
Abstract

Since 1985 the terminological representation system BACK (Berlin advanced computa-

tional knowledge representation system) has been developed at the Technical Univer-

sity Berlin. Its origin lies in the KL-ONE-based knowledge representation paradigm,

semantic networks, and frame-based representation languages. The current system

version has gone through several changes not only on the implementational level, but

also on the conceptual level. For some time now the syntax has stabilized, and larger

applications may be approached in the future.

Until now, introductions to the BACK system as well as its representation language

were distributed throughout several publications, making it difficult for users to learn

to handle the system. Hence, we found it worthwhile to write a tutorial guide through

the BACK system. With BACK V5 the representation language has changed. On the one

hand it became much more uniformer than in previous versions, on the other hand it

was extended by some useful constructs which allow an easier customization of the

language. Thus, we felt also the need for a user manual documenting the revised

language.

The first part of this report is a tutorial introduction into the BACK system, which

describes by example the modeling process we find most appropriate for terminological

modeling with BACK. The second part is written in the form of a user manual, describing

the modified and newly introduced language constructs.

BACK V5

Tutorial & Manual

Thomas Hoppe

Carsten Kindermann

J. Joachim Quantz

Albrecht Schmiedel

Martin Fischer

Technische Universität Berlin

Institut für Software und theoretische Informatik

Projekt KIT-BACK

Sekr. FR 5-12, Franklinstraße 28/29

W-1000 Berlin 10, Germany

March 1993

Contents

1 Introduction 1

1.1 Guideline : 2

1.1.1 How to Read This Document : : : : : : : : : : : : : : : : : 2

1.2 Quick Installation Guide : 3

1.3 Disclaimer : 3

2 BACK Tutorial 4

2.1 A Tutorial Example : 6

2.2 Modeling a Terminology : 8

2.2.1 Built-in Concepts : 8

2.2.2 Primitive Concepts : 9

2.2.3 Primitive Roles : 10

2.2.4 Defined Concepts : 11

2.2.5 Revision of Concepts : 11

2.2.6 Disjoint Concepts : 12

2.2.7 Defined Roles : 12

2.2.8 Closed Attribute Domains : : : : : : : : : : : : : : : : : : : 13

2.2.9 Open Attribute Domains : 13

2.2.10 Attribute Sets : 14

2.2.11 Number Ranges : 14

2.2.12 Extended Role Definitions : : : : : : : : : : : : : : : : : : : 15

2.2.13 Revising Roles : 15

2.2.14 Value Restrictions : 15

2.2.15 Number Restrictions : 16

2.3 Non-Definitional Information : 18

2.4 Representing a World : 18

2.4.1 Creating Named Objects : 19

2.4.2 Retracting Partial Descriptions : : : : : : : : : : : : : : : : : 20

2.4.3 Revising and Retracting Objects : : : : : : : : : : : : : : : : 20

2.4.4 Creating Unnamed Objects and Filling Roles : : : : : : : : : 21

2.4.5 Indirectly Referencing Objects : : : : : : : : : : : : : : : : : 22

2.4.6 Asserting Unnamed Objects in Nested Descriptions : : : : : : 22

2.4.7 Closing Roles : 22

2.4.8 Filling a Role with a Set of Objects : : : : : : : : : : : : : : 23

2.4.9 Defining Concepts by a Set of Objects : : : : : : : : : : : : : 24

2.5 Querying the System : 24

i

ii CONTENTS

2.5.1 Retrieving Entities : 24

2.5.2 Describing Entities : 25

2.5.3 Applying Output Functions to Multiple Entities : : : : : : : : 26

2.5.4 Disambiguating Entities : 27

2.5.5 Full Description of Entities : : : : : : : : : : : : : : : : : : 28

2.5.6 Retrieving User-Given Descriptions : : : : : : : : : : : : : : 30

2.5.7 Retrieving Combined Information : : : : : : : : : : : : : : : 31

2.5.8 Testing Subsumption : 32

2.5.9 Testing Equivalence : 32

2.5.10 Testing Incoherence and Disjointness : : : : : : : : : : : : : 33

2.5.11 Testing Concept Membership : : : : : : : : : : : : : : : : : 33

2.5.12 Retrieving the Difference between Entities : : : : : : : : : : 33

2.5.13 Language Constructs Restricted to Queries : : : : : : : : : : 34

3 Back Manual 35

:</2 : 36

:=/2 : 37

=>/2 : 38

::/2 : 39

?</2 : 40

?:/2 : 41

�=/2 : 42

:/2 : 43

[: : :] : 44

../2 : 44

Attribute Set Term : 45

