/* Array object implementation */ /* An array is a uniform list -- all items have the same type. The item type is restricted to simple C types like int or float */ #define PY_SSIZE_T_CLEAN #include "Python.h" #include "pycore_moduleobject.h" // _PyModule_GetState() #include "structmember.h" // PyMemberDef #include // offsetof() #ifdef STDC_HEADERS #include #else /* !STDC_HEADERS */ #ifdef HAVE_SYS_TYPES_H #include /* For size_t */ #endif /* HAVE_SYS_TYPES_H */ #endif /* !STDC_HEADERS */ /*[clinic input] module array [clinic start generated code]*/ /*[clinic end generated code: output=da39a3ee5e6b4b0d input=7d1b8d7f5958fd83]*/ struct arrayobject; /* Forward */ static struct PyModuleDef arraymodule; /* All possible arraydescr values are defined in the vector "descriptors" * below. That's defined later because the appropriate get and set * functions aren't visible yet. */ struct arraydescr { char typecode; int itemsize; PyObject * (*getitem)(struct arrayobject *, Py_ssize_t); int (*setitem)(struct arrayobject *, Py_ssize_t, PyObject *); int (*compareitems)(const void *, const void *, Py_ssize_t); const char *formats; int is_integer_type; int is_signed; }; typedef struct arrayobject { PyObject_VAR_HEAD char *ob_item; Py_ssize_t allocated; const struct arraydescr *ob_descr; PyObject *weakreflist; /* List of weak references */ Py_ssize_t ob_exports; /* Number of exported buffers */ } arrayobject; typedef struct { PyObject_HEAD Py_ssize_t index; arrayobject *ao; PyObject* (*getitem)(struct arrayobject *, Py_ssize_t); } arrayiterobject; typedef struct { PyTypeObject *ArrayType; PyTypeObject *ArrayIterType; } array_state; static array_state * get_array_state(PyObject *module) { return (array_state *)_PyModule_GetState(module); } #define find_array_state_by_type(tp) \ (get_array_state(_PyType_GetModuleByDef(tp, &arraymodule))) #define get_array_state_by_class(cls) \ (get_array_state(PyType_GetModule(cls))) enum machine_format_code { UNKNOWN_FORMAT = -1, /* UNKNOWN_FORMAT is used to indicate that the machine format for an * array type code cannot be interpreted. When this occurs, a list of * Python objects is used to represent the content of the array * instead of using the memory content of the array directly. In that * case, the array_reconstructor mechanism is bypassed completely, and * the standard array constructor is used instead. * * This is will most likely occur when the machine doesn't use IEEE * floating-point numbers. */ UNSIGNED_INT8 = 0, SIGNED_INT8 = 1, UNSIGNED_INT16_LE = 2, UNSIGNED_INT16_BE = 3, SIGNED_INT16_LE = 4, SIGNED_INT16_BE = 5, UNSIGNED_INT32_LE = 6, UNSIGNED_INT32_BE = 7, SIGNED_INT32_LE = 8, SIGNED_INT32_BE = 9, UNSIGNED_INT64_LE = 10, UNSIGNED_INT64_BE = 11, SIGNED_INT64_LE = 12, SIGNED_INT64_BE = 13, IEEE_754_FLOAT_LE = 14, IEEE_754_FLOAT_BE = 15, IEEE_754_DOUBLE_LE = 16, IEEE_754_DOUBLE_BE = 17, UTF16_LE = 18, UTF16_BE = 19, UTF32_LE = 20, UTF32_BE = 21 }; #define MACHINE_FORMAT_CODE_MIN 0 #define MACHINE_FORMAT_CODE_MAX 21 /* * Must come after arrayobject, arrayiterobject, * and enum machine_code_type definitions. */ #include "clinic/arraymodule.c.h" #define array_Check(op, state) PyObject_TypeCheck(op, state->ArrayType) static int array_resize(arrayobject *self, Py_ssize_t newsize) { char *items; size_t _new_size; if (self->ob_exports > 0 && newsize != Py_SIZE(self)) { PyErr_SetString(PyExc_BufferError, "cannot resize an array that is exporting buffers"); return -1; } /* Bypass realloc() when a previous overallocation is large enough to accommodate the newsize. If the newsize is 16 smaller than the current size, then proceed with the realloc() to shrink the array. */ if (self->allocated >= newsize && Py_SIZE(self) < newsize + 16 && self->ob_item != NULL) { Py_SET_SIZE(self, newsize); return 0; } if (newsize == 0) { PyMem_Free(self->ob_item); self->ob_item = NULL; Py_SET_SIZE(self, 0); self->allocated = 0; return 0; } /* This over-allocates proportional to the array size, making room * for additional growth. The over-allocation is mild, but is * enough to give linear-time amortized behavior over a long * sequence of appends() in the presence of a poorly-performing * system realloc(). * The growth pattern is: 0, 4, 8, 16, 25, 34, 46, 56, 67, 79, ... * Note, the pattern starts out the same as for lists but then * grows at a smaller rate so that larger arrays only overallocate * by about 1/16th -- this is done because arrays are presumed to be more * memory critical. */ _new_size = (newsize >> 4) + (Py_SIZE(self) < 8 ? 3 : 7) + newsize; items = self->ob_item; /* XXX The following multiplication and division does not optimize away like it does for lists since the size is not known at compile time */ if (_new_size <= ((~(size_t)0) / self->ob_descr->itemsize)) PyMem_RESIZE(items, char, (_new_size * self->ob_descr->itemsize)); else items = NULL; if (items == NULL) { PyErr_NoMemory(); return -1; } self->ob_item = items; Py_SET_SIZE(self, newsize); self->allocated = _new_size; return 0; } /**************************************************************************** Get and Set functions for each type. A Get function takes an arrayobject* and an integer index, returning the array value at that index wrapped in an appropriate PyObject*. A Set function takes an arrayobject, integer index, and PyObject*; sets the array value at that index to the raw C data extracted from the PyObject*, and returns 0 if successful, else nonzero on failure (PyObject* not of an appropriate type or value). Note that the basic Get and Set functions do NOT check that the index is in bounds; that's the responsibility of the caller. ****************************************************************************/ static PyObject * b_getitem(arrayobject *ap, Py_ssize_t i) { long x = ((signed char *)ap->ob_item)[i]; return PyLong_FromLong(x); } static int b_setitem(arrayobject *ap, Py_ssize_t i, PyObject *v) { short x; /* PyArg_Parse's 'b' formatter is for an unsigned char, therefore must use the next size up that is signed ('h') and manually do the overflow checking */ if (!PyArg_Parse(v, "h;array item must be integer", &x)) return -1; else if (x < -128) { PyErr_SetString(PyExc_OverflowError, "signed char is less than minimum"); return -1; } else if (x > 127) { PyErr_SetString(PyExc_OverflowError, "signed char is greater than maximum"); return -1; } if (i >= 0) ((char *)ap->ob_item)[i] = (char)x; return 0; } static PyObject * BB_getitem(arrayobject *ap, Py_ssize_t i) { long x = ((unsigned char *)ap->ob_item)[i]; return PyLong_FromLong(x); } static int BB_setitem(arrayobject *ap, Py_ssize_t i, PyObject *v) { unsigned char x; /* 'B' == unsigned char, maps to PyArg_Parse's 'b' formatter */ if (!PyArg_Parse(v, "b;array item must be integer", &x)) return -1; if (i >= 0) ((char *)ap->ob_item)[i] = x; return 0; } static PyObject * u_getitem(arrayobject *ap, Py_ssize_t i) { return PyUnicode_FromOrdinal(((wchar_t *) ap->ob_item)[i]); } static int u_setitem(arrayobject *ap, Py_ssize_t i, PyObject *v) { PyObject *u; if (!PyArg_Parse(v, "U;array item must be unicode character", &u)) { return -1; } Py_ssize_t len = PyUnicode_AsWideChar(u, NULL, 0); if (len != 2) { PyErr_SetString(PyExc_TypeError, "array item must be unicode character"); return -1; } wchar_t w; len = PyUnicode_AsWideChar(u, &w, 1); assert(len == 1); if (i >= 0) { ((wchar_t *)ap->ob_item)[i] = w; } return 0; } static PyObject * h_getitem(arrayobject *ap, Py_ssize_t i) { return PyLong_FromLong((long) ((short *)ap->ob_item)[i]); } static int h_setitem(arrayobject *ap, Py_ssize_t i, PyObject *v) { short x; /* 'h' == signed short, maps to PyArg_Parse's 'h' formatter */ if (!PyArg_Parse(v, "h;array item must be integer", &x)) return -1; if (i >= 0) ((short *)ap->ob_item)[i] = x; return 0; } static PyObject * HH_getitem(arrayobject *ap, Py_ssize_t i) { return PyLong_FromLong((long) ((unsigned short *)ap->ob_item)[i]); } static int HH_setitem(arrayobject *ap, Py_ssize_t i, PyObject *v) { int x; /* PyArg_Parse's 'h' formatter is for a signed short, therefore must use the next size up and manually do the overflow checking */ if (!PyArg_Parse(v, "i;array item must be integer", &x)) return -1; else if (x < 0) { PyErr_SetString(PyExc_OverflowError, "unsigned short is less than minimum"); return -1; } else if (x > USHRT_MAX) { PyErr_SetString(PyExc_OverflowError, "unsigned short is greater than maximum"); return -1; } if (i >= 0) ((short *)ap->ob_item)[i] = (short)x; return 0; } static PyObject * i_getitem(arrayobject *ap, Py_ssize_t i) { return PyLong_FromLong((long) ((int *)ap->ob_item)[i]); } static int i_setitem(arrayobject *ap, Py_ssize_t i, PyObject *v) { int x; /* 'i' == signed int, maps to PyArg_Parse's 'i' formatter */ if (!PyArg_Parse(v, "i;array item must be integer", &x)) return -1; if (i >= 0) ((int *)ap->ob_item)[i] = x; return 0; } static PyObject * II_getitem(arrayobject *ap, Py_ssize_t i) { return PyLong_FromUnsignedLong( (unsigned long) ((unsigned int *)ap->ob_item)[i]); } static int II_setitem(arrayobject *ap, Py_ssize_t i, PyObject *v) { unsigned long x; int do_decref = 0; /* if nb_int was called */ if (!PyLong_Check(v)) { v = _PyNumber_Index(v); if (NULL == v) { return -1; } do_decref = 1; } x = PyLong_AsUnsignedLong(v); if (x == (unsigned long)-1 && PyErr_Occurred()) { if (do_decref) { Py_DECREF(v); } return -1; } if (x > UINT_MAX) { PyErr_SetString(PyExc_OverflowError, "unsigned int is greater than maximum"); if (do_decref) { Py_DECREF(v); } return -1; } if (i >= 0) ((unsigned int *)ap->ob_item)[i] = (unsigned int)x; if (do_decref) { Py_DECREF(v); } return 0; } static PyObject * l_getitem(arrayobject *ap, Py_ssize_t i) { return PyLong_FromLong(((long *)ap->ob_item)[i]); } static int l_setitem(arrayobject *ap, Py_ssize_t i, PyObject *v) { long x; if (!PyArg_Parse(v, "l;array item must be integer", &x)) return -1; if (i >= 0) ((long *)ap->ob_item)[i] = x; return 0; } static PyObject * LL_getitem(arrayobject *ap, Py_ssize_t i) { return PyLong_FromUnsignedLong(((unsigned long *)ap->ob_item)[i]); } static int LL_setitem(arrayobject *ap, Py_ssize_t i, PyObject *v) { unsigned long x; int do_decref = 0; /* if nb_int was called */ if (!PyLong_Check(v)) { v = _PyNumber_Index(v); if (NULL == v) { return -1; } do_decref = 1; } x = PyLong_AsUnsignedLong(v); if (x == (unsigned long)-1 && PyErr_Occurred()) { if (do_decref) { Py_DECREF(v); } return -1; } if (i >= 0) ((unsigned long *)ap->ob_item)[i] = x; if (do_decref) { Py_DECREF(v); } return 0; } static PyObject * q_getitem(arrayobject *ap, Py_ssize_t i) { return PyLong_FromLongLong(((long long *)ap->ob_item)[i]); } static int q_setitem(arrayobject *ap, Py_ssize_t i, PyObject *v) { long long x; if (!PyArg_Parse(v, "L;array item must be integer", &x)) return -1; if (i >= 0) ((long long *)ap->ob_item)[i] = x; return 0; } static PyObject * QQ_getitem(arrayobject *ap, Py_ssize_t i) { return PyLong_FromUnsignedLongLong( ((unsigned long long *)ap->ob_item)[i]); } static int QQ_setitem(arrayobject *ap, Py_ssize_t i, PyObject *v) { unsigned long long x; int do_decref = 0; /* if nb_int was called */ if (!PyLong_Check(v)) { v = _PyNumber_Index(v); if (NULL == v) { return -1; } do_decref = 1; } x = PyLong_AsUnsignedLongLong(v); if (x == (unsigned long long)-1 && PyErr_Occurred()) { if (do_decref) { Py_DECREF(v); } return -1; } if (i >= 0) ((unsigned long long *)ap->ob_item)[i] = x; if (do_decref) { Py_DECREF(v); } return 0; } static PyObject * f_getitem(arrayobject *ap, Py_ssize_t i) { return PyFloat_FromDouble((double) ((float *)ap->ob_item)[i]); } static int f_setitem(arrayobject *ap, Py_ssize_t i, PyObject *v) { float x; if (!PyArg_Parse(v, "f;array item must be float", &x)) return -1; if (i >= 0) ((float *)ap->ob_item)[i] = x; return 0; } static PyObject * d_getitem(arrayobject *ap, Py_ssize_t i) { return PyFloat_FromDouble(((double *)ap->ob_item)[i]); } static int d_setitem(arrayobject *ap, Py_ssize_t i, PyObject *v) { double x; if (!PyArg_Parse(v, "d;array item must be float", &x)) return -1; if (i >= 0) ((double *)ap->ob_item)[i] = x; return 0; } #define DEFINE_COMPAREITEMS(code, type) \ static int \ code##_compareitems(const void *lhs, const void *rhs, Py_ssize_t length) \ { \ const type *a = lhs, *b = rhs; \ for (Py_ssize_t i = 0; i < length; ++i) \ if (a[i] != b[i]) \ return a[i] < b[i] ? -1 : 1; \ return 0; \ } DEFINE_COMPAREITEMS(b, signed char) DEFINE_COMPAREITEMS(BB, unsigned char) DEFINE_COMPAREITEMS(u, wchar_t) DEFINE_COMPAREITEMS(h, short) DEFINE_COMPAREITEMS(HH, unsigned short) DEFINE_COMPAREITEMS(i, int) DEFINE_COMPAREITEMS(II, unsigned int) DEFINE_COMPAREITEMS(l, long) DEFINE_COMPAREITEMS(LL, unsigned long) DEFINE_COMPAREITEMS(q, long long) DEFINE_COMPAREITEMS(QQ, unsigned long long) /* Description of types. * * Don't forget to update typecode_to_mformat_code() if you add a new * typecode. */ static const struct arraydescr descriptors[] = { {'b', 1, b_getitem, b_setitem, b_compareitems, "b", 1, 1}, {'B', 1, BB_getitem, BB_setitem, BB_compareitems, "B", 1, 0}, {'u', sizeof(wchar_t), u_getitem, u_setitem, u_compareitems, "u", 0, 0}, {'h', sizeof(short), h_getitem, h_setitem, h_compareitems, "h", 1, 1}, {'H', sizeof(short), HH_getitem, HH_setitem, HH_compareitems, "H", 1, 0}, {'i', sizeof(int), i_getitem, i_setitem, i_compareitems, "i", 1, 1}, {'I', sizeof(int), II_getitem, II_setitem, II_compareitems, "I", 1, 0}, {'l', sizeof(long), l_getitem, l_setitem, l_compareitems, "l", 1, 1}, {'L', sizeof(long), LL_getitem, LL_setitem, LL_compareitems, "L", 1, 0}, {'q', sizeof(long long), q_getitem, q_setitem, q_compareitems, "q", 1, 1}, {'Q', sizeof(long long), QQ_getitem, QQ_setitem, QQ_compareitems, "Q", 1, 0}, {'f', sizeof(float), f_getitem, f_setitem, NULL, "f", 0, 0}, {'d', sizeof(double), d_getitem, d_setitem, NULL, "d", 0, 0}, {'\0', 0, 0, 0, 0, 0, 0} /* Sentinel */ }; /**************************************************************************** Implementations of array object methods. ****************************************************************************/ /*[clinic input] class array.array "arrayobject *" "ArrayType" [clinic start generated code]*/ /*[clinic end generated code: output=da39a3ee5e6b4b0d input=a5c29edf59f176a3]*/ static PyObject * newarrayobject(PyTypeObject *type, Py_ssize_t size, const struct arraydescr *descr) { arrayobject *op; size_t nbytes; if (size < 0) { PyErr_BadInternalCall(); return NULL; } /* Check for overflow */ if (size > PY_SSIZE_T_MAX / descr->itemsize) { return PyErr_NoMemory(); } nbytes = size * descr->itemsize; op = (arrayobject *) type->tp_alloc(type, 0); if (op == NULL) { return NULL; } op->ob_descr = descr; op->allocated = size; op->weakreflist = NULL; Py_SET_SIZE(op, size); if (size <= 0) { op->ob_item = NULL; } else { op->ob_item = PyMem_NEW(char, nbytes); if (op->ob_item == NULL) { Py_DECREF(op); return PyErr_NoMemory(); } } op->ob_exports = 0; return (PyObject *) op; } static PyObject * getarrayitem(PyObject *op, Py_ssize_t i) { #ifndef NDEBUG array_state *state = find_array_state_by_type(Py_TYPE(op)); assert(array_Check(op, state)); #endif arrayobject *ap; ap = (arrayobject *)op; assert(i>=0 && iob_descr->getitem)(ap, i); } static int ins1(arrayobject *self, Py_ssize_t where, PyObject *v) { char *items; Py_ssize_t n = Py_SIZE(self); if (v == NULL) { PyErr_BadInternalCall(); return -1; } if ((*self->ob_descr->setitem)(self, -1, v) < 0) return -1; if (array_resize(self, n+1) == -1) return -1; items = self->ob_item; if (where < 0) { where += n; if (where < 0) where = 0; } if (where > n) where = n; /* appends don't need to call memmove() */ if (where != n) memmove(items + (where+1)*self->ob_descr->itemsize, items + where*self->ob_descr->itemsize, (n-where)*self->ob_descr->itemsize); return (*self->ob_descr->setitem)(self, where, v); } /* Methods */ static int array_tp_traverse(arrayobject *op, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(op)); return 0; } static void array_dealloc(arrayobject *op) { PyTypeObject *tp = Py_TYPE(op); PyObject_GC_UnTrack(op); if (op->weakreflist != NULL) PyObject_ClearWeakRefs((PyObject *) op); if (op->ob_item != NULL) PyMem_Free(op->ob_item); tp->tp_free(op); Py_DECREF(tp); } static PyObject * array_richcompare(PyObject *v, PyObject *w, int op) { array_state *state = find_array_state_by_type(Py_TYPE(v)); arrayobject *va, *wa; PyObject *vi = NULL; PyObject *wi = NULL; Py_ssize_t i, k; PyObject *res; if (!array_Check(v, state) || !array_Check(w, state)) Py_RETURN_NOTIMPLEMENTED; va = (arrayobject *)v; wa = (arrayobject *)w; if (Py_SIZE(va) != Py_SIZE(wa) && (op == Py_EQ || op == Py_NE)) { /* Shortcut: if the lengths differ, the arrays differ */ if (op == Py_EQ) res = Py_False; else res = Py_True; Py_INCREF(res); return res; } if (va->ob_descr == wa->ob_descr && va->ob_descr->compareitems != NULL) { /* Fast path: arrays with same types can have their buffers compared directly */ Py_ssize_t common_length = Py_MIN(Py_SIZE(va), Py_SIZE(wa)); int result = va->ob_descr->compareitems(va->ob_item, wa->ob_item, common_length); if (result == 0) goto compare_sizes; int cmp; switch (op) { case Py_LT: cmp = result < 0; break; case Py_LE: cmp = result <= 0; break; case Py_EQ: cmp = result == 0; break; case Py_NE: cmp = result != 0; break; case Py_GT: cmp = result > 0; break; case Py_GE: cmp = result >= 0; break; default: return NULL; /* cannot happen */ } PyObject *res = cmp ? Py_True : Py_False; Py_INCREF(res); return res; } /* Search for the first index where items are different */ k = 1; for (i = 0; i < Py_SIZE(va) && i < Py_SIZE(wa); i++) { vi = getarrayitem(v, i); wi = getarrayitem(w, i); if (vi == NULL || wi == NULL) { Py_XDECREF(vi); Py_XDECREF(wi); return NULL; } k = PyObject_RichCompareBool(vi, wi, Py_EQ); if (k == 0) break; /* Keeping vi and wi alive! */ Py_DECREF(vi); Py_DECREF(wi); if (k < 0) return NULL; } if (k) { /* No more items to compare -- compare sizes */ compare_sizes: ; Py_ssize_t vs = Py_SIZE(va); Py_ssize_t ws = Py_SIZE(wa); int cmp; switch (op) { case Py_LT: cmp = vs < ws; break; case Py_LE: cmp = vs <= ws; break; /* If the lengths were not equal, the earlier fast-path check would have caught that. */ case Py_EQ: assert(vs == ws); cmp = 1; break; case Py_NE: assert(vs == ws); cmp = 0; break; case Py_GT: cmp = vs > ws; break; case Py_GE: cmp = vs >= ws; break; default: return NULL; /* cannot happen */ } if (cmp) res = Py_True; else res = Py_False; Py_INCREF(res); return res; } /* We have an item that differs. First, shortcuts for EQ/NE */ if (op == Py_EQ) { Py_INCREF(Py_False); res = Py_False; } else if (op == Py_NE) { Py_INCREF(Py_True); res = Py_True; } else { /* Compare the final item again using the proper operator */ res = PyObject_RichCompare(vi, wi, op); } Py_DECREF(vi); Py_DECREF(wi); return res; } static Py_ssize_t array_length(arrayobject *a) { return Py_SIZE(a); } static PyObject * array_item(arrayobject *a, Py_ssize_t i) { if (i < 0 || i >= Py_SIZE(a)) { PyErr_SetString(PyExc_IndexError, "array index out of range"); return NULL; } return getarrayitem((PyObject *)a, i); } static PyObject * array_slice(arrayobject *a, Py_ssize_t ilow, Py_ssize_t ihigh) { array_state *state = find_array_state_by_type(Py_TYPE(a)); arrayobject *np; if (ilow < 0) ilow = 0; else if (ilow > Py_SIZE(a)) ilow = Py_SIZE(a); if (ihigh < 0) ihigh = 0; if (ihigh < ilow) ihigh = ilow; else if (ihigh > Py_SIZE(a)) ihigh = Py_SIZE(a); np = (arrayobject *) newarrayobject(state->ArrayType, ihigh - ilow, a->ob_descr); if (np == NULL) return NULL; if (ihigh > ilow) { memcpy(np->ob_item, a->ob_item + ilow * a->ob_descr->itemsize, (ihigh-ilow) * a->ob_descr->itemsize); } return (PyObject *)np; } /*[clinic input] array.array.