/*

Note (santi):
- This is the core AI class for SHRDLU. It implements all the different elements of the NPC AI. 
- This class is generic, however, and not tied to this specific project, nor to the A4Engine, so it can be separated from the 
  game. Everything that is specific to the game engine is implemented in A4RuleBasedAI, which extends from this class. Then,
  two other classes (EtaoinAI and RobotAI) implement additional functionality used by the two types of NPCs in the game 
  (EtaoinAI is used for ETAOIN which is a disembodied AI, and RobotAI is used for the two robots, QWERTY and SHRDLU).
- These classes implement all the AI functionalities except for pathfinding. For that, I reused all the pathfinding code
  originally implemented in the A4Engine, which is still in the A4PathFinding class inside of the A4Engine code.

*/

var ONTOLOGY_PROVENANCE:string = "ontology";
var BACKGROUND_PROVENANCE:string = "background";
var BACKGROUND_ADDITIONAL_PROVENANCE:string = "background-additional";	// this is additional background knowledge that is loaded after 
																		// some events, and thus needs to be saved in savegames.
var PERCEPTION_PROVENANCE:string = "perception";
var REACTION_PROVENANCE:string = "reaction";
var MEMORIZE_PROVENANCE:string = "memorize";
var LOCATIONS_PROVENANCE:string = "locations";

var ACTION_REQUEST_CANNOT_BE_SATISFIED:number = 0;
var ACTION_REQUEST_CAN_BE_SATISFIED:number = 1;
var ACTION_REQUEST_WILL_BE_HANDLED_EXTERNALLY:number = 2;

var MENTION_MEMORY_SIZE:number = 10;

var DEFAULT_QUESTION_PATIENCE_TIMER:number = 1200;

var CONVERSATION_TIMEOUT:number = 120*60;	// 2 minute of real time, which is 2 hour of in-game time

var OCCURS_CHECK:boolean = false;

class AIGoal {
	constructor(a_term:Term, a_actions:Term[], a_priority:number, a_time:number, a_periocidity:number)
	{
		this.term = a_term;
		this.actions = a_actions;
		this.priority = a_priority;
		this.nextTimeToTrigger = a_time;
		this.periodicity = a_periocidity;
	}


	restart(ai:RuleBasedAI)
	{
		if (this.term != null) {
			ai.addLongTermTerm(new Term(ai.o.getSort("verb.do"),
										[new ConstantTermAttribute(ai.selfID, ai.cache_sort_id),
										 new TermTermAttribute(this.term)]), PERCEPTION_PROVENANCE);
		}

		// restart the remainingActions list:
		this.remainingActions = [];
		for(let action of this.actions) this.remainingActions.push(action);
		this.currentActionIR = null;
	}


	execute(ai:RuleBasedAI) : boolean
	{
		if (this.remainingActions.length == 0) {
			this.remainingActions = null;
			return true;
		}

		if (this.currentActionIR == null) {
			// start executing the next action:
			this.currentActionIR = new IntentionRecord(this.remainingActions[0], null, null, null, ai.timeStamp)
			ai.queueIntentionRecord(this.currentActionIR);
		} else {
			// keep checking if it was executed:
			if (!ai.IRpendingCompletion(this.currentActionIR)) {
				// the intention has been either canceled or succeeded, check if it was succeeded:
				if (this.currentActionIR.succeeded) {
					// action succeeded:
					this.currentActionIR = null;
					this.remainingActions.splice(0, 1);
				} else {
					// something failed, so, restart!
					this.restart(ai);
				}
			}
		}

		return false;
	}


	static fromXML(xml:Element, o:Ontology, ai:RuleBasedAI) : AIGoal
	{
		let term:Term = Term.fromString(xml.getAttribute("term"), o);
		let priority:number = Number(xml.getAttribute("priority"));
		let nextTimeToTrigger:number = Number(xml.getAttribute("nextTimeToTrigger"));
		let periodicity:number = Number(xml.getAttribute("periodicity"));
		let remainingActions:number = null;
		if (xml.getAttribute("remainingActions") != null) remainingActions = Number(xml.getAttribute("remainingActions"));
		let actions:Term[] = [];
		for(let goalxml of getElementChildrenByTag(xml, "action")) {
			actions.push(Term.fromString(goalxml.getAttribute("term"), o));
		}

		let goal:AIGoal = new AIGoal(term, actions, priority, nextTimeToTrigger, periodicity);
		if (remainingActions != null) {
			goal.remainingActions = [];
			for(let i:number = actions.length-remainingActions; i<actions.length; i++) {
				goal.remainingActions.push(actions[i]);
			}
		}
		return goal;
	}


	saveToXML(ai:RuleBasedAI) : string
	{
		let str:string = "<AIGoal term=\""+this.term+"\""+
						 " priority=\""+this.priority+"\""+
						 " nextTimeToTrigger = \""+this.nextTimeToTrigger+"\""+
						 " periodicity = \""+this.periodicity+"\"";
		if (this.remainingActions != null) {
			str += " remainingActions=\""+this.remainingActions.length+"\"";
		}
	  	str += ">\n";

	  	for(let action of this.actions) {
	  		str += "<action term=\""+action+"\"/>\n"
	  	}
		str += "</AIGoal>";
		return str;
	}	


	term:Term;	// describes the goal (e.g., if the player asks "what are you doing?")
	actions:Term[];	// list of actions that have to be satisfied to accomplish this goal
	priority:number;
	nextTimeToTrigger:number;	// if the current time is >"nextTimeToTrigger", this goal is triggered, and is a candidate to be
								// the "currentGoal" 
	periodicity:number;	// if "periodicity" is <0, then this is to be triggered only once

	// execution variables:
	remainingActions:Term[] = null;
	currentActionIR:IntentionRecord = null;	// the intention record for the first action in "remainingActions"
}


class InferenceRecord {
	constructor(ai:RuleBasedAI, additionalSentences_arg:Sentence[], targets:Sentence[][], p:number, a:number, findAllAnswers:boolean, timeTerm:Term, e:InferenceEffect)
	{
		this.targets = targets;
		this.priority = p;
		this.anxiety = a;
		this.additionalSentences = additionalSentences_arg;
		this.findAllAnswers = findAllAnswers;
		this.timeTerm = timeTerm;
		this.effect = e;
		this.inferences = [];
	}


	static fromXML(xml:Element, o:Ontology, ai:RuleBasedAI) : InferenceRecord
	{
		let variables:TermAttribute[] = [];
		let variableNames:string[] = [];
		let p:number = Number(xml.getAttribute("priority"));
		let a:number = Number(xml.getAttribute("anxiety"));
		let findAllAnswers:boolean = xml.getAttribute("findAllAnswers") == "true";
		let e:InferenceEffect = null;
		let tt:Term = null;
		let tb:Term = null;
		let tbs:string = null;
		if (xml.getAttribute("timeTerm") != null) tt = Term.fromStringInternal(xml.getAttribute("timeTerm"), o, variableNames, variables).term;
		if (xml.getAttribute("triggeredBy") != null) tb = Term.fromStringInternal(xml.getAttribute("triggeredBy"), o, variableNames, variables).term;
		if (xml.getAttribute("triggeredBySpeaker") != null) tbs = xml.getAttribute("triggeredBySpeaker");

		let effect_xml:Element = getFirstElementChildByTag(xml ,"InferenceEffect");
		if (effect_xml != null) e = ai.inferenceEffectFactory.loadFromXML(effect_xml, ai, o, variables, variableNames);

		let additionalSentences:Sentence[] = [];
		let additionalSentences_xml:Element = getFirstElementChildByTag(xml ,"additionalSentences");
		if (additionalSentences_xml != null) {
			for(let s_xml of getElementChildrenByTag(additionalSentences_xml, "sentence")) {
				let s:Sentence = Sentence.fromStringInternal(s_xml.firstChild.nodeValue, o, variableNames, variables);
				if (s!=null) additionalSentences.push(s);
			}
		}
		let targets:Sentence[][] = [];
		for(let s_l_xml of getElementChildrenByTag(xml, "target")) {
			let t:Sentence[] = [];
			for(let s_xml of getElementChildrenByTag(s_l_xml, "sentence")) {
				let s:Sentence = Sentence.fromStringInternal(s_xml.firstChild.nodeValue, o, variableNames, variables);
				if (s!=null) t.push(s);
			}
			targets.push(t);
		}

		let ir:InferenceRecord = new InferenceRecord(ai, additionalSentences, targets, p, a, findAllAnswers, tt, e);
		ir.triggeredBy = tb;
		ir.triggeredBySpeaker = tbs;
		return ir;
	}


	init(ai:RuleBasedAI, o:Ontology)
	{
		// Knowledge base is all the long term knowledge, plus the perception:
		let additionalSentences:Sentence[] = [];
		for(let s of this.additionalSentences) additionalSentences.push(s);
		for(let te of ai.shortTermMemory.plainTermList) {
			additionalSentences.push(new Sentence([te.term],[true]));
		}

		let ltm:SentenceContainer = ai.longTermMemory;
		if (this.timeTerm != null) {
			// edit the long term memory to match the time of the query:
			if (this.timeTerm.functor.name == "time.past") {
				ltm = TimeInference.applyTimePast(ai.longTermMemory)
			} else if (this.timeTerm.functor.is_a(o.getSort("time.present")) ) {
				// do nothing
			} else {
				console.error("InferenceRecord timeTerm not supported: " + this.timeTerm);
			}
		}

		for(let target of this.targets) {
			// let occurs_check:boolean = OCCURS_CHECK;
			let occurs_check:boolean = true;
			this.inferences.push(new InterruptibleResolution(ltm, additionalSentences, target, occurs_check, this.timeTerm == null, ai));
		}
	}


	saveToXML(ai:RuleBasedAI) : string
	{
		// We do not save the state of the interruptible resolution process, sicne that'd be complex. 
		// The inference will just be restarted when the AI is loaded again:
		let variables:TermAttribute[] = [];
		let variableNames:string[] = [];
		let str:string = "<InferenceRecord priority=\""+this.priority+"\" "+
										  "anxiety=\""+this.anxiety+"\" "+
										  "findAllAnswers = \""+this.findAllAnswers+"\" "+
										  (this.timeTerm != null ? "timeTerm = \""+this.timeTerm.toStringXMLInternal(variables, variableNames)+"\" ":"") +
										  (this.triggeredBy != null ? "triggeredBy = \""+this.triggeredBy.toStringXMLInternal(variables, variableNames)+"\" ":"") +
										  (this.triggeredBySpeaker != null ? "triggeredBySpeaker = \""+this.triggeredBySpeaker+"\" ":"") +
										  ">\n";

		if (this.effect != null) str += this.effect.saveToXMLInternal(ai, variables, variableNames) + "\n";

		console.error("InferenceRecord saving to XML not yet supported (figure out a way to save InferenceEffects)");

		if (this.additionalSentences.length > 0) {
			str += "<additionalSentences>\n";
			for(let s of this.additionalSentences) {
				str += "<sentence>"+s.toStringXMLInternal(variables, variableNames)+"</sentence>\n";
			}
			str += "</additionalSentences>\n";
		}
		for(let sl of this.targets) {
			str += "<target>\n";
			for(let s of sl) {
				str += "<sentence>"+s.toStringXMLInternal(variables, variableNames)+"</sentence>\n";
			}
			str += "</target>\n";
		}
		str += "</InferenceRecord>";
		return str;
	}


	targets:Sentence[][] = [];
	inferences:InterruptibleResolution[] = [];
	completedInferences:InterruptibleResolution[] = [];
	additionalSentences:Sentence[] = [];

	priority:number = 1;
	anxiety:number = 0;
	findAllAnswers:boolean = false;
	timeTerm:Term = null;

	effect:InferenceEffect = null;

	triggeredBy:Term = null;
	triggeredBySpeaker:string = null;	
}


class CauseRecord {
	constructor(t:Term, c:CauseRecord, time:number)
	{
		this.term = t;
		this.cause = c;
		this.timeStamp = time;
	}


	static fromXML(xml:Element, o:Ontology) : CauseRecord
	{
		let cause:CauseRecord = null;
		let p_xml = getFirstElementChildByTag(xml, "cause");
		if (p_xml != null) {
			cause = CauseRecord.fromXML(p_xml, o);
		}
		return new CauseRecord(Term.fromString(xml.getAttribute("term"), o),
							   cause,
							   Number(xml.getAttribute("timeStamp")));
	}


		
	outerHTML() : string { return this.saveToXML();}  
	saveToXML() : string
	{
		if (this.cause == null) {
			let tmp:string = "<CauseRecord term=\""+this.term.toStringXML() +"\" " +
										  "timeStamp=\""+this.timeStamp+"\"/>";
		    return tmp;
		} else {
			let tmp:string = "<CauseRecord term=\""+this.term.toStringXML() +"\" " +
										  "timeStamp=\""+this.timeStamp+"\">";
		    tmp += this.cause.saveToXML();
		    tmp +="</CauseRecord>"

		    return tmp;
		}
	}


	term:Term = null;
	cause:CauseRecord = null;
	timeStamp:number = null;
	causesComeFromInference:boolean = false;