Number Term : 46

all : 47

allknown : 48

Concept Term : 49

Role Term : 50

Filler Expression : 51

anything : 52

aset : 53

atleast : 53

Concept Term : 54

Macro : 55

atmost : 55

Concept Term : 56

Macro : 57

attribute domain : 58

backask : 59

backdump : 60

backinit : 61

backload : 62

backmacro : 63

backread : 64

CONTENTS iii

backretrieve : 65

backstate : 67

backtell : 69

backwrite : 70

close : 71

comp : 72

defined as : 73

describe : 74

describe fully : 75

difference : 76

disjoint : 77

domain : 78

equivalent : 79

exactly : 80

for : 81

forget : 82

ge, gt : 83

getall : 84

incoherent : 85

intersection : 85

Attribute Set Term : 86

Number Term : 87

introduced as : 88

inv : 89

le, lt : 90

msc : 91

name : 92

not : 92

no : 93

not : 93

Concept Term : 94

Role Term : 95

nothing : 96

nr : 97

number : 98

oneof : 99

or : 99

Concept Term : 100

Filler Expression : 101

range : 102

redescribe : 103

rf : 104

rvm some : 105

rvm no : 106

self : 107

some : 108

someknown : 109

iv CONTENTS

string : 110

subsumes : 111

the : 112

theknown : 113

trans : 114

type : 115

uc(i) : 116

union : 117

vr : 118

without : 119

A Installation of BACK 122

B Syntax Overview 124

C Formal Semantics Overview 130

D Programming Interface 133

Chapter 1

Introduction

Since the end of the 1970s work on knowledge representation has addressed the de-

velopment of representation languages with well-founded semantics, nowadays called

‘Description Logics’. Description Logics (DL), which where previously called ter-

minological logics (TL), term subsumption, etc., can be seen as a formal elaboration

of the ideas underlying Semantic Networks (e.g., [Quillian, 1968]) and Frames (e.g.,

[Minsky, 1975]). Both representation formalisms share the idea of a hierarchically

organized knowledge structure in which information is inherited from general concepts

or frames to more specific ones. They also provide means for an internal structuring of

concepts or frames which leads to horizontal connections: frames contain slots whose

fillers are known to be instances of other frames; concepts contain properties that are

modeled by links leading to other concepts.

Though both representation formats are very similar, there are also important dif-

ferences: semantic networks adequately convey the general structure of the represented

information, and especially interconnections and dependencies; a frame representa-

tion, on the other hand, focuses not so much on the overall structure but on the basic

units and the information locally associated with each frame.

Both semantic networks and frames are ancestors of description logics and all

three approaches to knowledge representation have much in common. There are,

however, essential characteristics of DLs which distinguish them from their ancestors.

The basic difference concerns the attitude towards theoretical foundations and towards

the question of what is constitutive for a representation formalism. According to

DL philosophy, a representation formalism should have a formal syntax, a formal

semantics, a proof theory, and efficient inference algorithms.

In the second half of the 1970’s representation languages from the area of semantic

networks, frames, or scripts were seriously criticized in a number of papers for their

apparent lack of formal rigor (e.g., [Woods, 1975] and [Hayes, 1977]). The key issue

was the relationship between knowledge representation and formal logic. Brachman

endorsed the logic-oriented view on knowledge representation in his early papers on

semantic networks. In [Brachman, 1977] and [Brachman, 1979] he examined in detail,

what the constructs used in semantic networks were supposed to represent. As a result

he presented a collection of so-called epistemological primitives, which were supposed

to be application-independent and became the basic language constructs of KL-ONE.

An overview over the basic features of the KL-ONE formalism circulated in the

1

2 CHAPTER 1. INTRODUCTION

beginning of the 1980’s and was finally published in [Brachman and Schmolze, 1985].

