
SHRDLU: A Game Prototype Inspired by
Winograd’s Natural Language Understanding Work (Extended Version)

Santiago Ontañón
Drexel University

Philadelphia, Pennsylvania 19104
so367@drexel.edu

Abstract

This paper describes a game prototype called “SHRDLU”
that explores the concept of designing a game around the
ideas behind Winograd’s original SHRDLU system. We
briefly describe the main gameplay, as well as the natural lan-
guage and inference architecture used by game NPCs.

Introduction
This informal paper describes a game prototype that ex-
plores the concept of designing a game around the ideas
behind Winograd’s original SHRDLU system1. Specifically,
we present an early prototype of a game called “SHRDLU”,
an adventure game where the player controls a character in
a sci-fi setting world, and can talk to the game NPCs in plain
natural language. The name of the game comes from the
fact that NPCs behave in a similar manner to Winograd’s
SHRDLU (Winograd 1972) (in the rest of this paper, we
will use SHRDLU to refer to our game and “Winograd’s
SHRDLU” to refer to the original AI system). These NPCs
understand and generate natural language, and have reason-
ing capabilities beyond what is usual in standard NPCs in
this type of games, thanks to a full first-order logic resolu-
tion engine.

As the game was inspired by Winograd’s SHRDLU, all
the current AI subsystems use symbolic AI approaches.
However, the game is designed in a modular way, so that,
for example, the natural language processing modules could,
in principle, be replaced by a more modern approach in the
future.

The remainder of this paper briefly describes SHRDLU’s
gameplay and the main AI architecture that brings
SHRDLU’s NPCs to life.

SHRDLU
SHRDLU2 is a sci-fi adventure game with a gameplay
that borrows ideas from the early Sierra graphic adventure

1Notice that this paper does not pretend to be a formal published
scientific paper, but more of a longer description of the AI design
behind SHRDLU in case someone is interested in building upon it,
or borrow any ideas. This document has not been peer reviewed,
and thus, is likely to contain errors.

2SHRDLU can be found at: https://github.com/
santiontanon/SHRDLU

Figure 1: A screenshot of SHRDLU showing the main char-
acter talking with an NPC robot named Qwerty.

games of the late 80s such as “Space Quest” (Crowe and
Murphy 1986). The player finds itself in a space station in an
unknown planet without remembering how did she get there.
By interacting with three robot characters (Etaoin, Qwerty
and Shrdlu), the player will unravel the mystery about her
identity and about Aurora Station3.

As shown in Figure 1 the key difference between
SHRDLU and Sierra adventure games is that, while in Sierra
adventures the player had to type commands to make the
main character perform actions (like in earlier Zork-style
text-based adventures), in SHRDLU typing is used to talk to
other NPCs in a similar way as in the Façade game (Mateas
and Stern 2003), or MKULTRA (Horswill 2014).

Different from Façade, where the focus was on balancing
user and author intent to maintain an emotionally intense,
dramatic action, SHRDLU employs deep natural language
parsing and generation. A more related game is Ian Hor-

3A video demonstration of an early prototype of SHRDLU
(version 1.1) can be found at https://youtu.be/
8FNBTs2yv4s, and a demo of a later demo (version 2.5)
can be found at https://youtu.be/dPKfS9DsLmM At the
moment of writing this document, the latest version is version 3.5.



swill’s MKULTRA, also based around natural language pro-
cessing inspired by Winograd’s SHRDLU, but with different
game mechanics (such as belief injection, to solve puzzles
by making NPCs perform the actions the players wants).
Other experimental games that involve natural language in-
clude A Tough Sell, SimProphet and SimHamlet (Lessard
2016), all of which use a game mechanics based of talk-
ing to a character to achieve goals such as convincing the
other character to do something, or extracting information
from her. These games are built using ChatScript (Wilcox
2011), a framework for creating chatbots, and they explore
the gameplay space of conversational puzzles.

Moreover, several commercial computer games have used
NLP techniques. For example Event[0] is a science fiction
exploration video game where one of the core game me-
chanics is talking to a chatbot. A key difference between
Event[0] and SHRDLU is that Event[0] employs chatbot-
style techniques (basically keyword matching) in order to
generate responses. SHRDLU on the other hand attempts to
translate the sentence the player typed into an exact logical
representation of it. In that way, you can ask the NPCs in
SHRDLU to do things, or to give you information by for-
mulating queries in natural language. On the flip side, while
Event[0]’s techniques allows the game to let the players vir-
tually type anything they want, giving the appearance of un-
derstanding, SHRDLU’s attempt to understand every word
of what the player says, makes the types of sentences that
can be understood necessarily more limited. Perhaps a more
related form of interaction is found on the game Bot Colony,
where the player interacts with the game by issuing com-
mands in natural language to robots. The main difference
with SHRDLU, is that in SHRDLU you control a charac-
ter within the game, and use natural language only to talk
to other NPCs, but natural language is not the sole mode of
interaction.

All of the text produced by the game NPCs is automat-
ically generated from their internal logical representations
(with an exception of a small easter egg, which is hard-
coded), and thus, they do have a logical representation of
what they are saying which they can reason about. More-
over, while scaling up NLP algorithms to handle arbitrary
conversations is beyond the state of the art, the hypothesis
behind the game’s design is that it will provide an environ-
ment with is much richer than the original blocks world of
Winograd’s SHRDLU, but still manageable for current NLP
techniques. Moreover, the NPCs have been kept to be robots
purposefully to avoid the need for simulating emotions, and
to provide a credible scenario where natural language parse
errors are to be unexpected.