}


class IntentionRecord {
	constructor(a:Term, r:TermAttribute, rp:NLContextPerformative, c:CauseRecord, time:number)
	{
		this.action = a;
		this.requester = r;
		this.requestingPerformative = rp;
		this.cause = c;
		this.timeStamp = time;
	}


	static fromXML(xml:Element, ai:RuleBasedAI, o:Ontology) : IntentionRecord
	{
		let variables:TermAttribute[] = [];
		let variableNames:string[] = [];
		let action:Term = Term.fromStringInternal(xml.getAttribute("action"), o, variableNames, variables).term;
		let requester:TermAttribute = null;
		let rps:string = xml.getAttribute("requestingPerformativeSpeaker");
		let requestingPerformative:NLContextPerformative = null;
		let cause:CauseRecord = null;
		let timeStamp:number = Number(xml.getAttribute("timeStamp"));
		if (xml.getAttribute("requester") != null) requester = Term.parseAttribute(xml.getAttribute("requester"), o, variableNames, variables);
		if (rps != null) {
			let context:NLContext = ai.contextForSpeaker(rps);
			if (context != null) {
				requestingPerformative = context.performatives[Number(xml.getAttribute("requestingPerformativeSpeaker"))];
			}
		}
		let cause_xml:Element = getFirstElementChildByTag(xml, "CauseRecord");
		if (cause_xml != null) {
			cause = CauseRecord.fromXML(cause_xml, o);
		}
		let ir:IntentionRecord = new IntentionRecord(action, requester, requestingPerformative, cause, timeStamp);

		let alternative_actions_xml_l:Element[] = getElementChildrenByTag(xml, "alternative_action");
		if (alternative_actions_xml_l.length > 0) {
			ir.alternative_actions = [];
			for(let alternative_actions_xml of alternative_actions_xml_l) {
				ir.alternative_actions.push(Term.fromStringInternal(alternative_actions_xml.getAttribute("action"), o, variableNames, variables).term);
			}
		}
		if (xml.getAttribute("numberConstraint") != null) ir.numberConstraint = Term.parseAttribute(xml.getAttribute("numberConstraint"), o, variableNames, variables);
		return ir;
	}


	saveToXML(ai:RuleBasedAI) : string
	{
		let variables:TermAttribute[] = [];
		let variableNames:string[] = [];
		let context:NLContext = null;
		if (this.requestingPerformative != null) {
			context = ai.contextForSpeaker(this.requestingPerformative.speaker);
		}
		let xml:string = "<IntentionRecord action=\""+this.action.toStringXMLInternal(variables, variableNames)+"\""+
										 (this.requester == null ? "":
										 						   " requester=\""+this.requester.toStringXMLInternal(variables, variableNames)+"\"")+
										 (context == null ? "":
										 				    " requestingPerformativeSpeaker=\""+this.requestingPerformative.speaker+"\""+
										 				    " requestingPerformative=\""+context.performatives.indexOf(this.requestingPerformative)+"\"")+
										 " timeStamp=\""+this.timeStamp+"\""+
										 (this.numberConstraint == null ? "":
										 					" numberConstraint=\""+this.numberConstraint.toStringXMLInternal(variables, variableNames)+"\"");
		if (this.cause == null && this.alternative_actions == null) {
			xml += "/>";
		} else {
			xml += ">\n";
			if (this.cause != null) xml += this.cause.saveToXML();
			if (this.alternative_actions != null) {
				for(let alternative_action of this.alternative_actions) {
					xml += "<alternative_action action=\"" + alternative_action.toStringXMLInternal(variables, variableNames) + "\"/>";
				}
			}
		    xml +="</IntentionRecord>";
		}
		return xml;
	}


	resolveNumberConstraint(numberConstraint:TermAttribute, max:number):number
	{
		if (numberConstraint != null) {
			if (numberConstraint.sort.is_a_string("all")) return max;
			if (numberConstraint.sort.is_a_string("number.1")) return 1;
			if (numberConstraint.sort.is_a_string("number.2")) return 2;
			if (numberConstraint.sort.is_a_string("number.3")) return 3;
			if (numberConstraint.sort.is_a_string("number.4")) return 4;
			if (numberConstraint.sort.is_a_string("number.5")) return 5;
			if (numberConstraint.sort.is_a_string("number.6")) return 6;
			if (numberConstraint.sort.is_a_string("number.7")) return 7;
			if (numberConstraint.sort.is_a_string("number.8")) return 8;
			if (numberConstraint.sort.is_a_string("number.9")) return 9;
			if (numberConstraint.sort.is_a_string("number.10")) return 10;
			if (numberConstraint.sort.is_a_string("number") && 
				numberConstraint instanceof ConstantTermAttribute) {
				let value:string = (<ConstantTermAttribute>numberConstraint).value;
				return Number(value);
			}
		}
		return 1;
	}	


	action:Term = null;	
	requester:TermAttribute = null;
	requestingPerformative:NLContextPerformative = null;
	cause:CauseRecord = null;	// if it had a cause, other than being requested by "requester", we specify it here
	timeStamp:number = null;
	succeeded:boolean = null;	// when this action is done, this will contain true/false

	alternative_actions:Term[] = null;	// some times, the "action" field comes from having run an inference process and some
										// variables might have multiple alternative values. This list contains all the possible
										// values, in case the "action" field (which should be = to alternative_actions[0]) cannot
										// be executed, but another can! This is used, for example for requests such as:
										// "take a green block" (where there might be more than one green block, and some might not
										// be takeable).
	numberConstraint:TermAttribute = null;	// If a list of alternative_actions is specified, this field specifies how many of
											// those need to be processed. This could be [number.1], or [all], for example.
}


abstract class IntentionAction {
	abstract canHandle(intention:Term, ai:RuleBasedAI) : boolean;
	abstract execute(ir:IntentionRecord, ai:RuleBasedAI) : boolean;

	abstract saveToXML(ai:RuleBasedAI) : string;

	// This is what will be executed all the other times except the first. When it returns "true", action is over
	executeContinuous(ai:RuleBasedAI) : boolean
	{
		return true;
	}

	// Some requests require inference, however, an action  might be able to handle the inference internally.
	// If that's the case, then this function has to be redefined, and return "true" for those actions that the action handler
	// can handle inference internally.
	canHandleWithoutInference(perf:Term) : boolean
	{
		return false;
	}

	// This will be called if the script associated with the action fails:
	actionScriptsFailed(ai:RuleBasedAI, requester:TermAttribute) 
	{		
	}


	needsContinuousExecution:boolean = false;
	ir:IntentionRecord = null;
}


abstract class InferenceEffect {
	abstract execute(inf:InferenceRecord, ai:RuleBasedAI);
	abstract saveToXMLInternal(ai:RuleBasedAI, variables:TermAttribute[], variableNames:string[]) : string;

	saveToXML(ai:RuleBasedAI) : string
	{
		return this.saveToXMLInternal(ai, [], []);
	}


	generateCauseRecord(target:Sentence[], result:InferenceNode, ai:RuleBasedAI) : CauseRecord
	{
		let baseSentences:Sentence[] = result.getBaseSentences(target);
				
		if (baseSentences.length == 0) {
			return null;
		} else {
			let cause:Term = null;
			for(let s of baseSentences) {
				let s_term:Term = Term.sentenceToTerm(s, ai.o);
	            if (cause == null) {
	                cause = s_term;
	            } else {
	                cause = new Term(ai.o.getSort("#and"), [new TermTermAttribute(cause), new TermTermAttribute(s_term)]);
	            }
			}

			let cr:CauseRecord = new CauseRecord(cause, null, ai.timeStamp)
			cr.causesComeFromInference = true;
			return cr;
		}
	}	
}


class RuleBasedAI {
	constructor(o:Ontology, nlp:NLParser, pf:number, pfoffset:number, qpt:number)
	{
		this.o = o;
		this.naturalLanguageParser = nlp;
		this.perceptionFrequency = pf;
		this.perceptionFrequencyOffset = pfoffset;
		this.questionPatienceTimmer = qpt;

		this.cache_sort_name = this.o.getSort("name");
		this.cache_sort_space_at = this.o.getSort("space.at");
		this.cache_sort_time_current = this.o.getSort("time.current");
		this.cache_sort_number = this.o.getSort("number");
		this.cache_sort_symbol = this.o.getSort("symbol");
		this.cache_sort_id = this.o.getSort("#id");
		this.cache_sort_map = this.o.getSort("map");
		this.cache_sort_intention = this.o.getSort("intention");
		this.cache_sort_performative = this.o.getSort("performative");
		this.cache_sort_property = this.o.getSort("property");
		this.cache_sort_property_with_value = this.o.getSort("property-with-value");
		this.cache_sort_relation_with_value = this.o.getSort("relation-with-value");
		this.cache_sort_object = this.o.getSort("object");
		this.cache_sort_space_location = this.o.getSort("space.location");
		this.cache_sort_relation = this.o.getSort("relation");
		this.cache_sort_verb_have = this.o.getSort("verb.have");
		this.cache_sort_verb_contains = this.o.getSort("verb.contains");
		this.cache_sort_stateSort = this.o.getSort("#stateSort");
		this.cache_sort_action_talk = this.o.getSort("action.talk");
		this.cache_sort_action_follow = this.o.getSort("verb.follow");
		this.cache_sort_action_think = this.o.getSort("verb.think");

		this.inferenceEffectFactory = new InferenceEffectFactory();		

		let ontologySentences:Sentence[] = RuleBasedAI.translateOntologyToSentences(o);
		console.log("Ontology converted to " + ontologySentences.length + " sentences:");
		for(let s of ontologySentences) {
			this.longTermMemory.addSentence(s, ONTOLOGY_PROVENANCE, 1, 0);
		}
	}


	update(timeStamp:number) 
	{
		this.timeStamp = timeStamp;

		// 1) Attention & Perception:
		if (this.currentInferenceProcess == null) {
			if (this.perceptionFrequency == 0 || (timeStamp%this.perceptionFrequency) == this.perceptionFrequencyOffset) {
				this.attentionAndPerception();
			}
		} else {
			// during inference, do less perception to free up some CPU:
			if (this.perceptionFrequency == 0 || (timeStamp%(this.perceptionFrequency*2)) == this.perceptionFrequencyOffset) {
				this.attentionAndPerception();
			}
		}

		// 2) Short-term memory loop:
		this.shortTermMemory.activationUpdate();

		// 3) Rule execution:
		this.inferenceUpdate();

		// 4) Conversation context update (see if we need to reask questions):
		this.conversationUpdate();

		// 5) Check for active goals:
		if (this.considerGoals()) this.goalsUpdate(timeStamp);

		// 6) Intention execution:
		this.executeIntentions();

		// 7) Performatives that have already been parsed, but are queued:
		if (this.queuedParsedPerformatives.length > 0 && this.isIdle()) {
			let tmp:[Term, string, string, NLParseRecord] = this.queuedParsedPerformatives[0];
			this.reactToParsedPerformativeInternal(tmp[0], tmp[1], tmp[2], tmp[3]);
			this.queuedParsedPerformatives.splice(0, 1);
		} 
	}


	isIdle() : boolean
	{
		let expectingAnswerToQuestion:boolean = false;
		for(let context of this.contexts) {
			if (context.expectingAnswerToQuestion_stack.length > 0) {
				expectingAnswerToQuestion = true;
				break;
			}
		}
		return this.intentions.length == 0 && this.queuedIntentions.length == 0 &&
			   !expectingAnswerToQuestion &&
			   this.currentInferenceProcess == null && this.queuedInferenceProcesses.length == 0;
	}


	addLongTermTerm(t:Term, provenance:string)
	{
		this.addLongTermTermWithTimeAndSign(t, provenance, this.timeStamp, true)
	}


	addLongTermTermWithTime(t:Term, provenance:string, time:number)
	{
		this.addLongTermTermWithTimeAndSign(t, provenance, time, true)
	}


	addLongTermTermWithSign(t:Term, provenance:string, sign:boolean)
	{
		this.addLongTermTermWithTimeAndSign(t, provenance, this.timeStamp, sign)
	}


	addLongTermTermWithTimeAndSign(t:Term, provenance:string, time:number, sign:boolean)
	{
		// intentions:
		if (t.functor == this.cache_sort_intention && sign) {
			this.intentions.push(new IntentionRecord(
									(<TermTermAttribute>t.attributes[0]).term, 
								   	t.attributes.length > 0 ? t.attributes[1]:null,
								   	null,
								   	null,
								   	time));
			return;
		}

		if (t.functor.is_a(this.cache_sort_stateSort)) {
			if (this.longTermMemory.addStateSentenceIfNew(new Sentence([t],[sign]), provenance, 1, time)) {
				// term added
				for(let context of this.contexts) {
					context.newLongTermStateTerm(t);
				}
				this.reactiveBehaviorUpdate(t);
			}
		} else {		
			if (this.longTermMemory.addSentenceIfNew(new Sentence([t],[sign]), provenance, 1, time)) {
				// term added
				for(let context of this.contexts) {
					context.newLongTermTerm(t);
				}
				this.reactiveBehaviorUpdate(t);
			}
		}
	}


	removeLongTermTermMatchingWith(t:Term) 
	{
		let se:SentenceEntry = this.longTermMemory.containsUnifyingTerm(t);
		if (se != null) this.longTermMemory.removeInternal(se);
	}


	addShortTermTerm(t:Term, provenance:string)
	{
		if (!this.shortMemoryToLongTermMemoryFilter(t, provenance)) {
			// intentions:
			if (t.functor == this.cache_sort_intention) {
				this.intentions.push(new IntentionRecord(
										(<TermTermAttribute>t.attributes[0]).term, 
									   	t.attributes.length > 0 ? t.attributes[1]:null,
									   	null, 
									   	null,
									   	this.timeStamp));

				return;
			}

			// we add 1 since "this.shortTermMemory.activationUpdate()" will be executed immediately
			// afterwards, decreasing it by 1 right away.
			if (t.functor.is_a(this.cache_sort_stateSort)) {
				if (this.shortTermMemory.addStateTermIfNew(t, provenance, this.perceptionMemoryTime+1, this.timeStamp)) {
					// new term was added:
					this.reactiveBehaviorUpdate(t);
				}
			} else {
				if (this.shortTermMemory.addTermIfNew(t, provenance, this.perceptionMemoryTime+1, this.timeStamp)) {
					// new term was added:
					this.reactiveBehaviorUpdate(t);
				}
			}
		}
	}


	addLongTermRuleNow(s:Sentence, provenance:string)
	{
		this.longTermMemory.addSentence(s, provenance, 1, this.timeStamp);
	}


	addLongTermRule(s:Sentence, provenance:string, time:number)
	{
		this.longTermMemory.addSentence(s, provenance, 1, time);
	}


	removeLongTermRule(s:Sentence)
	{
		this.longTermMemory.removeSentence(s);
	}


	addEpisodeTerm(t:string, provenance:string)
	{
		this.currentEpisodeTerms.push(t);
		let term:Term = Term.fromString(t, this.o);
		this.longTermMemory.addSentence(new Sentence([term],[true]), provenance, 1, this.timeStamp);
	}


	clearEpisodeTerms()
	{
		for(let t of this.currentEpisodeTerms) {
			let term:Term = Term.fromString(t, this.o);
			this.longTermMemory.removeSentence(new Sentence([term],[true]));
		}
		this.currentEpisodeTerms = [];
	}


	loadLongTermRulesFromFile(rulesFileName:string)
	{
		let xmlhttp:XMLHttpRequest = new XMLHttpRequest();
		xmlhttp.overrideMimeType("text/xml");
		xmlhttp.open("GET", rulesFileName, false); 
		xmlhttp.send();
		this.loadLongTermRulesFromXML(xmlhttp.responseXML.documentElement);
	}


	loadLongTermRulesFromXML(xml:Element)
	{
		for(let sentence_xml of getElementChildrenByTag(xml,"sentence")) {
			let rule:Sentence = Sentence.fromString(sentence_xml.getAttribute("sentence"), this.o);

			if (rule.terms.length == 1 &&
				rule.terms[0].functor.name == "name" &&
				rule.terms[0].attributes.length == 2 &&
				(rule.terms[0].attributes[1] instanceof ConstantTermAttribute)) {
				let name:string = (<ConstantTermAttribute>rule.terms[0].attributes[1]).value;
				if (name.indexOf(" ") != -1 && 
					this.naturalLanguageParser.posParser.multitokens_plainlist.indexOf(name) == -1) {
					console.error("Missing multitoken: " + name);
				}
			}

			let provenance:string = sentence_xml.getAttribute("provenance");
			let time:number = this.timeStamp;
			if (sentence_xml.getAttribute("time") != null) time = Number(sentence_xml.getAttribute("time"));
			let history:Sentence[] = [rule]
			let hasPrevious:boolean = false;
			sentence_xml = getFirstElementChildByTag(sentence_xml,"previousSentence");
			while(sentence_xml != null) {
				let rule2:Sentence = Sentence.fromString(sentence_xml.getAttribute("sentence"), this.o);
				let provenance:string = sentence_xml.getAttribute("provenance");
				//let timeEnd:number = this.timeStamp;
				hasPrevious = true;
				if (sentence_xml.getAttribute("time") != null) time = Number(sentence_xml.getAttribute("time"));
				//if (sentence_xml.getAttribute("timeEnd") != null) timeEnd = Number(sentence_xml.getAttribute("timeEnd"));
				if (provenance == BACKGROUND_PROVENANCE ||
					provenance == ONTOLOGY_PROVENANCE) {
					// this was a sentence that already was in the BK, so no need to add it
					sentence_xml = null;	// end of recursion
				} else {
					history.push(rule2)
					sentence_xml = getFirstElementChildByTag(sentence_xml,"previousSentence");
				}
			}
			history.reverse()
			// we add the sentences in reverse order, to reconstruct the "previousSentence" structure:
			for(let s of history) {
				if (hasPrevious) {
					this.longTermMemory.addStateSentenceIfNew(s, provenance, 1, time);
				} else {
					this.longTermMemory.addSentence(s, provenance, 1, time);
				}
			}
		}
		for(let sentence_xml of getElementChildrenByTag(xml,"previousSentence")) {
			let rule:Sentence = Sentence.fromString(sentence_xml.getAttribute("sentence"), this.o);
			let provenance:string = sentence_xml.getAttribute("provenance");
			let time:number = this.timeStamp;
			let timeEnd:number = this.timeStamp;
			if (sentence_xml.getAttribute("time") != null) time = Number(sentence_xml.getAttribute("time"));
			if (sentence_xml.getAttribute("timeEnd") != null) timeEnd = Number(sentence_xml.getAttribute("timeEnd"));
			this.longTermMemory.addPreviousSentence(rule, provenance, 1, time, timeEnd, null);			
		}
	}


	attentionAndPerception()
	{

	}


	clearPerception()
	{
		this.perceptionBuffer = [];
	}


	addTermToPerception(term:Term)
	{
		// console.log("addTermToPerception: " + term.toString());
		this.perceptionBuffer.push(term);
		this.perceptionToShortMemoryFilter(term);
	}


	perceptionToShortMemoryFilter(term:Term) : boolean
	{
		/*
		let action:Sort = this.o.getSort("actionverb");
		if (action.subsumes(term.functor)) {
			this.addShortTermTerm(term);
			return true;
		}
		return false;
		*/