In the following years, several terminological representation systems (TRS) have been

developed incorporating different dialects but similar with respect to the underlying

representation philosophy [Rich, 1991]. In addition to these practice-oriented imple-

mentations, thorough theoretical investigations yielded numerous results concerning

decidability, tractability, and proof theory (see e.g., [Donini et al., 1991a], [Donini et

al., 1991b], and [Royer and Quantz, 1992]).

In the course of this development an initial prototype of a terminological repre-

sentation system, known as the BACK (Berlin Advanced Computational Knowledge

representation) system, was implemented in the mid-80’s at the Technical University

Berlin. Over the years, the BACK system has evolved over several different imple-

mentations to a more efficient and effective representation system. Experience gained

in this development process not only has led to major improvements in its architec-

ture, but has led also to extensions of its inferential services and to a more uniform

representation language.

Since users intending to approach larger applications with BACK have been missing

a tutorial introduction to the BACK system, we decided to give the first part of this report

the form of a tutorial introduction, offering users an easy access to the exploration of

BACK’s capabilities. Further, the representation language of BACK was revised with

BACK V5. It not only has become much more uniform than in previous releases; also

additional constructs were integrated (such as, defined roles, objects in definitions

etc.), yielding an extended expressivity. Consequently, we gave the second part of

this report the form of a manual, describing in more detail the modified and newly

introduced language constructs.

1.1 Guideline

Chapter 2 of this report consists of a tutorial introduction to terminological modeling.

We start with a brief overview over the terms used in terminological representation

systems, introduce an example domain, which we use throughout Chapter 2, and

discuss the language constructs in the course of modeling the example domain. The

last part of Chapter 2 is divided into four sections. In these sections, we explain by

example how the representation language can be used to model a terminology, how

objects of a domain can be represented, how represented information can be retrieved,

and what effect non-terminological inferences have.

The manual part in Chapter 3 is devoted to the current representation language

of BACK V5. Here we describe for every language construct its syntax and semantics,

explain the language construct by example, point out its idiosyncrasies and describe

its differences in comparison to BACK V4. Some appendices in the end summarize in

a compact manner the installation of BACK under Quintus Prolog, describe the syntax

of the representation language and its semantics more formally.

1.1.1 How to Read This Document

This document is definitely not intended to serve as an introduction to description

logics; readers without prior knowledge about description logics should first consult

1.2. QUICK INSTALLATION GUIDE 3

some introductory literature (like e.g., [Brachman and Schmolze, 1985], [Nebel, 1990]

or [Nebel and Peltason, 1990]) to get a feeling for such notions as “concept”, “role”,

“classification” or “terminology”. Having acquired this basic knowledge, readers may

either explore terminological modeling through the tutorial in Chapter 2, or “learn by

doing”. In the latter case you should get a copy of BACK V5, install it as described in

section 1.2 resp. the appendix, and try out the examples of Chapter 2.

Readers with prior knowledge about description logics can explore BACK’s capa-

bilities through the tutorial examples in Chapter 2 or through the manual in Chapter 3,

which describes in more detail the language constructs of version 5. A more compact

description of BACK’s syntax and semantics can be found in the appendices.

Readers with prior knowledge, who wish to use BACK V5 in an application, should

read first the appendix describing the installation of BACK. Chapter 2 may then be

used as some kind of informal reference manual to the language of BACK. Detailed

information about the BACK V5 representation language as well as its semantics can

then be looked up in Chapter 3 and the appendices.

1.2 Quick Installation Guide

A quick installation of the BACK V5 system may be realized through the following

sequence. A more detailed description of the installation procedure can be found in

the appendix.

� Ensure that Quintus Prolog is installed on your local site.

� Uncompress the file ‘BACK.tar.Z’, and untar afterwards the file ‘BACK.tar’ with

the command ‘tar -xf BACK.tar’. You should do this in a separate directory.

� The file ‘Readme.Back51’ contains further informations how to install BACK V5

for Quintus.

1.3 Disclaimer

BACK is still strictly an experimental prototype. It’s main purpose is to demonstrate the

functionality of a fairly comprehensive implementation of description logics. There

are bound to be situations where it will be too inefficient for practical applications.

Also, there are still bugs, and in certain cases there will be a mismatch between the

behaviour of the system and what is described in this manual. In such cases refer to the

documentation that comes with the distribution, or send email to back@cs.tu-berlin.de.

