/* Probabilistic contect-free grammar. 0.2:S->aS 0.2:S->bS 0.3:S->a 0.3:S->b From Taisuke Sato and Keiichi Kubota. Viterbi training in PRISM. Theory and Practice of Logic Programming, doi:10.1017/S1471068413000677. */ :- use_module(library(pita)). :- if(current_predicate(use_rendering/1)). :- use_rendering(c3). :- endif. :- pita. :- begin_lpad. % pcfg(LT): LT is string of terminals accepted by the grammar % pcfg(L,LT,LT0) L is a tring of terminals and not terminals that derives % the list of terminals in LT-LT0 pcfg(L):- pcfg(['S'],[],_Der,L,[]). % L is accepted if it can be derived from the start symbol S and an empty % string of previous terminals pcfg([A|R],Der0,Der,L0,L2):- grammar_rule(A,Der0,RHS), pcfg(RHS,[rule(A,RHS)|Der0],Der1,L0,L1), pcfg(R,Der1,Der,L1,L2). % if there is a rule for A (i.e. it is a non-terminal), expand A using the rule % and continue with the rest of the list pcfg([A|R],Der0,Der,[A|L1],L2):- terminal(A), pcfg(R,Der0,Der,L1,L2). % if A is a terminal, move it to the output string pcfg([],Der,Der,L,L). % there are no more symbols to expand grammar_rule('S',Der,[a,'S']):0.2; grammar_rule('S',Der,[b,'S']):0.2; grammar_rule('S',Der,[a]):0.3; grammar_rule('S',Der,[b]):0.3. % encodes the three rules of the grammar terminal(a). terminal(b). :- end_lpad. /** ?- prob(pcfg([a,b,a,a]),Prob). % what is the probability that the string abaa belongs to the language? % expected result 0.0024 ?- prob(pcfg([a,b,a,a]),Prob),bar(Prob,C). % what is the probability that the string abaa belongs to the language? % expected result 0.0024 */