very different R2L out-
puts. Examples include “Look to the left!” and “Look leftwards!”. Attempts to miti-
gate this became quickly stuck in the morass of R2L rules. It seemed like an awful lot
of effort for very little return, so that approach was abandoned for the prototype.

Next, it was hoped that RelEx would provide the surface format, but that also did
not work out. RelEx failed in two distinct ways: it sometimes generated highly variable
outputs for semantically similar sentences e.g. “Look up!” and “Look down!” gave
very different outputs. Other times, there were unexpected similarities, when outputs
should have been semantically different. On top of this, pattern matching to RelEx was
cumbersome: the patterns quickly became complex, requiring many different checks
to many sub-parts. The large complex patterns proved fragile and hard to maintain. In
the end, using Link Grammar as the surface representation proved to be a LOT easier;
the patterns became much smaller and more regular.

4.1.2 RelEx issues

The prototype made clear that the RelEx output is actually more complex than the
LG output, and it is more difficult to use, in practice. It does not align well with
semantics. The reason that it is more complex is that it tries to re-package the LG
data into “orthogonal” linguistic classifications: person, number, tense, aspect, mood,
voice. This is a laudable goal, but for several problems:

• Many semantically equivalent sentences have completely different values for
number, tense, mood.

• This unpacking into into distinct classifications behaves like a data decompres-
sor: it makes the atomese graphs larger, without actually increasing the informa-
tion content.

• RelEx has poor coverage, and makes a fair amount of errors in what it does. This
makes it’s output unreliable and undependable.

The end-goal is to have a system that can recognize semantically-similar sentences.
There are ways to do this: the old and oft-quoted work from Dekang Lin, Poon&Domingos
show how that can be acheived. It should be possible to harness the “Patten Miner” to
perform this work. However, there’s now a strong hint that the RelEx output is inap-
propriate, a poor choice for this.

Important Note: Although the above paragraphs use the word “RelEx”, the same
comments and complaints can be levelled against the Stanford Parser, and against
Google’s SyntaxNet (McParseFace). Both suffer from the same issues listed above:

23

http://nlp.stanford.edu/software/lex-parser.shtml
https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

that is because they both assume the same theory, and generate the same kind of out-
put. They might be more accurate than RelEx, thus alleviating one of the problems, but
even this is not entirely clear.

The point here is that traditional dependency parsing, whether by RelEx, Stanford
or SyntaxNet, seems to be appealing, especially if you are a linguist. However, the
resulting graphs contain too much fluff to be useful for efficient computing. They
unpack a lot of information, making it easy for a linguist to examine their output, and
verify it’s correctness. But the result of this unpacking is a large graph, and that graph
becomes unweildy and inefficient for automated processing. It is large, but it does not
seem to contain more data than the more compact LG output. Its large and awkward to
work with.

Side comment: now that LG indicates the head-verbs of sentences and clauses, the
primary raison-d’etre for RelEx, the major reason for it’s complexity, goes away. It
does not seem to provide a lot of value-add any more.

4.1.3 Synonymous phrases

The infrastructure needs to support synonymous phrases, not just synonymous words.
A proper definition of the problem, together with prototyping is required. The current
architecture is inadequate.

4.2 Process Flow Issues
Several issues arise in the design of rules, and in the control of their application. Specif-
ically, there has been little or no design effort invested in managing processing pipeline.

4.2.1 AnchorNodes vs. URE

The way that information is passed around, from subsystem to subsystem, and the
way that it interacts with the pattern matcher can be at times awkward. Some general
improvements are needed in this area. They should not be hard, but they are significant,
architecturally.

The AnchorNodewas invented to be an attachment point, where different subsys-
tems could leave collections of atoms that other subsystems could pick up. This works
OK, in some situations, but has issues. The RelEx subsystem drops off the reesults
of a parse at an AnchorNode. This is OK, because RelEx is a process external to the
AtomSpace, and new, incoming sentences are infrequent. However, the AnchorNode
mechanism provides no hint of order or priority: if two things are attached, there’s no
hint of which came first, which is more important. Another issue is that its not thread-
local, thread-atomic: two different racing threads could pick up the same work unit;
currently there is no mechanism to avoid this.