		// only filter time:
		if (term.functor == this.cache_sort_time_current) return false;
		this.addShortTermTerm(term, PERCEPTION_PROVENANCE);
		return true;
	}


	shortMemoryToLongTermMemoryFilter(term:Term, provenance:string) : boolean
	{
		let storeInLongTerm:boolean = false;
		for(let sort of this.predicatesToStoreInLongTermMemory) {
			if (sort.subsumes(term.functor)) {
				storeInLongTerm = true;
				break;
			}
		}
		if (storeInLongTerm) {
			this.addLongTermTerm(term, provenance);
			return true;
		} else if (term.functor.is_a(this.cache_sort_stateSort)) {
			// check if we have any contradiction with long term memory, and remove the contradiction:
			let s_l:Sentence[] = this.longTermMemory.previousStateSentencesToReplace(term, true);
			for(let s of s_l) {
				if (term.equalsNoBindings(s.terms[0]) != 1) {
					// only if the new term is different from the previous one, we need to do any update:
					this.longTermMemory.removeSentence(s);
				}
			}
		}

		return false;
	}


	reactiveBehaviorUpdate(t:Term)
	{
	}


	parsePerceivedText(text:string, speaker:string, context:NLContext, actionTerms:Term[])
	{
	    let parses:NLParseRecord[] = this.naturalLanguageParser.parse(text, this.cache_sort_performative, context, this);
	    if (parses == null || parses.length == 0 && this.naturalLanguageParser.error_semantic.length > 0) {
	    	// if we cannot parse sentences in any other way, at least consider the semantic errors as the parses:
	    	parses = this.naturalLanguageParser.error_semantic;
	    }
	    if (parses != null && parses.length > 0) {
	    	let HPparse:NLParseRecord = this.naturalLanguageParser.chooseHighestPriorityParse(parses);
	    	console.log("AIRuleBasedAI("+this.selfID+"): parsed sentence '" + text + "'\n  " + HPparse.result);
	    	// the parse might contain several performatives combined with a "#list" construct
			let parsePerformatives:TermAttribute[] = Term.elementsInList(HPparse.result, "#list");
			let actionTerms2:Term[] = [];
    		for(let actionTerm of actionTerms) {
        		for(let parsePerformative of parsePerformatives) {
        			let tmp:Term = actionTerm.clone([]);
			    	tmp.addAttribute(parsePerformative);
			    	actionTerms2.push(tmp);
        		}
    		}
    		actionTerms.splice(0, actionTerms.length);
			for(let actionTerm of actionTerms2) {
				actionTerms.push(actionTerm);
			}		    		
    		this.reactToParsedPerformatives(parsePerformatives, text, speaker, HPparse);
	    } else {
	    	console.warn("A4RuleBasedAI ("+this.selfID+"): cannot parse sentence: " + text);
	    	if (this.naturalLanguageParser.error_semantic.length > 0) console.warn("    semantic error!");
	    	if (this.naturalLanguageParser.error_deref.length > 0) console.warn("    ("+this.selfID+") could not deref expressions: " + this.naturalLanguageParser.error_deref);
	    	if (this.naturalLanguageParser.error_unrecognizedTokens.length > 0) console.warn("    unrecognized tokens: " + this.naturalLanguageParser.error_unrecognizedTokens);
	    	if (this.naturalLanguageParser.error_grammatical) console.warn("    grammatical error!");
	    	this.reactToParseError(speaker, text);
	    }
	}


	reactToParsedPerformatives(performatives:TermAttribute[], text:string, speaker:string, parse:NLParseRecord)
	{
		if (speaker != this.selfID) {
			// When an utterance results in more than one performative, we just process the first, and queue the
			// rest. This is because requests consisting of several actions in a row would fail otherwise. 
			// For example: "open the crate and take a cable from it". The "take a cable from it" would fail until
			// the crate is open, since the crate is innitially closed.
			let first:boolean = true;
			for(let performative_att of performatives) {
				if (first) {
					let performative:Term = (<TermTermAttribute>performative_att).term;
					// is it talking to us?
					let context:NLContext = this.contextForSpeaker(speaker);

					if (this.talkingToUs(context, speaker, performative)) {					
						this.reactToParsedPerformativeInternal(performative, text, speaker, parse);
						first = false;
					} else {
						// not talking to us, ignore the rest
						break;
					}
				} else {
					let performative:Term = (<TermTermAttribute>performative_att).term;
					this.queuedParsedPerformatives.push([performative, text, speaker, parse]);
				}
			}
		}
	}


	reactToParsedPerformativeInternal(performative:Term, text:string, speaker:string, parse:NLParseRecord)
	{
		let toAdd:Term[] = [];
		let context:NLContext = this.contextForSpeaker(speaker);
		// Since now we know they are talking to us, we can unify the LISTENER with ourselves:
		this.terminateConversationAfterThisPerformative = false;
		let perf2:Term = this.naturalLanguageParser.unifyListener(performative, this.selfID);
		if (perf2 == null) perf2 = performative;
		let nIntentions:number = this.intentions.length;
		let nQueuedIntentions:number = this.queuedIntentions.length;
		let tmp:Term[] = this.reactToPerformative(perf2, new ConstantTermAttribute(speaker, this.cache_sort_id), context);
		if (tmp!=null) toAdd = toAdd.concat(tmp);
		let nlcp:NLContextPerformative[] = context.newPerformative(speaker, text, perf2, parse, null, null, this.o, this.timeStamp);
		// add this performative to all the new intentions:
		if (nlcp.length > 0) {
			for(let i:number = nIntentions;i<this.intentions.length;i++) {
				if (this.intentions[i].requestingPerformative == null) {
					this.intentions[i].requestingPerformative = nlcp[0];
				}
			}
			for(let i:number = nQueuedIntentions;i<this.queuedIntentions.length;i++) {
				if (this.queuedIntentions[i].requestingPerformative == null) {
					this.queuedIntentions[i].requestingPerformative = nlcp[0];
				}
			}
		}
		if (this.terminateConversationAfterThisPerformative) context.endConversation();

		for(let t2 of toAdd) {
			console.log("reactToParsedPerformatives.toAdd: " + t2);
			this.addShortTermTerm(t2, REACTION_PROVENANCE);
		}
	}


	reactToParseError(speakerID:string, sentence:string)
	{
    	let context:NLContext = this.contextForSpeakerWithoutCreatingANewOne(speakerID);
    	if (context != null) {
    		if (this.talkingToUs(context, speakerID, null)) {
	    		// respond!
	    		if (this.naturalLanguageParser.error_semantic.length > 0) {
	    			console.log(this.selfID + ": semantic error when parsing a performative from " + speakerID);
	    			this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.parseerror('"+context.speaker+"'[#id], #not(verb.understand('"+this.selfID+"'[#id], #and(S:[sentence],the(S, [singular]))))))", this.o), null, null, null, this.timeStamp));
	    		} else if (this.naturalLanguageParser.error_deref.length > 0) {
	    			let error:NLDerefErrorRecord = null;
	    			let tmp:TermAttribute = null;
	    			let errorType:number = 0;
	    			let tokensLeftToParse:number = null;
	    			for(let e of this.naturalLanguageParser.error_deref) {
		    			if (e.derefFromContextError != null) {
		    				if (tokensLeftToParse == null || e.tokensLeftToParse < tokensLeftToParse) {
		    					error = e;
		    					tmp = e.derefFromContextError;
		    					errorType = e.derefErrorType;
		    					tokensLeftToParse = e.tokensLeftToParse;
			    				console.log("reporting derefFromContextError:"  + tmp);
			    			}
		    			} else if (e.derefUniversalError != null) {
		    				if (tokensLeftToParse == null || e.tokensLeftToParse < tokensLeftToParse) {
		    					error = e;
		    					tmp = e.derefUniversalError;
		    					errorType = e.derefErrorType;
		    					tokensLeftToParse = e.tokensLeftToParse;
			    				console.log("reporting derefUniversalError: " + tmp);
			    			}
		    			} else if (e.derefHypotheticalError != null) {
		    				if (tokensLeftToParse == null || e.tokensLeftToParse < tokensLeftToParse) {
		    					error = e;
			    				tmp = e.derefHypotheticalError;
			    				errorType = e.derefErrorType;
			    				tokensLeftToParse = e.tokensLeftToParse;
				    			console.log("reporting derefHypotheticalError: " + tmp);
				    		}
		    			} else if (e.derefQueryError != null) {
		    				if (tokensLeftToParse == null || e.tokensLeftToParse < tokensLeftToParse) {
		    					error = e;
			    				tmp = e.derefQueryError;
			    				errorType = e.derefErrorType;
				    			console.log("reporting derefQueryError: " + tmp);
				    			tokensLeftToParse = e.tokensLeftToParse;
				    		}
		    			}
		    			// some times there are many entries with error of type "DEREF_ERROR_CANNOT_PROCESS_EXPRESSION",
		    			// if there are entries with another type of error, prioritize those:
		    			//if (errorType == DEREF_ERROR_NO_REFERENTS ||
		    			//	errorType == DEREF_ERROR_CANNOT_DISAMBIGUATE) break;
	    			}

	    			// record the performative, even if we could not parse it (just in case there is a "perf.rephrase.entity" afterwards):
		            context.newPerformative(context.speaker, sentence, null, null, [error], null, this.o, this.timeStamp);

	    			if (errorType == DEREF_ERROR_NO_REFERENTS) {
		    			this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.parseerror('"+context.speaker+"'[#id], #not(verb.see('"+this.selfID+"'[#id], "+tmp+"))))", this.o), null, null, null, this.timeStamp));
	    			} else if (errorType == DEREF_ERROR_CANNOT_DISAMBIGUATE) {
		    			this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.parseerror('"+context.speaker+"'[#id], #not(verb.can('"+this.selfID+"'[#id], verb.disambiguate('"+this.selfID+"'[#id], "+tmp+")))))", this.o), null, null, null, this.timeStamp));
	    			} else {
//		    			this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.parseerror('"+context.speaker+"'[#id], #not(verb.understand('"+this.selfID+"'[#id], "+tmp+"))))", this.o), null, null, null, this.timeStamp));
		    			this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.parseerror('"+context.speaker+"'[#id], #not(verb.can('"+this.selfID+"'[#id], verb.parse('"+this.selfID+"'[#id], #and(S:[sentence],the(S, [singular])))))))", this.o), null, null, null, this.timeStamp));
	    			}
	    		} else if (this.naturalLanguageParser.error_unrecognizedTokens.length > 0) {
	    			this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.parseerror('"+context.speaker+"'[#id], #not(verb.understand('"+this.selfID+"'[#id], '"+this.naturalLanguageParser.error_unrecognizedTokens[0]+"'[symbol]))))", this.o), null, null, null, this.timeStamp));
	    		} else if (this.naturalLanguageParser.error_grammatical) {
	    			this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.parseerror('"+context.speaker+"'[#id], #not(verb.can('"+this.selfID+"'[#id], verb.parse('"+this.selfID+"'[#id], #and(S:[sentence],the(S, [singular])))))))", this.o), null, null, null, this.timeStamp));
	    		}
	    	} else {
	    		console.log("reactiveBehaviorUpdateToParseError("+this.selfID+"): no need to react, since we are not currently talking to " + speakerID);
	    	}
    	} else {
    		console.log("reactiveBehaviorUpdateToParseError("+this.selfID+"): no need to react, since we don't have a context for " + speakerID);
    	}
	}


	reactToPerformative(perf2:Term, speaker:TermAttribute, context:NLContext) : Term[]
	{
		let reaction:Term[] = [];
		let performativeHandled:boolean = false;
		let newExpectingThankyou:boolean = false;

		if (context.expectingAnswerToQuestion_stack.length > 0) {
			if (perf2.functor.name == "perf.inform") {
				// determine if it's a proper answer:
				reaction = this.reactToAnswerPerformative(perf2, speaker, context);
				if (reaction == null) {
					let t2:Term = Term.fromString("action.memorize('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
					t2.addAttribute(perf2.attributes[1]);
					this.intentions.push(new IntentionRecord(t2,null,context.getNLContextPerformative(perf2), null, this.timeStamp));
					this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.ack.invalidanswer('"+context.speaker+"'[#id]))", this.o), speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
					this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], "+context.expectingAnswerToQuestion_stack[context.expectingAnswerToQuestion_stack.length-1].performative+")", this.o), speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
					context.popLastQuestion();	// remove the question, since we will ask it again
				}
				performativeHandled = true;
			} else if (perf2.functor.is_a(this.o.getSort("perf.inform.answer")) ||
					   perf2.functor.is_a(this.o.getSort("perf.ack.ok"))) {
				// determine if it's a proper answer:
				reaction = this.reactToAnswerPerformative(perf2, speaker, context);
				if (reaction == null) {
					this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.ack.invalidanswer('"+context.speaker+"'[#id]))", this.o), speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
					this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], "+context.expectingAnswerToQuestion_stack[context.expectingAnswerToQuestion_stack.length-1].performative+")", this.o), speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
					context.popLastQuestion();	// remove the question, since we will ask it again
				}
				performativeHandled = true;
			} else if (perf2.functor.is_a(this.o.getSort("perf.question"))) {
				// in this case, we accept the performative. It will be handled below
			} else if (perf2.functor.is_a(this.o.getSort("perf.request.action")) ||
				       perf2.functor.is_a(this.o.getSort("perf.request.stopaction"))) {
				// in this case, we accept the performative. It will be handled below
			} else {
				this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.ack.invalidanswer('"+context.speaker+"'[#id]))", this.o), speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
				this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], "+context.expectingAnswerToQuestion_stack[context.expectingAnswerToQuestion_stack.length-1].performative+")", this.o), speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
				context.popLastQuestion();	// remove the question, since we will ask it again
				performativeHandled = true;
			}

