/* Model checking of a Markov chain: we want to know what is the likelihood that on an execution of the chain from a start state s, a final state t will be reached? From Gorlin, Andrey, C. R. Ramakrishnan, and Scott A. Smolka. "Model checking with probabilistic tabled logic programming." Theory and Practice of Logic Programming 12.4-5 (2012): 681-700. */ :- use_module(library(mcintyre)). :- use_module(library(cplint_r)). :- if(current_predicate(use_rendering/1)). :- use_rendering(c3). :- use_rendering(graphviz). :- endif. :- mc. :- begin_lpad. % reach(S, I, T) starting at state S at instance I, % state T is reachable. reach(S, I, T) :- trans(S, I, U), reach(U, next(I), T). reach(S, _, S). % trans(S,I,T) transition from S at instance I goes to T trans(s0,S,s0):0.5; trans(s0,S,s1):0.3; trans(s0,S,s2):0.2. trans(s1,S,s1):0.4; trans(s1,S,s3):0.1; trans(s1,S,s4):0.5. trans(s4,_,s3). :- end_lpad. markov_chain(digraph(G)):- findall(edge(A -> B,[label=P]), (clause(trans(A,_,B), (sample_head(_,_,_,Probs,N))), nth0(N,Probs,_:P)), G0), findall(edge(A -> B,[label=1.0]), clause(trans(A,_,B),true), G1), append(G0,G1,G). /** ?- mc_prob(reach(s0,0,s0),P). % expected result ~ 1. ?- mc_prob(reach(s0,0,s1),P). % expected result ~ 0.5984054054054054. ?- mc_prob(reach(s0,0,s2),P). % expected result ~ 0.4025135135135135. ?- mc_prob(reach(s0,0,s3),P). % expected result ~ 0.5998378378378378. ?- mc_prob(reach(s0,0,s4),P). % expected result ~ 0.49948717948717947. ?- mc_prob(reach(s1,0,s0),P). % expected result ~ 0. ?- mc_sample(reach(s0,0,s1),1000,P,[successes(T),failures(F)]). % expected result ~ 0.5984054054054054. ?- mc_sample(reach(s0,0,s1),1000,Prob),bar_r(Prob). ?- mc_sample_arg(reach(s0,0,S),50,S,Values). % take 50 samples of L in findall(S,reach(s0,0,S),L) ?- mc_sample_arg(reach(s0,0,S),50,S,O),argbar_r(O). % take 50 samples of L in findall(S,reach(s0,0,S),L) ?- mc_sample_arg_first(reach(s0,0,S),50,S,Values). % take 50 samples of the first value returned for S in reach(s0,0,S) ?- mc_sample_arg_first(reach(s0,0,S),50,S,O),argbar_r(O). % take 50 samples of the first value returned for S in reach(s0,0,S) ?- markov_chain(G). % draw the Markov chain */