The AI Behind the NPCs in SHRDLU
In addition to the player character, SHRDLU features three
NPCs. Each NPC is controlled by a separate Winograd’s
SHRDLU-style AI system. Two of them are robots (Qwerty
and SHrdlu) and one of them is a disembodied AI (Etaoin).
Both types of NPCs use the same AI system, with the only
difference being the set of actions that each is able to per-
form (robots can move around, pick up and drop items, etc.,
while Etaoin has control over some of the environmental

Attention &
Perception

Short Term
Memory

Natural 
Language
Context

Inference
Engine

Natural 
Language
Parsing

Natural 
Language
Generation

Behavior 
Rules

Action
Execution

Game
World

Long Term
Memory

Memory
Subsystem

Natural language
Subsystem

Current/Future
Intentions

Pathfinding

Figure 2: Main components of the AI architecture for the
NPCs in SHRDLU.

systems such as lights, doors, etc.). Figure 2 shows the main
modules of this AI system. The next subsections describe
each of the modules in turn.

Memory Subsystem
SHRDLU uses a typed first-order logic knowledge represen-
tation to represent facts (e.g. “a table is a piece of furniture”)
and inference rules (e.g., “if an object is in a location X,
and X is in Y, the object is also in Y”). This representation
was designed specifically for the game and extends stan-
dard first-order logic by assuming the existence of an ontol-
ogy O where each possible functor or constant is organized
in a multiple-inheritance hierarchy. Every single object in
the game (furniture, items, characters, locations, etc.), action
that characters can perform, and properties of objects (col-
ors, size, etc.) and relations (“on top of”, “before”, “owns”,
etc.) is represented in the ontology, so that the game state
can be closely represented in memory.

Every NPC in the game has a selective attention procedure
to prevent them from observing the whole game state (which
makes it both more realistic, and also keeps the knowledge
base manageable). All clauses representing perception are
stored in a short term memory buffer, where they stay for
only a fixed amount of time before they are forgotten. Cer-
tain perceptions (such as verbal utterances) are stored in
long-term memory, which also contains background knowl-
edge, and all the facts learned from dialog with other NPCs
or with the player (the AI does not distinguish when they are
talking to the player or to another NPC).

Logic Representation As mentioned before, SHRDLU
uses a typed first-order logic knowledge representation.
Thus, every variable or constant is associated with a type,
or sort, s. The ontology of types is represented as a partially
ordered set O = 〈S,�〉, where S is a finite set of sorts, and
� is a more general than relation. The special sort ⊥ ∈ S
(or any) is the most general sort, thus ∀s∈S⊥ � s. Since
O is defined as a partially ordered set, it has a semi-lattice
structure, and thus supports multiple inheritance.

Let V be a potentially infinite set of variables, and C a
potentially infinite set of constants (such as strings or num-
bers). A term t is of the form t = f(s1 : p1, ..., sn : pn),
where f ∈ S is the functor, and p1, ..., pn are the arguments.
Each argument pi has a sort si ∈ S, and pi is either a vari-
able in V , a constant in C or another term.



A sentence s is an expression that can take any of the
following forms:

• A term t.

• A negated sentence ¬s
• A conjunction: s1 ∧ s2, where s1 and s2 are sentences

• A disjunction: s1 ∨ s2, where s1 and s2 are sentences

We do not use implication symbols, since those can be
made out of disjunctions and negations. Additionally, all
sentences are directly represented in CNF (conjunctive nor-
mal form), and thus no quantifiers are used (the conjunction
connective was left in the language for convenience, and
is converted to disjunctions before using it for inference).
For example, the following sentence, part of the background
knowledge in the NPCs of SHRDLU represents that an ob-
ject can only be held by one character at the same time:
¬verb.have(#id : x1,#id : x3) ∨ ¬verb.have(#id :

x2, x3)∨ = (x1, x2)
Where #id is a sort specifying that the parameter repre-

sents the identifier of an object in the world verb.have is the
sort used to represent the verb to have, = is the sort used to
represent equality, and x1, x2, and x3 are variables.

For convenience, ¬, ∨ and ∧ are also sorts in the ontol-
ogy, so that sentences can actually be represented as terms if
necessary.

The ontology of SHRDLU contains sorts for all of the ob-
ject types, properties, verbs and relations required to repre-
sent the game world. Additionally, some sorts, such as #id,
are used to denote game specific things, such as object iden-
tifiers.

Inference In order to perform inference, NPCs in
SHRDLU are equipped with a standard resolution en-
gine (Robinson 1965), which is in principle sound and com-
plete for the typed first-order logic used in the game (al-
though in practice it is not, since we added a collection of
pruning rules to make inference efficient, as described be-
low). For example, if the player asks “where is Qwerty?”
to some NPC, a resolution process is started trying to see if
there is any value of X for which the clause space.at(#id :
qwerty,#id : X) is entailed by the knowledge base.