		} else if (context.expectingConfirmationToRequest_stack.length > 0) {
		    if (perf2.functor.is_a(this.o.getSort("perf.ack.ok"))) {
		    	// ok, clear requests:
		    	context.expectingConfirmationToRequest_stack = [];
		    	context.expectingConfirmationToRequestTimeStamp_stack = [];
		    	performativeHandled = true;
		    } else if (perf2.functor.is_a(this.o.getSort("perf.ack.denyrequest"))) {
		    	context.expectingConfirmationToRequest_stack = [];
		    	context.expectingConfirmationToRequestTimeStamp_stack = [];
		    	performativeHandled = true;

				let term:Term = Term.fromString("action.talk('"+this.selfID+"'[#id], perf.ack.ok('"+context.speaker+"'[#id]))", this.o);
				this.intentions.push(new IntentionRecord(term, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} if (perf2.functor.is_a(this.o.getSort("perf.inform.answer"))) {
				// TODO: we should probably check if it's a valid answer, but for now just clear the queues
		    	context.expectingConfirmationToRequest_stack = [];
		    	context.expectingConfirmationToRequestTimeStamp_stack = [];
		    	performativeHandled = true;

		    	if (perf2.attributes.length>=2 &&
		    		perf2.attributes[1] instanceof ConstantTermAttribute) {
		    		let answer:string = (<ConstantTermAttribute>perf2.attributes[1]).value;
		    		if (answer == "no") {
						let term:Term = Term.fromString("action.talk('"+this.selfID+"'[#id], perf.ack.ok('"+context.speaker+"'[#id]))", this.o);
						this.intentions.push(new IntentionRecord(term, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
		    		}
		    	}
			}
		}

		if (!performativeHandled) {
			if (perf2.functor.name == "perf.callattention") {
				if (context.speaker != "qwerty" && context.speaker != "shrdlu" && context.speaker != "etaoin") {
					// we only confirm to the player, since otherwise, the AIs get all confused in loops some times
					this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.answer('"+context.speaker+"'[#id],'yes'[symbol]))", this.o), speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
				}
			} else if (perf2.functor.name == "perf.greet") {
				if (!context.expectingGreet) {
					this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.greet('"+context.speaker+"'[#id]))", this.o), speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
				}
			} else if (perf2.functor.name == "perf.farewell") {
				if (!context.expectingFarewell) {
					this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.farewell('"+context.speaker+"'[#id]))", this.o), speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
				}
				context.inConversation = false;
			} else if (perf2.functor.name == "perf.nicetomeetyou") {
				this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.nicetomeetyoutoo('"+context.speaker+"'[#id]))", this.o), speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} else if (perf2.functor.name == "perf.nicetomeetyoutoo") {
				// just ignore ...
			} else if (perf2.functor.name == "perf.thankyou") {
				// If the "thank you" was necessary, then respond with a "you are welcome":
				if (context.expectingThankYou) {
					newExpectingThankyou = false;
					this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.youarewelcome('"+context.speaker+"'[#id]))", this.o), speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
				}
			} else if (perf2.functor.name == "perf.youarewelcome") {
				// Do nothing
			} else if (perf2.functor.name == "perf.q.howareyou") {
				this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.answer('"+context.speaker+"'[#id],'fine'[symbol]))", this.o), speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} else if (perf2.functor.name == "perf.ack.ok") {
				// Do nothing
			} else if (perf2.functor.name == "perf.ackresponse") {
				// Do nothing
			} else if (perf2.functor.name == "perf.ack.contradict") {
				console.error("RuleBasedAI.reactToPerformative: not sure how to react to " + perf2);
			} else if (perf2.functor.name == "perf.inform") {
				this.handlePerfInform(perf2, speaker, context);
			} else if (perf2.functor.name == "perf.inform.answer") {
				if (!this.reportDereferenceErrorIfNoTokensLeftToParse(context)) {
					let term:Term = Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform('"+context.speaker+"'[#id], #and(#not(X:verb.ask('"+this.selfID+"'[#id], 'pronoun.anything'[pronoun.anything])), time.past(X))))", this.o);
					this.intentions.push(new IntentionRecord(term, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
				}
			} else if (perf2.functor.name == "perf.q.predicate") {
				this.handlePerfQPredicate(perf2, speaker, context);
			} else if (perf2.functor.name == "perf.q.predicate-negated") {
				let t2:Term = Term.fromString("action.answer.predicate-negated('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
				for(let i:number = 1;i<perf2.attributes.length;i++) {
					t2.addAttribute(perf2.attributes[i]);
				}
				this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} else if (perf2.functor.name == "perf.q.whereis") {
				let t2:Term = Term.fromString("action.answer.whereis('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
				for(let i:number = 1;i<perf2.attributes.length;i++) {
					t2.addAttribute(perf2.attributes[i]);
				}
				this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} else if (perf2.functor.name == "perf.q.whereto") {
				let t2:Term = Term.fromString("action.answer.whereto('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
				for(let i:number = 1;i<perf2.attributes.length;i++) {
					t2.addAttribute(perf2.attributes[i]);
				}
				this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} else if (perf2.functor.name == "perf.q.whois.name") {
				let t2:Term = Term.fromString("action.answer.whois.name('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
				for(let i:number = 1;i<perf2.attributes.length;i++) {
					t2.addAttribute(perf2.attributes[i]);
				}
				this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} else if (perf2.functor.name == "perf.q.whois.noname") {
				let t2:Term = Term.fromString("action.answer.whois.noname('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
				for(let i:number = 1;i<perf2.attributes.length;i++) {
					t2.addAttribute(perf2.attributes[i]);
				}
				this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} else if (perf2.functor.name == "perf.q.whatis.name") {
				let t2:Term = Term.fromString("action.answer.whatis.name('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
				t2.addAttribute(perf2.attributes[1]);
				this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} else if (perf2.functor.name == "perf.q.whatis.noname") {
				let t2:Term = Term.fromString("action.answer.whatis.noname('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
				t2.addAttribute(perf2.attributes[1]);
				this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} else if (perf2.functor.name == "perf.q.query") {
				let t2:Term = Term.fromString("action.answer.query('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
//				(<TermTermAttribute>t2.attributes[0]).term.addAttribute(perf2.attributes[1]);
//				(<TermTermAttribute>t2.attributes[0]).term.addAttribute(perf2.attributes[2]);
				t2.addAttribute(new TermTermAttribute(perf2));
				this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} else if (perf2.functor.name == "perf.q.query-followup") {
				let t2:Term = Term.fromString("action.answer.query-followup('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
				t2.addAttribute(perf2.attributes[1]);
				this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} else if (perf2.functor.name == "perf.q.howmany") {
				let t2:Term = Term.fromString("action.answer.howmany('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
//				(<TermTermAttribute>t2.attributes[0]).term.addAttribute(perf2.attributes[1]);
//				(<TermTermAttribute>t2.attributes[0]).term.addAttribute(perf2.attributes[2]);
				t2.addAttribute(new TermTermAttribute(perf2));
				this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} else if (perf2.functor.name == "perf.q.when") {
				let t2:Term = Term.fromString("action.answer.when('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
				for(let i:number = 1;i<perf2.attributes.length;i++) {
					t2.addAttribute(perf2.attributes[i]);
				}
				this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} else if (perf2.functor.name == "perf.q.why") {
				let t2:Term = Term.fromString("action.answer.why('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
				for(let i:number = 1;i<perf2.attributes.length;i++) {
					t2.addAttribute(perf2.attributes[i]);
				}
				this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} else if (perf2.functor.name == "perf.q.how") {
				let t2:Term = Term.fromString("action.answer.how('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
				for(let i:number = 1;i<perf2.attributes.length;i++) {
					t2.addAttribute(perf2.attributes[i]);
				}
				this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} else if (perf2.functor.name == "perf.q.distance") {
				let t2:Term = Term.fromString("action.answer.distance('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
				for(let i:number = 1;i<perf2.attributes.length;i++) {
					t2.addAttribute(perf2.attributes[i]);
				}
				this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			} else if (perf2.functor.name == "perf.request.action" || 
					   perf2.functor.name == "perf.q.action") {
				this.reactToRequestActionPerformative(perf2, speaker, context);
			} else if (perf2.functor.name == "perf.request.stopaction") {
				if (perf2.attributes[1] instanceof TermTermAttribute) {
					let action:Term = (<TermTermAttribute>(perf2.attributes[1])).term;
					if (perf2.attributes.length>=3 &&
						perf2.attributes[2] instanceof TermTermAttribute) {
						// this means that the action request has a variable and we need to start an inference process:
						/*
						let intention_l:Term[] = NLParser.termsInList((<TermTermAttribute>perf2.attributes[2]).term, "#and");;
						let target1Terms:Term[] = [];
						let target1Signs:boolean[] = [];
						for(let i:number = 0;i<intention_l.length;i++) {
							if (intention_l[i].functor.name == "#not") {
								target1Terms.push((<TermTermAttribute>(intention_l[i].attributes[0])).term);
								target1Signs.push(true);
							} else {
								target1Terms.push(intention_l[i]);
								target1Signs.push(false);
							}
						}

						// 2) start the inference process:
						let target1:Sentence[] = [];
						target1.push(new Sentence(target1Terms, target1Signs));*/

						let targets:Sentence[][] = [];
						let negatedExpression:Term = new Term(this.o.getSort("#not"),
															  [new TermTermAttribute((<TermTermAttribute>perf2.attributes[2]).term)])
						let target:Sentence[] = Term.termToSentences(negatedExpression, this.o);
						targets.push(target)
						let ir:InferenceRecord = new InferenceRecord(this, [], targets, 1, 0, false, null, new StopAction_InferenceEffect(action));

						// let ir:InferenceRecord = new InferenceRecord(this, [], [target1], 1, 0, false, null, new StopAction_InferenceEffect(action));
						ir.triggeredBy = perf2;
						ir.triggeredBySpeaker = context.speaker;
						this.queuedInferenceProcesses.push(ir);
					} else {
						if (this.stopAction(action, context.speaker)) {
							// account for the fact that maybe the request was to stop talking
							if (!this.terminateConversationAfterThisPerformative) {
								let term:Term = Term.fromString("action.talk('"+this.selfID+"'[#id], perf.ack.ok('"+context.speaker+"'[#id]))", this.o);
								this.intentions.push(new IntentionRecord(term, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
							}
						} else {
							let tmp:string = "action.talk('"+this.selfID+"'[#id], perf.ack.denyrequest('"+context.speaker+"'[#id]))";
							let term:Term = Term.fromString(tmp, this.o);
							let cause:Term = Term.fromString("#not("+action+")", this.o);
							this.intentions.push(new IntentionRecord(term, speaker, context.getNLContextPerformative(perf2), new CauseRecord(cause, null, this.timeStamp), this.timeStamp));
						}
					}
				} else {
					let tmp:string = "action.talk('"+this.selfID+"'[#id], perf.ack.denyrequest('"+context.speaker+"'[#id]))";
					let term:Term = Term.fromString(tmp, this.o);
					this.intentions.push(new IntentionRecord(term, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
				}
			} else if (perf2.functor.name == "perf.moreresults") {
				if (context.lastEnumeratedQuestion_answered != null) {
					this.reactToMoreResultsPerformative(perf2, speaker, context);
					newExpectingThankyou = true;
				} else {
					// we don't understand this question:
					let term:Term = Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform('"+context.speaker+"'[#id],#not(verb.understand('"+this.selfID+"'[#id]))))", this.o);
					this.intentions.push(new IntentionRecord(term, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
				}

			} else if (perf2.functor.name == "perf.request.repeataction") {
				if (context.lastEnumeratedQuestion_answered != null) {
					this.reactToMoreResultsPerformative(perf2, speaker, context);
					newExpectingThankyou = true;
				} else {
					if (!this.reactToRepeatActionPerformative(perf2, speaker, context)) {
						let tmp:string = "action.talk('"+this.selfID+"'[#id], perf.ack.denyrequest('"+context.speaker+"'[#id]))";
						let term:Term = Term.fromString(tmp, this.o);
						this.intentions.push(new IntentionRecord(term, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
					}
				}

			} else if (perf2.functor.name == "perf.ack.denyrequest") {
				let term:Term = Term.fromString("action.talk('"+this.selfID+"'[#id], perf.ack.ok('"+context.speaker+"'[#id]))", this.o);
				this.intentions.push(new IntentionRecord(term, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));

			} else if (perf2.functor.name == "perf.rephrase.entity") {
				this.reactToRephraseEntityPerformative(perf2, speaker, context);
			} else if (perf2.functor.name == "perf.changemind") {
				console.log("RuleBasedAI.reactToPerformative: nothing to do for " + perf2);
			} else {
				console.error("RuleBasedAI.reactToPerformative: unknown performative " + perf2);
			}
		}

		// update conversation state:
		context.expectingThankYou = newExpectingThankyou;
		context.expectingYouAreWelcome = false;
		context.expectingGreet = false;
		context.expectingFarewell = false;		

		return reaction;
	}


	handlePerfInform(perf2: Term, speaker:TermAttribute, context:NLContext) 
	{
		let t2:Term = Term.fromString("action.memorize('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
		t2.addAttribute(perf2.attributes[1]);
		this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
	}


	handlePerfQPredicate(perf2: Term, speaker:TermAttribute, context:NLContext) 
	{
		let t2:Term = Term.fromString("action.answer.predicate('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
		for(let i:number = 1;i<perf2.attributes.length;i++) {
			t2.addAttribute(perf2.attributes[i]);
		}
		this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
	}


	replaceID(t:Term, id:ConstantTermAttribute, replacement:TermAttribute)
	{
		for(let i:number = 0;i<t.attributes.length;i++) {
			if (t.attributes[i] instanceof ConstantTermAttribute) {
				if (t.attributes[i] == id) {
					t.attributes[i] = replacement;
				}
			} else if (t.attributes[i] instanceof TermTermAttribute) {
				this.replaceID((<TermTermAttribute>t.attributes[i]).term, id, replacement);
			}
		}
	}


	reactToRequestActionPerformative(perf2:Term, speaker:TermAttribute, context:NLContext) 
	{
		this.clearEpisodeTerms();

		if (perf2.attributes[1] instanceof TermTermAttribute) {
			let action:Term = (<TermTermAttribute>(perf2.attributes[1])).term;
			let needsInference:boolean = false;
			if (perf2.attributes.length >= 4 &&
				perf2.attributes[2] instanceof TermTermAttribute) {
				needsInference = true;
				for(let ih of this.intentionHandlers) {
					if (ih.canHandle(action, this)) {
						if (ih.canHandleWithoutInference(perf2)) {
							needsInference = false;
							break;
						}
					}
				}

				if (needsInference) {
					// Extract the time terms:
					// ...


					let forAlls:Term[] = [];
					if (perf2.attributes.length >= 5) {
						forAlls = NLParser.termsInList((<TermTermAttribute>(perf2.attributes[4])).term, "#and");
					}
					console.log("reactToRequestActionPerformative, forAlls: " + forAlls);