A more serious problem is how the current prototype uses (abuses) the AnchorNode.
The current prototype defines a number of rules (see the review above) but does not
use the URE to apply them. Instead, it uses an ad hoc mechanism: different processing
steps look for input attached to assorted anchors, and “return” thier results by attaching
them to yet other anchor points. The informal goal of this ad hoc process is to be able to

24

designate sequences of processing steps: that certain rules should run only after other
rules that ran earlier, and that certain rules should limit thier scope of applicability only
to certain situations.

This is just fine, you might think, except that each rule is more complex: it has to
specify both the input anchor and the output anchor. In addition, one has to write some
ad hoc scheme code watching each anchor point, and triggering if something arrives
there. After running, it has to clear the anchor. It ends up being clumsy, cut-n-paste
blobs of utility code.

The current URE, specifically, the forward chainer part of the URE, does not pro-
vide any interfaces for specifying this kind of chaining of rule-classes. It probably
should.

If the URE is altered to provide this, then how should it be implemented?
At any rate, even without adding chaining support to the URE, the current prototype

should be altered to remove most uses of the AnchorNodes, and replaced by the URE,
instead.

4.2.2 URE bottlenecks

The URE currently limits the scope of its search by creating a new, stand-alone Atom-
Space, copying all of the focus set into it, copying all of the rules into it, and only then
applying the rules. This has the desired effect of limiting rule application to only the
desired focus set. However, it surely has poor performance, as a result. Issue #1004
tracks this.

4.2.3 Rule selection

The current prototype applies all rules to all inputs. This is fine, as long as there are
only a few rules, but this will not scale, in general. A better solution is to first limit the
number of possible rules to apply, based on the input. There already is infrastructure to
do this, it’s just not used in the prototype.

The existing infrastructure is a combination of DualLink and the cog-recognize
function. It’s already deployed in the AIML subsystem, where it is used to pick out a
set of appropriate AIML rules. It is partly integrated into OpenPsi, but this could be
improved.

4.3 Enhancements
The prototype ignores various established OpenCog subsystems and technologies. It
also ignores several architectural directions that have been discussed, but have not been
acted on. These are breifly reviewed here.

4.3.1 OpenPsi

OpenPsi as a flexible rule-selection system. It is not used in the prototype. How should
it be used (aside from the rule-selection issue mentioned above?)

25

https://github.com/opencog/atomspace/issues/1004

4.3.2 Fuzzy matching

The current system does not tolerate failures in the speech-to-text and the text-to-parse
stages. Use of fuzzy matching during rule application should be able to make up for
this fragility. Thus, for example, if the input is “garbled garbled mumbmle turn left
mumble”, then the robot should still be able to latch onto the “turn left” portion of the
input, and respond to that. Since there may be multiple fuzzy matches, some sort of
confidence ranking would be required, as well.

4.3.3 Question-answering

The robot needs to be able to answer questions about self and the world. This has
been prototyped, but very incompletely. From the architectural perspective, question-
answering resembles the “view” part of MVC – the internal state has to be “viewed”
easily, in order to be queried. Thus, there are a set of “standardized state queries”,
analogous to the control language. Running these queries returns yes/no answers (truth
queries) or multi-valued data (e.g. look-at direction) or more complex structures (se-
quences of actions that had been performed in the past).

However, the current prototype does not fit well with this idea. For example, the
various predicates: e.g. (DefinedPredicate "Is sleeping?") do not re-
ally fit the “control language” concept described above. Ditto for lines 305-547 of
self-model.scm. These need rework.

Question answering requires a second pipeline, beyond that shown in figure 8. Of
course, there must first be a conversion from English to the internal query language.
The response must then be converted back into English. If the response is of the right
form, then SuReal can be used to perform the final conversion. Right now, the query
language is not generating SuReal-compatible results.

4.3.4 Enlarged world model

The current model of the self, and the world, is tiny. It consists entirely of emotional
state, and the visible faces in the envronment. It needs to get bigger.

4.3.5 More sensory input

The robot is currently almost completely starved for sensory input: it can see faces,
and it can access the text that cam from speech-to-text. The speech-to-text does not
provide any audio cues: was it a whisper? A shout?

Raw sensory input needs to be converted into ensory perceptions: atomese rep-
resentations of processed sensory input is needed. For example, if the audio volume
suddenly got loud, and the visual field is suddenly moving, then maybe ... everyone is
clapping? booing? getting up to leave? How should the robot react to these events?
The reaction for an interrupted discussion must be different from that occuring at the
end of a speech.

26

4.3.6 Action orchestration

One must be able to carry out multiple things at once. Ben has written about this. How
it should fit in remains a unclear, although it is obviously needed.