The only difference with respect to a standard first-order-
logic resolution engine is the ability to handle sorts. Thus,
the resolution rule used is the following:

t ∨ t11 ∨ ... ∨ t1n ∧ ¬t′ ∨ t21 ∨ ... ∨ t2m ∧ t φ ≡′ t′

(t11 ∨ ... ∨ t1n ∨ t12 ∨ ... ∨ t2n) φ

Where φ is a variable substitution through which the ar-
guments t are made equivalent to the arguments of t′, and
the functor of t is identical to the functor of t′. While the
sort partial order is considered for argument unification, it is
ignored for functor unification, and functors must match ex-
actly. This is done in order to ensure resolution is still sound.
Thus, the more general than relations in the ontology are
converted to additional rules to be used during inference.

is either more general or more specific than that of t′ (no-
tice that since the ontology is a partial order, it is possible
that none of these two conditions are satisfied, and in such

case, we say that the functors do not match). The notation
≡′ is used to represent this notion of equivalence. Where a
variable substitution is a mapping of variables to either other
variables, constants or terms: φ = {x1 → p1, ..., xn → pn},
where pi is another variable, a constant or a term. Finally,
terms that have the sort = as the functor are handled in a
special way, using a simplified version of the common de-
modulation strategy that is common in resolution engines
(in this simplified version, equality terms are only handled
once both their arguments have been resolved to constants).

Moreover, for practical reasons, the resolution engine
used in the game uses two additional mechanisms to make
inferences finish in a reasonable amount of time:

• Heuristic search pruning: Specifically, the game does not
allow resolution to produce sentences with more than 6
terms, and also does not allow the production of sentences
where the variable substitution φ only maps variables to
other variables, nor the production of sentences that are
larger than either of the two initial sentences. Addition-
ally, inference processes that go beyond one million reso-
lution application steps are interrupted. This ensures that
most of the inferences that result from typical interactions
can be solved, and that they finish in less than a few sec-
onds, and usually instantaneously. The downside is that
these heuristics make the inference process incomplete
(there might be sentences that can be proven false or true,
but that cannot be proven due to these pruning rules).

• Spatial predicates handling: whenever a sentence that
contains spatial predicates representing concepts such as
north-of, inside-of, in-front-of, behind, if the arguments
of these terms are already resolved to constants, and if the
time context at which we are applying resolution is the
present time, then a hardcoded routine directly checks if
the spatial relations are satisfied in the game environment
and updates the sentences directly. This accelerates spatial
inferences significantly in the cases where the hardcoded
routine can be used. However, if this routine cannot de-
termine the truth value of the term (because the object be-
ing referred to are outside of those modeled by the game
engine, or because we are talking about the past or the
future), then their truth evaluation is left to the standard
resolution engine. Moreover, since spatial relation predi-
cates are not included in the knowledge base (except for
the space-at predicate), usually these queries are resolved
unsatisfactorily. This is, however, another trade-off that
had to be taken in order to keep the knowledge base size
under control. Since the number of terms required to rep-
resent spatial relations grows at a quadratic rate given the
number of objects in the game world.

• Ontology simplification: more general than relations in
the ontology should be represented as rules of the style
¬woman(x1)∨ human(x1. However, that results in lots
of rules that produce a very large number of spurious res-
olutions. In order to simplify this, we ignored these rules,
and added a special case to the resolution rule instead,
when one of the sentences used for resolution consists of
only one term t. If that term t where to unify with any
of the terms of opposite sign in the other sentence if we



were to generalize the term t, then resolution is still ap-
plied. This mimics the effect of the ontology rules, but
only for the particular case of sentences of length 1 (no-
tice that if sentences are of length larger than 1, using this
idea would result in un-sound inferences). This is enough
for most the inferences processes that were required dur-
ing gameplay and greatly simplified inference.

Attention and Perception At every game step, the NPCs
perceive the state of the objects in the game. This percep-
tion is represented as a collection of terms, that are stored in
short term memory. Terms in short term memory stay there
for a predefined short amount of time (currently set to 2 sec-
onds), and then are forgotten. Moreover, given the very large
number of objects present in the game (characters, rooms,
furniture, items, etc.), if the current state of all those ob-
jects is stored in memory at the same time, inference pro-
cesses become unmanageable., even with the pruning rules
described above. Thus, an attention procedure was imple-
mented so that NPCs only perceive a subset of the objects in
the game at a given time.

For NPCs that have a physical body (robots), attention
is implemented in a natural way: they can only see what is
within a certain radius of them. For the disembodied Etaoin
character, the way this is implemented is having a set of fo-
cus objects that Etaoin cares about (the player, the robots
and a special item called the communicator, which is a wrist
band that allows the player to talk to Etaoin even when out-
side of the building where Etaoin resides. Etaoin’s atten-
tion is implemented by iterating over the set of focus items,
and only perceiving what is within a certain radius of those
objects. Moreover, the only object that can be perceived
when outside of Etaoin’s building is the communicator. If
the player leaves that communicator inside, Etaoin will not
be able to focus on the player when outside.

All the information concerning the game state is repre-
sented using the following types of terms:
• Object existence: when an NPC perceives an object, a

term of the form so(#id : co) is added to short-term
memory, where so is the sort of the observed object (e.g.,
a human, a table, etc.), and co is a constant with a unique
identifier for that object.

• Properties: objects have properties, for example an item
might be broken. Properties are represented by sorts, and
each perceived property sp of an object with identifier co
is represented by a term sp(#id : co).

• Properties with value: some properties have value, for ex-
ample, a chair has a color that can be grey, blue, etc. Prop-
erties with value are represented as: sp(#id : co, sv : pv),
where sv is the sort of the value (e.g., number) and pv is
the value, which is often a constant.

