import os import sys import fcntl import datetime import json import re import time import zipfile import threading import hashlib import shutil import subprocess import pprint import random from invoke import task import boto3 import botocore.exceptions import multiprocessing import io import ai2thor.build import logging logger = logging.getLogger() logger.setLevel(logging.INFO) handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.INFO) formatter = logging.Formatter( "%(asctime)s [%(process)d] %(funcName)s - %(levelname)s - %(message)s" ) handler.setFormatter(formatter) logger.addHandler(handler) def add_files(zipf, start_dir, exclude_ext=()): for root, dirs, files in os.walk(start_dir): for f in files: fn = os.path.join(root, f) if any(map(lambda ext: fn.endswith(ext), exclude_ext)): #print("skipping file %s" % fn) continue arcname = os.path.relpath(fn, start_dir) if arcname.split("/")[0].endswith("_BackUpThisFolder_ButDontShipItWithYourGame"): # print("skipping %s" % arcname) continue # print("adding %s" % arcname) zipf.write(fn, arcname) def push_build(build_archive_name, zip_data, include_private_scenes): logger.info("start of push_build") import boto3 from base64 import b64encode # subprocess.run("ls %s" % build_archive_name, shell=True) # subprocess.run("gsha256sum %s" % build_archive_name) logger.info("boto3 resource") s3 = boto3.resource("s3", region_name="us-west-2") acl = "public-read" bucket = ai2thor.build.PUBLIC_S3_BUCKET if include_private_scenes: bucket = ai2thor.build.PRIVATE_S3_BUCKET acl = "private" logger.info("archive base") archive_base = os.path.basename(build_archive_name) key = "builds/%s" % (archive_base,) sha256_key = "builds/%s.sha256" % (os.path.splitext(archive_base)[0],) logger.info("hashlib sha256") sha = hashlib.sha256(zip_data) try: logger.info("pushing build %s" % (key,)) s3.Object(bucket, key).put(Body=zip_data, ACL=acl, ChecksumSHA256=b64encode(sha.digest()).decode('ascii')) logger.info("pushing sha256 %s" % (sha256_key,)) s3.Object(bucket, sha256_key).put( Body=sha.hexdigest(), ACL=acl, ContentType="text/plain" ) except botocore.exceptions.ClientError as e: logger.error("caught error uploading archive %s: %s" % (build_archive_name, e)) logger.info("pushed build %s to %s" % (bucket, build_archive_name)) def _webgl_local_build_path(prefix, source_dir="builds"): return os.path.join( os.getcwd(), "unity/{}/thor-{}-WebGL/".format(source_dir, prefix) ) def _unity_version(): import yaml with open("unity/ProjectSettings/ProjectVersion.txt") as pf: project_version = yaml.load(pf.read(), Loader=yaml.FullLoader) return project_version["m_EditorVersion"] def _unity_path(): unity_version = _unity_version() standalone_path = None if sys.platform.startswith("darwin"): unity_hub_path = ( "/Applications/Unity/Hub/Editor/{}/Unity.app/Contents/MacOS/Unity".format( unity_version ) ) standalone_path = ( "/Applications/Unity-{}/Unity.app/Contents/MacOS/Unity".format( unity_version ) ) elif "win" in sys.platform: unity_hub_path = "C:/PROGRA~1/Unity/Hub/Editor/{}/Editor/Unity.exe".format( unity_version ) # TODO: Verify windows unity standalone path standalone_path = "C:/PROGRA~1/{}/Editor/Unity.exe".format(unity_version) elif sys.platform.startswith("linux"): unity_hub_path = "{}/Unity/Hub/Editor/{}/Editor/Unity".format( os.environ["HOME"], unity_version ) if standalone_path and os.path.exists(standalone_path): unity_path = standalone_path else: unity_path = unity_hub_path return unity_path def _build(unity_path, arch, build_dir, build_name, env={}): import yaml project_path = os.path.join(os.getcwd(), unity_path) # osxintel64 is not a BuildTarget build_target_map = dict(OSXIntel64="OSXUniversal") # -buildTarget must be passed as an option for the CloudRendering target otherwise a clang error # will get thrown complaining about missing features.h command = ( "%s -quit -batchmode -logFile %s/%s.log -projectpath %s -buildTarget %s -executeMethod Build.%s" % (_unity_path(), os.getcwd(), build_name, project_path, build_target_map.get(arch, arch), arch) ) target_path = os.path.join(build_dir, build_name) full_env = os.environ.copy() full_env.update(env) full_env["UNITY_BUILD_NAME"] = target_path result_code = subprocess.check_call(command, shell=True, env=full_env) print("Exited with code {}".format(result_code)) success = result_code == 0 if success: generate_build_metadata(os.path.join(project_path, build_dir, "metadata.json")) return success def generate_build_metadata(metadata_path): # this server_types metadata is maintained # to allow future versions of the Python API # to launch older versions of the Unity build # and know whether the Fifo server is available server_types = ["WSGI"] try: import ai2thor.fifo_server server_types.append("FIFO") except Exception as e: pass with open(os.path.join(metadata_path), "w") as f: f.write(json.dumps(dict(server_types=server_types))) def class_dataset_images_for_scene(scene_name): import ai2thor.controller from itertools import product from collections import defaultdict import numpy as np import cv2 env = ai2thor.controller.Controller(quality="Low") player_size = 300 zoom_size = 1000 target_size = 256 rotations = [0, 90, 180, 270] horizons = [330, 0, 30] buffer = 15 # object must be at least 40% in view min_size = ((target_size * 0.4) / zoom_size) * player_size env.start(width=player_size, height=player_size) env.reset(scene_name) event = env.step( dict( action="Initialize", gridSize=0.25, renderInstanceSegmentation=True, renderSemanticSegmentation=False, renderImage=False, ) ) for o in event.metadata["objects"]: if o["receptacle"] and o["receptacleObjectIds"] and o["openable"]: print("opening %s" % o["objectId"]) env.step( dict(action="OpenObject", objectId=o["objectId"], forceAction=True) ) event = env.step(dict(action="GetReachablePositions", gridSize=0.25)) visible_object_locations = [] for point in event.metadata["actionReturn"]: for rot, hor in product(rotations, horizons): exclude_colors = set( map(tuple, np.unique(event.instance_segmentation_frame[0], axis=0)) ) exclude_colors.update( set( map( tuple, np.unique(event.instance_segmentation_frame[:, -1, :], axis=0), ) ) ) exclude_colors.update( set( map(tuple, np.unique(event.instance_segmentation_frame[-1], axis=0)) ) ) exclude_colors.update( set( map( tuple, np.unique(event.instance_segmentation_frame[:, 0, :], axis=0), ) ) ) event = env.step( dict( action="TeleportFull", x=point["x"], y=point["y"], z=point["z"], rotation=rot, horizon=hor, forceAction=True, ), raise_for_failure=True, ) visible_objects = [] for o in event.metadata["objects"]: if o["visible"] and o["objectId"] and o["pickupable"]: color = event.object_id_to_color[o["objectId"]] mask = ( (event.instance_segmentation_frame[:, :, 0] == color[0]) & (event.instance_segmentation_frame[:, :, 1] == color[1]) & (event.instance_segmentation_frame[:, :, 2] == color[2]) ) points = np.argwhere(mask) if len(points) > 0: min_y = int(np.min(points[:, 0])) max_y = int(np.max(points[:, 0])) min_x = int(np.min(points[:, 1])) max_x = int(np.max(points[:, 1])) max_dim = max((max_y - min_y), (max_x - min_x)) if ( max_dim > min_size and min_y > buffer and min_x > buffer and max_x < (player_size - buffer) and max_y < (player_size - buffer) ): visible_objects.append( dict( objectId=o["objectId"], min_x=min_x, min_y=min_y, max_x=max_x, max_y=max_y, ) ) print( "[%s] including object id %s %s" % (scene_name, o["objectId"], max_dim) ) if visible_objects: visible_object_locations.append( dict(point=point, rot=rot, hor=hor, visible_objects=visible_objects) ) env.stop() env = ai2thor.controller.Controller() env.start(width=zoom_size, height=zoom_size) env.reset(scene_name) event = env.step(dict(action="Initialize", gridSize=0.25)) for o in event.metadata["objects"]: if o["receptacle"] and o["receptacleObjectIds"] and o["openable"]: print("opening %s" % o["objectId"]) env.step( dict(action="OpenObject", objectId=o["objectId"], forceAction=True) ) for vol in visible_object_locations: point = vol["point"] event = env.step( dict( action="TeleportFull", x=point["x"], y=point["y"], z=point["z"], rotation=vol["rot"], horizon=vol["hor"], forceAction=True, ), raise_for_failure=True, ) for v in vol["visible_objects"]: object_id = v["objectId"] min_y = int(round(v["min_y"] * (zoom_size / player_size))) max_y = int(round(v["max_y"] * (zoom_size / player_size))) max_x = int(round(v["max_x"] * (zoom_size / player_size))) min_x = int(round(v["min_x"] * (zoom_size / player_size))) delta_y = max_y - min_y delta_x = max_x - min_x scaled_target_size = max(delta_x, delta_y, target_size) + buffer * 2 if min_x > (zoom_size - max_x): start_x = min_x - (scaled_target_size - delta_x) end_x = max_x + buffer else: end_x = max_x + (scaled_target_size - delta_x) start_x = min_x - buffer if min_y > (zoom_size - max_y): start_y = min_y - (scaled_target_size - delta_y) end_y = max_y + buffer else: end_y = max_y + (scaled_target_size - delta_y) start_y = min_y - buffer # print("max x %s max y %s min x %s min y %s" % (max_x, max_y, min_x, min_y)) # print("start x %s start_y %s end_x %s end y %s" % (start_x, start_y, end_x, end_y)) print("storing %s " % object_id) img = event.cv2img[start_y:end_y, start_x:end_x, :] dst = cv2.resize( img, (target_size, target_size), interpolation=cv2.INTER_LANCZOS4 ) object_type = object_id.split("|")[0].lower() target_dir = os.path.join("images", scene_name, object_type) h = hashlib.md5() h.update(json.dumps(point, sort_keys=True).encode("utf8")) h.update(json.dumps(v, sort_keys=True).encode("utf8")) os.makedirs(target_dir, exist_ok=True) cv2.imwrite(os.path.join(target_dir, h.hexdigest() + ".png"), dst) env.stop() return scene_name @task def build_class_dataset(context): import concurrent.futures import ai2thor.controller multiprocessing.set_start_method("spawn") controller = ai2thor.controller.Controller() executor = concurrent.futures.ProcessPoolExecutor(max_workers=4) futures = [] for scene in controller.scene_names(): print("processing scene %s" % scene) futures.append(executor.submit(class_dataset_images_for_scene, scene)) for f in concurrent.futures.as_completed(futures): scene = f.result() print("scene name complete: %s" % scene) def local_build_name(prefix, arch): return "thor-%s-%s" % (prefix, arch) @task def local_build_test(context, prefix="local", arch="OSXIntel64"): from ai2thor.tests.constants import TEST_SCENE local_build(context, prefix, arch, [TEST_SCENE]) @task(iterable=["scenes"]) def