4.3.7 Acting memory and performance

Multiple types of memory are needed. Most important (for demo purposes) is memory
consisting of imperatives: when she is told to do this and say that, she needs to remem-
ber what she was told, and what she did, and later on, be able to play that back as a
performance. That is, there must be a mode where the robot behaves as an actor under
directorial control: the actor can be instructed by the director, given stage notes, and
respond to these.

Examples of such directives might be: “do that performance again, except this
time, do xyz more slowly”.

Initiali protoptypes of this level of function should be “straight-forward”: one can
record the control-language directives. They need to be marked up with timing infor-
mation. Verbal editing might be harder, as portions of a directive, such as “do xyz more
slowly” require associating the word “xyz” with some portion of the performance. This
brings up a number of reference resolution issues, discussed previously.

4.3.8 General memory

A second, distinct type of memory is being able to remember past states of the world. A
basic prototype of this should be relatively straight-forward. This memory would need
to be made accessible to the question-answering subsystem, so that questions about the
immediate past can be answered.

One minor associated infrastructure challenge is that a management layer for the
Postgres DB interfaces is needed. The basic idea is that memories should not be lost
during power-off or reboot. Progress on this infrastructure is tracked in issue #734.

Memories must be segregated into classes: there are some things that need to be
remembered, others that should not be.

4.3.9 Learning

A deep, fundamental design issue is that, right now, essentially all of the rules are
hand-authored, and not learned. Ultimately, the ability to learn is an imperative. This
is a large topic that will not be covered here, with one exception. The next section
describes a design proposal for expressive imitation learning.

5 Associating words and meanings to visual cues
Interaction with humans requires the ability to read facial expressions and gestural
cues. This ability needs to be integrated with language abilities. This section proposes
one possible way in which this could be done.

27

https://github.com/opencog/atomspace/issues/734

Figure 9: Facial landmark discovery

Example of facial landmark discovery. Software extracts boundaries of a face from an
image, identifying significant landmarks, such as the eyes, nose and lips. These are
referred to as “landmarks”. The relational structure of the landmarks is also presented:
that is, neighboring points are identified by means of a triangular mesh. Knowing
this relational structure is important, as it helps disambiguate points that (for instance)
indicate the nose from points that indicate the mouth. This is a demo image taken
directly from the ci2cv website; it is meant only to be illustrative of the general idea,
rather than promoting this technology over any other.

5.1 Imitation learning of facial expressions
Here’s a proposal for imitation learning of facial expressions. The goal is to be able
to perceive different facial expressions, via analysis of incoming video, to remember
what was seen, to mimic what was seen, and to associate words and language with the
perceptions and memories.

Many of the details here could be done in a different way, so this is a sketch.

5.1.1 Landmark discovery

An imitation learning system needs to start with some way of perceiving human faces.
One such system, for example, is ci2cv, although there are others. This system is
able to recognize facial landmarks, such as eyes, nose, lips and boundary of the head,
and stitch these together into a mesh showing the relative relationship between these
points. This is illustrated in figure 9. The goal of the landmark discovery system is
to “dimensionally reduce” high-dimension data, i.e. the raw video pixels, to a much
lower amount of data (dozens or hundreds of 2D or 3D floating-point numbers at 10 to
30 frames per second: that is, 500 floats per second to 15K floats per second) in such a
way that the reduced data is still meaningful, and has some sort of reasonable fidelity
to the input image.

There are a large number of reasons why this is a difficult task, including poor
lighting, fast motion, and distant or blurry faces.

28

http://face.ci2cv.net/
http://face.ci2cv.net/

5.1.2 Expression recognition by classification and clustering

With a such dimensional reduction system in place, the next step would be to perform
training and analysis of “typical” facial expressions. That is, working with a large
collection of visual data, consisting of many different types of facial expressions on
many different faces, the goal is to extract “typical” feature vectors. This does NOT
have to be a labeled dataset; it would be better if it was not labeled, as the goal is to
extract commonalities in the dataset, rather than to extract labels. Labeling comes at a
later stage.

To extract unlabeled but classified and clustered data, it might be possible to use one
of several relatively simple data analysis tools, such as principal component analysis
(PCA), possibly other kernel methods, or possibly non-linear tools. Because unsuper-
vised training is being proposed here, its not clear how to apply deep-learning neural
net techniques.