• Relations: relations, such being in a room involve two ob-
jects. For example the term space.at(#id : 45,#id :
834) states that object 45 is in object 834. For example, if
45 is a robot, and 834 a room, that means the robot is in
the room.

• Relations with value: finally, some relations have val-
ues. For example, the distance between two objects is

a relation with a value, and distance(#id : 45,#id :
86,meter : 56) represents that objects 45 and 86 are 56
meters apart.

Handling Time: Although inferences concerning time
are not fully handled by the inference engine of SHRDLU,
there are a few mechanisms included in the NPCs AI to han-
dle time inferences to some extend. Specifically, there is a
special sort in the ontology called #stateSort. Any term
that has a functor that inherits from #stateSort is consid-
ered to be something that can change over time (for exam-
ple, space.at inherits from #stateSort). Thus, if one such
term is observed that has the same first argument as an al-
ready existing term in memory, the previous term in mem-
ory is overwritten, and the previous one (together with the
time tag of when it was added) is moved to a historic mem-
ory, used to retrieve facts about the past, if needed. In this
way, the memory of the NPCs only contains the most up-
to-date state of the game. Inference processes can refer to
the current time instant, or to a specific time instant in the
past. When an inference process refers to a specific time in-
stant, the state of the long term memory is restored to that
instant by pulling facts from the historic memory, and then
regular inference is performed. This cannot handle inference
processes involving interactions between different time in-
stants, but can handle basic queries such as “was I in the
infirmary yesterday?”. Moreover, another limitation of this
system is that it can only handle specific instants of time,
and not intervals. For example, when answering “was I in
the infirmary yesterday?” NPCs in SHRDLU would restore
their long term memories to the point in time when “yes-
terday” started, and answer based on that. So, if I happened
to have been in the infirmary at some other time yesterday,
the answer will not be correct. Time inferences will be im-
proved in future versions, but the current solution allows for
efficient, even if limited, inferences.

Short and Long Term Memory NPCs have two memory
storages: the short term memory (STM) and the long term
memory (LTM). The short term memory consists of a set of
terms and is used only to store everything that is perceived
by the attention and perception module (terms in STM re-
main there for 2 seconds unless they are perceived again).

The long term memory consists of a set of sentences, and
content stored there is kept forever. Every term that is per-
ceived in the game is copied to short term memory, and from
those, a subset is further moved to long term memory, as de-
termined by what we call the STM2LTM filter. Specifically,
the current version of the STM2LTM filter is a simple rule
that just copied to long term memory all those terms repre-
senting sentences said by either the player or an NPC (the
AI does not know that some of the other characters in the
game are NPCs and one is controlled by the player; they are
all perceived in the same way).

The long term memory is seeded when NPCs are created
with a collection of background knowledge rules, such as
objects cannot be in two locations at the same time, or the
fact that if an object A is in B, and B is in C, then A must
be also in C, etc. Additionally, terms representing knowl-
edge that the NPCs must have (such as knowledge about



the planet where the story occurs, etc.) is also loaded in at
startup.

Behavior Rules
Each NPC has a set of current intentions, which are actions
it is currently trying to execute (not all of these actions need
to be physical actions, and could be, for example, launching
inference processes), and a queue of future intentions, which
will move, one by one, to the set of current intentions as soon
soon as the current intentions set is empty.

An important type of the behavior of NPCs is communi-
cation with other NPCs/players. SHRDLU uses a formalism
based on speech act theory (Searle 1969) to represent the
different utterances that players or NPCs can say in natu-
ral language. NPCs in the current version of SHRDLU can
recognize and generate 36 different speech acts that include
things like: greet, farewell, inform, acknowledge, etc. (Table
1 for a complete list).

A collection of “behavior rules” dictate how the differ-
ent internal memory structures of an NPC are updated upon
receiving each different speech act, and if any action needs
to be pushed to the set of current intentions or future inten-
tions as a response. Some speech acts request the NPCs to
perform actions some trigger inference processes to produce
answers, some just add facts or rules to memory, and oth-
ers just update the conversation state. Some of these actions
call upon the different reasoning mechanisms the NPCs have
(As shown in Figure 2), such as the resolution engine or the
pathfinding module. For implementation reasons, however,
the pathfinding module used by the NPC AIs is not the one
actually used for moving around the map, since the game is
implemented on top of a previous game engine we created
for a different game which already had a pathfinding algo-
rithm incorporated. Thus the NPCs’ AI pathfinding module
is only used for reasoning purposes (e.g., if the player asks
how to get from one point to another), and uses the repre-
sentation of the game map in long term memory, rather than
that used by the game engine.

Natural Language Subsystem
This is the most complex component of SHRDLU’s NPC AI
architecture and is organized in three main modules: natu-
ral language context, natural language parsing, and natural
language generation. All these three modules rely on repre-
senting the different utterances the player or the NPCs pro-
duce in a logical representation based on speech acts (Searle
1969). Thus, we will start by describing the speech act sys-
tem of SHRDLU.

Speech Acts in SHRDLU. Every utterance in natural lan-
guage perceived from another characters (player or NPCs)
in SHRDLU is (attempted to be) translated to a speech act.
Speech acts thus represent the different things that charac-
ters can say. There are many different types of speech acts
such as: greeting, asking a question, stating an answer, etc.
The literature of natural language processing has used sev-
eral different names for these speech acts, such as dialogue
acts or dialogue moves, among others.