					// this means that the action request has a variable and we need to start an inference process:
					let targets:Sentence[][] = [];
					let negatedExpression:Term = new Term(this.o.getSort("#not"),
														  [new TermTermAttribute((<TermTermAttribute>perf2.attributes[2]).term)])
					let target:Sentence[] = Term.termToSentences(negatedExpression, this.o);
					targets.push(target)

					// negate the forAlls:
					for(let forAll of forAlls) {
						if (forAll.attributes.length >= 2 && 
							forAll.attributes[1] instanceof TermTermAttribute) {
							let forAllTerm:Term = (<TermTermAttribute>(forAll.attributes[1])).term;
					        let negatedForAll:Sentence[] = Term.termToSentences(new Term(this.o.getSort("#not"), [new TermTermAttribute(forAllTerm)]), this.o);
					        targets.push(negatedForAll);
					    }
					}

					// 2) start the inference process:
					let ir:InferenceRecord = new InferenceRecord(this, [], targets, 1, 0, false, null, new ExecuteAction_InferenceEffect(perf2));
					ir.triggeredBy = perf2;
					ir.triggeredBySpeaker = context.speaker;
					this.queuedInferenceProcesses.push(ir);
					return;
				}
			}
			if (perf2.attributes.length == 2 ||
				(perf2.attributes.length >= 4 && !needsInference)) {
				// First check if the actor is us:
				let ir:IntentionRecord = new IntentionRecord(action, new ConstantTermAttribute(context.speaker, this.cache_sort_id), context.getNLContextPerformative(perf2), null, this.timeStamp)
				let tmp:number = this.canSatisfyActionRequest(ir);
				if (tmp == ACTION_REQUEST_CAN_BE_SATISFIED) {
					this.queuedIntentions.push(ir);
					// Request for executing an action that can be satisfied. However, maybe we might need to plan for it.
					// So, invoke the planner (if it exists), before executing the action:
					// this.planForAction(ir);
				} else if (tmp == ACTION_REQUEST_CANNOT_BE_SATISFIED) {
					if (action.attributes.length>=1 &&
						(action.attributes[0] instanceof ConstantTermAttribute) &&
						(<ConstantTermAttribute>action.attributes[0]).value == this.selfID) {					
						let tmp:string = "action.talk('"+this.selfID+"'[#id], perf.ack.denyrequest('"+context.speaker+"'[#id]))";
						let term:Term = Term.fromString(tmp, this.o);
						this.intentions.push(new IntentionRecord(term, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
					} else {
						// The action is not for us, just say "ok" :)
						let term:Term = Term.fromString("action.talk('"+this.selfID+"'[#id], perf.ack.ok('"+context.speaker+"'[#id]))", this.o);
						this.intentions.push(new IntentionRecord(term, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));

						// If the speaker is requesting an action for herself, then record it in the memory as a "verb.want":
						let speakerID:string = null;
						if (speaker instanceof ConstantTermAttribute) speakerID = (<ConstantTermAttribute>speaker).value;
						if (action.attributes.length>=1 &&
							(action.attributes[0] instanceof ConstantTermAttribute) &&
							(<ConstantTermAttribute>action.attributes[0]).value == speakerID) {
							let term2:Term = new Term(this.o.getSort("verb.want"), [speaker, new TermTermAttribute(action)]);
							let term3:Term = Term.fromString("action.memorize('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
							term3.attributes.push(new TermTermAttribute(term2));
							this.intentions.push(new IntentionRecord(term3, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
						}						
					}
				}
			} else {
				let tmp:string = "action.talk('"+this.selfID+"'[#id], perf.ack.denyrequest('"+context.speaker+"'[#id]))";
				let term:Term = Term.fromString(tmp, this.o);
				this.intentions.push(new IntentionRecord(term, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
			}
		} else {
			let tmp:string = "action.talk('"+this.selfID+"'[#id], perf.ack.denyrequest('"+context.speaker+"'[#id]))";
			let term:Term = Term.fromString(tmp, this.o);
			this.intentions.push(new IntentionRecord(term, speaker, context.getNLContextPerformative(perf2), null, this.timeStamp));
		}
	}


	reactToRepeatActionPerformative(perf:Term, speaker:TermAttribute, context:NLContext) : boolean
	{
		this.clearEpisodeTerms();

		// to be handled by the classes that inherit from this one
		return false;
	}


	reactToMoreResultsPerformative(perf:Term, speaker:TermAttribute, context:NLContext)
	{		
		if (context.lastEnumeratedQuestion_next_answer_index < context.lastEnumeratedQuestion_answers.length) {
			let resultsTA:TermAttribute = null;
			if (context.lastEnumeratedQuestion_answers.length > 
				context.lastEnumeratedQuestion_next_answer_index + this.maximum_answers_to_give_at_once_for_a_query) {
				resultsTA = new ConstantTermAttribute("etcetera",this.o.getSort("etcetera"));
				for(let i:number = 0;i<this.maximum_answers_to_give_at_once_for_a_query;i++) {
					resultsTA = new TermTermAttribute(new Term(this.o.getSort("#and"),[context.lastEnumeratedQuestion_answers[context.lastEnumeratedQuestion_next_answer_index], resultsTA]));
					context.lastEnumeratedQuestion_next_answer_index++;
				}
			} else {
				for(;context.lastEnumeratedQuestion_next_answer_index<context.lastEnumeratedQuestion_answers.length ; context.lastEnumeratedQuestion_next_answer_index++) {
					if (resultsTA == null) {
						resultsTA = context.lastEnumeratedQuestion_answers[context.lastEnumeratedQuestion_next_answer_index];
					} else {
						resultsTA = new TermTermAttribute(new Term(this.o.getSort("#and"),[context.lastEnumeratedQuestion_answers[context.lastEnumeratedQuestion_next_answer_index], resultsTA]));
					}
				}
			}
			let term:Term = Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.answer('"+context.speaker+"'[#id],"+resultsTA+"))", this.o);
			// give more answers:
			this.intentions.push(new IntentionRecord(term, speaker, context.getNLContextPerformative(perf), null, this.timeStamp));
//						context.lastEnumeratedQuestion_next_answer_index++;
		} else {
			// no more answers to be given:
			let term:Term = Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.answer('"+context.speaker+"'[#id],'no-matches-found'[symbol]))", this.o);
			this.intentions.push(new IntentionRecord(term, speaker, context.getNLContextPerformative(perf), null, this.timeStamp));
		}
	}


	reactToRephraseEntityPerformative(perf:Term, speaker:TermAttribute, context:NLContext)
	{
		// Find the previous performative:
		let previous:NLContextPerformative = context.lastPerformativeByExcept(context.speaker, perf);
		if (previous == null) {
			// do not understand:
			this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.parseerror('"+context.speaker+"'[#id], #not(verb.can('"+this.selfID+"'[#id], verb.understand('"+this.selfID+"'[#id], #and(S:[sentence],the(S, [singular])))))))", this.o), null, null, null, this.timeStamp));
		}
		if (previous.performative != null) {
			if (perf.attributes.length == 2 && 
				(perf.attributes[1] instanceof ConstantTermAttribute)) {
				// see if it has a single mention to an entity (other than attribute 0, which is the listener):
				let previousPerf:Term = previous.performative;
				let IDs:ConstantTermAttribute[] = [];
				for(let i:number = 1;i<previousPerf.attributes.length;i++) {
					if (previousPerf.attributes[i] instanceof ConstantTermAttribute) {
						IDs.push(<ConstantTermAttribute>(previousPerf.attributes[i]));
					} else if (previousPerf.attributes[i] instanceof TermTermAttribute) {
						NLContext.searchForIDsInClause((<TermTermAttribute>previousPerf.attributes[i]).term, IDs, this.o);
					}
				}
				console.log("IDs: " + IDs);
				if (IDs.length == 1) {
					// repeat the previous performative, but replacing the previous ID by the new ID:
					let newPerf:Term = previousPerf.clone([]);
					this.replaceID(newPerf, IDs[0], perf.attributes[1]);
					this.reactToPerformative(newPerf, speaker, context);
				} else {
					// do not understand:
					this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.parseerror('"+context.speaker+"'[#id], #not(verb.can('"+this.selfID+"'[#id], verb.understand('"+this.selfID+"'[#id], #and(S:[sentence],the(S, [singular])))))))", this.o), null, null, null, this.timeStamp));
				}
			} else {
				// TODO: Case not handled:
				// do not understand:
				this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.parseerror('"+context.speaker+"'[#id], #not(verb.can('"+this.selfID+"'[#id], verb.understand('"+this.selfID+"'[#id], #and(S:[sentence],the(S, [singular])))))))", this.o), null, null, null, this.timeStamp));
			}

		} else if (previous.derefErrors != null && previous.derefErrors.length > 0 &&
				   previous.derefErrors[0].derefFromContextError != null &&
				   (previous.derefErrors[0].derefFromContextError instanceof TermTermAttribute)) {
			let error:TermTermAttribute = <TermTermAttribute>(previous.derefErrors[0].derefFromContextError);
			if (perf.attributes.length == 2 && 
				(perf.attributes[1] instanceof ConstantTermAttribute)) {
				// The previous performative was a parse error:
				console.log("reactToRephraseEntityPerformative: and previous performative was a deref error: "+error+" -> " + perf.attributes[1]);
					
				HandleRephrasing_InferenceEffect.handleRephrasing(previous.text, perf.attributes[1], error, context.speaker, this);				
			} else if (perf.attributes.length >= 3 &&
					   (perf.attributes[1] instanceof VariableTermAttribute)) {
				// Needs inference:
				let intention:Term = new Term(this.o.getSort("action.answer.rephrase"),
											  [new ConstantTermAttribute(this.selfID, this.o.getSort("#id")),
											   speaker,
											   new TermTermAttribute(perf),
											   new ConstantTermAttribute(previous.text, this.o.getSort("symbol")),
											   error]);
				AnswerQuery_IntentionAction.launchQueryInference(intention, null, this, "HandleRephrasing_InferenceEffect");
			}
		} else {
			// do not understand:
			this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.parseerror('"+context.speaker+"'[#id], #not(verb.can('"+this.selfID+"'[#id], verb.understand('"+this.selfID+"'[#id], #and(S:[sentence],the(S, [singular])))))))", this.o), null, null, null, this.timeStamp));
		}
	}


	canSatisfyActionRequest(ir:IntentionRecord) : number
	{
		let actionRequest:Term = ir.action;
		let functor:Sort = actionRequest.functor;
		if (functor.name == "#and") {
			let actionRequest_l:Term[] = NLParser.termsInList(actionRequest, "#and");
			actionRequest = actionRequest_l[0];
		}

		for(let ih of this.intentionHandlers) {
			if (ih.canHandle(actionRequest, this)) return ACTION_REQUEST_CAN_BE_SATISFIED;
		}
		return ACTION_REQUEST_CANNOT_BE_SATISFIED;
	}


	stopAction(actionRequest:Term, requester:string) : boolean
	{
		if (actionRequest.functor.is_a(this.cache_sort_action_talk)) {
			if (actionRequest.attributes.length == 3 &&
				(actionRequest.attributes[1] instanceof VariableTermAttribute) &&
				(actionRequest.attributes[2] instanceof ConstantTermAttribute)) {
				let target:string = (<ConstantTermAttribute>actionRequest.attributes[2]).value;
				let context:NLContext = this.contextForSpeaker(target);
				if (context != null) this.terminateConversationAfterThisPerformative = true;
				return true;
			} else if (actionRequest.attributes.length == 1) {
				let context:NLContext = this.contextForSpeaker(requester);
				if (context != null) this.terminateConversationAfterThisPerformative = true;
				return true;
			}
		} else if (actionRequest.functor.is_a(this.cache_sort_action_think)) {
			if (actionRequest.attributes.length == 1) {
				// stop inference processes:
				this.currentInferenceProcess = null;	
				this.queuedInferenceProcesses = [];
				return true;
			} else {
				return false;
			}
		}
		return false;
	}


	reportDereferenceErrorIfNoTokensLeftToParse(context:NLContext) : boolean
	{
		// If there were any dereference errors, report those instead:
		let tmp:TermAttribute = null;
		let errorType:number = 0;
		for(let e of this.naturalLanguageParser.error_deref) {
			if (e.tokensLeftToParse > 0) continue;
			if (e.derefFromContextError != null) {
				if (errorType > e.derefErrorType) continue;
				tmp = e.derefFromContextError;
				errorType = e.derefErrorType;
			} else if (e.derefUniversalError != null) {
				if (errorType > e.derefErrorType) continue;
				tmp = e.derefUniversalError;
				errorType = e.derefErrorType;
			} else if (e.derefHypotheticalError != null) {
				if (errorType > e.derefErrorType) continue;
				tmp = e.derefHypotheticalError;
				errorType = e.derefErrorType;
			} else if (e.derefQueryError != null) {
				if (errorType > e.derefErrorType) continue;
				tmp = e.derefQueryError;
				errorType = e.derefErrorType;
			}
		}

		if (errorType == DEREF_ERROR_NO_REFERENTS) {
			this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.parseerror('"+context.speaker+"'[#id], #not(verb.see('"+this.selfID+"'[#id], "+tmp+"))))", this.o), null, null, null, this.timeStamp));
			return true;
		} else if (errorType == DEREF_ERROR_CANNOT_DISAMBIGUATE) {
			this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform.parseerror('"+context.speaker+"'[#id], #not(verb.can('"+this.selfID+"'[#id], verb.disambiguate('"+this.selfID+"'[#id], "+tmp+")))))", this.o), null, null, null, this.timeStamp));
			return true;
		}
		return false;
	}


	reactToAnswerPerformative(perf:Term, speaker:TermAttribute, context:NLContext) : Term[]
	{
		let reaction:Term[] = [];

		if (context.expectingAnswerToQuestion_stack.length == 0 ||
			context.expectingAnswerToQuestion_stack[context.expectingAnswerToQuestion_stack.length-1] == null) {
			
			if (!this.reportDereferenceErrorIfNoTokensLeftToParse(context)) {
				// Otherwise, just say that we did not ask anything:
				let term:Term = Term.fromString("action.talk('"+this.selfID+"'[#id], perf.inform('"+context.speaker+"'[#id], #and(#not(X:verb.ask('"+this.selfID+"'[#id], 'pronoun.anything'[pronoun.anything])), time.past(X))))", this.o);
				this.intentions.push(new IntentionRecord(term, speaker, context.getNLContextPerformative(perf), null, this.timeStamp));
			}
			return reaction;						
		}

		let lastQuestion:NLContextPerformative = context.expectingAnswerToQuestion_stack[context.expectingAnswerToQuestion_stack.length-1];

