/* Existence uncertainty/unknown objects. This programs models a domain where the number of objects is uncertain. In particular, the number of objects follows a geometric distribution with parameter 0.7. We can ask what is the probability that the object number n exists. From Poole, David. "The independent choice logic and beyond." Probabilistic inductive logic programming. Springer Berlin Heidelberg, 2008. 222-243. */ :- use_module(library(mcintyre)). :- if(current_predicate(use_rendering/1)). :- use_rendering(c3). :- endif. :- mc. :- begin_lpad. numObj(N, N) :- \+ more(N). numObj(N, N2) :- more(N), N1 is N + 1, numObj(N1, N2). more(_):0.3. obj(I):- numObj(0,N), between(1, N, I). :- end_lpad. /** ?- mc_prob(obj(2),P). % what is the probability that object 2 exists? % expected result ~ 0.08992307692307693 ?- mc_prob(obj(2),P),bar(P,C). % what is the probability that object 2 exists? % expected result ~ 0.08992307692307693 ?- mc_prob(obj(5),P). % what is the probability that object 5 exists? % expected result ~ 0.002666 ?- mc_prob(obj(5),P),bar(P,C). % what is the probability that object 5 exists? % expected result ~ 0.002666 ?- mc_prob(numObj(0,2),P). % what is the probability that there are 2 objects? % expected result ~ 0.0656 ?- mc_prob(numObj(0,5),P). % what is the probability that there are 5 objects? % expected result ~ 0.0014 ?- mc_sample(obj(5),1000,P,[successes(T),failures(F)]). % take 1000 samples of obj(5) ?- mc_sample(obj(5),1000,P),bar(P,C). % take 1000 samples of obj(5) ?- mc_sample_arg(numObj(0,N),100,N,O),argbar(O,C). % take 100 samples of L in % findall(N,numObj(N),L) ?- mc_sample_arg(obj(I),100,I,O),argbar(O,C). % take 100 samples of L in % findall(I,obj(I),L) ??- mc_sample_arg(obj(I),100,I,Values). % take 100 samples of L in % findall(I,obj(I),L) */