local_build( context, prefix="local", arch="OSXIntel64", scenes=None, scripts_only=False ): import ai2thor.controller build = ai2thor.build.Build(arch, prefix, False) env = dict() if os.path.isdir("unity/Assets/Private/Scenes"): env["INCLUDE_PRIVATE_SCENES"] = "true" build_dir = os.path.join("builds", build.name) if scripts_only: env["BUILD_SCRIPTS_ONLY"] = "true" if scenes: env["BUILD_SCENES"] = ",".join( map(ai2thor.controller.Controller.normalize_scene, scenes) ) if _build("unity", arch, build_dir, build.name, env=env): print("Build Successful") else: print("Build Failure") generate_quality_settings(context) @task def webgl_build( context, scenes="", room_ranges=None, directory="builds", prefix="local", verbose=False, content_addressable=False, crowdsource_build=False, ): """ Creates a WebGL build :param context: :param scenes: String of scenes to include in the build as a comma separated list :param prefix: Prefix name for the build :param content_addressable: Whether to change the unityweb build files to be content-addressable have their content hashes as part of their names. :return: """ from functools import reduce def file_to_content_addressable(file_path, json_metadata_file_path, json_key): # name_split = os.path.splitext(file_path) path_split = os.path.split(file_path) directory = path_split[0] file_name = path_split[1] print("File name {} ".format(file_name)) with open(file_path, "rb") as f: h = hashlib.md5() h.update(f.read()) md5_id = h.hexdigest() new_file_name = "{}_{}".format(md5_id, file_name) os.rename(file_path, os.path.join(directory, new_file_name)) with open(json_metadata_file_path, "r+") as f: unity_json = json.load(f) print("UNITY json {}".format(unity_json)) unity_json[json_key] = new_file_name print("UNITY L {}".format(unity_json)) f.seek(0) json.dump(unity_json, f, indent=4) arch = "WebGL" build_name = local_build_name(prefix, arch) if room_ranges is not None: floor_plans = [ "FloorPlan{}_physics".format(i) for i in reduce( lambda x, y: x + y, map( lambda x: x + [x[-1] + 1], [ list(range(*tuple(int(y) for y in x.split("-")))) for x in room_ranges.split(",") ], ), ) ] scenes = ",".join(floor_plans) if verbose: print(scenes) env = dict(BUILD_SCENES=scenes) if crowdsource_build: env["DEFINES"] = "CROWDSOURCE_TASK" if _build("unity", arch, directory, build_name, env=env): print("Build Successful") else: print("Build Failure") build_path = _webgl_local_build_path(prefix, directory) generate_quality_settings(context) # the remainder of this is only used to generate scene metadata, but it # is not part of building webgl player rooms = { "kitchens": {"name": "Kitchens", "roomRanges": range(1, 31)}, "livingRooms": {"name": "Living Rooms", "roomRanges": range(201, 231)}, "bedrooms": {"name": "Bedrooms", "roomRanges": range(301, 331)}, "bathrooms": {"name": "Bathrooms", "roomRanges": range(401, 431)}, "foyers": {"name": "Foyers", "roomRanges": range(501, 531)}, } room_type_by_id = {} for room_type, room_data in rooms.items(): for room_num in room_data["roomRanges"]: room_id = "FloorPlan{}_physics".format(room_num) room_type_by_id[room_id] = {"type": room_type, "name": room_data["name"]} scene_metadata = {} for scene_name in scenes.split(","): if scene_name not in room_type_by_id: # allows for arbitrary scenes to be included dynamically room_type = {"type": "Other", "name": None} else: room_type = room_type_by_id[scene_name] if room_type["type"] not in scene_metadata: scene_metadata[room_type["type"]] = { "scenes": [], "name": room_type["name"], } scene_metadata[room_type["type"]]["scenes"].append(scene_name) if verbose: print(scene_metadata) to_content_addressable = [ ("{}.data".format(build_name), "dataUrl"), ("{}.loader.js".format(build_name), "loaderUrl"), ("{}.wasm".format(build_name), "wasmCodeUrl"), ("{}.framework.js".format(build_name), "wasmFrameworkUrl"), ] for file_name, key in to_content_addressable: file_to_content_addressable( os.path.join(build_path, "Build/{}".format(file_name)), os.path.join(build_path, "Build/{}.json".format(build_name)), key, ) with open(os.path.join(build_path, "scenes.json"), "w") as f: f.write(json.dumps(scene_metadata, sort_keys=False, indent=4)) @task def generate_quality_settings(ctx): import yaml class YamlUnity3dTag(yaml.SafeLoader): def let_through(self, node): return self.construct_mapping(node) YamlUnity3dTag.add_constructor( "tag:unity3d.com,2011:47", YamlUnity3dTag.let_through ) qs = yaml.load( open("unity/ProjectSettings/QualitySettings.asset").read(), Loader=YamlUnity3dTag, ) quality_settings = {} default = "Ultra" for i, q in enumerate(qs["QualitySettings"]["m_QualitySettings"]): quality_settings[q["name"]] = i assert default in quality_settings with open("ai2thor/_quality_settings.py", "w") as f: f.write("# GENERATED FILE - DO NOT EDIT\n") f.write("DEFAULT_QUALITY = '%s'\n" % default) f.write("QUALITY_SETTINGS = " + pprint.pformat(quality_settings)) def git_commit_comment(): comment = ( subprocess.check_output("git log -n 1 --format=%B", shell=True) .decode("utf8") .strip() ) return comment def git_commit_id(): commit_id = ( subprocess.check_output("git log -n 1 --format=%H", shell=True) .decode("ascii") .strip() ) return commit_id @task def deploy_pip(context): if "TWINE_PASSWORD" not in os.environ: raise Exception("Twine token not specified in environment") subprocess.check_call("twine upload -u __token__ dist/*", shell=True) @task def push_pip_commit(context): import glob commit_id = git_commit_id() s3 = boto3.resource("s3") for g in glob.glob("dist/ai2thor-0+%s*" % commit_id): acl = "public-read" pip_name = os.path.basename(g) logger.info("pushing pip file %s" % g) with open(g, "rb") as f: s3.Object( ai2thor.build.PYPI_S3_BUCKET, os.path.join("ai2thor", pip_name) ).put(Body=f, ACL=acl) @task def build_pip_commit(context): commit_id = git_commit_id() if os.path.isdir("dist"): shutil.rmtree("dist") generate_quality_settings(context) # must use this form to create valid PEP440 version specifier version = "0+" + commit_id with open("ai2thor/_builds.py", "w") as fi: fi.write("# GENERATED FILE - DO NOT EDIT\n") fi.write("COMMIT_ID = '%s'\n" % commit_id) with open("ai2thor/_version.py", "w") as fi: fi.write("# Copyright Allen Institute for Artificial Intelligence 2021\n") fi.write("# GENERATED FILE - DO NOT EDIT\n") fi.write("__version__ = '%s'\n" % (version)) subprocess.check_call("python setup.py clean --all", shell=True) subprocess.check_call("python setup.py sdist bdist_wheel --universal", shell=True) @task def build_pip(context, version): import xml.etree.ElementTree as ET import requests res = requests.get("https://pypi.org/rss/project/ai2thor/releases.xml") res.raise_for_status() root = ET.fromstring(res.content) latest_version = None for title in root.findall("./channel/item/title"): latest_version = title.text break # make sure that the tag is on this commit commit_tags = ( subprocess.check_output("git tag --points-at", shell=True) .decode("ascii") .strip() .split("\n") ) if version not in commit_tags: raise Exception("tag %s is not on current commit" % version) commit_id = git_commit_id() res = requests.get("https://api.github.com/repos/allenai/ai2thor/commits?sha=main") res.raise_for_status() if commit_id not in map(lambda c: c["sha"], res.json()): raise Exception("tag %s is not off the main branch" % version) if not re.match(r"^[0-9]{1,3}\.+[0-9]{1,3}\.[0-9]{1,3}$", version): raise Exception("invalid version: %s" % version) for plat in ai2thor.build.AUTO_BUILD_PLATFORMS: commit_build = ai2thor.build.Build(plat, commit_id, False) if not commit_build.exists(): raise Exception("Build does not exist for %s/%s" % (commit_id, plat.name())) current_maj, current_min, current_sub = list(map(int, latest_version.split("."))) next_maj, next_min, next_sub = list(map(int, version.split("."))) if ( (next_maj == current_maj + 1) or (next_maj == current_maj and next_min == current_min + 1) or ( next_maj == current_maj and next_min == current_min and next_sub >= current_sub + 1 ) ): if os.path.isdir("dist"): shutil.rmtree("dist") generate_quality_settings(context) with open("ai2thor/_builds.py", "w") as fi: fi.write("# GENERATED FILE - DO NOT EDIT\n") fi.write("COMMIT_ID = '%s'\n" % commit_id) with open("ai2thor/_version.py", "w") as fi: fi.write("# Copyright Allen Institute for Artificial Intelligence 2021\n") fi.write("# GENERATED FILE - DO NOT EDIT\n") fi.write("__version__ = '%s'\n" % (version)) subprocess.check_call("python setup.py clean --all", shell=True) subprocess.check_call( "python setup.py sdist bdist_wheel --universal", shell=True ) else: raise Exception( "Invalid version increment: new version=%s,current version=%s; must increment the major, minor or patch by only 1" % (version, latest_version) ) @task def fetch_source_textures(context): import ai2thor.downloader zip_data = ai2thor.downloader.download( "http://s3-us-west-2.amazonaws.com/ai2-thor/assets/source-textures.zip", "source-textures", "75476d60a05747873f1173ba2e1dbe3686500f63bcde3fc3b010eea45fa58de7", ) z = zipfile.ZipFile(io.BytesIO(zip_data)) z.extractall(os.getcwd()) def build_log_push(build_info, include_private_scenes): with open(build_info["log"]) as f: build_log = f.read() + "\n" + build_info.get("build_exception", "") build_log_key = "builds/" + build_info["log"] s3 = boto3.resource("s3") bucket = ai2thor.build.PUBLIC_S3_BUCKET acl = "public-read" if include_private_scenes: bucket = ai2thor.build.PRIVATE_S3_BUCKET acl = "private" s3.Object(bucket, build_log_key).put( Body=build_log, ACL=acl, ContentType="text/plain" ) def archive_push(unity_path, build_path, build_dir, build_info, include_private_scenes): threading.current_thread().success = False archive_name = os.path.join(unity_path, build_path) zip_buf = io.BytesIO() # Unity build is done with CompressWithLz4. Zip with compresslevel=1 # results in smaller builds than Uncompressed Unity + zip comprseslevel=6 (default) logger.info("building zip archive %s %s" % (archive_name, os.path.join(unity_path, build_dir))) zipf = zipfile.ZipFile(zip_buf, "w", zipfile.ZIP_DEFLATED, compresslevel=1) add_files(zipf, os.path.join(unity_path, build_dir), exclude_ext=('.debug',)) zipf.close() zip_buf.seek(0) zip_data = zip_buf.read() logger.info("generated zip archive %s %s" % (archive_name, len(zip_data))) push_build(archive_name, zip_data, include_private_scenes) build_log_push(build_info, include_private_scenes) print("Build successful") threading.current_thread().success = True @task def pre_test(context): import ai2thor.controller c = ai2thor.controller.Controller() os.makedirs("unity/builds/%s" % c.build_name()) shutil.move( os.path.join("unity", "builds", c.build_name() + ".app"), "unity/builds/%s" % c.build_name(), ) def clean(): import scripts.update_private # a deploy key is used on the build server and an .ssh/config entry has been added # to point to the deploy key caclled ai2thor-private-github scripts.update_private.private_repo_url = ( "git@ai2thor-private-github:allenai/ai2thor-private.git" ) subprocess.check_call("git reset --hard", shell=True) subprocess.check_call("git clean -f -d -x", shell=True) shutil.rmtree("unity/builds", ignore_errors=True) shutil.rmtree(scripts.update_private.private_dir, ignore_errors=True) scripts.update_private.checkout_branch() def ci_prune_cache(cache_dir): entries = {} for e in os.scandir(cache_dir): if os.path.isdir(e.path): mtime = os.stat(e.path).st_mtime entries[e.path] = mtime # keeping the most recent 60 entries (this keeps the cache around 300GB-500GB) sorted_paths = sorted(entries.keys(), key=lambda x: entries[x])[:-60] for path in sorted_paths: if os.path.basename(path) != "main": logger.info("pruning cache directory: %s" % path) shutil.rmtree(path) def link_build_cache(root_dir, arch, branch): library_path = os.path.join(root_dir, "unity", "Library") logger.info("linking build cache for %s" % branch) if os.path.lexists(library_path): os.unlink(library_path) # this takes takes care of branches with '/' in it # to avoid implicitly creating directories under the cache dir encoded_branch = re.sub(r"[^a-zA-Z0-9_\-.]", "_", re.sub("_", "__", branch)) cache_base_dir = os.path.join(os.environ["HOME"], "cache") os.makedirs(cache_base_dir, exist_ok=True) ci_prune_cache(cache_base_dir) main_cache_dir = os.path.join(cache_base_dir, "main", arch) branch_cache_dir = os.path.join(cache_base_dir, encoded_branch, arch) # use the main cache as a starting point to avoid # having to re-import all assets, which can take up to 1 hour if not os.path.exists(branch_cache_dir) and os.path.exists(main_cache_dir): logger.info("copying main cache for %s" % encoded_branch) os.makedirs(os.path.dirname(branch_cache_dir), exist_ok=True) # -c uses MacOS clonefile subprocess.check_call( "cp -a -c %s %s" % (main_cache_dir, branch_cache_dir), shell=True ) logger.info("copying main cache complete for %s" % encoded_branch) branch_library_cache_dir = os.path.join(branch_cache_dir, "Library") os.makedirs(branch_library_cache_dir, exist_ok=True) os.symlink(branch_library_cache_dir, library_path) # update atime/mtime to simplify cache pruning os.utime(os.path.join(cache_base_dir, encoded_branch)) def travis_build(build_id): import requests res = requests.get( "https://api.travis-ci.com/build/%s" % build_id, headers={ "Accept": "application/json", "Content-Type": "application/json", "Travis-API-Version": "3", }, ) res.raise_for_status() return res.json() def pending_travis_build(): import requests res = requests.get( "https://api.travis-ci.com/repo/3459357/builds?include=build.id%2Cbuild.commit%2Cbuild.branch%2Cbuild.request%2Cbuild.created_by%2Cbuild.repository&build.state=started&sort_by=started_at:desc", headers={ "Accept": "application/json", "Content-Type": "application/json", "Travis-API-Version": "3", }, timeout=10, ) for b in res.json()["builds"]: tag = None if b["tag"]: tag = b["tag"]["name"] return { "branch": b["branch"]["name"], "commit_id": b["commit"]["sha"], "tag": tag, "id": b["id"], } def pytest_s3_object(commit_id): s3 = boto3.resource("s3") pytest_key = "builds/pytest-%s.json" % commit_id return s3.Object(ai2thor.build.PUBLIC_S3_BUCKET, pytest_key) @task def ci_merge_push_pytest_results(context, commit_id): s3_obj = pytest_s3_object(commit_id) s3_pytest_url = "http://s3-us-west-2.amazonaws.com/%s/%s" % ( s3_obj.bucket_name, s3_obj.key, ) logger.info("pytest url %s" % s3_pytest_url) merged_result = dict(success=True, stdout="", stderr="") result_files = ["tmp/pytest_results.json", "tmp/test_utf_results.json"] for rf in result_files: with open(rf) as f: result = json.loads(f.read()) merged_result["success"] &= result["success"] merged_result["stdout"] += result["stdout"] + "\n" merged_result["stderr"] += result["stderr"] + "\n" s3_obj.put( Body=json.dumps(merged_result), ACL="public-read", ContentType="application/json" ) def ci_pytest(branch, commit_id): import requests logger.info("running pytest for %s %s" % (branch, commit_id)) proc = subprocess.run( "pytest", shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) result = dict( success=proc.returncode == 0, stdout=proc.stdout.decode("ascii"), stderr=proc.stderr.decode("ascii"), ) with open("tmp/pytest_results.json", "w") as f: f.write(json.dumps(result)) logger.info("finished pytest for %s %s" % (branch, commit_id)) @task def ci_build(context): lock_f = open(os.path.join(os.environ["HOME"], ".ci-build.lock"), "w") arch_temp_dirs = dict() try: fcntl.flock(lock_f, fcntl.LOCK_EX | fcntl.LOCK_NB) build = pending_travis_build() skip_branches = ["vids", "video", "erick/cloudrendering"] if build and build["branch"] not in skip_branches: # disabling delete temporarily since it interferes with pip releases # pytest_s3_object(build["commit_id"]).delete() logger.info( "pending build for %s %s" % (build["branch"], build["commit_id"]) ) clean() subprocess.check_call("git fetch", shell=True) subprocess.check_call("git checkout %s --" % build["branch"], shell=True) subprocess.check_call("git checkout -qf %s" % build["commit_id"], shell=True) private_scene_options = [False] procs = [] build_archs = ["OSXIntel64", "Linux64"] # CloudRendering only supported with 2020.3.25 # should change this in the future to automatically install # cloudrendering engine if available if _unity_version() == "2020.3.25f1": build_archs.append("CloudRendering") for include_private_scenes in private_scene_options: for arch in build_archs: logger.info( "starting build for %s %s %s" % (arch, build["branch"], build["commit_id"]) ) temp_dir = arch_temp_dirs[arch] = os.path.join(os.environ["HOME"], "tmp/unity-%s-%s-%s-%s" % (arch, build["commit_id"], os.getpid(), random.randint(0, 2**32 - 1))) os.makedirs(temp_dir) logger.info( "copying unity data to %s" % (temp_dir,)) # -c uses MacOS clonefile subprocess.check_call("cp -a -c unity %s" % temp_dir, shell=True) logger.info( "completed unity data copy to %s" % (temp_dir,)) rdir = os.path.join(temp_dir, "unity/builds") commit_build = ai2thor.build.Build( arch, build["commit_id"], include_private_scenes=include_private_scenes, releases_dir=rdir, ) if commit_build.exists(): logger.info( "found build for commit %s %s" % (build["commit_id"], arch) ) # download the build so that we can run the tests if arch == "OSXIntel64": commit_build.download() else: # this is done here so that when a tag build request arrives and the commit_id has already # been built, we avoid bootstrapping the cache since we short circuited on the line above link_build_cache(temp_dir, arch, build["branch"]) # ci_build_arch(temp_dir, arch, build["commit_id"], include_private_scenes) p = multiprocessing.Process(target=ci_build_arch, args=(temp_dir, arch, build["commit_id"], include_private_scenes,)) active_procs = lambda x: sum([p.is_alive() for p in x]) started = False for _ in range(200): if active_procs(procs) > 0: logger.info("too many active procs - waiting before start %s " % arch) time.sleep(15) continue else: logger.info("starting build process for %s " % arch) started = True p.start() # wait for Unity to start so that it can pick up the GICache config # changes time.sleep(30) procs.append(p) break if not started: logger.error("could not start build for %s" % arch) # the UnityLockfile is used as a trigger to indicate that Unity has closed # the project and we can run the unit tests # waiting for all builds to complete before starting tests for arch in build_archs: lock_file_path = os.path.join(arch_temp_dirs[arch], "unity/Temp/UnityLockfile") if os.path.isfile(lock_file_path): logger.info("attempting to lock %s" % lock_file_path) lock_file = os.open(lock_file_path, os.O_RDWR) fcntl.lockf(lock_file, fcntl.LOCK_EX) fcntl.lockf(lock_file, fcntl.LOCK_UN) os.close(lock_file) logger.info("obtained lock on %s" % lock_file_path) # don't run tests for a tag since results should exist # for the branch commit if build["tag"] is None: # its possible that the cache doesn't get linked if the builds # succeeded during an earlier run link_build_cache(arch_temp_dirs["OSXIntel64"], "OSXIntel64", build["branch"]) # link builds directory so pytest can run logger.info("current directory pre-symlink %s" % os.getcwd()) os.symlink(os.path.join(arch_temp_dirs["OSXIntel64"], "unity/builds"), "unity/builds") os.makedirs('tmp', exist_ok=True) # using threading here instead of multiprocessing since we must use the start_method of spawn, which # causes the tasks.py to get reloaded, which may be different on a branch from main utf_proc = threading.Thread(target=ci_test_utf, args=(build["branch"], build["commit_id"], arch_temp_dirs["OSXIntel64"])) utf_proc.start() procs.append(utf_proc) pytest_proc = threading.Thread(target=ci_pytest, args=(build["branch"], build["commit_id"])) pytest_proc.start() procs.append(pytest_proc) ## allow webgl to be force deployed with #webgl-deploy in the commit comment if ( build["branch"] in ["main", "demo-updates"] and "#webgl-deploy" in git_commit_comment() ): ci_build_webgl(context, build["commit_id"]) for p in procs: if p: logger.info( "joining proc %s for %s %s" % (p, build["branch"], build["commit_id"]) ) p.join() if build["tag"] is None: ci_merge_push_pytest_results(context, build["commit_id"]) # must have this after all the procs are joined # to avoid generating a _builds.py file that would affect pytest execution build_pip_commit(context) push_pip_commit(context) generate_pypi_index(context) # give the travis poller time to see the result for i in range(12): b = travis_build(build["id"]) logger.info("build state for %s: %s" % (build["id"], b["state"])) if b["state"] != "started": break time.sleep(10) logger.info("build complete %s %s" % (build["branch"], build["commit_id"])) fcntl.flock(lock_f, fcntl.LOCK_UN) except io.BlockingIOError as e: pass finally: for arch, temp_dir in arch_temp_dirs.items(): logger.info("deleting temp dir %s" % temp_dir) shutil.rmtree(temp_dir) lock_f.close() @task def install_cloudrendering_engine(context, force=False): if