		console.log("Checking if " + perf + " is a proper answer to " + lastQuestion.performative);
		if (lastQuestion.performative.functor.is_a(this.o.getSort("perf.q.predicate"))) {
			// perf.inform.answer(LISTENER, 'yes'[#id])
			if ((perf.functor.is_a(this.o.getSort("perf.inform")) && perf.attributes.length == 2)) {
				if ((perf.attributes[1] instanceof ConstantTermAttribute)) {
					if ((<ConstantTermAttribute>(perf.attributes[1])).value == "yes") {
						let toMemorize:Term[] = this.sentenceToMemorizeFromPredicateQuestion(lastQuestion.performative, true);
						if (toMemorize == null) {
							// not a proper answer to the question
							this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.ack.invalidanswer('"+context.speaker+"'[#id]))", this.o), speaker, context.getNLContextPerformative(perf), null, this.timeStamp));
							context.popLastQuestion();	// remove the question, since we will ask it again
							this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], "+lastQuestion.performative+")", this.o), speaker, context.getNLContextPerformative(perf), null, this.timeStamp));
							return reaction;
						} else {
							for(let t of toMemorize) {
								let t2:Term = Term.fromString("action.memorize('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
								t2.addAttribute(new TermTermAttribute(t));
								this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf), null, this.timeStamp));
							}
							context.popLastQuestion();	// remove the question, it's been answered
							return reaction;
						}
					} else if ((<ConstantTermAttribute>(perf.attributes[1])).value == "no") {
						let toMemorize:Term[] = this.sentenceToMemorizeFromPredicateQuestion(lastQuestion.performative, false);
						if (toMemorize == null) {
							this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.ack.invalidanswer('"+context.speaker+"'[#id]))", this.o), speaker, context.getNLContextPerformative(perf), null, this.timeStamp));
							context.popLastQuestion();	// remove the question, since we will ask it again
							this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], "+lastQuestion.performative+")", this.o), speaker, context.getNLContextPerformative(perf), null, this.timeStamp));
							return reaction;
						} else {
							for(let t of toMemorize) {
								let t2:Term = Term.fromString("action.memorize('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
								t2.addAttribute(new TermTermAttribute(t));
								this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf), null, this.timeStamp));
							}							
							context.popLastQuestion();	// remove the question, it's been answered
							return reaction;
						}
					} else if ((<ConstantTermAttribute>(perf.attributes[1])).value == "unknown") {
						// nothing to do
						context.popLastQuestion();	// remove the question, it's been answered
						return [];
					} else {
						console.error("unsuported answer to perf.q.predicate " + perf);
						return null;
					}
				} else {
					let toMemorize:Term[] = this.sentenceToMemorizeFromPredicateQuestionWithInformAnswer(lastQuestion.performative, perf);
					if (toMemorize == null) {
						this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.ack.invalidanswer('"+context.speaker+"'[#id]))", this.o), speaker, context.getNLContextPerformative(perf), null, this.timeStamp));
						context.popLastQuestion();	// remove the question, since we will ask it again
						this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], "+lastQuestion.performative+")", this.o), speaker, context.getNLContextPerformative(perf), null, this.timeStamp));
						return reaction;
					} else {
						for(let t of toMemorize) {
							let t2:Term = Term.fromString("action.memorize('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
							t2.addAttribute(new TermTermAttribute(t));
							this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf), null, this.timeStamp));
						}
						context.popLastQuestion();	// remove the question, it's been answered
						return reaction;
					}
				}
			} else {
				console.error("unsuported answer to perf.q.predicate " + perf);
				return null;
			}

		} else if (lastQuestion.performative.functor.is_a(this.o.getSort("perf.q.query"))) {
			if (perf.functor.is_a(this.o.getSort("perf.inform"))) {
				let toMemorize:Term[] = this.sentenceToMemorizeFromQueryQuestion(lastQuestion.performative, perf);
				console.log("toMemorize: " + toMemorize);
				if (toMemorize == null) {
					this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], perf.ack.invalidanswer('"+context.speaker+"'[#id]))", this.o), speaker, context.getNLContextPerformative(perf), null, this.timeStamp));
					context.popLastQuestion();	// remove the question, since we will ask it again
					this.intentions.push(new IntentionRecord(Term.fromString("action.talk('"+this.selfID+"'[#id], "+lastQuestion.performative+")", this.o), speaker, context.getNLContextPerformative(perf), null, this.timeStamp));
					return reaction;
				} else {
					for(let t of toMemorize) {
						let t2:Term = Term.fromString("action.memorize('"+this.selfID+"'[#id], '"+context.speaker+"'[#id])", this.o);
						t2.addAttribute(new TermTermAttribute(t));
						this.intentions.push(new IntentionRecord(t2, speaker, context.getNLContextPerformative(perf), null, this.timeStamp));
					}
					context.popLastQuestion();	// remove the question, it's been answered
					return reaction;
				}
			} else {
				console.error("unsuported answer to perf.q.query " + perf);
				return null;
			}

		} else if (lastQuestion.performative.functor.is_a(this.o.getSort("perf.q.action"))) {
			if ((perf.functor.is_a(this.o.getSort("perf.inform")) && perf.attributes.length == 2) ||
				(perf.functor.is_a(this.o.getSort("perf.inform.answer")) && perf.attributes.length == 3)) {

				if (perf.attributes.length == 3) {
					let answerPredicate:TermAttribute = perf.attributes[2];
					let questionPredicate:TermAttribute = lastQuestion.performative.attributes[1];

					console.log("  - answerPredicate: " + answerPredicate);
					console.log("  - questionPredicate: " + questionPredicate);

					if (!(answerPredicate instanceof TermTermAttribute) ||
						!(questionPredicate instanceof TermTermAttribute)) {
						console.log("predicates are not terms!!");
						return null;
					}

					let ap_term:Term = (<TermTermAttribute>answerPredicate).term;
					let qp_term:Term = (<TermTermAttribute>questionPredicate).term;
					if (ap_term.equalsNoBindings(qp_term) != 1) {
						console.log("predicates do not match!!");
						return null;
					}
				}

				if ((perf.attributes[1] instanceof ConstantTermAttribute)) {
					if ((<ConstantTermAttribute>(perf.attributes[1])).value == "yes") {
						// ...
						context.popLastQuestion();	// remove the question, it's been answered
						return [];
					} else if ((<ConstantTermAttribute>(perf.attributes[1])).value == "no") {
						// ...
						context.popLastQuestion();	// remove the question, it's been answered
						return [];
					} else if ((<ConstantTermAttribute>(perf.attributes[1])).value == "unknown") {
						// ...
						context.popLastQuestion();	// remove the question, it's been answered
						return [];
					} else {
						console.error("unsuported answer to perf.q.action " + perf);
						return null;
					}
				} else {
					console.error("unsuported answer to perf.q.action " + perf);
					return null;
				}
			} else if (perf.functor.is_a(this.o.getSort("perf.ack.ok"))) {
				// ...
				context.popLastQuestion();	// remove the question, it's been answered
				return [];
			} else {
				console.error("unsuported answer to perf.q.action " + perf);
				return null;
			}

		} else {
			console.error("answers to questions of type " + lastQuestion.performative.functor + " not yet supported...");
			return null;
		}
	}


	sentenceToMemorizeFromPredicateQuestion(predicateQuestion:Term, answer:boolean) : Term[]
	{
//		console.log("sentenceToMemorizeFromPredicateQuestion.predicateQuestion: " + predicateQuestion);
//		console.log("sentenceToMemorizeFromPredicateQuestion.answer: " + answer);
		if (!(predicateQuestion.attributes[1] instanceof TermTermAttribute)) return [];
		let queryTerm:Term = (<TermTermAttribute>(predicateQuestion.attributes[1])).term;
		// if there are variables, that means there was a query involved, so, we don't know how to do it:
		if (queryTerm.getAllVariables().length != 0) return [];

		let queryTerms:TermAttribute[] = Term.elementsInList(queryTerm,"#and");

		if (answer) {
			// we need to memorize each term:
			let toMemorize_l:Term[] = [];
			for(let qt of queryTerms) {
				if (qt instanceof TermTermAttribute) {
					toMemorize_l.push((<TermTermAttribute>qt).term);
				}
			}
			return toMemorize_l;
		} else {
			// one of them is wrong!
			let toMemorize:Term = new Term(this.o.getSort("#not"), [queryTerms[0]]);
			for(let i:number = 1;i<queryTerms.length;i++) {
				toMemorize = new Term(this.o.getSort("#and"), 
										[new TermTermAttribute(toMemorize),
										 new TermTermAttribute(new Term(this.o.getSort("#not"), 
										 								[queryTerms[i]]))]);
			}
			return [toMemorize];
		}

		return [];
	}


	sentenceToMemorizeFromPredicateQuestionWithInformAnswer(predicateQuestion:Term, answerPerformative:Term) : Term[]
	{
		let answerTerm:TermAttribute = answerPerformative.attributes[1];
		if ((answerTerm instanceof TermTermAttribute) &&
			(<TermTermAttribute>answerTerm).term.functor.name == "proper-noun") {
			answerTerm = (<TermTermAttribute>answerTerm).term.attributes[0];
		}

		if (!(predicateQuestion.attributes[1] instanceof TermTermAttribute)) return [];
		let queryTerm:TermAttribute = predicateQuestion.attributes[1];
		let queryTerms:TermAttribute[] = Term.elementsInList((<TermTermAttribute>queryTerm).term,"#and");	
		if (!(queryTerms[0] instanceof TermTermAttribute)) return [];
		let mainQueryTerm:Term = (<TermTermAttribute>(queryTerms[0])).term;
		if (mainQueryTerm.functor.name == "verb.remember" ||
			mainQueryTerm.functor.name == "verb.know") {
			// in this case, it's basically a query in disguise:
//			console.error("sentenceToMemorizeFromPredicateQuestionWithInformAnswer: predicateQuestion = " + predicateQuestion);
//			console.error("sentenceToMemorizeFromPredicateQuestionWithInformAnswer: answerPerformative = " + answerPerformative);

			// replace the query term by the hidden one inside:
			if (!(mainQueryTerm.attributes[1] instanceof TermTermAttribute)) return null;
			queryTerm = mainQueryTerm.attributes[1];
			queryTerms = Term.elementsInList((<TermTermAttribute>queryTerm).term,"#and");
			if (!(queryTerms[0] instanceof TermTermAttribute)) return null;
			if (!(queryTerms[1] instanceof TermTermAttribute)) return null;
			if (queryTerms.length != 2) return null;
			let queryVariable:TermAttribute = queryTerms[0];
			if (!(queryVariable instanceof TermTermAttribute) ||
				(<TermTermAttribute>queryVariable).term.functor.name != "#query") return null;
			queryVariable = (<TermTermAttribute>queryVariable).term.attributes[0];
			queryTerm = queryTerms[1];

			if (answerTerm instanceof VariableTermAttribute) {
				if (answerTerm.sort.name == "unknown") return [];
				return null;
			} else if (answerTerm instanceof ConstantTermAttribute) {
				// direct answer:
//				console.log("sentenceToMemorizeFromPredicateQuestionWithInformAnswer: direct answer!");
//				console.log("sentenceToMemorizeFromPredicateQuestionWithInformAnswer: unify term 1: " + queryVariable);
//				console.log("sentenceToMemorizeFromPredicateQuestionWithInformAnswer: unify term 2: " + answerTerm);
				let bindings2:Bindings = new Bindings();
				if (Term.unifyAttribute(queryVariable, answerTerm, true, bindings2)) {
					let tmp:TermAttribute = queryTerm.applyBindings(bindings2);
					if (!(tmp instanceof TermTermAttribute)) return null;
					return [(<TermTermAttribute>tmp).term];
				}
				return null;
			} else {
				// indirect answer:
//				console.log("sentenceToMemorizeFromPredicateQuestionWithInformAnswer: indirect answer!");
//				console.log("sentenceToMemorizeFromPredicateQuestionWithInformAnswer: unify term 1: " + queryTerm);
//				console.log("sentenceToMemorizeFromPredicateQuestionWithInformAnswer: unify term 2: " + answerTerm);
				let bindings2:Bindings = new Bindings();
				if (Term.unifyAttribute(queryTerm, answerTerm, true, bindings2)) {
					let tmp:TermAttribute = queryTerm.applyBindings(bindings2);
					if (!(tmp instanceof TermTermAttribute)) return null;
					return [(<TermTermAttribute>tmp).term];
				}
				return null;
			}
		} else {
			return null;
		}
	}


	sentenceToMemorizeFromQueryQuestion(queryPerformative:Term, answerPerformative:Term) : Term[]
	{
		let queryVariable:TermAttribute = queryPerformative.attributes[1];
		let queryTerm:TermAttribute = queryPerformative.attributes[2];
		let answerTerm:TermAttribute = answerPerformative.attributes[1];

		if ((answerTerm instanceof TermTermAttribute) &&
			(<TermTermAttribute>answerTerm).term.functor.name == "proper-noun") {
			answerTerm = (<TermTermAttribute>answerTerm).term.attributes[0];
		}

		if (answerTerm instanceof VariableTermAttribute) {
			if (answerTerm.sort.name == "unknown") return [];
			return null;
		} else if (answerTerm instanceof ConstantTermAttribute) {
			// direct answer:
//			console.log("sentenceToMemorizeFromQueryQuestion: direct answer!");
//			console.log("sentenceToMemorizeFromQueryQuestion: unify term 1: " + queryVariable);
//			console.log("sentenceToMemorizeFromQueryQuestion: unify term 2: " + answerTerm);
			let bindings2:Bindings = new Bindings();
			if (Term.unifyAttribute(queryVariable, answerTerm, true, bindings2)) {
				let tmp:TermAttribute = queryTerm.applyBindings(bindings2);
				if (!(tmp instanceof TermTermAttribute)) return null;
				return [(<TermTermAttribute>tmp).term];
			}
			return null;
		} else {
			// indirect answer:
//			console.log("sentenceToMemorizeFromQueryQuestion: indirect answer!");
//			console.log("sentenceToMemorizeFromQueryQuestion: unify term 1: " + queryTerm);
//			console.log("sentenceToMemorizeFromQueryQuestion: unify term 2: " + answerTerm);
			let bindings2:Bindings = new Bindings();
			if (Term.unifyAttribute(queryTerm, answerTerm, true, bindings2)) {
				let tmp:TermAttribute = queryTerm.applyBindings(bindings2);
				if (!(tmp instanceof TermTermAttribute)) return null;
				return [(<TermTermAttribute>tmp).term];
			}
			return null;
		}
	}


	talkingToUs(context:NLContext, speaker:string, performative:Term) : boolean
	{
		// the "targetList" is a structure of the form #and(T1, #and(t2, ... #and(Tn-1,Tn)...) if there is more than one target
		let targetList:TermAttribute = null;
		let targetIDList:string[] = [];
		if (performative != null) {
			targetList = performative.attributes[0];
			while(targetList instanceof TermTermAttribute) {
				if (targetList.term.functor.name == "#and" &&
					targetList.term.attributes[0] instanceof ConstantTermAttribute) {
					targetIDList.push((<ConstantTermAttribute>targetList.term.attributes[0]).value);
					targetList = targetList.term.attributes[1];
				} else {
					break;
				}
			}
			if (targetList instanceof ConstantTermAttribute) targetIDList.push((<ConstantTermAttribute>targetList).value);

			for(let targetID of targetIDList) {
				if (targetID == this.selfID) {
					context.lastPerformativeInvolvingThisCharacterWasToUs = true;
					return true;
				} else {
					// talking to someone else, so we are now not talking to that someone else:
					let context2:NLContext = this.contextForSpeakerWithoutCreatingANewOne(targetID);
					if (context2 != null) {
						context2.lastPerformativeInvolvingThisCharacterWasToUs = false;
						context2.inConversation = false;
					}
				}
			}

			if (targetIDList.length > 0) {
				// not talking to us!
				context.lastPerformativeInvolvingThisCharacterWasToUs = false;
				context.inConversation = false;
				for(let targetID of targetIDList) {
					let context2:NLContext = this.contextForSpeakerWithoutCreatingANewOne(targetID);
					if (context2 != null) {
						context2.inConversation = false;
						context2.lastPerformativeInvolvingThisCharacterWasToUs = false;
					}
				}
				return false;
			}
		}

		if (context.performatives.length>0 &&
			(this.timeStamp - context.performatives[0].timeStamp) >= CONVERSATION_TIMEOUT) {
			console.log("Conversation has timed out, time sinde last performative: " + (this.timeStamp - context.performatives[0].timeStamp));
			return false;
		}	
		if (context.lastPerformativeInvolvingThisCharacterWasToUs) return true;
		if (context.inConversation) return true;

		return false;
	}


	inferenceUpdate()
	{
//	    DEBUG_resolution = true;