Speech Act Example
callattention Shrdlu!
greet Hello Shrdlu!
farewell See you later!
thankyou Thanks!
youarewelcome You are welcome!
nicetomeetyou Pleasure to meet you!
nicetomeetyoutoo Nice to meet you too!
inform This chair is small
inform.parseerror I do not understand fsfudgs
inform.answer Yes
acknowledge.ok Ok!
acknowledge.contradict That cannot be true
acknowledge.unsure I am not sure!
acknowledge.invalidanswer That does not answer my ques-

tion
acknowledge.denyrequest I cannot do that
ackresponseresponse Yeah, me too
sentiment Good!
request.action Please, open the door
request.stopaction Stop following me!
request.repeataction One more time
question.howareyou How are you doing?
question.predicate Do you have the garage key?
question.whereis Where is Shrdlu?
question.whereto Where should I go to find a key??
question.query What is your name?
question.whois.name Who is Shrdlu?
question.whois.noname Who is the red robot?
question.whatis.name What is Aurora Station?
question.whatis.noname What is this thing?
question.action Can you open the door?
question.when What time is it?
question.howmany How many chairs are in the infir-

mary?
question.why Why did Shrdlu leave?
question.how How do I fix the spacesuit?
question.distance How far is Earth from Aurora?
moreresults What else?
changemind I changed my mind

Table 1: Speech acts recognized by the current prototype.

Table 1 lists all the speech acts currently recognized by
the natural language parser used in SHRDLU. Each speech
act, moreover, has parameters. For example:
• greet(C : [any ]): this is the prototype of the greet speech

act, which has a single parameter (C), representing who
are we greeting. For instance, the sentence “Hello!” is just
represented as greet(C : [any ]), but the sentence “Hello
Shrdlu!” is represented as greet(‘shrdlu′ : [#id]).

• question.query(C : [any ], X : [any ], Q : [any ]):
this is the prototype for questions of type “query”,
which requests an answer to a question that needs to
find the value of a specific variable X which makes a
logical formula Q satisfiable according to the knowl-
edge base. For example, the question “what is your
name?” (if asked to, say, Etaoin) would be represented as
question.query(′etaoin′[#id], X,name(‘etaoin ′[#id],
X)).



Given the open-ended nature of the conversations a player
might expect to have with the NPCs in SHRDLU, a large
number of speech acts is required, as reflected in Ta-
ble 1, when compared to the set of speech acts or dialogue
moves used by other systems. For example, the GoDiS sys-
tem (Larsson et al. 2000) employed only 8 types of di-
alogue moves: ask, answer, repeat, request repeat, greet,
goodbye, thank and quit. Notice, for example that the repeat,
request repeat and quit types are not present in SHRDLU,
since those are more typical of task-oriented dialogue sys-
tems that serve the purpose of helping a user accomplish-
ing a task such as booking a restaurant. Moreover, given
the complexity of the physical world in SHRDLU, there are
many different types of question speech acts. These are sep-
arated, since the behavior that is expected to produce an an-
swer to these is very different. For example, predicate ques-
tions require testing if a logical statement is true or false,
query questions require finding the value of a variable, when
questions require finding the time at which a given event was
added to the knowledge base, etc.

Moreover, notice that, in principle, it might seem that the
query question should be the most general type and most
others are just particular cases. However, we decided to
add different types of questions, such as question.whereis,
or question.action, since they vary significantly from an-
swering a query. For example, if question.whereis was im-
plemented as a question.query, the logical formula would
have to capture common-sense things such that when we
ask where is something, we want to know the most specific
location (i.e., answering that something is “in the universe”
would be a valid answer, but is not what the player is expect-
ing). These can be encoded in the query, but would compli-
cate inference. Thus, the different types of question encode
all of these differences to strike a balance between generality
and query answer efficiency.

Other types of questions would be hard to represent as
queries. For example, upon a question.how type of question,
the player would expect to receive a plan on how to achieve
something.

The main task of the natural language parsing engine is
thus, not to produce a parse tree as many other natural lan-
guage parsers, but to translate a natural language sentence
into a logical representation of a speech act. This means,
that for example, a phrase “that red chair” will be translated
to just the identifier of the corresponding real world object,
and the fact that the natural language text used the adjective
“red” to distinguish the chair from the other chairs will not
be captured in the performative.

Natural Language Context Natural Language Context:
this is a record of the current state of a conversation. NPCs
hold one conversation context per character they talk to. An
assumption in the game is that conversations only happen
between 2 characters at a time, conversations with three or
more simultaneous characters are not supported. In the cur-
rent version of the game, the context includes:
• Speaker: the ID of the character we are talking to.
• Conversation history: a time-tagged list of speech acts ex-

changed between the two characters.

• Mention history: a time-tagged list of entities (objects,
locations, characters, etc.) mentioned in the conversation
history, sorted by the time at which they were mentioned.

• Perception: this is updated upon receiving a speech act
from another agent, and contains the list of entities in the
perception buffer of the NPC at the time of receiving the
speech act. This list is sorted by distance to the NPC.

• Question/Request stacks: each time the NPC asks a ques-
tion or issues a request, it expects an answer. Ques-
tions/requests can be nested, and those that are still await-
ing an answer are placed in a stack until answered (this
stack is also used to repeat the question if enough time
has gone by without an answer).

• Conversation state: this contains a list of flags to indicate
whether we are in an active conversation with the other
character, or if we had properly said good bye; whether
we are expecting the other character to say thank you or
you are welcome, etc.