not sys.platform.startswith("darwin"): raise Exception("CloudRendering Engine can only be installed on Mac") s3 = boto3.resource("s3") target_base_dir = "/Applications/Unity/Hub/Editor/{}/PlaybackEngines".format(_unity_version()) full_dir = os.path.join(target_base_dir, "CloudRendering") if os.path.isdir(full_dir): if force: shutil.rmtree(full_dir) logger.info("CloudRendering engine already installed - removing due to force") else: logger.info("skipping installation - CloudRendering engine already installed") return print("packages/CloudRendering-%s.zip" % _unity_version()) res = s3.Object(ai2thor.build.PRIVATE_S3_BUCKET, "packages/CloudRendering-%s.zip" % _unity_version()).get() data = res["Body"].read() z = zipfile.ZipFile(io.BytesIO(data)) z.extractall(target_base_dir) @task def ci_build_webgl(context, commit_id): branch = "main" logger.info("starting auto-build webgl build deploy %s %s" % (branch, commit_id)) # linking here in the event we didn't link above since the builds had # already completed. Omitting this will cause the webgl build # to import all assets from scratch into a new unity/Library arch = "WebGL" set_gi_cache_folder(arch) link_build_cache(os.getcwd(), arch, branch) webgl_build_deploy_demo(context, verbose=True, content_addressable=True, force=True) logger.info("finished webgl build deploy %s %s" % (branch, commit_id)) update_webgl_autodeploy_commit_id(commit_id) def set_gi_cache_folder(arch): gi_cache_folder = os.path.join(os.environ["HOME"], "GICache/%s" % arch) plist_path = os.path.join(os.environ["HOME"], "Library/Preferences/com.unity3d.UnityEditor5.x.plist") # done to avoid race conditions when modifying GICache from more than one build subprocess.check_call("plutil -replace GICacheEnableCustomPath -bool TRUE %s" % plist_path, shell=True) subprocess.check_call("plutil -replace GICacheFolder -string '%s' %s" % (gi_cache_folder, plist_path), shell=True) subprocess.check_call("plutil -replace GICacheMaximumSizeGB -integer 100 %s" % (plist_path,), shell=True) def ci_build_arch(root_dir, arch, commit_id, include_private_scenes=False): os.chdir(root_dir) unity_path = "unity" build_name = ai2thor.build.build_name(arch, commit_id, include_private_scenes) build_dir = os.path.join("builds", build_name) build_path = build_dir + ".zip" build_info = {} proc = None try: build_info["log"] = "%s.log" % (build_name,) env = {} if include_private_scenes: env["INCLUDE_PRIVATE_SCENES"] = "true" set_gi_cache_folder(arch) _build(unity_path, arch, build_dir, build_name, env) logger.info("finished build for %s %s" % (arch, commit_id)) archive_push(unity_path, build_path, build_dir, build_info, include_private_scenes) except Exception as e: print("Caught exception %s" % e) build_info["build_exception"] = "Exception building: %s" % e build_log_push(build_info, include_private_scenes) @task def poll_ci_build(context): import requests.exceptions import requests commit_id = git_commit_id() last_emit_time = 0 for i in range(360): missing = False # must emit something at least once every 10 minutes # otherwise travis will time out the build if (time.time() - last_emit_time) > 120: print(".", end="") last_emit_time = time.time() check_platforms = ai2thor.build.AUTO_BUILD_PLATFORMS for plat in check_platforms: commit_build = ai2thor.build.Build(plat, commit_id, False) try: if not commit_build.log_exists(): missing = True # we observe errors when polling AWS periodically - we don't want these to stop # the build except requests.exceptions.ConnectionError as e: print("Caught exception %s" % e) if not missing: break sys.stdout.flush() time.sleep(10) for plat in ai2thor.build.AUTO_BUILD_PLATFORMS: commit_build = ai2thor.build.Build(plat, commit_id, False) if not commit_build.exists(): print("Build log url: %s" % commit_build.log_url) raise Exception("Failed to build %s for commit: %s " % (plat.name(), commit_id)) pytest_missing = True for i in range(30): if (time.time() - last_emit_time) > 120: print(".", end="") last_emit_time = time.time() s3_obj = pytest_s3_object(commit_id) s3_pytest_url = "http://s3-us-west-2.amazonaws.com/%s/%s" % ( s3_obj.bucket_name, s3_obj.key, ) res = requests.get(s3_pytest_url) if res.status_code == 200: print("pytest url %s" % s3_pytest_url) pytest_missing = False pytest_result = res.json() print(pytest_result["stdout"]) # print so that it appears in travis log print(pytest_result["stderr"]) if not pytest_result["success"]: raise Exception("pytest failure") break time.sleep(10) if pytest_missing: raise Exception("Missing pytest output") @task def build(context, local=False): version = datetime.datetime.now().strftime("%Y%m%d%H%M") builds = {"Docker": {"tag": version}} threads = [] for include_private_scenes in (True, False): for plat in ai2thor.build.AUTO_BUILD_PLATFORMS: env = {} if include_private_scenes: env["INCLUDE_PRIVATE_SCENES"] = "true" unity_path = "unity" build_name = ai2thor.build.build_name(plat.name(), version, include_private_scenes) build_dir = os.path.join("builds", build_name) build_path = build_dir + ".zip" build_info = builds[plat.name()] = {} build_info["log"] = "%s.log" % (build_name,) _build(unity_path, plat.name(), build_dir, build_name, env=env) t = threading.Thread( target=archive_push, args=( unity_path, build_path, build_dir, build_info, include_private_scenes, ), ) t.start() threads.append(t) # dp.join() # if dp.exitcode != 0: # raise Exception("Exception with docker build") for t in threads: t.join() if not t.success: raise Exception("Error with thread") generate_quality_settings(context) @task def interact( ctx, scene, editor_mode=False, local_build=False, image=False, depth_image=False, class_image=False, object_image=False, metadata=False, robot=False, port=8200, host="127.0.0.1", image_directory=".", width=300, height=300, include_private_scenes=False, noise=False, ): import ai2thor.controller import ai2thor.robot_controller if image_directory != ".": if os.path.exists(image_directory): shutil.rmtree(image_directory) os.makedirs(image_directory) if not robot: env = ai2thor.controller.Controller( host=host, port=port, width=width, height=height, local_build=local_build, image_dir=image_directory, start_unity=False if editor_mode else True, save_image_per_frame=True, include_private_scenes=include_private_scenes, add_depth_noise=noise, scene=scene, ) else: env = ai2thor.robot_controller.Controller( host=host, port=port, width=width, height=height, image_dir=image_directory, save_image_per_frame=True, ) env.reset(scene) initialize_event = env.step( dict( action="Initialize", gridSize=0.25, renderInstanceSegmentation=object_image, renderSemanticSegmentation=class_image, renderDepthImage=depth_image, ) ) from ai2thor.interact import InteractiveControllerPrompt InteractiveControllerPrompt.write_image( initialize_event, image_directory, "_init", image_per_frame=True, semantic_segmentation_frame=class_image, instance_segmentation_frame=object_image, color_frame=image, depth_frame=depth_image, metadata=metadata, ) env.interact( semantic_segmentation_frame=class_image, instance_segmentation_frame=object_image, depth_frame=depth_image, color_frame=image, metadata=metadata, ) env.stop() @task def get_depth( ctx, scene=None, image=False, depth_image=False, class_image=False, object_image=False, metadata=False, port=8200, host="127.0.0.1", image_directory=".", number=1, local_build=False, teleport=None, rotation=0, ): import ai2thor.controller import ai2thor.robot_controller if image_directory != ".": if os.path.exists(image_directory): shutil.rmtree(image_directory) os.makedirs(image_directory) if scene is None: env = ai2thor.robot_controller.Controller( host=host, port=port, width=600, height=600, image_dir=image_directory, save_image_per_frame=True, ) else: env = ai2thor.controller.Controller( width=600, height=600, local_build=local_build ) if scene is not None: env.reset(scene) initialize_event = env.step( dict( action="Initialize", gridSize=0.25, renderInstanceSegmentation=object_image, renderSemanticSegmentation=class_image, renderDepthImage=depth_image, agentMode="locobot", fieldOfView=59, continuous=True, snapToGrid=False, ) ) from ai2thor.interact import InteractiveControllerPrompt if scene is not None: teleport_arg = dict( action="TeleportFull", y=0.9010001, rotation=dict(x=0, y=rotation, z=0) ) if teleport is not None: teleport = [float(pos) for pos in teleport.split(",")] t_size = len(teleport) if 1 <= t_size: teleport_arg["x"] = teleport[0] if 2 <= t_size: teleport_arg["z"] = teleport[1] if 3 <= t_size: teleport_arg["y"] = teleport[2] evt = env.step(teleport_arg) InteractiveControllerPrompt.write_image( evt, image_directory, "_{}".format("teleport"), image_per_frame=True, semantic_segmentation_frame=class_image, instance_segmentation_frame=object_image, color_frame=image, depth_frame=depth_image, metadata=metadata, ) InteractiveControllerPrompt.write_image( initialize_event, image_directory, "_init", image_per_frame=True, semantic_segmentation_frame=class_image, instance_segmentation_frame=object_image, color_frame=image, depth_frame=depth_image, metadata=metadata, ) for i in range(number): event = env.step(action="MoveAhead", moveMagnitude=0.0) InteractiveControllerPrompt.write_image( event, image_directory, "_{}".format(i), image_per_frame=True, semantic_segmentation_frame=class_image, instance_segmentation_frame=object_image, color_frame=image, depth_frame=depth_image, metadata=metadata, ) env.stop() @task def inspect_depth( ctx, directory, all=False, indices=None, jet=False, under_score=False ): import numpy as np import cv2 import glob under_prefix = "_" if under_score else "" regex_str = "depth{}(.