		// select which inference process to continue in this cycle:
		// pick the inference that generates the maximum anxiety:
		let max_anxiety_inference:InferenceRecord = null;
		// for(let i:number = 0;i<this.inferenceProcesses.length;i++) {
		// 	// increment anxiety of inferences:
		// 	this.inferenceProcesses[i].anxiety += this.inferenceProcesses[i].priority;

		// 	if (max_anxiety_inference == null ||
		// 		this.inferenceProcesses[i].anxiety > max_anxiety_inference.anxiety) {
		// 		max_anxiety_inference = this.inferenceProcesses[i];
		// 	}
		// }
		if (this.currentInferenceProcess == null && this.queuedInferenceProcesses.length > 0) {
			this.currentInferenceProcess = this.queuedInferenceProcesses[0];
			this.currentInferenceProcess.init(this, this.o)
			this.queuedInferenceProcesses.splice(0, 1);
		}
		max_anxiety_inference = this.currentInferenceProcess;

		if (max_anxiety_inference != null) {
			let idx:number = max_anxiety_inference.completedInferences.length;
			if (idx >= max_anxiety_inference.inferences.length) {
				// inference is over!
				// this.inferenceProcesses.splice(this.inferenceProcesses.indexOf(max_anxiety_inference),1);
				this.currentInferenceProcess = null;
				if (max_anxiety_inference.effect != null) {
					max_anxiety_inference.effect.execute(max_anxiety_inference, this);
				}

				// after we have answered everything the player wanted, check to see if we had any questions in the stack:
				if (this.currentInferenceProcess == null && this.queuedInferenceProcesses.length == 0) {
					for(let context of this.contexts) {
						if (context.expectingAnswerToQuestionTimeStamp_stack.length > 0) {
							let idx:number = context.expectingAnswerToQuestionTimeStamp_stack.length - 1;
							if (this.timeStamp - context.expectingAnswerToQuestionTimeStamp_stack[idx] > this.questionPatienceTimmer) {
								// We have waited for an answer too long, ask the question again:
								if (this.canHear(context.speaker)) this.reaskTheLastQuestion(context);
							}
						}
					}
				}

			} else {
				if (max_anxiety_inference.findAllAnswers) {
					if (max_anxiety_inference.inferences[idx].stepAccumulatingResults(true)) {
						max_anxiety_inference.completedInferences.push(max_anxiety_inference.inferences[idx]);
					}
				} else {
					if (max_anxiety_inference.inferences[idx].step()) {
						max_anxiety_inference.completedInferences.push(max_anxiety_inference.inferences[idx]);
					}
				}
			}
		}
	}


	contextForSpeaker(speaker:string) : NLContext
	{
		if (this.selfID == speaker) console.error("trying to get a context to talk to self!!");

		for(let c of this.contexts) {
			if (c.speaker == speaker) return c;
		}
		let context:NLContext = new NLContext(speaker, this, MENTION_MEMORY_SIZE);
		this.contexts.push(context);
		return context;		
	}


	contextForSpeakerWithoutCreatingANewOne(speaker:string) : NLContext
	{
		for(let c of this.contexts) {
			if (c.speaker == speaker) return c;
		}
		return null;
	}


	considerGoals() : boolean
	{
		// if we are talking to someone, ignore goals:
		for(let context of this.contexts) {
			if (context.inConversation) return false;
		}
		return true;
	}


	goalsUpdate(time:number)
	{
		let newCurrentGoal:AIGoal = this.currentGoal;

		for(let goal of this.goals) {
			if (goal.nextTimeToTrigger <= time) {
				if (newCurrentGoal == null || goal.priority > newCurrentGoal.priority) {
					newCurrentGoal = goal;
				}
			}
		}

		if (newCurrentGoal != this.currentGoal) {
			this.currentGoal = newCurrentGoal;
			this.currentGoal.restart(this);
		}

		if (this.currentGoal != null) {
			if (this.currentGoal.execute(this)) {
				// goal finished!
				if (this.currentGoal.periodicity == -1) {
					if (this.goals.indexOf(this.currentGoal) != -1) {
						this.goals.splice(this.goals.indexOf(this.currentGoal), 1);
					}
				} else {
					this.currentGoal.nextTimeToTrigger += this.currentGoal.periodicity;
				}
				this.currentGoal = null;
				this.addLongTermTerm(Term.fromString("verb.do('"+this.selfID+"'[#id], 'nothing'[nothing])", this.o), PERCEPTION_PROVENANCE);
			}
		}
	}

	addCurrentActionLongTermTerm(intention: Term)
	{
		// if we are executing some goal, then we don't want to overwrite what we are currently doing:
		if (this.currentGoal == null) {
			this.addLongTermTerm(new Term(this.o.getSort("verb.do"),
										  [new ConstantTermAttribute(this.selfID, this.cache_sort_id),
										   new TermTermAttribute(intention)]), PERCEPTION_PROVENANCE);
		}
	}


	executeIntentions()
	{
		if (this.intentions.length == 0 &&
			this.currentInferenceProcess == null && this.queuedInferenceProcesses.length == 0 &&
			this.queuedIntentions.length > 0) {
			let ir:IntentionRecord = this.queuedIntentions[0];
			this.queuedIntentions.splice(0, 1);
			this.planForAction(ir);
		}

		let toDelete:IntentionRecord[] = [];
		for(let intention of this.intentions) {
			let ret:boolean = this.executeIntention(intention);

			if (ret == null) {
				// this means that although we can execute the intetion, it cannot be executed right now, so, we need to wait:
				continue;
			}

			if (ret) {
				if (this.debugActionLog != null) {
					this.debugActionLog.push(intention);
				}
			} else {
				console.error("Unsuported intention ("+this.selfID+"): " + intention.action);
				intention.succeeded = false;
			}
			// if (intention.succeeded == null) {
			// 	throw new Error("action handler for " + intention.action + "  did not set succeeded!");
			// }
			if (!intention.succeeded) {
				this.removeQueuedPerformativesDependingOnIntentionSuccess(intention);
			}
			toDelete.push(intention);
		}
		for(let t of toDelete) {
			this.intentions.splice(this.intentions.indexOf(t), 1);
		}
	}


	executeIntention(ir:IntentionRecord) : boolean
	{
		let intention:Term = ir.action;
		for(let ih of this.intentionHandlers) {
			if (ih.canHandle(intention, this)) {
				return ih.execute(ir, this);
			}
		}

		return false;
	}


	queueIntention(intention:Term, requester:TermAttribute, reqperformative:NLContextPerformative) : IntentionRecord
	{
		let ir:IntentionRecord = new IntentionRecord(intention, requester, reqperformative, null, this.timeStamp);
		this.queuedIntentions.push(ir);
		return ir;
	}


	queueIntentionRecord(ir:IntentionRecord)
	{
		if (this.queuedIntentions.indexOf(ir) == -1) {
			this.queuedIntentions.push(ir);
		}
	}


	removeQueuedPerformativesDependingOnIntentionSuccess(ir:IntentionRecord)
	{
		// remove all other pending queued performatives from the same utterance:
		let toDelete:[Term, string, string, NLParseRecord][] = [];
		for(let tmp of this.queuedParsedPerformatives) {
			if (ir.requestingPerformative != null &&
			    ir.requestingPerformative.parse == tmp[3]) {
				toDelete.push(tmp);
			}
		}
		for(let tmp of toDelete) {
			this.queuedParsedPerformatives.splice(this.queuedParsedPerformatives.indexOf(tmp));
		}		
	}


	// Some AIs extending from this class, might implement a planner, which will be called by redefining this function
	// In this default one, we just queue the action for execution.
	planForAction(ir:IntentionRecord)
	{
		this.intentions.push(ir);
	}


	canSee(characterID:string)
	{
		return true;
	}
	

	canHear(characterID:string)
	{
		return true;
	}


	conversationUpdate()
	{
		for(let context of this.contexts) {
			if (context.expectingAnswerToQuestionTimeStamp_stack.length > 0) {
//				console.log("context.expectingAnswerToQuestion_stack.length: " + context.expectingAnswerToQuestion_stack.length + 
//						    "\ncontext.expectingAnswerToQuestionTimeStamp_stack: " + context.expectingAnswerToQuestionTimeStamp_stack);
				let idx:number = context.expectingAnswerToQuestionTimeStamp_stack.length - 1;
				if (this.timeStamp - context.expectingAnswerToQuestionTimeStamp_stack[idx] > this.questionPatienceTimmer) {
					// We have waited for an answer too long, ask the question again:
					if (this.canHear(context.speaker)) this.reaskTheLastQuestion(context);
				}
			}
		}
	}


	reaskTheLastQuestion(context:NLContext)
	{
		let idx:number = context.expectingAnswerToQuestionTimeStamp_stack.length - 1;
		let performative:NLContextPerformative = context.expectingAnswerToQuestion_stack[idx];
//		console.log("context.expectingAnswerToQuestionTimeStamp_stack (before): " + context.expectingAnswerToQuestionTimeStamp_stack);
		context.popLastQuestion();
//		console.log("context.expectingAnswerToQuestionTimeStamp_stack (after): " + context.expectingAnswerToQuestionTimeStamp_stack);

		// re-add the intention:
		if (!context.inConversation) {
			// we are not having a conversation at this point, so, we need to restart it:
			let term:Term = Term.fromString("action.talk('"+this.selfID+"'[#id], perf.callattention('"+context.speaker+"'[#id]))",this.o);
			this.intentions.push(new IntentionRecord(term, null, null, null, this.timeStamp));
		}

		let term2:Term = new Term(this.o.getSort("action.talk"), 
								 [new ConstantTermAttribute(this.selfID, this.o.getSort("#id")), 
								  new TermTermAttribute(performative.performative)]);
		this.intentions.push(new IntentionRecord(term2, null, null, null, this.timeStamp));
	}


	/*
	- checks if "q" unifies with any term in the short or long term memory, and returns the bindings
	*/
	noInferenceQuery(q:Term, o:Ontology) : Bindings
	{
		// short term memory:
		let tmp:[Term, Bindings] = this.shortTermMemory.firstMatch(q);
		if (tmp!=null) return tmp[1];

		// long term memory:
		let s:Sentence = this.longTermMemory.firstSingleTermMatch(q.functor, q.attributes.length, o);
		while(s != null) {
			let b:Bindings = new Bindings();
			if (q.unify(s.terms[0], OCCURS_CHECK, b)) {
				return b;
			}
			s = this.longTermMemory.nextSingleTermMatch();
		}

		return null;
	}


	noInferenceQueryValue(q:Term, o:Ontology, variableName:string) : TermAttribute
	{
		let b:Bindings = this.noInferenceQuery(q, o);
		if (b == null) return null;
		for(let tmp of b.l) {
			if (tmp[0].name == variableName) return tmp[1];
		}
		return null;
	}


	checkSpatialRelation(relation:Sort, o1ID:string, o2ID:string, referenceObject:string) : boolean
	{
		return null;
	}


	processSuperlatives(results:InferenceNode[], superlative:Sentence)
	{
		return results;
	}


	spatialRelations(o1ID:string, o2ID:string) : Sort[]
	{
		return null;
	}


	recalculateCharacterAges()
	{
		for(let se of this.longTermMemory.plainSentenceList) {
			let s:Sentence = se.sentence;
			if (s.terms.length == 1 && s.sign[0] &&
				s.terms[0].functor.name == "property.born" &&
				s.terms[0].attributes[0] instanceof ConstantTermAttribute) {
				let birthday:number = se.time;
				let bd_year:number = getCurrentYear(birthday);
				let bd_month:number = getCurrentMonth(birthday);
				let bd_day:number = getCurrentDayOfTheMonth(birthday);
				let current_year:number = getCurrentYear(this.timeStamp);
				let current_month:number = getCurrentMonth(this.timeStamp);
				let current_day:number = getCurrentDayOfTheMonth(this.timeStamp);
				let age_in_years:number = current_year - bd_year;
				if (current_month < bd_month ||
					(current_month == bd_month && current_day < bd_day)) age_in_years--;
				this.longTermMemory.addStateSentenceIfNew(new Sentence([Term.fromString("property.age("+s.terms[0].attributes[0]+",'"+age_in_years+"'[time.year])",this.o)],
																	   [true]), 
														  se.provenance, 1, se.time);
			}
		}
	}


	mostSpecificMatchesFromShortOrLongTermMemoryThatCanBeRendered(query:Term) : Term[]
	{
		let mostSpecificTypes:Term[] = [];
		
		for(let match_bindings of this.shortTermMemory.allMatches(query)) {
			let t:Term = match_bindings[0];
			// if we don't know how to render this, then ignore:
			let msType:Sort = this.mostSpecificTypeThatCanBeRendered(t.functor);
			if (msType == null) continue;
			t = t.clone([]);
			t.functor = msType;

			let isMoreSpecific:boolean = true;
			let toDelete:Term[] = [];
			for(let previous of mostSpecificTypes) {
				if (t.functor.subsumes(previous.functor)) {
					isMoreSpecific = false;
				} else if (previous.functor.subsumes(t.functor)) {
					toDelete.push(previous);
				}
			}
			for(let previous of toDelete) {
				mostSpecificTypes.splice(mostSpecificTypes.indexOf(previous),1);
			}
			if (isMoreSpecific) mostSpecificTypes.push(t);
		}

		for(let match of this.longTermMemory.allSingleTermMatches(query.functor, query.attributes.length, this.o)) {
			let t:Term = match.terms[0];
			if (query.unify(t, OCCURS_CHECK, new Bindings())) {
				// if we don't know how to render this, then ignore:
				let msType:Sort = this.mostSpecificTypeThatCanBeRendered(t.functor);
				if (msType == null) continue;
				t = t.clone([]);
				t.functor = msType;

				let isMoreSpecific:boolean = true;
				let toDelete:Term[] = [];
				for(let previous of mostSpecificTypes) {
					if (t.functor.subsumes(previous.functor)) {
						isMoreSpecific = false;
					} else if (previous.functor.subsumes(t.functor)) {
						toDelete.push(previous);
					}
				}
				for(let previous of toDelete) {
					mostSpecificTypes.splice(mostSpecificTypes.indexOf(previous),1);
				}
				if (isMoreSpecific) mostSpecificTypes.push(t);
			}
		}
		return mostSpecificTypes;
	}


	mostSpecificTypeThatCanBeRendered(typeSort:Sort) 
	{
		let typeString:string = this.naturalLanguageParser.posParser.getTypeString(typeSort, 0);
		if (typeString == null) {
			let typeSort_l:Sort[] = typeSort.getAncestors();
			for(let ts of typeSort_l) {
				typeString = this.naturalLanguageParser.posParser.getTypeString(ts, 0);
				if (typeString != null) {
					typeSort = ts;
					break;
				}
			}
		}
		return typeSort;
	}	


	distanceBetweenIds(source:string, target:string)
	{
		return null;
	}


	applyBindingsToSubsequentActionsOrInferences(bindings:Bindings)
	{
		for(let ir of this.queuedInferenceProcesses) {
			for(let i:number = 0;i<ir.targets.length;i++) {
				for(let j:number = 0;j<ir.targets[i].length;j++) {
					ir.targets[i][j] = ir.targets[i][j].applyBindings(bindings);
				}
			}
			if (ir.effect instanceof ExecuteAction_InferenceEffect) {
				(<ExecuteAction_InferenceEffect>ir.effect).perf = (<ExecuteAction_InferenceEffect>ir.effect).perf.applyBindings(bindings);
			}
		}
		for(let ir of this.queuedIntentions) {
			ir.action = ir.action.applyBindings(bindings);
		}
		for(let tmp of this.queuedParsedPerformatives) {
			tmp[0] = tmp[0].applyBindings(bindings);
		}
	}
	