The goal of this stage is to have a relatively small set of “face types” that are recog-
nized by the system, perhaps a few dozen, but less than one hundred. Because the train-
ing is unsupervised, its not clear what common features are being learned: perhaps they
are facial expressions (happy, sad), perhaps they facial types (round, square-jawed),
perhaps they are racial (Asian, European, African), perhaps they are mouth-centered
(open, closed-mouth, speaking vs listening), and perhaps they include face orientations
(direct full-face, three-quarters face, profile). Perhaps the recognized types are data
characteristics (well-lit, distinct, poorly-lit, blurry, distant, small). The point here is to
somehow reduce the data rate of thousands of floats per second, to maybe 1 byte (256
different face recognitions) per second, and to have some sort of reasonable fidelity to
the input image, including stability (low noise).

This appears to be a research task. Exactly how hard or easy it is to accomplish this
is not clear.

5.1.3 Imitation learning

If the above can be accomplished, the next step would consist of imitation learning.
That is, the robot would be set up to look at itself, using the same (trained) analysis
pipeline. One would then embark on a search of the rather large space of possible
motor settings, with the goal of associating certain particular motor settings and move-
ments to the different types or classes being identified. If a motor setting is found that
corresponds to known characteristic, then that motor setting is memorized, and associ-
ated with that type. An exploration of the size and shape of the motor parameter space
needs to be performed: Similar motor settings should trigger the same recognition, but
what, exactly, are the boundaries of what can be recognized?

The goal of this stage is to discover how to make the specific types of facial gestures
that were learned. That is, the goal is to get a software API whose messages are of the
format: “make facial expression type 7, or anything close to that”, as well as “now
make a similar, but different expression of type 7”.

Such automated exploration and definition of boundaries should be relatively straight-
forward. What is not clear is whether the results will be significant in human terms: it
may turn out that “expression type 7” encompasses everything from smiling to frown-

29

ing in profile, while raising one eyebrow: it might turn out that “type 7” is a grab-bag of
nonsense expressions. This makes it clear that a form of feedback to the classification
stage will ultimately be needed, later if not sooner.

Some, possibly many or most expression classifications might not be reproducible
on the robot. For example, “type 7” might correspond to “poorly-lit and square-jawed
European male” which is not something that any motor setting on a well-lit female face
would be able to achieve.

Again, this appears to be a research task.

5.1.4 Language association

The goal of this stage is to associate specific words with specific facial expression
classes. This would be done through natural language dialog. An example dialog
might be:

Human: Can you see me?

Robot: Yes.

Human: I am smiling.

Robot: OK.

Human: Can you imitate smiling?

Robot: (Performs animation)

Human: That’s good (or) No, that’s wrong.

If a positive response can be elicited, then that particular word or phrase (smiling,
turning away, hanging head down, etc.) can be associated with some confidence to two
distinct things: the perceived feature vector, and also the motor settings. One learned,
these referents can be used in other language dialog and discussion.

5.1.5 Feedback and continuous learning

It is possible, or even likely, that there will be serious data flaws at every step: landmark
extraction may fail spectacularly in all but the best of lighting conditions. Feature clas-
sification may group together features in a way that is not natural to humans. Imitation
learning may fail to find a motor match to most expressions. Language association may
appear to work, but later fail, because the word “smile” was associated with a feature
set that includes turning away and opening the mouth, while shutting the eyes. Thus,
mechanisms for un-learning word associations are required, or of transferring them to
new classifications, as these are learned.

Because all of these are hypothetical issues, proposing distinct solutions for these
seems premature, at this point, with the exception of language association. That is
because the creation of associations between perceptions and words is a broader task
than merely that of perceiving facial expressions. This is discussed in greater detail in
section XXX (where?)

30

6 Ideas
This section provides some breif sketches of interesting behaviors that should be acheiv-
able within the current prototype framework, or are suitable for the next step of proto-
typing. Some of these are very easy, but simply have not been explored or done.

• A person walks into room, who she recognizes. Depending on the current emo-
tional state, she should perform non-verbal greetings, acknowledgements (play
one of 3-4 different animations, such as breif look-at glance, chin push, nod)
and verbal greetings (“hello, what’s up?”). The current interplay between state
and psi rules is a mess, these need to be split up properly. There are addtional
comments in issue #80, which see.

• Someone asks: “so what are we talking about?” This requires the robot to have
some rudimentary memory of the conversation, and have the ability to recapit-
ulate it. A simple prototype mock-up would be to extract keywords/key-topics
from sentence, and remember them. These can be be queried with the fuzzy
matcher, and used to recapitulate the conversation.