__copy__ Return a copy of the array. [clinic start generated code]*/ static PyObject * array_array___copy___impl(arrayobject *self) /*[clinic end generated code: output=dec7c3f925d9619e input=ad1ee5b086965f09]*/ { return array_slice(self, 0, Py_SIZE(self)); } /*[clinic input] array.array.__deepcopy__ unused: object / Return a copy of the array. [clinic start generated code]*/ static PyObject * array_array___deepcopy__(arrayobject *self, PyObject *unused) /*[clinic end generated code: output=1ec748d8e14a9faa input=2405ecb4933748c4]*/ { return array_array___copy___impl(self); } static PyObject * array_concat(arrayobject *a, PyObject *bb) { array_state *state = find_array_state_by_type(Py_TYPE(a)); Py_ssize_t size; arrayobject *np; if (!array_Check(bb, state)) { PyErr_Format(PyExc_TypeError, "can only append array (not \"%.200s\") to array", Py_TYPE(bb)->tp_name); return NULL; } #define b ((arrayobject *)bb) if (a->ob_descr != b->ob_descr) { PyErr_BadArgument(); return NULL; } if (Py_SIZE(a) > PY_SSIZE_T_MAX - Py_SIZE(b)) { return PyErr_NoMemory(); } size = Py_SIZE(a) + Py_SIZE(b); np = (arrayobject *) newarrayobject(state->ArrayType, size, a->ob_descr); if (np == NULL) { return NULL; } if (Py_SIZE(a) > 0) { memcpy(np->ob_item, a->ob_item, Py_SIZE(a)*a->ob_descr->itemsize); } if (Py_SIZE(b) > 0) { memcpy(np->ob_item + Py_SIZE(a)*a->ob_descr->itemsize, b->ob_item, Py_SIZE(b)*b->ob_descr->itemsize); } return (PyObject *)np; #undef b } static PyObject * array_repeat(arrayobject *a, Py_ssize_t n) { array_state *state = find_array_state_by_type(Py_TYPE(a)); Py_ssize_t size; arrayobject *np; Py_ssize_t oldbytes, newbytes; if (n < 0) n = 0; if ((Py_SIZE(a) != 0) && (n > PY_SSIZE_T_MAX / Py_SIZE(a))) { return PyErr_NoMemory(); } size = Py_SIZE(a) * n; np = (arrayobject *) newarrayobject(state->ArrayType, size, a->ob_descr); if (np == NULL) return NULL; if (size == 0) return (PyObject *)np; oldbytes = Py_SIZE(a) * a->ob_descr->itemsize; newbytes = oldbytes * n; /* this follows the code in unicode_repeat */ if (oldbytes == 1) { memset(np->ob_item, a->ob_item[0], newbytes); } else { Py_ssize_t done = oldbytes; memcpy(np->ob_item, a->ob_item, oldbytes); while (done < newbytes) { Py_ssize_t ncopy = (done <= newbytes-done) ? done : newbytes-done; memcpy(np->ob_item+done, np->ob_item, ncopy); done += ncopy; } } return (PyObject *)np; } static int array_del_slice(arrayobject *a, Py_ssize_t ilow, Py_ssize_t ihigh) { char *item; Py_ssize_t d; /* Change in size */ if (ilow < 0) ilow = 0; else if (ilow > Py_SIZE(a)) ilow = Py_SIZE(a); if (ihigh < 0) ihigh = 0; if (ihigh < ilow) ihigh = ilow; else if (ihigh > Py_SIZE(a)) ihigh = Py_SIZE(a); item = a->ob_item; d = ihigh-ilow; /* Issue #4509: If the array has exported buffers and the slice assignment would change the size of the array, fail early to make sure we don't modify it. */ if (d != 0 && a->ob_exports > 0) { PyErr_SetString(PyExc_BufferError, "cannot resize an array that is exporting buffers"); return -1; } if (d > 0) { /* Delete d items */ memmove(item + (ihigh-d)*a->ob_descr->itemsize, item + ihigh*a->ob_descr->itemsize, (Py_SIZE(a)-ihigh)*a->ob_descr->itemsize); if (array_resize(a, Py_SIZE(a) - d) == -1) return -1; } return 0; } static int array_ass_item(arrayobject *a, Py_ssize_t i, PyObject *v) { if (i < 0 || i >= Py_SIZE(a)) { PyErr_SetString(PyExc_IndexError, "array assignment index out of range"); return -1; } if (v == NULL) return array_del_slice(a, i, i+1); return (*a->ob_descr->setitem)(a, i, v); } static int setarrayitem(PyObject *a, Py_ssize_t i, PyObject *v) { #ifndef NDEBUG array_state *state = find_array_state_by_type(Py_TYPE(a)); assert(array_Check(a, state)); #endif return array_ass_item((arrayobject *)a, i, v); } static int array_iter_extend(arrayobject *self, PyObject *bb) { PyObject *it, *v; it = PyObject_GetIter(bb); if (it == NULL) return -1; while ((v = PyIter_Next(it)) != NULL) { if (ins1(self, Py_SIZE(self), v) != 0) { Py_DECREF(v); Py_DECREF(it); return -1; } Py_DECREF(v); } Py_DECREF(it); if (PyErr_Occurred()) return -1; return 0; } static int array_do_extend(array_state *state, arrayobject *self, PyObject *bb) { Py_ssize_t size, oldsize, bbsize; if (!array_Check(bb, state)) return array_iter_extend(self, bb); #define b ((arrayobject *)bb) if (self->ob_descr != b->ob_descr) { PyErr_SetString(PyExc_TypeError, "can only extend with array of same kind"); return -1; } if ((Py_SIZE(self) > PY_SSIZE_T_MAX - Py_SIZE(b)) || ((Py_SIZE(self) + Py_SIZE(b)) > PY_SSIZE_T_MAX / self->ob_descr->itemsize)) { PyErr_NoMemory(); return -1; } oldsize = Py_SIZE(self); /* Get the size of bb before resizing the array since bb could be self. */ bbsize = Py_SIZE(bb); size = oldsize + Py_SIZE(b); if (array_resize(self, size) == -1) return -1; if (bbsize > 0) { memcpy(self->ob_item + oldsize * self->ob_descr->itemsize, b->ob_item, bbsize * b->ob_descr->itemsize); } return 0; #undef b } static PyObject * array_inplace_concat(arrayobject *self, PyObject *bb) { array_state *state = find_array_state_by_type(Py_TYPE(self)); if (!array_Check(bb, state)) { PyErr_Format(PyExc_TypeError, "can only extend array with array (not \"%.200s\")", Py_TYPE(bb)->tp_name); return NULL; } if (array_do_extend(state, self, bb) == -1) return NULL; Py_INCREF(self); return (PyObject *)self; } static PyObject * array_inplace_repeat(arrayobject *self, Py_ssize_t n) { char *items, *p; Py_ssize_t size, i; if (Py_SIZE(self) > 0) { if (n < 0) n = 0; if ((self->ob_descr->itemsize != 0) && (Py_SIZE(self) > PY_SSIZE_T_MAX / self->ob_descr->itemsize)) { return PyErr_NoMemory(); } size = Py_SIZE(self) * self->ob_descr->itemsize; if (n > 0 && size > PY_SSIZE_T_MAX / n) { return PyErr_NoMemory(); } if (array_resize(self, n * Py_SIZE(self)) == -1) return NULL; items = p = self->ob_item; for (i = 1; i < n; i++) { p += size; memcpy(p, items, size); } } Py_INCREF(self); return (PyObject *)self; } static PyObject * ins(arrayobject *self, Py_ssize_t where, PyObject *v) { if (ins1(self, where, v) != 0) return NULL; Py_RETURN_NONE; } /*[clinic input] array.array.count v: object / Return number of occurrences of v in the array. [clinic start generated code]*/ static PyObject * array_array_count(arrayobject *self, PyObject *v) /*[clinic end generated code: output=3dd3624bf7135a3a input=d9bce9d65e39d1f5]*/ { Py_ssize_t count = 0; Py_ssize_t i; for (i = 0; i < Py_SIZE(self); i++) { PyObject *selfi; int cmp; selfi = getarrayitem((PyObject *)self, i); if (selfi == NULL) return NULL; cmp = PyObject_RichCompareBool(selfi, v, Py_EQ); Py_DECREF(selfi); if (cmp > 0) count++; else if (cmp < 0) return NULL; } return PyLong_FromSsize_t(count); } /*[clinic input] array.array.index v: object start: slice_index(accept={int}) = 0 stop: slice_index(accept={int}, c_default="PY_SSIZE_T_MAX") = sys.maxsize / Return index of first occurrence of v in the array. Raise ValueError if the value is not present. [clinic start generated code]*/ static PyObject * array_array_index_impl(arrayobject *self, PyObject *v, Py_ssize_t start, Py_ssize_t stop) /*[clinic end generated code: output=c45e777880c99f52 input=089dff7baa7e5a7e]*/ { if (start < 0) { start += Py_SIZE(self); if (start < 0) { start = 0; } } if (stop < 0) { stop += Py_SIZE(self); } // Use Py_SIZE() for every iteration in case the array is mutated // during PyObject_RichCompareBool() for (Py_ssize_t i = start; i < stop && i < Py_SIZE(self); i++) { PyObject *selfi; int cmp; selfi = getarrayitem((PyObject *)self, i); if (selfi == NULL) return NULL; cmp = PyObject_RichCompareBool(selfi, v, Py_EQ); Py_DECREF(selfi); if (cmp > 0) { return PyLong_FromSsize_t(i); } else if (cmp < 0) return NULL; } PyErr_SetString(PyExc_ValueError, "array.index(x): x not in array"); return NULL; } static int array_contains(arrayobject *self, PyObject *v) { Py_ssize_t i; int cmp; for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(self); i++) { PyObject *selfi = getarrayitem((PyObject *)self, i); if (selfi == NULL) return -1; cmp = PyObject_RichCompareBool(selfi, v, Py_EQ); Py_DECREF(selfi); } return cmp; } /*[clinic input] array.array.remove v: object / Remove the first occurrence of v in the array. [clinic start generated code]*/ static PyObject * array_array_remove(arrayobject *self, PyObject *v) /*[clinic end generated code: output=bef06be9fdf9dceb input=0b1e5aed25590027]*/ { Py_ssize_t i; for (i = 0; i < Py_SIZE(self); i++) { PyObject *selfi; int cmp; selfi = getarrayitem((PyObject *)self,i); if (selfi == NULL) return NULL; cmp = PyObject_RichCompareBool(selfi, v, Py_EQ); Py_DECREF(selfi); if (cmp > 0) { if (array_del_slice(self, i, i+1) != 0) return NULL; Py_RETURN_NONE; } else if (cmp < 0) return NULL; } PyErr_SetString(PyExc_ValueError, "array.remove(x): x not in array"); return NULL; } /*[clinic input] array.array.pop i: Py_ssize_t = -1 / Return the i-th element and delete it from the array. i defaults to -1. [clinic start generated code]*/ static PyObject * array_array_pop_impl(arrayobject *self, Py_ssize_t i) /*[clinic end generated code: output=bc1f0c54fe5308e4 input=8e5feb4c1a11cd44]*/ { PyObject *v; if (Py_SIZE(self) == 0) { /* Special-case most common failure cause */ PyErr_SetString(PyExc_IndexError, "pop from empty array"); return NULL; } if (i < 0) i += Py_SIZE(self); if (i < 0 || i >= Py_SIZE(self)) { PyErr_SetString(PyExc_IndexError, "pop index out of range"); return NULL; } v = getarrayitem((PyObject *)self, i); if (v == NULL) return NULL; if (array_del_slice(self, i, i+1) != 0) { Py_DECREF(v); return NULL; } return v; } /*[clinic input] array.array.extend cls: defining_class bb: object / Append items to the end of the array. [clinic start generated code]*/ static PyObject * array_array_extend_impl(arrayobject *self, PyTypeObject *cls, PyObject *bb) /*[clinic end generated code: output=e65eb7588f0bc266 input=8eb6817ec4d2cb62]*/ { array_state *state = get_array_state_by_class(cls); if (array_do_extend(state, self, bb) == -1) return NULL; Py_RETURN_NONE; } /*[clinic input] array.array.insert i: Py_ssize_t v: object / Insert a new item v into the array before position i. [clinic start generated code]*/ static PyObject * array_array_insert_impl(arrayobject *self, Py_ssize_t i, PyObject *v) /*[clinic end generated code: output=5a3648e278348564 input=5577d1b4383e9313]*/ { return ins(self, i, v); } /*[clinic input] array.array.buffer_info Return a tuple (address, length) giving the current memory address and the length in items of the buffer used to hold array's contents. The length should be multiplied by the itemsize attribute to calculate the buffer length in bytes. [clinic start generated code]*/ static PyObject * array_array_buffer_info_impl(arrayobject *self) /*[clinic end generated code: output=9b2a4ec3ae7e98e7 input=a58bae5c6e1ac6a6]*/ { PyObject *retval = NULL, *v; retval = PyTuple_New(2); if (!retval) return NULL; v = PyLong_FromVoidPtr(self->ob_item); if (v == NULL) { Py_DECREF(retval); return NULL; } PyTuple_SET_ITEM(retval, 0, v); v = PyLong_FromSsize_t(Py_SIZE(self)); if (v == NULL) { Py_DECREF(retval); return NULL; } PyTuple_SET_ITEM(retval, 1, v); return retval; } /*[clinic input] array.array.append v: object / Append new value v to the end of the array. [clinic start generated code]*/ static PyObject * array_array_append(arrayobject *self, PyObject *v) /*[clinic end generated code: output=745a0669bf8db0e2 input=0b98d9d78e78f0fa]*/ { return ins(self, Py_SIZE(self), v); } /*[clinic input] array.array.byteswap Byteswap all items of the array. If the items in the array are not 1, 2, 4, or 8 bytes in size, RuntimeError is raised. [clinic start generated code]*/ static PyObject * array_array_byteswap_impl(arrayobject *self) /*[clinic end generated code: output=5f8236cbdf0d90b5 input=6a85591b950a0186]*/ { char *p; Py_ssize_t i; switch (self->ob_descr->itemsize) { case 1: break; case 2: for (p = self->ob_item, i = Py_SIZE(self); --i >= 0; p += 2) { char p0 = p[0]; p[0] = p[1]; p[1] = p0; } break; case 4: for (p = self->ob_item, i = Py_SIZE(self); --i >= 0; p += 4) { char p0 = p[0]; char p1 = p[1]; p[0] = p[3]; p[1] = p[2]; p[2] = p1; p[3] = p0; } break; case 8: for (p = self->ob_item, i = Py_SIZE(self); --i >= 0; p += 8) { char p0 = p[0]; char p1 = p[1]; char p2 = p[2]; char p3 = p[3]; p[0] = p[7]; p[1] = p[6]; p[2] = p[5]; p[3] = p[4]; p[4] = p3; p[5] = p2; p[6] = p1; p[7] = p0; } break; default: PyErr_SetString(PyExc_RuntimeError, "don't know how to byteswap this array type"); return NULL; } Py_RETURN_NONE; } /*[clinic input] array.array.reverse Reverse the order of the items in the array. [clinic start generated code]*/ static PyObject * array_array_reverse_impl(arrayobject *self) /*[clinic end generated code: output=c04868b36f6f4089 input=cd904f01b27d966a]*/ { Py_ssize_t itemsize = self->ob_descr->itemsize; char *p, *q; /* little buffer to hold items while swapping */ char tmp[256]; /* 8 is probably enough -- but why skimp */ assert((size_t)itemsize <= sizeof(tmp)); if (Py_SIZE(self) > 1) { for (p = self->ob_item, q = self->ob_item + (Py_SIZE(self) - 1)*itemsize; p < q; p += itemsize, q -= itemsize) { /* memory areas guaranteed disjoint, so memcpy * is safe (& memmove may be slower). */ memcpy(tmp, p, itemsize); memcpy(p, q, itemsize); memcpy(q, tmp, itemsize); } } Py_RETURN_NONE; } /*[clinic input] array.array.fromfile f: object n: Py_ssize_t / Read n objects from the file object f and append them to the end of the array. [clinic start generated code]*/ static PyObject * array_array_fromfile_impl(arrayobject *self, PyObject *f, Py_ssize_t n) /*[clinic end generated code: output=ec9f600e10f53510 input=e188afe8e58adf40]*/ { PyObject *b, *res; Py_ssize_t itemsize = self->ob_descr->itemsize; Py_ssize_t nbytes; _Py_IDENTIFIER(read); int not_enough_bytes; if (n < 0) { PyErr_SetString(PyExc_ValueError, "negative count"); return NULL; } if (n > PY_SSIZE_T_MAX / itemsize) { PyErr_NoMemory(); return NULL; } nbytes = n * itemsize; b = _PyObject_CallMethodId(f, &PyId_read, "n", nbytes); if (b == NULL) return NULL; if (!PyBytes_Check(b)) { PyErr_SetString(PyExc_TypeError, "read() didn't return bytes"); Py_DECREF(b); return NULL; } not_enough_bytes = (PyBytes_GET_SIZE(b) != nbytes); res = array_array_frombytes(self, b); Py_DECREF(b); if (res == NULL) return NULL; if (not_enough_bytes) { PyErr_SetString(PyExc_EOFError, "read() didn't return enough bytes"); Py_DECREF(res); return NULL; } return res; } /*[clinic input] array.array.tofile f: object / Write all items (as machine values) to the file object f. [clinic start generated code]*/ static PyObject * array_array_tofile(arrayobject *self, PyObject *f) /*[clinic end generated code: output=3a2cfa8128df0777 input=b0669a484aab0831]*/ { Py_ssize_t nbytes = Py_SIZE(self) * self->ob_descr->itemsize; /* Write 64K blocks at a time */ /* XXX Make the block size settable */ int BLOCKSIZE = 64*1024; Py_ssize_t nblocks = (nbytes + BLOCKSIZE - 1) / BLOCKSIZE; Py_ssize_t i; if (Py_SIZE(self) == 0) goto done; for (i = 0; i < nblocks; i++) { char* ptr = self->ob_item + i*BLOCKSIZE; Py_ssize_t size = BLOCKSIZE; PyObject *bytes, *res; _Py_IDENTIFIER(write); if (i*BLOCKSIZE + size > nbytes) size = nbytes - i*BLOCKSIZE; bytes = PyBytes_FromStringAndSize(ptr, size); if (bytes == NULL) return NULL; res = _PyObject_CallMethodIdOneArg(f, &PyId_write, bytes); Py_DECREF(bytes); if (res == NULL) return NULL; Py_DECREF(res); /* drop write result */ } done: Py_RETURN_NONE; } /*[clinic input] array.array.fromlist list: object / Append items to array from list. [clinic start generated code]*/ static PyObject * array_array_fromlist(arrayobject *self, PyObject *list) /*[clinic end generated code: output=26411c2d228a3e3f input=be2605a96c49680f]*/ { Py_ssize_t n; if (!PyList_Check(list)) { PyErr_SetString(PyExc_TypeError, "arg must be list"); return NULL; } n = PyList_Size(list); if (n > 0) { Py_ssize_t i, old_size; old_size = Py_SIZE(self); if (array_resize(self, old_size + n) == -1) return NULL; for (i = 0; i < n; i++) { PyObject *v = PyList_GET_ITEM(list, i); if ((*self->ob_descr->setitem)(self, Py_SIZE(self) - n + i, v) != 0) { array_resize(self, old_size); return NULL; } if (n != PyList_GET_SIZE(list)) { PyErr_SetString(PyExc_RuntimeError, "list changed size during iteration"); array_resize(self, old_size); return NULL; } } } Py_RETURN_NONE; } /*[clinic input] array.array.tolist Convert array to an ordinary list with the same items. [clinic start generated code]*/ static PyObject * array_array_tolist_impl(arrayobject *self) /*[clinic end generated code: output=00b60cc9eab8ef89 input=a8d7784a94f86b53]*/ { PyObject *list = PyList_New(Py_SIZE(self)); Py_ssize_t i; if (list == NULL) return NULL; for (i = 0; i < Py_SIZE(self); i++) { PyObject *v = getarrayitem((PyObject *)self, i); if (v == NULL) goto error; PyList_SET_ITEM(list, i, v); } return list; error: Py_DECREF(list); return NULL; } static PyObject * frombytes(arrayobject *self, Py_buffer *buffer) { int itemsize = self->ob_descr->itemsize; Py_ssize_t n; if (buffer->itemsize != 1) { PyBuffer_Release(buffer); PyErr_SetString(PyExc_TypeError, "a bytes-like object is required"); return NULL; } n = buffer->len; if (n % itemsize != 0) { PyBuffer_Release(buffer); PyErr_SetString(PyExc_ValueError, "bytes length not a multiple of item size"); return NULL; } n = n / itemsize; if (n > 0) { Py_ssize_t old_size = Py_SIZE(self); if ((n > PY_SSIZE_T_MAX - old_size) || ((old_size + n) > PY_SSIZE_T_MAX / itemsize)) { PyBuffer_Release(buffer); return PyErr_NoMemory(); } if (array_resize(self, old_size + n) == -1) { PyBuffer_Release(buffer); return NULL; } memcpy(self->ob_item + old_size * itemsize, buffer->buf, n * itemsize); } PyBuffer_Release(buffer); Py_RETURN_NONE; } /*[clinic input] array.array.frombytes buffer: Py_buffer / Appends items from the string, interpreting it as an array of machine values, as if it had been read from a file using the fromfile() method. [clinic start generated code]*/ static PyObject * array_array_frombytes_impl(arrayobject *self, Py_buffer *buffer) /*[clinic end generated code: output=d9842c8f7510a516 input=378db226dfac949e]*/ { return frombytes(self, buffer); } /*[clinic input] array.array.tobytes Convert the array to an array of machine values and return the bytes representation. [clinic start generated code]*/ static PyObject * array_array_tobytes_impl(arrayobject *self) /*[clinic end generated code: output=87318e4edcdc2bb6 input=90ee495f96de34f5]*/ { if (Py_SIZE(self) <= PY_SSIZE_T_MAX / self->ob_descr->itemsize) { return PyBytes_FromStringAndSize(self->ob_item, Py_SIZE(self) * self->ob_descr->itemsize); } else { return PyErr_NoMemory(); } } /*[clinic input] array.array.fromunicode ustr: unicode / Extends this array with data from the unicode string ustr. The array must be a unicode type array; otherwise a ValueError is raised. Use array.frombytes(ustr.encode(...)) to append Unicode data to an array of some other type. [clinic start generated code]*/ static PyObject * array_array_fromunicode_impl(arrayobject *self, PyObject *ustr) /*[clinic end generated code: output=24359f5e001a7f2b input=025db1fdade7a4ce]*/ { if (self->ob_descr->typecode != 'u') { PyErr_SetString(PyExc_ValueError, "fromunicode() may only be called on " "unicode type arrays"); return NULL; } Py_ssize_t ustr_length = PyUnicode_AsWideChar(ustr, NULL, 0); assert(ustr_length > 0); if (ustr_length > 1) { ustr_length--; /* trim trailing NUL character */ Py_ssize_t old_size = Py_SIZE(self); if (array_resize(self, old_size + ustr_length) == -1) { return NULL; } // must not fail PyUnicode_AsWideChar( ustr, ((wchar_t *)self->ob_item) + old_size, ustr_length); } Py_RETURN_NONE; } /*[clinic input] array.array.tounicode Extends this array with data from the unicode string ustr. Convert the array to a unicode string. The array must be a unicode type array; otherwise a ValueError is raised. Use array.tobytes().decode() to obtain a unicode string from an array of some other type. [clinic start generated code]*/ static PyObject * array_array_tounicode_impl(arrayobject *self) /*[clinic end generated code: output=08e442378336e1ef input=127242eebe70b66d]*/ { if (self->ob_descr->typecode != 'u') { PyErr_SetString(PyExc_ValueError, "tounicode() may only be called on unicode type arrays"); return NULL; } return PyUnicode_FromWideChar((wchar_t *) self->ob_item, Py_SIZE(self)); } /*[clinic input] array.array.__sizeof__ Size of the array in memory, in bytes. [clinic start generated code]*/ static PyObject * array_array___sizeof___impl(arrayobject *self) /*[clinic end generated code: output=d8e1c61ebbe3eaed input=805586565bf2b3c6]*/ { Py_ssize_t res; res = _PyObject_SIZE(Py_TYPE(self)) + self->allocated * self->ob_descr->itemsize; return PyLong_FromSsize_t(res); } /*********************** Pickling support ************************/ static const struct mformatdescr { size_t size; int is_signed; int is_big_endian; } mformat_descriptors[] = { {1, 0, 0}, /* 0: UNSIGNED_INT8 */ {1, 1, 0}, /* 1: SIGNED_INT8 */ {2, 0, 0}, /* 2: UNSIGNED_INT16_LE */ {2, 0, 1}, /* 3: UNSIGNED_INT16_BE */ {2, 1, 0}, /* 4: SIGNED_INT16_LE */ {2, 1, 1}, /* 5: SIGNED_INT16_BE */ {4, 0, 0}, /* 6: UNSIGNED_INT32_LE */ {4, 0, 1}, /* 7: UNSIGNED_INT32_BE */ {4, 1, 0}, /* 8: SIGNED_INT32_LE */ {4, 1, 1}, /* 9: SIGNED_INT32_BE */ {8, 0, 0}, /* 10: UNSIGNED_INT64_LE */ {8, 0, 1}, /* 11: UNSIGNED_INT64_BE */ {8, 1, 0}, /* 12: SIGNED_INT64_LE */ {8, 1, 1}, /* 13: SIGNED_INT64_BE */ {4, 0, 0}, /* 14: IEEE_754_FLOAT_LE */ {4, 0, 1}, /* 15: IEEE_754_FLOAT_BE */ {8, 0, 0}, /* 16: IEEE_754_DOUBLE_LE */ {8, 0, 1}, /* 17: IEEE_754_DOUBLE_BE */ {4, 0, 0}, /* 18: UTF16_LE */ {4, 0, 1}, /* 19: UTF16_BE */ {8, 0, 0}, /* 20: UTF32_LE */ {8, 0, 1} /* 21: UTF32_BE */ }; /* * Internal: This function is used to find the machine format of a given * array type code. This returns UNKNOWN_FORMAT when the machine format cannot * be found. */ static enum machine_format_code typecode_to_mformat_code(char typecode) { const int is_big_endian = PY_BIG_ENDIAN; size_t intsize; int is_signed; switch (typecode) { case 'b': return SIGNED_INT8; case 'B': return UNSIGNED_INT8; case 'u': if (sizeof(Py_UNICODE) == 2) { return UTF16_LE + is_big_endian; } if (sizeof(Py_UNICODE) == 4) { return UTF32_LE + is_big_endian; } return UNKNOWN_FORMAT; case 'f': if (sizeof(float) == 4) { const float y = 16711938.0; if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0) return IEEE_754_FLOAT_BE; if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0) return IEEE_754_FLOAT_LE; } return UNKNOWN_FORMAT; case 'd': if (sizeof(double) == 8) { const double x = 9006104071832581.0; if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0) return IEEE_754_DOUBLE_BE; if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0) return IEEE_754_DOUBLE_LE; } return UNKNOWN_FORMAT; /* Integers */ case 'h': intsize = sizeof(short); is_signed = 1; break; case 'H': intsize = sizeof(short); is_signed = 0; break; case 'i': intsize = sizeof(int); is_signed = 1; break; case 'I': intsize = sizeof(int); is_signed = 0; break; case 'l': intsize = sizeof(long); is_signed = 1; break; case 'L': intsize = sizeof(long); is_signed = 0; break; case 'q': intsize = sizeof(long long); is_signed = 1; break; case 'Q': intsize = sizeof(long long); is_signed = 0; break; default: return UNKNOWN_FORMAT; } switch (intsize) { case 2: return UNSIGNED_INT16_LE + is_big_endian + (2 * is_signed); case 4: return UNSIGNED_INT32_LE + is_big_endian + (2 * is_signed); case 8: return UNSIGNED_INT64_LE + is_big_endian + (2 * is_signed); default: return UNKNOWN_FORMAT; } } /* Forward declaration. */ static PyObject *array_new(PyTypeObject *type, PyObject *args, PyObject *kwds); /* * Internal: This function wraps the array constructor--i.e., array_new()--to * allow the creation of array objects from C code without having to deal * directly the tuple argument of array_new(). The typecode argument is a * Unicode character value, like 'i' or 'f' for example, representing an array * type code. The items argument is a bytes or a list object from which * contains the initial value of the array. * * On success, this functions returns the array object created. Otherwise, * NULL is returned to indicate a failure. */ static PyObject * make_array(PyTypeObject *arraytype, char typecode, PyObject *items) { PyObject *new_args; PyObject *array_obj; PyObject *typecode_obj; assert(arraytype != NULL); assert(items != NULL); typecode_obj = PyUnicode_FromOrdinal(typecode); if (typecode_obj == NULL) return NULL; new_args = PyTuple_New(2); if (new_args == NULL) { Py_DECREF(typecode_obj); return NULL; } Py_INCREF(items); PyTuple_SET_ITEM(new_args, 0, typecode_obj); PyTuple_SET_ITEM(new_args, 1, items); array_obj = array_new(arraytype, new_args, NULL); Py_DECREF(new_args); if (array_obj == NULL) return NULL; return array_obj; } /* * This functions is a special constructor used when unpickling an array. It * provides a portable way to rebuild an array from its memory representation. */ /*[clinic input] array._array_reconstructor arraytype: object(type="PyTypeObject *") typecode: int(accept={str}) mformat_code: int(type="enum machine_format_code") items: object / Internal. Used for pickling support. [clinic start generated code]*/ static PyObject * array__array_reconstructor_impl(PyObject *module, PyTypeObject *arraytype, int typecode, enum machine_format_code mformat_code, PyObject *items) /*[clinic end generated code: output=e05263141ba28365 input=2464dc8f4c7736b5]*/ { array_state *state = get_array_state(module); PyObject *converted_items; PyObject *result; const struct arraydescr *descr; if (!PyType_Check(arraytype)) { PyErr_Format(PyExc_TypeError, "first argument must be a type object, not %.200s", Py_TYPE(arraytype)->tp_name); return NULL; } if (!PyType_IsSubtype(arraytype, state->ArrayType)) { PyErr_Format(PyExc_TypeError, "%.200s is not a subtype of %.200s", arraytype->tp_name, state->ArrayType->tp_name); return NULL; } for (descr = descriptors; descr->typecode != '\0'; descr++) { if ((int)descr->typecode == typecode) break; } if (descr->typecode == '\0') { PyErr_SetString(PyExc_ValueError, "second argument must be a valid type code"); return NULL; } if (mformat_code < MACHINE_FORMAT_CODE_MIN || mformat_code > MACHINE_FORMAT_CODE_MAX) { PyErr_SetString(PyExc_ValueError, "third argument must be a valid machine format code."); return NULL; } if (!PyBytes_Check(items)) { PyErr_Format(PyExc_TypeError, "fourth argument should be bytes, not %.200s", Py_TYPE(items)->tp_name); return NULL; } /* Fast path: No decoding has to be done. */ if (mformat_code == typecode_to_mformat_code((char)typecode) || mformat_code == UNKNOWN_FORMAT) { return make_array(arraytype, (char)typecode, items); } /* Slow path: Decode the byte string according to the given machine * format code. This occurs when the computer unpickling the array * object is architecturally different from the one that pickled the * array. */ if (Py_SIZE(items) % mformat_descriptors[mformat_code].size != 0) { PyErr_SetString(PyExc_ValueError, "string length not a multiple of item size"); return NULL; } switch (mformat_code) { case IEEE_754_FLOAT_LE: case IEEE_754_FLOAT_BE: { Py_ssize_t i; int le = (mformat_code == IEEE_754_FLOAT_LE) ? 