The Mention history and Perception lists are used to dis-
ambiguate pronouns or other referring expressions during
language parsing. For example, if the player says “give me
the key”, but there are two keys. If one of the keys appears
earlier in the mention history list or is significantly closer
to the NPC according to the Perception list, then those facts
are used to disambiguate which key is being talked about.
This is also used to disambiguate “this” vs “that”, and other
pronouns and articles.

The conversation history and the conversation state are
used for managing the dialogue and generating appropri-
ate expected responses such as “thank you”. This is also
used to determine if a character is speaking to us or not. In
SHRDLU, the only thing that NPCs perceive with respect to
communication is that another character said something in
natural language (even when two NPCs talk to each other,
their only means of communication is via natural language
using their NLP and NLG modules). After parsing this nat-
ural language, they need to determine if the sentence was
targeted to them. If the sentence contains an explicit men-
tion to them, then it’s easy, otherwise, the conversation state
is used to determine that.

Natural Language Parsing The goal of this module is to
translate a natural language sentence into one or a collection
of speech acts. The module uses a grammar defined by a col-
lection of parsing rules for each speech act (and collections
of generic rules for noun phrases, verb phrases, etc. that are
used by the other rules). The key differences between this
custom parser with respect to standard NLP parsers such as
the Stanford Parser (Klein and Manning 2003) are: 1) the
output of parsing is not a parse tree of the sentence, but a
logical representation of the speech act (e.g., “the red key”
will get translated to the identifier “key1”, and the fact that
the natural language sentence used the adjective “red” is not
captured in the output logical representation); 2) the parser
employed is a “situated parser”, as parsing rules include
calls to special de-reference functions, which search for ob-
jects in the natural language context that match with refer-
ring expressions such as “the red key”, or “this door”. There



are three types of de-reference functions (context derefer-
ence, hypothetical dereference and query dereference) that
are used to translate phrases into logical descriptions. Thus,
parsing and translation to logic is done in a single step as
part of the parsing rules.

For example, two of the rules in the grammar are shown
in Figure 3. We can see that each rule is defined by a pattern
(to be matched by the natural language text) and a logical
term, which will be the final output of parsing. Rules also
have a numerical priority to disambiguate when there are
multiple possible parses. For example, the first rule shows a
pattern where first a nounPhrase will try to be found (this
is a recursive call to see if there is any rules which pro-
duce a term with functor nounPhrase that match the cur-
rent sentence. After that a conjugation of the verb to be
is expected that matches in number (N ), and person (P )
with the noun phrase. After that either an adjective or a
a phrase with an indefinite article followed by a noun are
expected. If all of this matches, then C (which is a log-
ical representation of the content of the noun phrase) is
given to a special dereference function called #derefFrom-
Context which tries to find any entity in the current conver-
sation context, which matches the noun phrase. If this en-
tity is found, then the corresponding logical term is returned
as the output of parsing. For example, this rule will parse
a sentence like “the chair is small”, and return something
like perf .inform(LISTENER, small(′45′[#id])) (assum-
ing the listener is the player, and the chair that matched
was the one with id 45). Notice that the variable LISTENER
was not resolved, and that’s because the sentence does not
specify who are we talking to. If the sentence was, instead
“Shrdlu, the chair is small”, then a different rule from the
grammar would have matched with this sentence and re-
placed LISTENER by the ID corresponding to Shrdlu. Also,
there is a special variable SPEAKER, which always resolves
to the character that produced the sentence.

The second rule in in Figure 3 uses a different deref-
erence function (derefUniversal), which, rather than find-
ing specific entities in the natural language context,
it checks whether the noun phrase can be represented
by a universal expression, for example, the phrase “all
chairs” will be represented by chair(X). Thus, this
rule will turn a sentence like “all chairs are small” to
perf .inform(LISTENER,¬chair(X)∨small(X)), which
is the logical equivalent.

As of version 3.5, the grammar contains 683 rules. For ef-
ficiency during parsing, these rules are compiled to a finite
state machine (FSM) in order to parse a sentence in a sin-
gle pass, rather than having to try to apply rules one by one.
Transitions in this FSM correspond to the different tokens in
the rules, such as noun(X2, N2)), and terminal states con-
tain the logical terms to be produced as output. The resulting
FSM currently contains 12057 states. Several other FSMs
are also compiled with specific rule subsets used as recursive
calls in the main FSM (noun phrases, noun phrases without
determiners, noun phrases without determiners nor proper
nouns, proper nouns, action requests, and inform speech
acts) with 32, 14, 17, 4, 3016 and 1768 states respectively
(with the last two being a subset of the original large one).

Finally, before applying the parsing rules, the raw sen-
tence is first processed through a tokenizer that identifies the
part of speech of every word, and identifies if there are any
multi-word tokens (e.g., “in front of” is a three word prepo-
sition, which should be considered as a single token).

Natural Language Generation This module translates
speech acts represented in logical form to natural language.
Although generation could probably be handled by reversing
the parsing rules, text generation is currently performed by
a collection of specialized routines. One such routine exists
for each possible speech act.