Chapter 2

BACK Tutorial

In description logics (DL) one typically distinguishes between terms and objects as ba-

sic entities from which three kinds of formulae can be formed: definitions, descriptions,

and rules. A definition has the form t

n

:= t and expresses that the name t
n

is used as an

abbreviation for the term t. A list of such definitions is often called terminology. All

DLs provide two types of terms, namely concepts (unary predicates) and roles (binary

predicates), but they differ with respect to the term-forming operators they support.

Common concept-forming operators are: conjunction (c1 and c2), disjunction (c1 or

c2), and negation (not(c)), as well as quantified restrictions such as value restrictions

(all(r,c)), which stipulate that all fillers for a role r must be of type c, or number

restrictions (atleast(n,r,c) or atmost(n,r,c), stipulating that there are at least or at most

n role-fillers of type c for r. Role-forming operators, besides conjunction, disjunction,

and negation, are role composition (r1 comp r2), transitive closure (trans(r)), inverse

roles (inv(r)) and domain or range restrictions (domain(c) or range(c)). In a descrip-

tion, an object is described as being an instance of a concept (o :: c), or as being related

to another object by a role (o1 :: r:o2). Rules have the form c1 => c2 and stipulate

that each instance of the concept c1 is also an instance of the concept c2. These basic

notions can be summarized briefly by the following definitions, which are useful for

understanding the example we present in the following.

Definition 1 (Concept) A concept represents a set of instances, either intensional

or extensional. An intensional definition of a concept specifies the characteristic

properties of its instances. An extensional definition consists of an enumeration of all

instances.

Definition 2 (Role) A role represents a binary relation between concept instances.

Definition 3 (Term) A term is a concept or a role.

Definition 4 (Object) An object is an instance of a concept. Objects may be instances

of different concepts at the same time.

Definition 5 (defined) A term is called defined, if its definition describes necessary

and sufficient conditions for the recognition of objects resp. relations.

Definition 6 (primitive) A term is called primitive, if its definition describes necessary

conditions for the recognition of objects resp. relations.

4

5

Before we introduce and model our example domain, we briefly sketch the services

of BACK. Consider the simple domain model in Figure 2.1, it contains five concepts

definitions. Four concept definitions are primitive (those introduced with the :<

operator), which means that the specified conditions are necessary but not sufficient,

and one is defined (introduced with :=), which means that the specified conditions are

necessary and sufficient. Furthermore, there is one rule (introduced with =>) and four

object descriptions (introduced with ::).

product :< anything

chemical product :< product

biological product :< product and not(chemical product)

plant :< atleast(1,produces,product)

chemical plant := plant and all(produces,chemical product)

some(produces,chemical product) => high risk plant

toxipharm :: chemical product

biograin :: biological product

chemoplant :: chemical plant

toxiplant :: atmost(1,produces) and produces:toxipharm

Figure 2.1: A Simple Model

Such a model is regarded as a set of formulae. Given the formal semantics of

a DL, such a set of formulae will entail other formulae. Now the service provided

by terminological representation systems is basically to answer queries whether some

formula is entailed by a modeling. The following types of queries can be answered:

� t1 ?< t2

Is term t1 more specific than t2, i.e., is t1 subsumed by t2? High risk plant

subsumes chemical plant, i.e., every chemical plant is a high risk plant.

� t1 and t2 ?< nothing

Are two terms t1 and t2 disjoint? The concepts chemical product and biological

product are disjoint, i.e., no object can be both.

� o ?: c

Is an object o an instance of concept c (object classification)? Toxiplant is

recognized as a chemical plant.

� o1 ?: r:o2

Are two objects o1,o2 related by a role r, i.e., is o2 a role-filler for r at o1?

Toxipharm is a role-filler for the role produces at toxiplant.

� getall(c)

Which objects are instances of a concept c (retrieval)? Chemoplant and toxiplant

are retrieved as instances of the concept high risk plant.

� o1 :: r:o2 rejected

Is a description o1 :: r:o2 inconsistent (consistency check)? The description

chemoplant :: produces : biograin is inconsistent, i.e., biograin cannot be

produced by chemoplant.