• Someone says “Sophia, bark like a dog!” A barking dog animation is needed.

• Someone asks: “Why did you smile?” Output: have her explain the most recent
OpenPsi decision-making. This requires recording that decision-making into a
set of atoms, queriable using the above-described question-answering subsystem.

• Someone says: “I’m so sorry about that.” Output: have her perform a small, cute
pout (a frown, but without the eyebrow animation).

• Someone says: “Look at me.” The robot should determine the number of visible
faces. If only one, then it could say “I see only one face, and I am looking at it
now”. If there are two faces, then either change the gaze, or use the audio local-
ization to determine the audio source, and resspond appropriately, by changing
gaze, or keeping it, and appropriate verbal remarks.

• Someone says: “What are you doing?”. Describe a the recent past, indicating
the presence of memory. The verbal reply should show that the robot is sentient
of it’s surroundings.

• When last person leaves, she should say goodbye. If no goodbyes were ex-
changed, then remark loudly, “Hey, where did everybody go?”

• If no one is visible, and no one has been visible for many minutes, she should
say “Hey where did everybody go?”

• If no one is visible, but there is an ongoing chat session, she should complain
about the visibility of the chat partners. If there is no ongoing chat session, but
there loud noises (and she cannot see any faces), she should say something like
“Hey, what’s going on? Who’s there? Show yourself!”

31

https://github.com/opencog/ros-behavior-scripting/pull/80

7 Conclusion
To be written.

Appendix A - Reasoning
The relationship between rules, rule application and reasoning continue to be a point of
on-going confusion in the community. This appendix attempts to provide an abstract,
but mathematically precise, view of what it means “to perform reasoning”. The desire
here is to move past the current conception of reasoning as a kind-of forward/backward
chaining, and bring it into a more modern era of reasoning as parsing. This change
of viewpoint is required in order to be able to formulate faster, more robust reasoning
algorithms, and thus to be able to perform far more complex inferences and deductions.

Jigsaw puzzle pieces and dominoes

One particularly direct way in which reasoning-as-parsing can be understood, is as the
assembly of a jigsaw puzzle. Here, each rule is represented by a jigsaw puzzle piece,
and rule application can be imagined as a chaining together of jigsaw puzzle pieces.
Thus, for example, if a particular rule requires, say, an input of a particular kind, and
generates an output of a particular kind, then each of these can be envisioned as a
distinct connector on a jigsaw puzzle piece. A rule requiring a particular input can only
be mated to something that provides that actual shape. The next rule to run, must, of
course, also be of a kind that can properly mate.

Unlike an ordinary jigsaw, there can be many different puzzle pieces having the
same exact shape. This allows the reasoner a lot of latitude, a lot of discretion, as to
which pieces might be chosen and used next, during this chaining operation. Perhaps
the game of dominoes offers a more accurate model: for one’s next move, one can lay
down any one of a number of different dominoes, in any one of a number of different
locations, and one has many choices as to what to play next. However, those choices
are constrained: one cannot just lay down any domino anywhere; one must follow
certain mating rules. Unfortunately, the game of dominoes is not widely known, and
so the model of many identically-shaped jigsaw puzzle pieces will have to do.

Combinatoric explosion

The large number of choices as to which jigsaw piece to lay down next leads to the
infamous problem of “combinatoric explosion” during chaining. At every step of the
chain, there seem to be ever more choices possible, and the sheer number of these
choices appears to overwhelm any hope of straight-ahead chaining.

When met with this problem, one commonly proposed solution is some form of
“inference control”, some way of whacking down the number of possible choices. A
different approach, that of adding more constraints to the system, is almost never con-
sidered. I believe that is because the actual mechanics of reasoning is not generally
understood, and thus obscures algorithmic possibilities. However, before embarking

32

on an exploration of constraints and inference control, some additional general con-
cepts must be laid down.

Side-note: there are extremely simply rule systems with horrific combinatoric ex-
plosion properties. See the Azimuth blog on racks, quandles, shelves, and Laver tables
for more.

Chaining

The use of the word “chaining” is very misleading: it very strongly suggests a linear
sequence of events, like a chain. Nothing could be further from the truth, and this
one word alone is the source of huge conceptual stumbling blocks. Real-world puzzle-
pieces are two-dimensional, and, just like the case of dominoes, there is no particular
constraint that pieces must be laid out in linear order. Attachments can be made in any
number of different directions.