*)\.png".format(under_prefix) def sort_key_function(name): split_name = name.split("/") x = re.search(regex_str, split_name[len(split_name) - 1]).group(1) try: val = int(x) return val except ValueError: return -1 if indices is None or all: images = sorted( glob.glob("{}/depth{}*.png".format(directory, under_prefix)), key=sort_key_function, ) print(images) else: images = ["depth{}{}.png".format(under_prefix, i) for i in indices.split(",")] for depth_filename in images: # depth_filename = os.path.join(directory, "depth_{}.png".format(index)) split_fn = depth_filename.split("/") index = re.search(regex_str, split_fn[len(split_fn) - 1]).group(1) print("index {}".format(index)) print("Inspecting: '{}'".format(depth_filename)) depth_raw_filename = os.path.join( directory, "depth_raw{}{}.npy".format("_" if under_score else "", index) ) raw_depth = np.load(depth_raw_filename) if jet: mn = np.min(raw_depth) mx = np.max(raw_depth) print("min depth value: {}, max depth: {}".format(mn, mx)) norm = (((raw_depth - mn).astype(np.float32) / (mx - mn)) * 255.0).astype( np.uint8 ) img = cv2.applyColorMap(norm, cv2.COLORMAP_JET) else: grayscale = ( 255.0 / raw_depth.max() * (raw_depth - raw_depth.min()) ).astype(np.uint8) print("max {} min {}".format(raw_depth.max(), raw_depth.min())) img = grayscale print(raw_depth.shape) def inspect_pixel(event, x, y, flags, param): if event == cv2.EVENT_LBUTTONDOWN: print("Pixel at x: {}, y: {} ".format(y, x)) print(raw_depth[y][x]) cv2.namedWindow("image") cv2.setMouseCallback("image", inspect_pixel) cv2.imshow("image", img) cv2.waitKey(0) @task def real_2_sim( ctx, source_dir, index, scene, output_dir, rotation=0, local_build=False, jet=False ): import numpy as np import cv2 from ai2thor.util.transforms import transform_real_2_sim depth_metadata_fn = os.path.join(source_dir, "metadata_{}.json".format(index)) color_real_fn = os.path.join(source_dir, "color_{}.png".format(index)) color_sim_fn = os.path.join(output_dir, "color_teleport.png".format(index)) with open(depth_metadata_fn, "r") as f: metadata = json.load(f) pos = metadata["agent"]["position"] sim_pos = transform_real_2_sim(pos) teleport_arg = "{},{},{}".format(sim_pos["x"], sim_pos["z"], sim_pos["y"]) print(sim_pos) print(teleport_arg) inspect_depth(ctx, source_dir, indices=index, under_score=True, jet=jet) get_depth( ctx, scene=scene, image=True, depth_image=True, class_image=False, object_image=False, metadata=True, image_directory=output_dir, number=1, local_build=local_build, teleport=teleport_arg, rotation=rotation, ) im = cv2.imread(color_real_fn) cv2.imshow("color_real.png", im) im2 = cv2.imread(color_sim_fn) cv2.imshow("color_sim.png", im2) inspect_depth(ctx, output_dir, indices="teleport", under_score=True, jet=jet) @task def noise_depth(ctx, directory, show=False): import glob import cv2 import numpy as np def imshow_components(labels): # Map component labels to hue val label_hue = np.uint8(179 * labels / np.max(labels)) blank_ch = 255 * np.ones_like(label_hue) labeled_img = cv2.merge([label_hue, blank_ch, blank_ch]) # cvt to BGR for display labeled_img = cv2.cvtColor(labeled_img, cv2.COLOR_HSV2BGR) # set bg label to black labeled_img[label_hue == 0] = 0 if show: cv2.imshow("labeled.png", labeled_img) cv2.waitKey() images = glob.glob("{}/depth_*.png".format(directory)) indices = [] for image_file in images: print(image_file) grayscale_img = cv2.imread(image_file, 0) img = grayscale_img img_size = img.shape img = cv2.threshold(img, 30, 255, cv2.THRESH_BINARY_INV)[1] ret, labels = cv2.connectedComponents(img) print("Components: {}".format(ret)) imshow_components(labels) print(img_size[0]) indices_top_left = np.where(labels == labels[0][0]) indices_top_right = np.where(labels == labels[0][img_size[1] - 1]) indices_bottom_left = np.where(labels == labels[img_size[0] - 1][0]) indices_bottom_right = np.where( labels == labels[img_size[0] - 1][img_size[1] - 1] ) indices = [ indices_top_left, indices_top_right, indices_bottom_left, indices_bottom_right, ] blank_image = np.zeros((300, 300, 1), np.uint8) blank_image.fill(255) blank_image[indices_top_left] = 0 blank_image[indices_top_right] = 0 blank_image[indices_bottom_left] = 0 blank_image[indices_bottom_right] = 0 if show: cv2.imshow("labeled.png", blank_image) cv2.waitKey() break compressed = [] for indices_arr in indices: unique_e, counts = np.unique(indices_arr[0], return_counts=True) compressed.append(counts) np.save("depth_noise", compressed) @task def release(ctx): x = subprocess.check_output("git status --porcelain", shell=True).decode("ASCII") for line in x.split("\n"): if line.strip().startswith("??") or len(line.strip()) == 0: continue raise Exception( "Found locally modified changes from 'git status' - please commit and push or revert" ) import ai2thor._version tag = "v" + ai2thor._version.__version__ subprocess.check_call('git tag -a %s -m "release %s"' % (tag, tag), shell=True) subprocess.check_call("git push origin main --tags", shell=True) subprocess.check_call( "twine upload -u ai2thor dist/ai2thor-{ver}-* dist/ai2thor-{ver}.*".format( ver=ai2thor._version.__version__ ), shell=True, ) @task def check_visible_objects_closed_receptacles(ctx, start_scene, end_scene): from itertools import product import ai2thor.controller controller = ai2thor.controller.BFSController() controller.start() for i in range(int(start_scene), int(end_scene)): print("working on floorplan %s" % i) controller.search_all_closed("FloorPlan%s" % i) visibility_object_id = None visibility_object_types = ["Mug", "CellPhone", "SoapBar"] for obj in controller.last_event.metadata["objects"]: if obj["pickupable"]: controller.step( action=dict( action="PickupObject", objectId=obj["objectId"], forceVisible=True, ) ) if ( visibility_object_id is None and obj["objectType"] in visibility_object_types ): visibility_object_id = obj["objectId"] if visibility_object_id is None: raise Exception("Couldn't get a visibility_object") bad_receptacles = set() for point in controller.grid_points: controller.step( dict(action="Teleport", x=point["x"], y=point["y"], z=point["z"]), raise_for_failure=True, ) for rot, hor in product(controller.rotations, controller.horizons): event = controller.step( dict(action="RotateLook", rotation=rot, horizon=hor), raise_for_failure=True, ) for j in event.metadata["objects"]: if j["receptacle"] and j["visible"] and j["openable"]: controller.step( action=dict( action="Replace", forceVisible=True, pivot=0, receptacleObjectId=j["objectId"], objectId=visibility_object_id, ) ) replace_success = controller.last_event.metadata[ "lastActionSuccess" ] if replace_success: if ( controller.is_object_visible(visibility_object_id) and j["objectId"] not in bad_receptacles ): bad_receptacles.add(j["objectId"]) print("Got bad receptacle: %s" % j["objectId"]) # import cv2 # cv2.imshow('aoeu', controller.last_event.cv2image()) # cv2.waitKey(0) controller.step( action=dict( action="PickupObject", objectId=visibility_object_id, forceVisible=True, ) ) @task def benchmark( ctx, screen_width=600, screen_height=600, editor_mode=False, out="benchmark.json", verbose=False, local_build=False, commit_id=ai2thor.build.COMMIT_ID, ): import ai2thor.controller import random move_actions = ["MoveAhead", "MoveBack", "MoveLeft", "MoveRight"] rotate_actions = ["RotateRight", "RotateLeft"] look_actions = ["LookUp", "LookDown"] all_actions = move_actions + rotate_actions + look_actions def test_routine(env, test_actions, n=100): average_frame_time = 0 for i in range(n): action = random.choice(test_actions) start = time.time() env.step(dict(action=action)) end = time.time() frame_time = end - start average_frame_time += frame_time average_frame_time = average_frame_time / float(n) return average_frame_time def benchmark_actions(env, action_name, actions, n=100): if verbose: print("--- Actions {}".format(actions)) frame_time = test_routine(env, actions) if verbose: print("{} average: {}".format(action_name, 1 / frame_time)) return 1 / frame_time args = {} if editor_mode: args["port"] = 8200 args["start_unity"] = False elif local_build: args["local_build"] = local_build else: args["commit_id"] = commit_id env = ai2thor.controller.Controller( width=screen_width, height=screen_height, **args ) # Kitchens: FloorPlan1 - FloorPlan30 # Living rooms: FloorPlan201 - FloorPlan230 # Bedrooms: FloorPlan301 - FloorPlan330 # Bathrooms: FloorPLan401 - FloorPlan430 room_ranges = [(1, 30), (201, 230), (301, 330), (401, 430)] benchmark_map = {"scenes": {}} total_average_ft = 0 scene_count = 0 print("Start loop") for room_range in room_ranges: for i in range(room_range[0], room_range[1]): scene = "FloorPlan{}_physics".format(i) scene_benchmark = {} if verbose: print("Loading scene {}".format(scene)) # env.reset(scene) env.step(dict(action="Initialize", gridSize=0.25)) if verbose: print("------ {}".format(scene)) sample_number = 100 action_tuples = [ ("move", move_actions, sample_number), ("rotate", rotate_actions, sample_number), ("look", look_actions, sample_number), ("all", all_actions, sample_number), ] scene_average_fr = 0 for action_name, actions, n in action_tuples: ft = benchmark_actions(env, action_name, actions, n) scene_benchmark[action_name] = ft scene_average_fr += ft scene_average_fr = scene_average_fr / float(len(action_tuples)) total_average_ft += scene_average_fr if verbose: print("Total average frametime: {}".format(scene_average_fr)) benchmark_map["scenes"][scene] = scene_benchmark scene_count += 1 benchmark_map["average_framerate_seconds"] = total_average_ft / scene_count with open(out, "w") as f: f.write(json.dumps(benchmark_map, indent=4, sort_keys=True)) env.stop() def list_objects_with_metadata(bucket): keys = {} s3c = boto3.client("s3") continuation_token = None while True: if continuation_token: objects = s3c.list_objects_v2( Bucket=bucket, ContinuationToken=continuation_token ) else: objects = s3c.list_objects_v2(Bucket=bucket) for i in objects.get("Contents", []): keys[i["Key"]] = i if "NextContinuationToken" in objects: continuation_token = objects["NextContinuationToken"] else: break return keys def s3_etag_data(data): h = hashlib.md5() h.update(data) return '"' + h.hexdigest() + '"' cache_seconds = 31536000 @task def webgl_deploy( ctx, bucket=ai2thor.build.PUBLIC_WEBGL_S3_BUCKET, prefix="local", source_dir="builds", target_dir="", verbose=False, force=False, extensions_no_cache="", ): from pathlib import Path from os.path import isfile, join, isdir content_types = { ".js": "application/javascript; charset=utf-8", ".html": "text/html; charset=utf-8", ".ico": "image/x-icon", ".svg": "image/svg+xml; charset=utf-8", ".css": "text/css; charset=utf-8", ".png": "image/png", ".txt": "text/plain", ".jpg": "image/jpeg", ".unityweb": "application/octet-stream", ".json": "application/json", } content_encoding = {".unityweb": "gzip"} bucket_name = bucket s3 = boto3.resource("s3") current_objects = list_objects_with_metadata(bucket_name) no_cache_extensions = {".txt", ".html", ".json", ".js"} no_cache_extensions.union(set(extensions_no_cache.split(","))) def walk_recursive(path, func, parent_dir=""): for file_name in os.listdir(path): f_path = join(path, file_name) relative_path = join(parent_dir, file_name) if isfile(f_path): key = Path(join(target_dir, relative_path)) func(f_path, key.as_posix()) elif isdir(f_path): walk_recursive(f_path, func, relative_path) def upload_file(f_path, key): _, ext = os.path.splitext(f_path) if verbose: print("'{}'".format(key)) with open(f_path, "rb") as f: file_data = f.read() etag = s3_etag_data(file_data) kwargs = {} if ext in content_encoding: kwargs["ContentEncoding"] = content_encoding[ext] if ( not force and key in current_objects and etag == current_objects[key]["ETag"] ): if verbose: print("ETag match - skipping %s" % key) return if ext in content_types: cache = ( "no-cache, no-store, must-revalidate" if ext in no_cache_extensions else "public, max-age={}".format(cache_seconds) ) now = datetime.datetime.utcnow() expires = ( now if ext == ".html" or ext == ".txt" else now + datetime.timedelta(seconds=cache_seconds) ) s3.Object(bucket_name, key).put( Body=file_data, ACL="public-read", ContentType=content_types[ext], CacheControl=cache, Expires=expires, **kwargs, ) else: if verbose: print( "Warning: Content type for extension '{}' not defined," " uploading with no content type".format(ext) ) s3.Object(bucket_name, key).put(Body=f.read(), ACL="public-read") if prefix is not None: build_path = _webgl_local_build_path(prefix, source_dir) else: build_path = source_dir if verbose: print("Build path: '{}'".format(build_path)) print("Uploading...") walk_recursive(build_path, upload_file) @task def webgl_build_deploy_demo(ctx, verbose=False, force=False, content_addressable=False): # Main demo demo_selected_scene_indices = [ 1, 3, 7, 29, 30, 204, 209, 221, 224, 227, 301, 302, 308, 326, 330, 401, 403, 411, 422, 430, ] scenes = ["FloorPlan{}_physics".format(x) for x in demo_selected_scene_indices] webgl_build( ctx, scenes=",".join(scenes), directory="builds/demo", content_addressable=content_addressable, ) webgl_deploy( ctx, source_dir="builds/demo", target_dir="demo", verbose=verbose, force=force ) if verbose: print("Deployed selected scenes to bucket's 'demo' directory") # Full framework demo kitchens = [f"FloorPlan{i}_physics" for i in range(1, 31)] living_rooms = [f"FloorPlan{200 + i}_physics" for i in range(1, 31)] bedrooms = [f"FloorPlan{300 + i}_physics" for i in range(1, 31)] bathrooms = [f"FloorPlan{400 + i}_physics" for i in range(1, 31)] robothor_train = [ f"FloorPlan_Train{i}_{j}" for i in range(1, 13) for j in range(1, 6) ] robothor_val = [f"FloorPlan_Val{i}_{j}" for i in range(1, 4) for j in range(1, 6)] scenes = ( kitchens + living_rooms + bedrooms + bathrooms + robothor_train + robothor_val ) webgl_build( ctx, scenes=",".join(scenes), content_addressable=content_addressable, ) webgl_deploy(ctx, verbose=verbose, force=force, target_dir="full") if verbose: print("Deployed all scenes to bucket's root.") def current_webgl_autodeploy_commit_id(): s3 = boto3.resource("s3") try: res = s3.Object(ai2thor.build.PUBLIC_WEBGL_S3_BUCKET, "autodeploy.json").get() return json.loads(res["Body"].read())["commit_id"] except botocore.exceptions.ClientError as e: if e.response["Error"]["Code"] == "NoSuchKey": return None else: raise e def update_webgl_autodeploy_commit_id(commit_id): s3 = boto3.resource("s3") s3.Object(ai2thor.build.PUBLIC_WEBGL_S3_BUCKET, "autodeploy.json").put( Body=json.dumps(dict(timestamp=time.time(), commit_id=commit_id)), ContentType="application/json", ) @task def webgl_deploy_all(ctx, verbose=False, individual_rooms=False): rooms = { "kitchens": (1, 30), "livingRooms": (201, 230), "bedrooms": (301, 330), "bathrooms": (401, 430), "foyers": (501, 530), } for key, room_range in rooms.items(): range_str = "{}-{}".format(room_range[0], room_range[1]) if verbose: print("Building for rooms: {}".format(range_str)) build_dir = "builds/{}".format(key) if individual_rooms: for i in range(room_range[0], room_range[1]): floorPlanName = "FloorPlan{}_physics".format(i) target_s3_dir = "{}/{}".format(key, floorPlanName) build_dir = "builds/{}".format(target_s3_dir) webgl_build(ctx, scenes=floorPlanName, directory=build_dir) webgl_deploy( ctx, source_dir=build_dir, target_dir=target_s3_dir, verbose=verbose ) else: webgl_build(ctx, room_ranges=range_str, directory=build_dir) webgl_deploy(ctx, source_dir=build_dir, target_dir=key, verbose=verbose) @task def webgl_s3_deploy( ctx, bucket, target_dir, scenes="", verbose=False, all=False, deploy_skip=False ): """ Builds and deploys a WebGL unity site :param context: :param target_dir: Target s3 bucket :param target_dir: Target directory in bucket :param scenes: String of scene numbers to include in the build as a comma separated list e.g. "4,6,230" :param verbose: verbose build :param all: overrides 'scenes' parameter and builds and deploys all separate rooms :param deploy_skip: Whether to skip deployment and do build only. :return: """ rooms = { "kitchens": (1, 30), "livingRooms": (201, 230), "bedrooms": (301, 330), "bathrooms": (401, 430), } if all: flatten = lambda l: [item for sublist in l for item in sublist] room_numbers = flatten( [ [i for i in range(room_range[0], room_range[1])] for key, room_range in rooms.items() ] ) else: room_numbers = [s.strip() for s in scenes.split(",")] if verbose: print("Rooms in build: '{}'".format(room_numbers)) for i in room_numbers: floor_plan_name = "FloorPlan{}_physics".format(i) if verbose: print("Building room '{}'...".format(floor_plan_name)) target_s3_dir = "{}/{}".format(target_dir, floor_plan_name) build_dir = "builds/{}".format(target_s3_dir) webgl_build( ctx, scenes=floor_plan_name, directory=build_dir, crowdsource_build=True ) if verbose: print("Deploying room '{}'...".format(floor_plan_name)) if not deploy_skip: webgl_deploy( ctx, bucket=bucket, source_dir=build_dir, target_dir=target_s3_dir, verbose=verbose, extensions_no_cache=".css", ) @task def webgl_site_deploy( context, template_name, output_dir, bucket, unity_build_dir="", s3_target_dir="", force=False, verbose=False, ): from pathlib import Path from os.path import isfile, join, isdir template_dir = Path("unity/Assets/WebGLTemplates/{}".format(template_name)) if os.path.exists(output_dir): shutil.rmtree(output_dir) # os.mkdir(output_dir) ignore_func = lambda d, files: [ f for f in files if isfile(join(d, f)) and f.endswith(".meta") ] if unity_build_dir != "": shutil.copytree(unity_build_dir, output_dir, ignore=ignore_func) # shutil.copytree(os.path.join(unity_build_dir, "Build"), os.path.join(output_dir, "Build"), ignore=ignore_func) else: shutil.copytree(template_dir, output_dir, ignore=ignore_func) webgl_deploy( context, bucket=bucket, prefix=None, source_dir=output_dir, target_dir=s3_target_dir, verbose=verbose, force=force, extensions_no_cache=".css", ) @task def mock_client_request(context): import msgpack import numpy as np import requests import cv2 r = requests.post( "http://127.0.0.1:9200/step", json=dict(action="MoveAhead", sequenceId=1) ) payload = msgpack.unpackb(r.content, raw=False) metadata = payload["metadata"]["agents"][0] image = np.frombuffer(payload["frames"][0], dtype=np.uint8).reshape( metadata["screenHeight"], metadata["screenWidth"], 3 ) pprint.pprint(metadata) cv2.imshow("aoeu", image) cv2.waitKey(1000) @task def start_mock_real_server(context): import ai2thor.mock_real_server m = ai2thor.mock_real_server.MockServer(height=300, width=300) print("Started mock server on port: http://" + m.host + ":" + str(m.port)) m.start() @task def create_robothor_dataset( context, local_build=False, editor_mode=False, width=300, height=300, output="robothor-dataset.json", intermediate_directory=".", visibility_distance=1.0, objects_filter=None, scene_filter=None, filter_file=None, ): """ Creates a dataset for the robothor challenge in `intermediate_directory` named `robothor-dataset.json` """ import ai2thor.controller import ai2thor.util.metrics as metrics scene = "FloorPlan_Train1_1" angle = 45 gridSize = 0.25 # Restrict points visibility_multiplier_filter * visibility_distance away from the target object visibility_multiplier_filter = 2 scene_object_filter = {} if filter_file is not None: with open(filter_file, "r") as f: scene_object_filter = json.load(f) print("Filter:") pprint.pprint(scene_object_filter) print("Visibility distance: {}".format(visibility_distance)) controller = ai2thor.controller.Controller( width=width, height=height, local_build=local_build, start_unity=False if editor_mode else True, scene=scene, port=8200, host="127.0.0.1", # Unity params gridSize=gridSize, fieldOfView=60, rotateStepDegrees=angle, agentMode="bot", visibilityDistance=visibility_distance, ) targets = [ "Apple", "Baseball Bat", "BasketBall", "Bowl", "Garbage Can", "House Plant", "Laptop", "Mug", "Remote", "Spray Bottle", "Vase", "Alarm Clock", "Television", "Pillow", ] failed_points = [] if objects_filter is not None: obj_filter = set([o for o in objects_filter.split(",")]) targets = [o for o in targets if o.replace(" ", "") in obj_filter] desired_points = 30 event = controller.step( dict( action="GetScenesInBuild", ) ) scenes_in_build = event.metadata["actionReturn"] objects_types_in_scene = set() def sqr_dist(a, b): x = a[0] - b[0] z = a[2] - b[2] return x * x + z * z def sqr_dist_dict(a, b): x = a["x"] - b["x"] z = a["z"] - b["z"] return x * x + z * z def get_points(contoller, object_type, scene): print("Getting points in scene: '{}'...: ".format(scene)) controller.reset(scene) event = controller.step( dict( action="ObjectTypeToObjectIds", objectType=object_type.replace(" ", "") ) ) object_ids = event.metadata["actionReturn"] if object_ids is None or len(object_ids) > 1 or len(object_ids) == 0: print("Object type '{}' not available in scene.".format(object_type)) return None objects_types_in_scene.add(object_type) object_id = object_ids[0] event_reachable = controller.step( dict(action="GetReachablePositions", gridSize=0.25) ) target_position = controller.step( action="GetObjectPosition", objectId=object_id ).metadata["actionReturn"] reachable_positions = event_reachable.metadata["actionReturn"] reachable_pos_set = set( [ (pos["x"], pos["y"], pos["z"]) for pos in reachable_positions # if sqr_dist_dict(pos, target_position) >= visibility_distance * visibility_multiplier_filter ] ) def filter_points(selected_points, point_set, minimum_distance): result = set() for selected in selected_points: if selected in point_set: result.add(selected) remove_set = set( [ p for p in point_set if sqr_dist(p, selected) <= minimum_distance * minimum_distance ] ) point_set = point_set.difference(remove_set) return