1 : 0; Py_ssize_t itemcount = Py_SIZE(items) / 4; const unsigned char *memstr = (unsigned char *)PyBytes_AS_STRING(items); converted_items = PyList_New(itemcount); if (converted_items == NULL) return NULL; for (i = 0; i < itemcount; i++) { PyObject *pyfloat = PyFloat_FromDouble( _PyFloat_Unpack4(&memstr[i * 4], le)); if (pyfloat == NULL) { Py_DECREF(converted_items); return NULL; } PyList_SET_ITEM(converted_items, i, pyfloat); } break; } case IEEE_754_DOUBLE_LE: case IEEE_754_DOUBLE_BE: { Py_ssize_t i; int le = (mformat_code == IEEE_754_DOUBLE_LE) ? 1 : 0; Py_ssize_t itemcount = Py_SIZE(items) / 8; const unsigned char *memstr = (unsigned char *)PyBytes_AS_STRING(items); converted_items = PyList_New(itemcount); if (converted_items == NULL) return NULL; for (i = 0; i < itemcount; i++) { PyObject *pyfloat = PyFloat_FromDouble( _PyFloat_Unpack8(&memstr[i * 8], le)); if (pyfloat == NULL) { Py_DECREF(converted_items); return NULL; } PyList_SET_ITEM(converted_items, i, pyfloat); } break; } case UTF16_LE: case UTF16_BE: { int byteorder = (mformat_code == UTF16_LE) ? -1 : 1; converted_items = PyUnicode_DecodeUTF16( PyBytes_AS_STRING(items), Py_SIZE(items), "strict", &byteorder); if (converted_items == NULL) return NULL; break; } case UTF32_LE: case UTF32_BE: { int byteorder = (mformat_code == UTF32_LE) ? -1 : 1; converted_items = PyUnicode_DecodeUTF32( PyBytes_AS_STRING(items), Py_SIZE(items), "strict", &byteorder); if (converted_items == NULL) return NULL; break; } case UNSIGNED_INT8: case SIGNED_INT8: case UNSIGNED_INT16_LE: case UNSIGNED_INT16_BE: case SIGNED_INT16_LE: case SIGNED_INT16_BE: case UNSIGNED_INT32_LE: case UNSIGNED_INT32_BE: case SIGNED_INT32_LE: case SIGNED_INT32_BE: case UNSIGNED_INT64_LE: case UNSIGNED_INT64_BE: case SIGNED_INT64_LE: case SIGNED_INT64_BE: { Py_ssize_t i; const struct mformatdescr mf_descr = mformat_descriptors[mformat_code]; Py_ssize_t itemcount = Py_SIZE(items) / mf_descr.size; const unsigned char *memstr = (unsigned char *)PyBytes_AS_STRING(items); const struct arraydescr *descr; /* If possible, try to pack array's items using a data type * that fits better. This may result in an array with narrower * or wider elements. * * For example, if a 32-bit machine pickles an L-code array of * unsigned longs, then the array will be unpickled by 64-bit * machine as an I-code array of unsigned ints. * * XXX: Is it possible to write a unit test for this? */ for (descr = descriptors; descr->typecode != '\0'; descr++) { if (descr->is_integer_type && (size_t)descr->itemsize == mf_descr.size && descr->is_signed == mf_descr.is_signed) typecode = descr->typecode; } converted_items = PyList_New(itemcount); if (converted_items == NULL) return NULL; for (i = 0; i < itemcount; i++) { PyObject *pylong; pylong = _PyLong_FromByteArray( &memstr[i * mf_descr.size], mf_descr.size, !mf_descr.is_big_endian, mf_descr.is_signed); if (pylong == NULL) { Py_DECREF(converted_items); return NULL; } PyList_SET_ITEM(converted_items, i, pylong); } break; } case UNKNOWN_FORMAT: /* Impossible, but needed to shut up GCC about the unhandled * enumeration value. */ default: PyErr_BadArgument(); return NULL; } result = make_array(arraytype, (char)typecode, converted_items); Py_DECREF(converted_items); return result; } /*[clinic input] array.array.__reduce_ex__ value: object / Return state information for pickling. [clinic start generated code]*/ static PyObject * array_array___reduce_ex__(arrayobject *self, PyObject *value) /*[clinic end generated code: output=051e0a6175d0eddb input=c36c3f85de7df6cd]*/ { PyObject *dict; PyObject *result; PyObject *array_str; int typecode = self->ob_descr->typecode; int mformat_code; static PyObject *array_reconstructor = NULL; long protocol; _Py_IDENTIFIER(_array_reconstructor); _Py_IDENTIFIER(__dict__); if (array_reconstructor == NULL) { PyObject *array_module = PyImport_ImportModule("array"); if (array_module == NULL) return NULL; array_reconstructor = _PyObject_GetAttrId( array_module, &PyId__array_reconstructor); Py_DECREF(array_module); if (array_reconstructor == NULL) return NULL; } if (!PyLong_Check(value)) { PyErr_SetString(PyExc_TypeError, "__reduce_ex__ argument should be an integer"); return NULL; } protocol = PyLong_AsLong(value); if (protocol == -1 && PyErr_Occurred()) return NULL; if (_PyObject_LookupAttrId((PyObject *)self, &PyId___dict__, &dict) < 0) { return NULL; } if (dict == NULL) { dict = Py_None; Py_INCREF(dict); } mformat_code = typecode_to_mformat_code(typecode); if (mformat_code == UNKNOWN_FORMAT || protocol < 3) { /* Convert the array to a list if we got something weird * (e.g., non-IEEE floats), or we are pickling the array using * a Python 2.x compatible protocol. * * It is necessary to use a list representation for Python 2.x * compatible pickle protocol, since Python 2's str objects * are unpickled as unicode by Python 3. Thus it is impossible * to make arrays unpicklable by Python 3 by using their memory * representation, unless we resort to ugly hacks such as * coercing unicode objects to bytes in array_reconstructor. */ PyObject *list; list = array_array_tolist_impl(self); if (list == NULL) { Py_DECREF(dict); return NULL; } result = Py_BuildValue( "O(CO)O", Py_TYPE(self), typecode, list, dict); Py_DECREF(list); Py_DECREF(dict); return result; } array_str = array_array_tobytes_impl(self); if (array_str == NULL) { Py_DECREF(dict); return NULL; } result = Py_BuildValue( "O(OCiN)O", array_reconstructor, Py_TYPE(self), typecode, mformat_code, array_str, dict); Py_DECREF(dict); return result; } static PyObject * array_get_typecode(arrayobject *a, void *closure) { char typecode = a->ob_descr->typecode; return PyUnicode_FromOrdinal(typecode); } static PyObject * array_get_itemsize(arrayobject *a, void *closure) { return PyLong_FromLong((long)a->ob_descr->itemsize); } static PyGetSetDef array_getsets [] = { {"typecode", (getter) array_get_typecode, NULL, "the typecode character used to create the array"}, {"itemsize", (getter) array_get_itemsize, NULL, "the size, in bytes, of one array item"}, {NULL} }; static PyMethodDef array_methods[] = { ARRAY_ARRAY_APPEND_METHODDEF ARRAY_ARRAY_BUFFER_INFO_METHODDEF ARRAY_ARRAY_BYTESWAP_METHODDEF ARRAY_ARRAY___COPY___METHODDEF ARRAY_ARRAY_COUNT_METHODDEF ARRAY_ARRAY___DEEPCOPY___METHODDEF ARRAY_ARRAY_EXTEND_METHODDEF ARRAY_ARRAY_FROMFILE_METHODDEF ARRAY_ARRAY_FROMLIST_METHODDEF ARRAY_ARRAY_FROMBYTES_METHODDEF ARRAY_ARRAY_FROMUNICODE_METHODDEF ARRAY_ARRAY_INDEX_METHODDEF ARRAY_ARRAY_INSERT_METHODDEF ARRAY_ARRAY_POP_METHODDEF ARRAY_ARRAY___REDUCE_EX___METHODDEF ARRAY_ARRAY_REMOVE_METHODDEF ARRAY_ARRAY_REVERSE_METHODDEF ARRAY_ARRAY_TOFILE_METHODDEF ARRAY_ARRAY_TOLIST_METHODDEF ARRAY_ARRAY_TOBYTES_METHODDEF ARRAY_ARRAY_TOUNICODE_METHODDEF ARRAY_ARRAY___SIZEOF___METHODDEF {NULL, NULL} /* sentinel */ }; static PyObject * array_repr(arrayobject *a) { char typecode; PyObject *s, *v = NULL; Py_ssize_t len; len = Py_SIZE(a); typecode = a->ob_descr->typecode; if (len == 0) { return PyUnicode_FromFormat("%s('%c')", _PyType_Name(Py_TYPE(a)), (int)typecode); } if (typecode == 'u') { v = array_array_tounicode_impl(a); } else { v = array_array_tolist_impl(a); } if (v == NULL) return NULL; s = PyUnicode_FromFormat("%s('%c', %R)", _PyType_Name(Py_TYPE(a)), (int)typecode, v); Py_DECREF(v); return s; } static PyObject* array_subscr(arrayobject* self, PyObject* item) { array_state *state = find_array_state_by_type(Py_TYPE(self)); if (PyIndex_Check(item)) { Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i==-1 && PyErr_Occurred()) { return NULL; } if (i < 0) i += Py_SIZE(self); return array_item(self, i); } else if (PySlice_Check(item)) { Py_ssize_t start, stop, step, slicelength, i; size_t cur; PyObject* result; arrayobject* ar; int itemsize = self->ob_descr->itemsize; if (PySlice_Unpack(item, &start, &stop, &step) < 0) { return NULL; } slicelength = PySlice_AdjustIndices(Py_SIZE(self), &start, &stop, step); if (slicelength <= 0) { return newarrayobject(state->ArrayType, 0, self->ob_descr); } else if (step == 1) { PyObject *result = newarrayobject(state->ArrayType, slicelength, self->ob_descr); if (result == NULL) return NULL; memcpy(((arrayobject *)result)->ob_item, self->ob_item + start * itemsize, slicelength * itemsize); return result; } else { result = newarrayobject(state->ArrayType, slicelength, self->ob_descr); if (!result) return NULL; ar = (arrayobject*)result; for (cur = start, i = 0; i < slicelength; cur += step, i++) { memcpy(ar->ob_item + i*itemsize, self->ob_item + cur*itemsize, itemsize); } return result; } } else { PyErr_SetString(PyExc_TypeError, "array indices must be integers"); return NULL; } } static int array_ass_subscr(arrayobject* self, PyObject* item, PyObject* value) { Py_ssize_t start, stop, step, slicelength, needed; array_state* state = find_array_state_by_type(Py_TYPE(self)); arrayobject* other; int itemsize; if (PyIndex_Check(item)) { Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); if (i == -1 && PyErr_Occurred()) return -1; if (i < 0) i += Py_SIZE(self); if (i < 0 || i >= Py_SIZE(self)) { PyErr_SetString(PyExc_IndexError, "array assignment index out of range"); return -1; } if (value == NULL) { /* Fall through to slice assignment */ start = i; stop = i + 1; step = 1; slicelength = 1; } else return (*self->ob_descr->setitem)(self, i, value); } else if (PySlice_Check(item)) { if (PySlice_Unpack(item, &start, &stop, &step) < 0) { return -1; } slicelength = PySlice_AdjustIndices(Py_SIZE(self), &start, &stop, step); } else { PyErr_SetString(PyExc_TypeError, "array indices must be integers"); return -1; } if (value == NULL) { other = NULL; needed = 0; } else if (array_Check(value, state)) { other = (arrayobject *)value; needed = Py_SIZE(other); if (self == other) { /* Special case "self[i:j] = self" -- copy self first */ int ret; value = array_slice(other, 0, needed); if (value == NULL) return -1; ret = array_ass_subscr(self, item, value); Py_DECREF(value); return ret; } if (other->ob_descr != self->ob_descr) { PyErr_BadArgument(); return -1; } } else { PyErr_Format(PyExc_TypeError, "can only assign array (not \"%.200s\") to array slice", Py_TYPE(value)->tp_name); return -1; } itemsize = self->ob_descr->itemsize; /* for 'a[2:1] = ...', the insertion point is 'start', not 'stop' */ if ((step > 0 && stop < start) || (step < 0 && stop > start)) stop = start; /* Issue #4509: If the array has exported buffers and the slice assignment would change the size of the array, fail early to make sure we don't modify it. */ if ((needed == 0 || slicelength != needed) && self->ob_exports > 0) { PyErr_SetString(PyExc_BufferError, "cannot resize an array that is exporting buffers"); return -1; } if (step == 1) { if (slicelength > needed) { memmove(self->ob_item + (start + needed) * itemsize, self->ob_item + stop * itemsize, (Py_SIZE(self) - stop) * itemsize); if (array_resize(self, Py_SIZE(self) + needed - slicelength) < 0) return -1; } else if (slicelength < needed) { if (array_resize(self, Py_SIZE(self) + needed - slicelength) < 0) return -1; memmove(self->ob_item + (start + needed) * itemsize, self->ob_item + stop * itemsize, (Py_SIZE(self) - start - needed) * itemsize); } if (needed > 0) memcpy(self->ob_item + start * itemsize, other->ob_item, needed * itemsize); return 0; } else if (needed == 0) { /* Delete slice */ size_t cur; Py_ssize_t i; if (step < 0) { stop = start + 1; start = stop + step * (slicelength - 1) - 1; step = -step; } for (cur = start, i = 0; i < slicelength; cur += step, i++) { Py_ssize_t lim = step - 1; if (cur + step >= (size_t)Py_SIZE(self)) lim = Py_SIZE(self) - cur - 1; memmove(self->ob_item + (cur - i) * itemsize, self->ob_item + (cur + 1) * itemsize, lim * itemsize); } cur = start + (size_t)slicelength * step; if (cur < (size_t)Py_SIZE(self)) { memmove(self->ob_item + (cur-slicelength) * itemsize, self->ob_item + cur * itemsize, (Py_SIZE(self) - cur) * itemsize); } if (array_resize(self, Py_SIZE(self) - slicelength) < 0) return -1; return 0; } else { size_t cur; Py_ssize_t i; if (needed != slicelength) { PyErr_Format(PyExc_ValueError, "attempt to assign array of size %zd " "to extended slice of size %zd", needed, slicelength); return -1; } for (cur = start, i = 0; i < slicelength; cur += step, i++) { memcpy(self->ob_item + cur * itemsize, other->ob_item + i * itemsize, itemsize); } return 0; } } static const void *emptybuf = ""; static int array_buffer_getbuf(arrayobject *self, Py_buffer *view, int flags) { if (view == NULL) { PyErr_SetString(PyExc_BufferError, "array_buffer_getbuf: view==NULL argument is obsolete"); return -1; } view->buf = (void *)self->ob_item; view->obj = (PyObject*)self; Py_INCREF(self); if (view->buf == NULL) view->buf = (void *)emptybuf; view->len = Py_SIZE(self) * self->ob_descr->itemsize; view->readonly = 0; view->ndim = 1; view->itemsize = self->ob_descr->itemsize; view->suboffsets = NULL; view->shape = NULL; if ((flags & PyBUF_ND)==PyBUF_ND) { view->shape = &((PyVarObject*)self)->ob_size; } view->strides = NULL; if ((flags & PyBUF_STRIDES)==PyBUF_STRIDES) view->strides = &(view->itemsize); view->format = NULL; view->internal = NULL; if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT) { view->format = (char *)self->ob_descr->formats; #ifdef Py_UNICODE_WIDE if (self->ob_descr->typecode == 'u') { view->format = "w"; } #endif } self->ob_exports++; return 0; } static void array_buffer_relbuf(arrayobject *self, Py_buffer *view) { self->ob_exports--; } static PyObject * array_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { array_state *state = find_array_state_by_type(type); int c; PyObject *initial = NULL, *it = NULL; const struct arraydescr *descr; if (type == state->ArrayType && !_PyArg_NoKeywords("array.array", kwds)) return NULL; if (!PyArg_ParseTuple(args, "C|O:array", &c, &initial)) return NULL; if (PySys_Audit("array.__new__", "CO", c, initial ? initial : Py_None) < 0) { return NULL; } if (initial && c != 'u') { if (PyUnicode_Check(initial)) { PyErr_Format(PyExc_TypeError, "cannot use a str to initialize " "an array with typecode '%c'", c); return NULL; } else if (array_Check(initial, state) && ((arrayobject*)initial)->ob_descr->typecode == 'u') { PyErr_Format(PyExc_TypeError, "cannot use a unicode array to " "initialize an array with typecode '%c'", c); return NULL; } } if (!(initial == NULL || PyList_Check(initial) || PyByteArray_Check(initial) || PyBytes_Check(initial) || PyTuple_Check(initial) || ((c=='u') && PyUnicode_Check(initial)) || (array_Check(initial, state) && c == ((arrayobject*)initial)->ob_descr->typecode))) { it = PyObject_GetIter(initial); if (it == NULL) return NULL; /* We set initial to NULL so that the subsequent code will create an empty array of the appropriate type and afterwards we can use array_iter_extend to populate the array. */ initial = NULL; } for (descr = descriptors; descr->typecode != '\0'; descr++) { if (descr->typecode == c) { PyObject *a; Py_ssize_t len; if (initial == NULL) len = 0; else if (PyList_Check(initial)) len = PyList_GET_SIZE(initial); else if (PyTuple_Check(initial) || array_Check(initial, state)) len = Py_SIZE(initial); else len = 0; a = newarrayobject(type, len, descr); if (a == NULL) return NULL; if (len > 0 && !array_Check(initial, state)) { Py_ssize_t i; for (i = 0; i < len; i++) { PyObject *v = PySequence_GetItem(initial, i); if (v == NULL) { Py_DECREF(a); return NULL; } if (setarrayitem(a, i, v) != 0) { Py_DECREF(v); Py_DECREF(a); return NULL; } Py_DECREF(v); } } else if (initial != NULL && (PyByteArray_Check(initial) || PyBytes_Check(initial))) { PyObject *v; v = array_array_frombytes((arrayobject *)a, initial); if (v == NULL) { Py_DECREF(a); return NULL; } Py_DECREF(v); } else if (initial != NULL && PyUnicode_Check(initial)) { Py_ssize_t n; wchar_t *ustr = PyUnicode_AsWideCharString(initial, &n); if (ustr == NULL) { Py_DECREF(a); return NULL; } if (n > 0) { arrayobject *self = (arrayobject *)a; // self->ob_item may be NULL but it is safe. PyMem_Free(self->ob_item); self->ob_item = (char *)ustr; Py_SET_SIZE(self, n); self->allocated = n; } } else if (initial != NULL && array_Check(initial, state) && len > 0) { arrayobject *self = (arrayobject *)a; arrayobject *other = (arrayobject *)initial; memcpy(self->ob_item, other->ob_item, len * other->ob_descr->itemsize); } if (it != NULL) { if (array_iter_extend((arrayobject *)a, it) == -1) { Py_DECREF(it); Py_DECREF(a); return NULL; } Py_DECREF(it); } return a; } } PyErr_SetString(PyExc_ValueError, "bad typecode (must be b, B, u, h, H, i, I, l, L, q, Q, f or d)"); return NULL; } PyDoc_STRVAR(module_doc, "This module defines an object type which can efficiently represent\n\ an array of basic values: characters, integers, floating point\n\ numbers. Arrays are sequence types and behave very much like lists,\n\ except that the type of objects stored in them is constrained.\n"); PyDoc_STRVAR(arraytype_doc, "array(typecode [, initializer]) -> array\n\ \n\ Return a new array whose items are restricted by typecode, and\n\ initialized from the optional initializer value, which must be a list,\n\ string or iterable over elements of the appropriate type.