	// Returns "true" if the AI is still trying to execute "ir"
	IRpendingCompletion(ir:IntentionRecord) : boolean
	{
		if (this.intentions.indexOf(ir) != -1) return true;
		if (this.queuedIntentions.indexOf(ir) != -1) return true;
		return false;
	}


	restoreFromXML(xml:Element)
	{
		this.timeStamp = Number(xml.getAttribute("timeInSeconds"));
		this.questionPatienceTimmer = Number(xml.getAttribute("questionPatienceTimmer"));

		let stm_xml = getFirstElementChildByTag(xml, "shortTermMemory");
		if (stm_xml != null) {
			this.shortTermMemory = new TermContainer();
			for(let term_xml of getElementChildrenByTag(stm_xml, "term")) {
				let a:number = Number(term_xml.getAttribute("activation"));
				let p:string = term_xml.getAttribute("provenance");
				let t:Term = Term.fromString(term_xml.getAttribute("term"), this.o);
				let time:number = Number(term_xml.getAttribute("time"));
				if (a != null && t != null) this.shortTermMemory.addTerm(t, p, a, time);
			}
			for(let term_xml of getElementChildrenByTag(stm_xml, "previousTerm")) {
				let a:number = Number(term_xml.getAttribute("activation"));
				let p:string = term_xml.getAttribute("provenance");
				let t:Term = Term.fromString(term_xml.getAttribute("term"), this.o);
				let time:number = Number(term_xml.getAttribute("time"));
				if (a != null && t != null) this.shortTermMemory.plainPreviousTermList.push(new TermEntry(t, p, a, time));
			}
		}

		let ltm_xml = getFirstElementChildByTag(xml, "longTermMemory");
		if (ltm_xml != null) {
//			this.longTermMemory = new SentenceContainer();
			this.loadLongTermRulesFromXML(ltm_xml);
		}

		this.currentEpisodeTerms = [];
		let currentEpisodeTerm_xmls:Element[] = getElementChildrenByTag(xml, "currentEpisodeTerm");
		for(let currentEpisodeTerm_xml of currentEpisodeTerm_xmls) {
			this.currentEpisodeTerms.push(currentEpisodeTerm_xml.getAttribute("text"));
		}

		// context:
		let context_xmls:Element[] = getElementChildrenByTag(xml, "context");
		for(let context_xml of context_xmls) {
			this.contexts.push(NLContext.fromXML(context_xml, this.o, this, MENTION_MEMORY_SIZE));
		}

		// intentions:
		this.intentions = [];
		for(let intention_xml of getElementChildrenByTag(xml, "IntentionRecord")) {
			let intention:IntentionRecord = IntentionRecord.fromXML(intention_xml, this, this.o);
			this.intentions.push(intention);
		}
		this.queuedIntentions = [];
		let queuedIntentions_xml:Element = getFirstElementChildByTag(xml, "queuedIntentions");
		if (queuedIntentions_xml != null) {
			for(let intention_xml of getElementChildrenByTag(queuedIntentions_xml, "IntentionRecord")) {
				let intention:IntentionRecord = IntentionRecord.fromXML(intention_xml, this, this.o);
				this.queueIntentionRecord(intention);
			}
		}
		this.intentionsCausedByRequest = [];
		let intentionsCausedByRequest_xml:Element = getFirstElementChildByTag(xml, "intentionsCausedByRequest");
		if (intentionsCausedByRequest_xml != null) {
			for(let intention_xml of getElementChildrenByTag(intentionsCausedByRequest_xml, "IntentionRecord")) {
				let intention:IntentionRecord = IntentionRecord.fromXML(intention_xml, this, this.o);
				this.intentionsCausedByRequest.push(intention);
			}
		}

		// inference:
		let inference_xml:Element = getFirstElementChildByTag(xml, "inference");
		if (inference_xml != null) {
			this.currentInferenceProcess = null;
			this.queuedInferenceProcesses = [];
			for(let ir_xml of getElementChildrenByTag(inference_xml, "InferenceRecord")) {
				let ir:InferenceRecord = InferenceRecord.fromXML(ir_xml, this.o, this);
				if (ir != null) this.queuedInferenceProcesses.push(ir);
			}
		}

		// goals:
		this.goals = [];
		for(let goal_xml of getElementChildrenByTag(xml, "AIGoal")) {
			let goal:AIGoal = AIGoal.fromXML(goal_xml, this.o, this);
			this.goals.push(goal);
			if (goal.remainingActions != null) this.currentGoal = goal;
		}
	}


	outerHTML() : string { return this.saveToXML();}  
	saveToXML() : string
	{
		let str:string = "<RuleBasedAI timeInSeconds=\""+this.timeStamp+"\" "+
									  "questionPatienceTimmer=\""+this.questionPatienceTimmer+"\">\n";

		str += "<shortTermMemory>\n";
		for(let te of this.shortTermMemory.plainTermList) {
			str += "<term activation=\""+te.activation+"\" " + 
						 "provenance=\""+te.provenance+"\" " +
						 "term=\""+te.term.toStringXML()+"\" " +
						 "time=\""+te.time+"\"/>\n";
		}
		for(let te of this.shortTermMemory.plainPreviousTermList) {
			str += "<previousTerm activation=\""+te.activation+"\" " + 
						 "provenance=\""+te.provenance+"\" " +
						 "term=\""+te.term.toStringXML()+"\" " +
						 "time=\""+te.time+"\"/>\n";
		}
		str += "</shortTermMemory>\n";

		str += "<longTermMemory>\n";

		for(let se of this.longTermMemory.previousSentencesWithNoCurrentSentence) {
			if (se.provenance != BACKGROUND_PROVENANCE &&
				se.provenance != ONTOLOGY_PROVENANCE &&
				se.provenance != LOCATIONS_PROVENANCE) {
				str += "<previousSentence activation=\""+se.activation+"\" " +
					   "provenance=\""+se.provenance+"\" " +
					   "sentence=\""+se.sentence.toStringXML()+"\" "+
					   "time=\""+se.time+"\" "+
					   "timeEnd=\""+se.timeEnd+"\"/>\n";
			}
		}
		for(let se of this.longTermMemory.plainSentenceList) {
			if (se.provenance != BACKGROUND_PROVENANCE &&
				se.provenance != ONTOLOGY_PROVENANCE &&
				se.provenance != LOCATIONS_PROVENANCE) {
				str += this.saveSentenceEntryToXML(se, false);
			}
		}
		str += "</longTermMemory>\n";

		for(let et of this.currentEpisodeTerms) {
			str += "<currentEpisodeTerm str=\""+et+"\"/>\n";
		}

		for(let t of this.intentions) {
			str += t.saveToXML(this);
		}
		if (this.queuedIntentions.length > 0) {
			str += "<queuedIntentions>\n";
			for(let t of this.queuedIntentions) {
				str += t.saveToXML(this);
			}
			str += "</queuedIntentions>\n";
		}
		if (this.intentionsCausedByRequest.length > 0) {
			str += "<intentionsCausedByRequest>\n";
			for(let t of this.intentionsCausedByRequest) {
				str += t.saveToXML(this);
			}
			str += "</intentionsCausedByRequest>\n";
		}

		str += "<inference>\n";
		if (this.currentInferenceProcess != null) {
			str += this.currentInferenceProcess.saveToXML(this) + "\n";
		}
		for(let ip of this.queuedInferenceProcesses) {
			str += ip.saveToXML(this) + "\n";
		}
		str += "</inference>\n";

		for(let context of this.contexts) {
			str += context.saveToXML()  + "\n";
		}

		for(let goal of this.goals) {
			str += goal.saveToXML(this) + "\n";
		}

        str += this.savePropertiesToXML() + "\n";
		
		str += "</RuleBasedAI>";
		return str;
	}


	saveSentenceEntryToXML(se:SentenceEntry, previous:boolean) : string
	{
		let str:string = "";
		if (se.previousInTime == null) {
			str += "<"+(previous ? "previousSentence":"sentence")+" activation=\""+se.activation+"\" " +
				   "provenance=\""+se.provenance+"\" " +
				   "sentence=\""+se.sentence.toStringXML()+"\" "+
				   "time=\""+se.time+"\"/>\n";
		} else {
			str += "<"+(previous ? "previousSentence":"sentence")+" activation=\""+se.activation+"\" " +
				   "provenance=\""+se.provenance+"\" " +
				   "sentence=\""+se.sentence.toStringXML()+"\" "+
				   "time=\""+se.time+"\">\n";
			str += this.saveSentenceEntryToXML(se.previousInTime, true);
			str += "</"+(previous ? "previousSentence":"sentence")+">\n"
		}
		return str;
	}

	// this function is the one that will be extended by the subclasses to add additional info
	savePropertiesToXML() : string
	{
		return "";
	}


	static translateOntologyToSentences(o:Ontology) : Sentence[]
	{
		let sentences:Sentence[] = []

		// In principle, all of these are needed for having a complete infernece process, but they make things very slow.
		// So, instead, I have a special case where I use functor subsumption instead of equality in case one of the two
		// sentences in resolution just has one term, and only generate a few necessary ones (those for relations):
		/*
		for(let s of o.getAllSorts()) {
			if (s.name[0] == "#" || s.name[0] == "~" || s.name[0] == "=") continue;
			if (s.is_a_string("grammar-concept")) continue;
			if (s.is_a_string("performative")) continue;
			if (!s.is_a_string("relation")) continue;
			for(let parent of s.parents) {
				// This is a hack to filter out rules that I know cause troubles, in reality, I should just use regular FOL inference...
				if (parent.name == "any") continue;	// no need to go all the way there :)
				if (parent.name == "relation") continue;	// no need to go all the way there :)
				if (parent.name == "spatial-relation") continue;	// no need to go all the way there :)
				if (parent.name == "relation-with-value") continue;	// no need to go all the way there :)
				if (parent.name == "space") continue;	// no need to go all the way there :)
				if (parent.name == "time") continue;	// no need to go all the way there :)
				if (parent.name == "distance") continue;	// no need to go all the way there :)
				if (parent.name == "abstract-entity") continue;	// no need to go all the way there :)
				if (parent.name == "#stateSort") continue;	// no need to go all the way there :)
				if (parent.name == "symmetric-relation") continue;	// no need to go all the way there :)
				if (parent.name == "measuring-unit") continue;	// no need to go all the way there :)
				
				if (s.is_a_string("relation")) {
					let sentence:Sentence = Sentence.fromString("~" + s + "(X, Y);"+parent+"(X, Y)", o);
					sentences.push(sentence);
					console.log("    ontology sentence: " + sentence);
				} else {
					let sentence:Sentence = Sentence.fromString("~" + s + "(X);"+parent+"(X)", o);
					sentences.push(sentence);
					console.log("    ontology sentence: " + sentence);
				}
			}
		}
		*/

		return sentences;
	}


	timeStamp:number = 0;
	questionPatienceTimmer:number = 1200;
	maximum_answers_to_give_at_once_for_a_query:number = 3;
	predicatesToStoreInLongTermMemory:Sort[] = [];

	o:Ontology = null;
	naturalLanguageParser:NLParser = null;
	inferenceEffectFactory:InferenceEffectFactory = null;

	perceptionFrequency:number = 10;
	perceptionFrequencyOffset:number = 0;
	perceptionMemoryTime:number = 120;

    selfID:string = "self";
	intentionHandlers:IntentionAction[] = [];

    // (in a BDI model, this would be "B"):
	perceptionBuffer:Term[] = [];
	shortTermMemory:TermContainer = new TermContainer();
	longTermMemory:SentenceContainer = new SentenceContainer();

	// AI current goals (in a BDI model, this would be "D"):
	goals:AIGoal[] = [];	// list of goals that the AI currently has (not necessarily triggered)
	currentGoal:AIGoal = null;	// current goal (only one at a time, and if a higher priority one triggers,
								// the current one will go back to the "goals" list)    	

	// (in a BDI model, this would be "I"):
	intentions:IntentionRecord[] = [];
	queuedIntentions:IntentionRecord[] = [];	// these will become intentions only when intentions == [], currentInferenceProcess == null and queuedInferenceProcesses == []
												// the use of this is to queue things to do after the AI has finished doing the current set of things
	intentionsCausedByRequest:IntentionRecord[] = [];	// we store the intention records for which there is a cause, for answering later "why" questions

	currentInferenceProcess:InferenceRecord = null;	
	queuedInferenceProcesses:InferenceRecord[] = [];	// list of the current inferences the AI wants to perform after currentInferenceProcess is done


	contexts:NLContext[] = [];	// contexts for natural language processing (one per entity we speak to)
	terminateConversationAfterThisPerformative:boolean = false;
	queuedParsedPerformatives:[Term, string, string, NLParseRecord][] = [];

	currentEpisodeTerms:string[] = [];	// Terms that are to be remembered or the current "episode" (i.e., while the AI is executing an action),
										// but that will be erased when a new action is started.
										// This is a hack, but it is to avoid having to have the concept of "immediate past" and "far past",
										// since parsing those from text would be hard. 
										// To illustrate the problem, consider this interaction:
										// - Shrdlu, go north
										// - There is an obstacle here.
										// - go south.
										// - Ok.
										// - did you collide with something?
										// The expected answer is "no", but it would say "yes", as it collided with something in the first command.
										// So, we add the "collided-with" type of knowledge to the episode terms, and we clear them after each episode.

	// if this is != null, each time the AI executes an action, it will be logged here
    debugActionLog:IntentionRecord[] = null;


	// Sort cache for perception:
	cache_sort_name:Sort = null;
	cache_sort_space_at:Sort = null;
	cache_sort_time_current:Sort = null;
	cache_sort_number:Sort = null;
	cache_sort_symbol:Sort = null;
	cache_sort_id:Sort = null;
	cache_sort_map:Sort = null;
	cache_sort_intention:Sort = null;
	cache_sort_action_talk:Sort = null;
	cache_sort_performative:Sort = null;
	cache_sort_property:Sort = null;
	cache_sort_property_with_value:Sort = null;
	cache_sort_relation_with_value:Sort = null;
	cache_sort_object:Sort = null;
	cache_sort_space_location:Sort = null;
	cache_sort_relation:Sort = null;
	cache_sort_verb_have:Sort = null;
	cache_sort_verb_contains:Sort = null;
	cache_sort_stateSort:Sort = null;
	cache_sort_action_follow:Sort = null;
	cache_sort_action_think:Sort = null;
}