result import random points = random.sample(reachable_pos_set, desired_points * 4) final_point_set = filter_points(points, reachable_pos_set, gridSize * 2) print("Total number of points: {}".format(len(final_point_set))) print("Id {}".format(event.metadata["actionReturn"])) point_objects = [] eps = 0.0001 counter = 0 for (x, y, z) in final_point_set: possible_orientations = [0, 90, 180, 270] pos_unity = dict(x=x, y=y, z=z) try: path = metrics.get_shortest_path_to_object( controller, object_id, pos_unity, {"x": 0, "y": 0, "z": 0} ) minimum_path_length = metrics.path_distance(path) rotation_allowed = False while not rotation_allowed: if len(possible_orientations) == 0: break roatation_y = random.choice(possible_orientations) possible_orientations.remove(roatation_y) evt = controller.step( action="TeleportFull", x=pos_unity["x"], y=pos_unity["y"], z=pos_unity["z"], rotation=dict(x=0, y=roatation_y, z=0), ) rotation_allowed = evt.metadata["lastActionSuccess"] if not evt.metadata["lastActionSuccess"]: print(evt.metadata["errorMessage"]) print( "--------- Rotation not allowed! for pos {} rot {} ".format( pos_unity, roatation_y ) ) if minimum_path_length > eps and rotation_allowed: m = re.search("FloorPlan_([a-zA-Z\-]*)([0-9]+)_([0-9]+)", scene) point_id = "{}_{}_{}_{}_{}".format( m.group(1), m.group(2), m.group(3), object_type, counter ) point_objects.append( { "id": point_id, "scene": scene, "object_type": object_type, "object_id": object_id, "target_position": target_position, "initial_position": pos_unity, "initial_orientation": roatation_y, "shortest_path": path, "shortest_path_length": minimum_path_length, } ) counter += 1 except ValueError: print("-----Invalid path discarding point...") failed_points.append( { "scene": scene, "object_type": object_type, "object_id": object_id, "target_position": target_position, "initial_position": pos_unity, } ) sorted_objs = sorted(point_objects, key=lambda m: m["shortest_path_length"]) third = int(len(sorted_objs) / 3.0) for i, obj in enumerate(sorted_objs): if i < third: level = "easy" elif i < 2 * third: level = "medium" else: level = "hard" sorted_objs[i]["difficulty"] = level return sorted_objs dataset = {} dataset_flat = [] if intermediate_directory is not None: if intermediate_directory != ".": if os.path.exists(intermediate_directory): shutil.rmtree(intermediate_directory) os.makedirs(intermediate_directory) def key_sort_func(scene_name): m = re.search("FloorPlan_([a-zA-Z\-]*)([0-9]+)_([0-9]+)", scene_name) return m.group(1), int(m.group(2)), int(m.group(3)) scenes = sorted( [scene for scene in scenes_in_build if "physics" not in scene], key=key_sort_func, ) if scene_filter is not None: scene_filter_set = set(scene_filter.split(",")) scenes = [s for s in scenes if s in scene_filter_set] print("Sorted scenes: {}".format(scenes)) for scene in scenes: dataset[scene] = {} dataset["object_types"] = targets objects = [] for objectType in targets: if filter_file is None or ( objectType in scene_object_filter and scene in scene_object_filter[objectType] ): dataset[scene][objectType] = [] obj = get_points(controller, objectType, scene) if obj is not None: objects = objects + obj dataset_flat = dataset_flat + objects if intermediate_directory != ".": with open( os.path.join(intermediate_directory, "{}.json".format(scene)), "w" ) as f: json.dump(objects, f, indent=4) with open(os.path.join(intermediate_directory, output), "w") as f: json.dump(dataset_flat, f, indent=4) print("Object types in scene union: {}".format(objects_types_in_scene)) print("Total unique objects: {}".format(len(objects_types_in_scene))) print("Total scenes: {}".format(len(scenes))) print("Total datapoints: {}".format(len(dataset_flat))) print(failed_points) with open(os.path.join(intermediate_directory, "failed.json"), "w") as f: json.dump(failed_points, f, indent=4) @task def shortest_path_to_object( context, scene, object, x, z, y=0.9103442, rotation=0, editor_mode=False, local_build=False, visibility_distance=1.0, grid_size=0.25, ): p = dict(x=x, y=y, z=z) import ai2thor.controller import ai2thor.util.metrics as metrics angle = 45 gridSize = grid_size controller = ai2thor.controller.Controller( width=300, height=300, local_build=local_build, start_unity=False if editor_mode else True, scene=scene, port=8200, host="127.0.0.1", # Unity params gridSize=gridSize, fieldOfView=60, rotateStepDegrees=angle, agentMode="bot", visibilityDistance=visibility_distance, ) path = metrics.get_shortest_path_to_object_type( controller, object, p, {"x": 0, "y": 0, "z": 0} ) minimum_path_length = metrics.path_distance(path) print("Path: {}".format(path)) print("Path lenght: {}".format(minimum_path_length)) @task def filter_dataset(ctx, filename, output_filename, ids=False): """ Filters objects in dataset that are not reachable in at least one of the scenes (have zero occurrences in the dataset) """ with open(filename, "r") as f: obj = json.load(f) targets = [ "Apple", "Baseball Bat", "BasketBall", "Bowl", "Garbage Can", "House Plant", "Laptop", "Mug", "Spray Bottle", "Vase", "Alarm Clock", "Television", "Pillow", ] counter = {} for f in obj: obj_type = f["object_type"] if f["scene"] not in counter: counter[f["scene"]] = {target: 0 for target in targets} scene_counter = counter[f["scene"]] if obj_type not in scene_counter: scene_counter[obj_type] = 1 else: scene_counter[obj_type] += 1 objects_with_zero = set() objects_with_zero_by_obj = {} for k, item in counter.items(): # print("Key {} ".format(k)) for obj_type, count in item.items(): # print("obj {} count {}".format(obj_type, count)) if count == 0: if obj_type not in objects_with_zero_by_obj: objects_with_zero_by_obj[obj_type] = set() # print("With zero for obj: {} in scene {}".format(obj_type, k)) objects_with_zero_by_obj[obj_type].add(k) objects_with_zero.add(obj_type) print("Objects with zero: {}".format(objects_with_zero)) with open("with_zero.json", "w") as fw: dict_list = {k: list(v) for k, v in objects_with_zero_by_obj.items()} json.dump(dict_list, fw, sort_keys=True, indent=4) pprint.pprint(objects_with_zero_by_obj) filtered = [o for o in obj if o["object_type"] not in objects_with_zero] counter = 0 current_scene = "" current_object_type = "" for i, o in enumerate(filtered): if current_scene != o["scene"] or current_object_type != o["object_type"]: counter = 0 current_scene = o["scene"] current_object_type = o["object_type"] m = re.search("FloorPlan_([a-zA-Z\-]*)([0-9]+)_([0-9]+)", o["scene"]) point_id = "{}_{}_{}_{}_{}".format( m.group(1), m.group(2), m.group(3), o["object_type"], counter ) counter += 1 o["id"] = point_id with open(output_filename, "w") as f: json.dump(filtered, f, indent=4) @task def fix_dataset_object_types( ctx, input_file, output_file, editor_mode=False, local_build=False ): import ai2thor.controller with open(input_file, "r") as f: obj = json.load(f) scene = "FloorPlan_Train1_1" angle = 45 gridSize = 0.25 controller = ai2thor.controller.Controller( width=300, height=300, local_build=local_build, start_unity=False if editor_mode else True, scene=scene, port=8200, host="127.0.0.1", # Unity params gridSize=gridSize, fieldOfView=60, rotateStepDegrees=angle, agentMode="bot", visibilityDistance=1, ) current_scene = None object_map = {} for i, point in enumerate(obj): if current_scene != point["scene"]: print("Fixing for scene '{}'...".format(point["scene"])) controller.reset(point["scene"]) current_scene = point["scene"] object_map = { o["objectType"].lower(): { "id": o["objectId"], "type": o["objectType"], } for o in controller.last_event.metadata["objects"] } key = point["object_type"].replace(" ", "").lower() point["object_id"] = object_map[key]["id"] point["object_type"] = object_map[key]["type"] with open(output_file, "w") as fw: json.dump(obj, fw, indent=True) @task def test_dataset( ctx, filename, scenes=None, objects=None, editor_mode=False, local_build=False ): import ai2thor.controller import ai2thor.util.metrics as metrics scene = "FloorPlan_Train1_1" if scenes is None else scenes.split(",")[0] controller = ai2thor.controller.Controller( width=300, height=300, local_build=local_build, start_unity=False if editor_mode else True, scene=scene, port=8200, host="127.0.0.1", # Unity params gridSize=0.25, fieldOfView=60, rotateStepDegrees=45, agentMode="bot", visibilityDistance=1, ) with open(filename, "r") as f: dataset = json.load(f) filtered_dataset = dataset if scenes is not None: scene_set = set(scenes.split(",")) print("Filtering {}".format(scene_set)) filtered_dataset = [d for d in dataset if d["scene"] in scene_set] if objects is not None: object_set = set(objects.split(",")) print("Filtering {}".format(object_set)) filtered_dataset = [ d for d in filtered_dataset if d["object_type"] in object_set ] current_scene = None current_object = None point_counter = 0 print(len(filtered_dataset)) for point in filtered_dataset: if current_scene != point["scene"]: current_scene = point["scene"] print("Testing for scene '{}'...".format(current_scene)) if current_object != point["object_type"]: current_object = point["object_type"] point_counter = 0 print(" Object '{}'...".format(current_object)) try: path = metrics.get_shortest_path_to_object_type( controller, point["object_type"], point["initial_position"], {"x": 0, "y": point["initial_orientation"], "z": 0}, ) path_dist = metrics.path_distance(path) point_counter += 1 print(" Total points: {}".format(point_counter)) print(path_dist) except ValueError: print("Cannot find path from point") @task def visualize_shortest_paths( ctx, dataset_path, width=600, height=300, editor_mode=False, local_build=False, scenes=None, gridSize=0.25, output_dir=".", object_types=None, ): angle = 45 import ai2thor.controller from PIL import Image controller = ai2thor.controller.Controller( width=width, height=height, local_build=local_build, start_unity=False if editor_mode else True, port=8200, host="127.0.0.1", # Unity params gridSize=gridSize, fieldOfView=60, rotateStepDegrees=angle, agentMode="bot", visibilityDistance=1, ) if output_dir != "." and os.path.exists(output_dir): shutil.rmtree(output_dir) if output_dir != ".": os.mkdir(output_dir) evt = controller.step( action="AddThirdPartyCamera", rotation=dict(x=90, y=0, z=0), position=dict(x=5.40, y=3.25, z=-3.0), fieldOfView=2.25, orthographic=True, ) evt = controller.step(action="SetTopLevelView", topView=True) evt = controller.step(action="ToggleMapView") # im = Image.fromarray(evt.third_party_camera_frames[0]) # im.save(os.path.join(output_dir, "top_view.jpg")) with open(dataset_path, "r") as f: dataset = json.load(f) dataset_filtered = dataset if scenes is not None: scene_f_set = set(scenes.split(",")) dataset_filtered = [d for d in dataset if d["scene"] in scene_f_set] if object_types is not None: object_f_set = set(object_types.split(",")) dataset_filtered = [ d for d in dataset_filtered if d["object_type"] in object_f_set ] print("Running for {} points...".format(len(dataset_filtered))) index = 0 print(index) print(len(dataset_filtered)) datapoint = dataset_filtered[index] current_scene = datapoint["scene"] current_object = datapoint["object_type"] failed = {} while index < len(dataset_filtered): previous_index = index controller.reset(current_scene) while ( current_scene == datapoint["scene"] and current_object == datapoint["object_type"] ): index += 1 if index > len(dataset_filtered) - 1: break datapoint = dataset_filtered[index] current_scene = datapoint["scene"] current_object = datapoint["object_type"] key = "{}_{}".format(current_scene, current_object) failed[key] = [] print( "Points for '{}' in scene '{}'...".format(current_object, current_scene) ) evt = controller.step( action="AddThirdPartyCamera", rotation=dict(x=90, y=0, z=0), position=dict(x=5.40, y=3.25, z=-3.0), fieldOfView=2.25, orthographic=True, ) sc = dataset_filtered[previous_index]["scene"] obj_type = dataset_filtered[previous_index]["object_type"] positions = [ d["initial_position"] for d in dataset_filtered[previous_index:index] ] # print("{} : {} : {}".format(sc, obj_type, positions)) evt = controller.step( action="VisualizeShortestPaths", objectType=obj_type, positions=positions, grid=True, ) im = Image.fromarray(evt.third_party_camera_frames[0]) im.save(os.path.join(output_dir, "{}-{}.jpg".format(sc, obj_type))) # print("Retur {}, {} ".format(evt.metadata['actionReturn'], evt.metadata['lastActionSuccess'])) # print(evt.metadata['errorMessage']) failed[key] = [ positions[i] for i, success in enumerate(evt.metadata["actionReturn"]) if not success ] pprint.pprint(failed) @task def fill_in_dataset( ctx, dataset_dir, dataset_filename, filter_filename, intermediate_dir, output_filename="filled.json", local_build=False, editor_mode=False, visibility_distance=1.0, ): import glob import ai2thor.controller dataset_path = os.path.join(dataset_dir, dataset_filename) def key_sort_func(scene_name): m = re.search("FloorPlan_([a-zA-Z\-]*)([0-9]+)_([0-9]+)", scene_name) return m.group(1), int(m.group(2)), int(m.group(3)) targets = [ "Apple", "Baseball Bat", "Basketball", "Bowl", "Garbage Can", "House Plant", "Laptop", "Mug", "Remote", "Spray Bottle", "Vase", "Alarm Clock", "Television", "Pillow", ] controller = ai2thor.controller.Controller( width=300, height=300, local_build=local_build, start_unity=False if editor_mode else True, port=8200, host="127.0.0.1", # Unity params gridSize=0.25, fieldOfView=60, rotateStepDegrees=45, agentMode="bot", visibilityDistance=1, ) scenes = sorted( [scene for scene in controller._scenes_in_build if "physics" not in scene], key=key_sort_func, ) missing_datapoints_by_scene = {} partial_dataset_by_scene = {} for scene in scenes: missing_datapoints_by_scene[scene] = [] partial_dataset_by_scene[scene] = [] with open(dataset_path, "r") as f: create_dataset( ctx, local_build=local_build, editor_mode=editor_mode, output=output_filename, intermediate_directory=intermediate_dir, visibility_distance=visibility_distance, ) for datapoint in filter_dataset: missing_datapoints_by_scene[datapoint["scene"]].append(datapoint) partial_dataset_filenames = sorted( glob.glob("{}/FloorPlan_*.png".format(dataset_dir)) ) print("Datas") difficulty_order_map = {"easy": 0, "medium": 1, "hard": 2} for d_filename in partial_dataset_filenames: with open(d_filename, "r") as fp: partial_dataset = json.load(fp) partial_dataset[0]["scene"] = partial_dataset final_dataset = [] for scene in scenes: for object_type in targets: arr = [ p for p in partial_dataset[scene] if p["object_type"] == object_type ] + [ p for p in missing_datapoints_by_scene[scene] if p["object_type"] == object_type ] final_dataset = final_dataset + sorted( arr, key=lambda p: ( p["object_type"], difficulty_order_map[p["difficulty"]], ), ) @task def test_teleport(ctx, editor_mode=False, local_build=False): import ai2thor.controller import time controller = ai2thor.controller.Controller( rotateStepDegrees=30, visibilityDistance=1.0, gridSize=0.25, port=8200, host="127.0.0.1", local_build=local_build, start_unity=False if editor_mode else True, agentType="stochastic", continuousMode=True, continuous=False, snapToGrid=False, agentMode="locobot", scene="FloorPlan_Train1_2", width=640, height=480, continus=True, ) controller.step(action="GetReachablePositions", gridSize=0.25) params = { "x": 8.0, "y": 0.924999952, "z": -1.75, "rotation": {"x": 0.0, "y": 240.0, "z": 0.0}, "horizon": 330.0, } evt = controller.step(action="TeleportFull", **params) print("New pos: {}".format(evt.metadata["agent"]["position"])) @task def resort_dataset(ctx, dataset_path, output_path, editor_mode=False, local_build=True): with open(dataset_path, "r") as f: dataset = json.load(f) index = 0 previous_index = 0 datapoint = dataset[index] current_scene = datapoint["scene"] current_object = datapoint["object_type"] # controller.reset(current_scene) sum_t = 0 new_dataset = [] while index < len(dataset): previous_index = index while ( current_scene == datapoint["scene"] and current_object == datapoint["object_type"] ): index += 1 if index > len(dataset) - 1: break datapoint = dataset[index] current_scene = datapoint["scene"] current_object = datapoint["object_type"] print("Scene '{}'...".format(current_scene)) sorted_datapoints = sorted( dataset[previous_index:index], key=lambda dp: dp["shortest_path_length"] ) third = int(len(sorted_datapoints) / 3.0) for i, obj in enumerate(sorted_datapoints): if i < third: level = "easy" elif i < 2 * third: level = "medium" else: level = "hard" sorted_datapoints[i]["difficulty"] = level m = re.search("FloorPlan_([a-zA-Z\-]*)([0-9]+)_([0-9]+)", obj["scene"]) point_id = "{}_{}_{}_{}_{}".format( m.group(1), m.group(2), m.group(3), obj["object_type"], i ) sorted_datapoints[i]["id"] = point_id sorted_datapoints[i]["difficulty"] = level new_dataset = new_dataset + sorted_datapoints sum_t += len(sorted_datapoints) print("original len: {}, new len: {}".format(len(dataset), sum_t)) with open(output_path, "w") as fw: json.dump(new_dataset, fw, indent=4) @task def remove_dataset_spaces(ctx, dataset_dir): train = os.path.join(dataset_dir, "train.json") test = os.path.join(dataset_dir, "val.json") with open(train, "r") as f: train_data = json.load(f) with open(test, "r") as f: test_data = json.load(f) id_set = set() for o in train_data: o["id"] = o["id"].replace(" ", "") id_set.add(o["id"]) print(sorted(id_set)) id_set = set() for o in test_data: o["id"] = o["id"].replace(" ", "") id_set.add(o["id"]) print(sorted(id_set)) with open("train.json", "w") as fw: json.dump(train_data, fw, indent=4, sort_keys=True) with open("val.json", "w") as fw: json.dump(test_data, fw, indent=4, sort_keys=True) @task def shortest_path_to_point(ctx, scene, x0, y0, z0, x1, y1, z1, editor_mode=False): import ai2thor.util.metrics as metrics import ai2thor.controller controller = ai2thor.controller.Controller( rotateStepDegrees=30, visibilityDistance=1.0, gridSize=0.25, port=8200, host="127.0.0.1", local_build=local_build, start_unity=False if editor_mode else True, agentType="stochastic", continuousMode=True, continuous=False, snapToGrid=False, agentMode="locobot", scene=scene, width=300, height=300, continus=True, ) evt = metrics.get_shortest_path_to_point( controller, dict(x=x0, y=y0, z=z0), dict(x=x1, y=y1, z=z1) ) print(evt.metadata["lastActionSuccess"]) print(evt.metadata["errorMessage"]) @task def reachable_pos(ctx, scene, editor_mode=False, local_build=False): import ai2thor.util.metrics as metrics import ai2thor.controller gridSize = 0.25 controller = ai2thor.controller.Controller( rotateStepDegrees=30, visibilityDistance=1.0, gridSize=gridSize, port=8200, host="127.0.0.1", local_build=local_build, start_unity=False if editor_mode else True, agentType="stochastic", continuousMode=True, continuous=False, snapToGrid=False, agentMode="locobot", scene=scene, width=300, height=300, continus=True, ) print( "constoller.last_action Agent Pos: {}".format( controller.last_event.metadata["agent"]["position"] ) ) evt = controller.step(action="GetReachablePositions", gridSize=gridSize) print("After GetReachable AgentPos: {}".format(evt.metadata["agent"]["position"])) print(evt.metadata["lastActionSuccess"]) print(evt.metadata["errorMessage"]) reachable_pos = evt.metadata["actionReturn"] print(evt.metadata["actionReturn"]) evt = controller.step( dict( action="TeleportFull", x=3.0, y=reachable_pos[0]["y"], z=-1.5, rotation=dict(x=0, y=45.0, z=0), horizon=0.0, ) ) print("After teleport: {}".format(evt.metadata["agent"]["position"])) @task def get_physics_determinism( ctx, scene="FloorPlan1_physics", agent_mode="arm", n=100, samples=100 ): import ai2thor.controller import random num_trials = n width = 300 height = 300 fov = 100 def act(controller, actions, n): for i in range(n): action = random.choice(actions) controller.step(dict(action=action)) controller = ai2thor.controller.Controller( local_executable_path=None, scene=scene, gridSize=0.25, width=width, height=height, agentMode=agent_mode, fieldOfView=fov, agentControllerType="mid-level", server_class=ai2thor.fifo_server.FifoServer, visibilityScheme="Distance", ) from ai2thor.util.trials import trial_runner, ObjectPositionVarianceAverage move_actions = ["MoveAhead", "MoveBack", "MoveLeft", "MoveRight"] rotate_actions = ["RotateRight", "RotateLeft"] look_actions = ["LookUp", "LookDown"] all_actions = move_actions + rotate_actions + look_actions sample_number = samples action_tuples = [ ("move", move_actions, sample_number), ("rotate", rotate_actions, sample_number), ("look", look_actions, sample_number), ("all", all_actions, sample_number), ] for action_name, actions, n in action_tuples: for controller, metric in trial_runner( controller, num_trials, ObjectPositionVarianceAverage() ): act(controller, actions, n) print( " actions: '{}', object_position_variance_average: {} ".format( action_name, metric ) ) @task def generate_pypi_index(context): s3 = boto3.resource("s3") root_index = """
/ai2thor/