\n\ \n\ Arrays represent basic values and behave very much like lists, except\n\ the type of objects stored in them is constrained. The type is specified\n\ at object creation time by using a type code, which is a single character.\n\ The following type codes are defined:\n\ \n\ Type code C Type Minimum size in bytes\n\ 'b' signed integer 1\n\ 'B' unsigned integer 1\n\ 'u' Unicode character 2 (see note)\n\ 'h' signed integer 2\n\ 'H' unsigned integer 2\n\ 'i' signed integer 2\n\ 'I' unsigned integer 2\n\ 'l' signed integer 4\n\ 'L' unsigned integer 4\n\ 'q' signed integer 8 (see note)\n\ 'Q' unsigned integer 8 (see note)\n\ 'f' floating point 4\n\ 'd' floating point 8\n\ \n\ NOTE: The 'u' typecode corresponds to Python's unicode character. On\n\ narrow builds this is 2-bytes on wide builds this is 4-bytes.\n\ \n\ NOTE: The 'q' and 'Q' type codes are only available if the platform\n\ C compiler used to build Python supports 'long long', or, on Windows,\n\ '__int64'.\n\ \n\ Methods:\n\ \n\ append() -- append a new item to the end of the array\n\ buffer_info() -- return information giving the current memory info\n\ byteswap() -- byteswap all the items of the array\n\ count() -- return number of occurrences of an object\n\ extend() -- extend array by appending multiple elements from an iterable\n\ fromfile() -- read items from a file object\n\ fromlist() -- append items from the list\n\ frombytes() -- append items from the string\n\ index() -- return index of first occurrence of an object\n\ insert() -- insert a new item into the array at a provided position\n\ pop() -- remove and return item (default last)\n\ remove() -- remove first occurrence of an object\n\ reverse() -- reverse the order of the items in the array\n\ tofile() -- write all items to a file object\n\ tolist() -- return the array converted to an ordinary list\n\ tobytes() -- return the array converted to a string\n\ \n\ Attributes:\n\ \n\ typecode -- the typecode character used to create the array\n\ itemsize -- the length in bytes of one array item\n\ "); static PyObject *array_iter(arrayobject *ao); static struct PyMemberDef array_members[] = { {"__weaklistoffset__", T_PYSSIZET, offsetof(arrayobject, weakreflist), READONLY}, {NULL}, }; static PyType_Slot array_slots[] = { {Py_tp_dealloc, array_dealloc}, {Py_tp_repr, array_repr}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_doc, (void *)arraytype_doc}, {Py_tp_richcompare, array_richcompare}, {Py_tp_iter, array_iter}, {Py_tp_methods, array_methods}, {Py_tp_members, array_members}, {Py_tp_getset, array_getsets}, {Py_tp_alloc, PyType_GenericAlloc}, {Py_tp_new, array_new}, {Py_tp_traverse, array_tp_traverse}, /* as sequence */ {Py_sq_length, array_length}, {Py_sq_concat, array_concat}, {Py_sq_repeat, array_repeat}, {Py_sq_item, array_item}, {Py_sq_ass_item, array_ass_item}, {Py_sq_contains, array_contains}, {Py_sq_inplace_concat, array_inplace_concat}, {Py_sq_inplace_repeat, array_inplace_repeat}, /* as mapping */ {Py_mp_length, array_length}, {Py_mp_subscript, array_subscr}, {Py_mp_ass_subscript, array_ass_subscr}, /* as buffer */ {Py_bf_getbuffer, array_buffer_getbuf}, {Py_bf_releasebuffer, array_buffer_relbuf}, {0, NULL}, }; static PyType_Spec array_spec = { .name = "array.array", .basicsize = sizeof(arrayobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_IMMUTABLETYPE | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_SEQUENCE), .slots = array_slots, }; /*********************** Array Iterator **************************/ /*[clinic input] class array.arrayiterator "arrayiterobject *" "find_array_state_by_type(type)->ArrayIterType" [clinic start generated code]*/ /*[clinic end generated code: output=da39a3ee5e6b4b0d input=fb46d5ef98dd95ff]*/ static PyObject * array_iter(arrayobject *ao) { array_state *state = find_array_state_by_type(Py_TYPE(ao)); arrayiterobject *it; if (!array_Check(ao, state)) { PyErr_BadInternalCall(); return NULL; } it = PyObject_GC_New(arrayiterobject, state->ArrayIterType); if (it == NULL) return NULL; Py_INCREF(ao); it->ao = ao; it->index = 0; it->getitem = ao->ob_descr->getitem; PyObject_GC_Track(it); return (PyObject *)it; } static PyObject * arrayiter_next(arrayiterobject *it) { arrayobject *ao; assert(it != NULL); #ifndef NDEBUG array_state *state = find_array_state_by_type(Py_TYPE(it)); assert(PyObject_TypeCheck(it, state->ArrayIterType)); #endif ao = it->ao; if (ao == NULL) { return NULL; } #ifndef NDEBUG assert(array_Check(ao, state)); #endif if (it->index < Py_SIZE(ao)) { return (*it->getitem)(ao, it->index++); } it->ao = NULL; Py_DECREF(ao); return NULL; } static void arrayiter_dealloc(arrayiterobject *it) { PyTypeObject *tp = Py_TYPE(it); PyObject_GC_UnTrack(it); Py_XDECREF(it->ao); PyObject_GC_Del(it); Py_DECREF(tp); } static int arrayiter_traverse(arrayiterobject *it, visitproc visit, void *arg) { Py_VISIT(Py_TYPE(it)); Py_VISIT(it->ao); return 0; } /*[clinic input] array.arrayiterator.__reduce__ Return state information for pickling. [clinic start generated code]*/ static PyObject * array_arrayiterator___reduce___impl(arrayiterobject *self) /*[clinic end generated code: output=7898a52e8e66e016 input=a062ea1e9951417a]*/ { _Py_IDENTIFIER(iter); PyObject *func = _PyEval_GetBuiltinId(&PyId_iter); if (self->ao == NULL) { return Py_BuildValue("N(())", func); } return Py_BuildValue("N(O)n", func, self->ao, self->index); } /*[clinic input] array.arrayiterator.__setstate__ state: object / Set state information for unpickling. [clinic start generated code]*/ static PyObject * array_arrayiterator___setstate__(arrayiterobject *self, PyObject *state) /*[clinic end generated code: output=397da9904e443cbe input=f47d5ceda19e787b]*/ { Py_ssize_t index = PyLong_AsSsize_t(state); if (index == -1 && PyErr_Occurred()) return NULL; if (index < 0) index = 0; else if (index > Py_SIZE(self->ao)) index = Py_SIZE(self->ao); /* iterator exhausted */ self->index = index; Py_RETURN_NONE; } static PyMethodDef arrayiter_methods[] = { ARRAY_ARRAYITERATOR___REDUCE___METHODDEF ARRAY_ARRAYITERATOR___SETSTATE___METHODDEF {NULL, NULL} /* sentinel */ }; static PyType_Slot arrayiter_slots[] = { {Py_tp_dealloc, arrayiter_dealloc}, {Py_tp_getattro, PyObject_GenericGetAttr}, {Py_tp_traverse, arrayiter_traverse}, {Py_tp_iter, PyObject_SelfIter}, {Py_tp_iternext, arrayiter_next}, {Py_tp_methods, arrayiter_methods}, {0, NULL}, }; static PyType_Spec arrayiter_spec = { .name = "array.arrayiterator", .basicsize = sizeof(arrayiterobject), .flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_DISALLOW_INSTANTIATION | Py_TPFLAGS_IMMUTABLETYPE), .slots = arrayiter_slots, }; /*********************** Install Module **************************/ static int array_traverse(PyObject *module, visitproc visit, void *arg) { array_state *state = get_array_state(module); Py_VISIT(state->ArrayType); Py_VISIT(state->ArrayIterType); return 0; } static int array_clear(PyObject *module) { array_state *state = get_array_state(module); Py_CLEAR(state->ArrayType); Py_CLEAR(state->ArrayIterType); return 0; } static void array_free(void *module) { array_clear((PyObject *)module); } /* No functions in array module. */ static PyMethodDef a_methods[] = { ARRAY__ARRAY_RECONSTRUCTOR_METHODDEF {NULL, NULL, 0, NULL} /* Sentinel */ }; #define CREATE_TYPE(module, type, spec) \ do { \ type = (PyTypeObject *)PyType_FromModuleAndSpec(module, spec, NULL); \ if (type == NULL) { \ return -1; \ } \ } while (0) static int array_modexec(PyObject *m) { array_state *state = get_array_state(m); char buffer[Py_ARRAY_LENGTH(descriptors)], *p; PyObject *typecodes; const struct arraydescr *descr; CREATE_TYPE(m, state->ArrayType, &array_spec); CREATE_TYPE(m, state->ArrayIterType, &arrayiter_spec); Py_SET_TYPE(state->ArrayIterType, &PyType_Type); Py_INCREF((PyObject *)state->ArrayType); if (PyModule_AddObject(m, "ArrayType", (PyObject *)state->ArrayType) < 0) { Py_DECREF((PyObject *)state->ArrayType); return -1; } PyObject *abc_mod = PyImport_ImportModule("collections.abc"); if (!abc_mod) { Py_DECREF((PyObject *)state->ArrayType); return -1; } PyObject *mutablesequence = PyObject_GetAttrString(abc_mod, "MutableSequence"); Py_DECREF(abc_mod); if (!mutablesequence) { Py_DECREF((PyObject *)state->ArrayType); return -1; } PyObject *res = PyObject_CallMethod(mutablesequence, "register", "O", (PyObject *)state->ArrayType); Py_DECREF(mutablesequence); if (!res) { Py_DECREF((PyObject *)state->ArrayType); return -1; } Py_DECREF(res); if (PyModule_AddType(m, state->ArrayType) < 0) { return -1; } p = buffer; for (descr = descriptors; descr->typecode != '\0'; descr++) { *p++ = (char)descr->typecode; } typecodes = PyUnicode_DecodeASCII(buffer, p - buffer, NULL); if (PyModule_AddObject(m, "typecodes", typecodes) < 0) { Py_XDECREF(typecodes); return -1; } return 0; } static PyModuleDef_Slot arrayslots[] = { {Py_mod_exec, array_modexec}, {0, NULL} }; static struct PyModuleDef arraymodule = { .m_base = PyModuleDef_HEAD_INIT, .m_name = "array", .m_size = sizeof(array_state), .m_doc = module_doc, .m_methods = a_methods, .m_slots = arrayslots, .m_traverse = array_traverse, .m_clear = array_clear, .m_free = array_free, }; PyMODINIT_FUNC PyInit_array(void) { return PyModuleDef_Init(&arraymodule); }