The complete flow of events from the time an NPC per-
ceives a sentence in natural language from the player or from
another NPC up to the point when a response is produced (if
any) is illustrated in Figure 4. As can be seen, the process
is initiated when an NPC perceives a “talk” action by some
other character in the game. At this point, the conversation
context for the character that performed the “talk” action is
updated with the latest information from short term mem-
ory and perception, and then natural language parsing starts.
After tokenization, a dictionary-based multi-token detection
routine identifies tokens that are made up of more than one
word, and after that the sentence is annotated with part of
speech tags. All possible part of speech tags for each to-
ken are annotated (to allow for maximum flexibility when
applying the parsing rules). Also, if some sentence can be
parsed in different ways depending on whether a sequence
of tokens is considered a multi-word token or a sequence of
individual word tokens, then all of those alternative taggings
are also considered. The results is a list of possible part of
speech taggings for the sentence (represented as a tree or al-
ternatives). Once that is complete, the result is ran through
the parsing rules described above, which make use of the
different dereferencing functions, resulting in a parsed per-
formative (or in a parsing error).

Once the NPC has the sentence parsed, it needs to identify
if the sentence is directed to itself, and if it is, a collection
of behavior rules dispatch the performative to the appropri-
ate action handler. This handler could make use of any of
the different reasoning modules, such as pathfinding, or in-
ference. Once the action handler is done, its output is a col-
lection of intentions that the NPC will try to execute as a
response. These intentions could include performing any ac-
tion on the physical world, or produce a response in natural
language.

What Works and What Does not Work
After initial examination of what players do when playing
SHRDLU, some conclusions can be drawn. Although most
players responded positively to the game and to the form of
interaction that the natural language capabilities of the game
allow, there are still many aspects of the AI and game design
that did not work as expected:
• Mis-interpretation of the interaction paradigm: several

users interacted with the system as if it was an interac-
tive fiction-style game, trying to issue commands such as
“open door”. Thus, the game design will need to be re-
vised to emphasize that all text entered by the player re-



Pattern: nounPhrase(X,N,P,C) verb(′verb.be′[symbol ], N, P, T )
(adjective(X2) | indefiniteArticle(ART, [singular]) noun(X2, N))
#derefFromContext(C,SUBJECT )

Logical Term: perf .inform(LISTENER, X2(SUBJECT ))

Example Sentence: “I am a human”
Parsed Sentence: perf .inform(′etaoin′[#id], human(X))

Pattern: nounPhrase(X,N,P,C) verb(′verb.be ′[symbol ], N, P, T )
(adjective(X2) | indefiniteArticle(A,N2 : [singular ]) noun(X2, N2))
#derefUniversal(C, V,LEFTSIDE )

Logical Term: perf .inform(LISTENER,¬LEFTSIDE ∨X2(V : [#id])))

Example Sentence: “All humans are mortal”
Parsed Sentence: perf .inform(‘etaoin′[#id],¬mortal(X : [#id]) ∨ human(X)))

Figure 3: Example rules from the natural language parsing grammar. In the examples, we assume the player (with identifier
“player” is talking to an AI with identifier “etaoin”).

sults on the main player character “saying these words out
loud”, and that this text will not translate into actions to
be performed by the player. Trying to present this clearer
is something that will have to be improved in future ver-
sions.

• Limits of the natural language parser: the current version
of the parser has a rather limited vocabulary and grammar.
As mentioned above, there are only 575 parsing rules in
the current grammar (and the part of speech database only
contains 3282 entries at this point). This resulted in many
sentences not properly parsed, creating frustration. This
was specially true for players who played the earlier ver-
sions of the game, as later versions have started getting a
bit better. However, the game still expects somehow gram-
matically correct sentences, and players often type non-
grammatical sentences since those are common in colo-
quial language. Other players thought the game was us-
ing a classic “keyword” based NLP and attempted non-
grammatical sentences such as “where key”, which were
not recognized either. The grammar has been expanded
to recognize many of these (for example, most parsing
rules do not expect matching number between verbs, arti-
cles and nouns any more). The latest versions of the game
achieved a much higher success rate in parsing the sen-
tences asked by the players, but more than half the sen-
tences entered by players are still not understood. More-
over, players usually adapted, by trying to ask the same
question in different ways until getting a proper answer.
As the grammar expands with every new version of the
game, it is very interesting to me to see whether it is pos-
sible to cover a significant part of the space of possible
sentences players will type within this game setting, or if
the space of possible sentences is so vast, that this is an
unachievable goal using the type of symbolic parser cur-
rently used.

• Reasoning limitations: the choice of representation for the
game world was not sufficient for some of the queries that

players might want to ask. In particular, time is not fully
supported by the inference engine, and many time related
queries do not result in satisfactory answers.

• Integration of parsing and inference: although the game
allows for inference processes to be launched to finish
parsing a sentence, the resolution engine and the natural
language parser are not fully integrated. For example, if an
object x has a property a, and there is a rule in the knowl-
edge base stating that a implies b, if the player refers to
x using property b, not all parsing rules will be able to
resolve x. This is because some de-reference functions
would resolve b into a logical pattern, that will success-
fully match to x via inference, but some others (in order
to prevent inference, which is slow, to be triggered every
time), try to resolve the object directly from the knowl-
edge directly present in the knowledge base (without do-
ing inference). These second type of de-reference func-
tions will not be able to identify x correctly in the exam-
ple above. Ways to better integrate inference and parsing
would be an interesting addition to future versions of the
game. For example, incorporating fast, limited depth, in-
ferences in all de-reference functions.