At first, one might imagine that the combinatoric explosion can be even worse. In
fact, this can serve to constrain the problem. There are three distinct ways in which
this is done: one way is statically, by means of systemic constraints; another way is
dynamically, by means of consistency; a third way is to enforce completeness.

Systemic constraints

In real-world dominoes and puzzle assembly, there are two constraints: a finite-sized
table, whose edges cannot be crossed, and the constraint that pieces must not be laid on
top of one-another. In the assembly of abstract rule systems, there are other constraints
that can come into play. One is a no-crossing constraint, often used in theories of
grammar (e.g Link Grammar). This is essentially the same as saying “two pieces must
not be laid on top of one-another”. Another is a relaxation of this constraint to use
landmark transitivity (e.g. in Word Grammar).

Consistency

Another way to constrain a puzzle assembly problem is by requiring consistency. This
can be achieved with an a priori boundary condition: one might have some edge,
or boundary, and require that the final assembly must meet that boundary, without
violating it. Imagine, for example, a string or chain of puzzle pieces, given a priori. As
new pieces are added, they must fit into the given chain.

An example of a consistency constraint is the link-grammar parse of a sentence: A
list of words, the sentence, is given a priori, and one must assemble puzzle pieces in
such a way that these words, and only these words, are connected to.

A looser example might be the constraints of evidence in a crime: the evidence
is given a priori, and the detective must show that the suspects behavior is consistent
with each of the points of evidence. Here, the puzzle-pieces correspond to the grouping
(suspect, time, place, capability, opportunity); each element of the grouping is like a
connector in the puzzle-piece, and it must connect appropriately with other pieces, or
with the evidence. In criminology, this consistency constraint tends to very sharply
narrow the list of suspects: combinatoric explosion is mitigated by constraint.

33

Completeness

Yet another way to constrain a puzzle assembly is to require completeness: there must
not be any connector tabs left unconnected! If a connector is left unconnected, one is
not allowed to ignore it, or cut it off, or pretend its not there: instead, one declares the
arrangement incomplete, and discards it.

The completeness constraint is well-known in proof theory; it corresponds to the
idea that both contraction (idempotency of entailment) and weakening (monotonicity
of entailment) are forbidden.

The completeness constraint is employed both in link-grammar parsing, and in
criminology (all criminal evidence must be explained; it cannot be arbitrarily ignored).

Unfinished stuff

DRAFT VERSION 0.2

This is a draft. Everything above is in some mostly-finished state. Everything below is
in outline format.

—
practical examples, for PLN.
—
so how is assembly to be performed?
—
difference between counting (performing the assembly) and linkage parsing (eval-

uating the truth values, i.e. applying the actual the PLN formulas) which is done only
after a valid (complete, consistent) assembly has been obtained.

—
A universe is like a partially assembled puzzle.
—
Relationship between
—
Andre Joyal lemma
—
The word “choice” in the above is not an accident ... ditto for contraction and

weakening in the “completeness” section – linear logic .

34

https://en.wikipedia.org/wiki/Idempotency_of_entailment
https://en.wikipedia.org/wiki/Monotonicity_of_entailment
https://en.wikipedia.org/wiki/Monotonicity_of_entailment

	Introduction
	Robot architecture overview

	Internal Models
	AtomSpace
	Self Model
	World Model
	State
	Data
	Model and Control
	Control language
	Internal model vs. physical body
	English language interfaces
	Dependency Grammar
	Link Grammar
	Graph rewriting
	Planning and rule selection
	Rule engine
	Action performance
	The language pipeline
	Semantics
	Summary

	Prototype Review
	Control language prototype
	Translation prototype
	Action Performance
	Rule engine
	Glue code
	Self-model, World-model

	Design Issues and Enhancements
	Language Processing Issues
	What is the correct semantic representation?
	RelEx issues
	Synonymous phrases

	Process Flow Issues
	AnchorNodes vs. URE
	URE bottlenecks
	Rule selection

	Enhancements
	OpenPsi
	Fuzzy matching
	Question-answering
	Enlarged world model
	More sensory input
	Action orchestration
	Acting memory and performance
	General memory
	Learning

	Associating words and meanings to visual cues
	Imitation learning of facial expressions
	Landmark discovery
	Expression recognition by classification and clustering
	Imitation learning
	Language association
	Feedback and continuous learning

	Ideas
	Conclusion