Conclusions and Future Work
In this document, we have presented SHRDLU, a game pro-
totype exploring the type of gameplay that can be achieved
by using Winograd’s SHRDLU-style NPC AI. The current
version of the prototype includes a whole story line that can
be played beginning to end, and made out of three distinct
“acts”. Although no systematic nor thorough evaluation has
been conducted at this point, initial evaluation with play-
ers close to us indicates that in later versions of the game,
players are able to communicate with the NPC to get them
to do what they need, and can get the answers necessary to
progress in the story significantly better than in the earlier
versions. We have also seen that the constrained story world
of the game is, while much broader than the simple blocks
world of Winograd’s SHRDLU, still constrained enough for



NLParser:

Player enters 
text

AI perceives the 
"talk" action

generate/update 
"conversation context"

tokenization

multi-token 
detection

POS tagging

Grammar 
matching

Context
de-referencing

Performative

behavior rules

Inference
(resolution 

engine)

Dictionary

POS 
database

Grammar

Context

POS tagging:
ALL possible taggings are 
generated, and 
represented as a tree.

Long and 
Short -Term 

Memory

Natural 
language
generator

OntologyBehavior Rules:
A set of hardcoded rules 
determine how to react to 
each performative. For 
example, a "greet" just 
triggers a response. But a 
"question" triggers a 
logical inference process.

Are they 
talking to me?

Hypothetical
de-referencing

Query
de-referencing

Intentions

Action HandlerAction HandlerAction Handler

Pathfinder

Physical 
action 

execution

Time Filter

AI produces 
text

Perception

Conversation Context:
This structure stores all 
the performatives 
exchanged between the 
NPC and the other agent 
(player or NPC), lists of all 
the entities mentioned in 
the conversation, sorted 
by physical distance and 
time in which they were 
mentioned, and other 
conversation state.

Natural Language 
Parsing:
The parser does not 
return a parse tree of the 
text. Instead, the output is 
a logical performative 
representing the text. So, 
more than a parser is a 
"text to logic" translator.

Time Filter:
The Time filter 
reconstructs the state of 
the long-term memory at 
a given point in time, if 
required for inference.

De-referencing:
The "de-referencing" 
functions convert 
mentions to entities in the 
text to logical expressions 
(either entity IDs, if 
possible, or logical 
sentences representing 
the mention)

Inference:
Inference uses a 
resolution-based engine 
with some heuristics to 
accelerate common 
cases. Additionally, some 
queries (e.g., "how do I go 
to X?") require path 
finding. To avoid doing 
this through inference, 
which would be 
computationally 
expensive, a specialized 
module is used.

Talking to me?:
When the player or an 
NPC says something, the 
only thing other NPCs 
perceive is the text. 
Based on the text, and on 
the past conversation 
contexts, the first step is 
to determine if the 
speaker is talking to us, or 
to someone else.

Figure 4: A flowchart of the different processes that take part in an NPC reacting to an utterance in natural language from the
player.

making natural language parsing feasible with a reasonable
degree of success (although there is a lot of room for im-
provement).

As part of our future work, we plan to expand the set of
speech acts that is currently recognized by the natural lan-
guage subsystem. Once the prototype reaches a sufficient
level of maturity, we would also like to take the core engine
out of the game to make it stand alone to allow for other
SHRDLU-like games by just configuring the environment,
the knowledge bases of the NPCs, and the game script. Sev-
eral parts of the engine are already stand-alone, such as the
natural language parser, and the inference engine.

Acknowledgements: We would like to thank the people
that helped beta test the current prototype by sending me
“debug logs” to make it ready for the demos at AIIDE 2018
and 2019 (in chronological order in which they tested the
game): Jichen Zhu, Josep Valls-Vargas, Jordi Sureda, Sam

Snodgrass, Javier Torres, Adam Summerville, Ahmed Khal-
ifa, Sri Krishna, Bayan Mashat, Pavan Kantharaju, Chris
Martens, Yaqirah Rice, Zuozhi Yang, Shannen Angell and
Robert Gray. I would also like to thank everyone who played
the demo of the game at AIIDE 2018 and 2019, who gave
me great feedback, and also gave me a chance to observe
people playing the game in person!

References
Crowe, M., and Murphy, S. 1986. Space Quest: Chapter I
The Sarien Encounter. Sierra On-Line.
Horswill, I. 2014. Game design for classical ai. In Tenth
Artificial Intelligence and Interactive Digital Entertainment
Conference.
Klein, D., and Manning, C. D. 2003. Accurate unlexicalized
parsing. In Proceedings of the 41st annual meeting of the
association for computational linguistics.



Larsson, S.; Ljunglöf, P.; Cooper, R.; Engdahl, E.; and Er-
icsson, S. 2000. Godis: an accommodating dialogue sys-
tem. In Proceedings of the 2000 ANLP/NAACL Workshop
on Conversational systems-Volume 3, 7–10. Association for
Computational Linguistics.
Lessard, J. 2016. Designing natural-language game conver-
sations. Proc. DiGRA-FDG.
Mateas, M., and Stern, A. 2003. Façade: An experiment in
building a fully-realized interactive drama. In Game devel-
opers conference, volume 2, 4–8.
Robinson, J. A. 1965. A machine-oriented logic based
on the resolution principle. Journal of the ACM (JACM)
12(1):23–41.
Searle, J. R. 1969. Speech acts: An essay in the philosophy
of language, volume 626. Cambridge university press.
Wilcox, B. 2011. Beyond façade: Pattern matching for nat-
ural language applications. GamaSutra. com.
Winograd, T. 1972. Understanding natural language. Cog-
nitive psychology 3(1):1–191.