6 CHAPTER 2. BACK TUTORIAL

2.1 A Tutorial Example

The example we use throughout this chapter will be risk assessment of industrial

plants, or more precisely the classification of plants into risk classes, depending on the

security of the production process and the “harmfulness” of the waste produced by the

plant. Plants, products, waste, and risks are first class objects in the example domain.

Let our description start with the types of plants we like to model.

Industrial plants can be distinguished on different scales: the type of product

produced by the plant, the structure of its products, the type of machines used, etc.

Primarily, we distinguish plants in the following on the basis of the type of thing a plant

produces. These types of things may be distinguished into mechanical, biological, or

chemical products, or energy, which can be informally characterized as:

mechanical products are products produced in a mechanical fashion, e.g., screws,

paper, desks, computers, cars.

biological products are produced by biological means or by modification of biologi-

cal products, e.g., sugar cubes, instant soup, beer, lemonade, insulin, bacteria.

chemical products are produced by chemical reactions or by modification of chemical

substances, e.g., PVC, cleaning substances, gasoline, painting colors.

A secondary distinction we use concerns the structure of the products produced in

the plant, whether they consist of a single material (e.g., screws, sugar cubes and

PVC), whether they are compound products made-up from several materials (e.g.,

books, cigarettes, instant soup, painting color), or whether they are assembled products

consisting of single and compound products (e.g., bikes, computers, cars, plants).

Unfortunately, plants can break down. That means the production process does not

work properly anymore. Even worse, such a breakdown can pollute the environment.

Our goal is the classification of plants according to the risk they represent for their

environment. Hence, we are primarily interested in plants which do not work properly

and which may interact in an unpredicted way with their environment (e.g., a plant with

a broken pipeline spilling oil, or a nuclear power plant polluting its environment). We

adopt a simplified model where the status of a plant is distinguished into the following

classes:

unmonitored which means that the plant is working fine and is monitored by auto-

matic devices.

monitored which means that the production process has broken down, but no in-

teraction with the environment has occurred yet. The plant is monitored by

humans.

alert which means the production process has broken down and an unpredicted inter-

action of the plant with its environment has taken place.

Each of these classes has an associated risk. Unmonitored plants have the risk to break

down and pollute the environment with waste which is produced during the normal

production process. Monitored plants have additionally the risk of interacting with

their environment in an unpredictable way. Plants in the status alert have the further

2.1. A TUTORIAL EXAMPLE 7

risk of polluting their environment with substances which are encapsulated during the

normal production process.

A plant not only produces useful products, it also produces waste. Products as well

as waste may occur with different degrees of “harmfulness”: as non-toxic pollution,

as toxic or radioactive contamination, as mechanical pollution in the form of noise

and heat. Products and waste can be distinguished on at least three scales according

to their direct or indirect polluting influence, according to the duration of a polluting

influence, and according to the “victim” of a pollution.

Direct influence here means that a pollution affects somebody or something without

intermediate states (e.g., direct contamination with a radioactive material, or direct

raise of the temperature of a river through cooling water). On the other side, indirect

influence means that the pollution goes through intermediate states (e.g., indirect

accumulation of radioactivity via food, or indirect rise of temperature through the

green-house-effect).

Dependent on the required degree of granularity the duration of an influence may be

measured on different scales. We use here a very course-grained scale and distinguish

between short-, medium-, and long-term influences. An explosion or contact with

poisoning gas are examples of short-term influences, destruction of the ozone layer

and intoxication of a river are medium-term influences, while radioactive pollution of

the environment and the green-house-effect are considered as examples for long-term

influences.

The “victim” of a pollution can be distinguished into living things (e.g., animals,

humans, vegetation) and the non-living environment (e.g., water, earth, atmosphere).

The “harmfulness” of the waste depends on these scales and may be determined by

an appropriate function. For example, a pollution of a small region of the environment

with a high-toxic chemical substance with a small half-life period will not be as risky

as a long term pollution of the atmosphere with a non-toxic material destroying the

ozone layer. However, we just use a simple model here and do not worry much about

the appropriateness of functions combining these scales of harmfulness into a single

measure of the waste’s risk.

These different risks, the risk of the waste produced during the normal production

process, the risk for a plant not to work properly, and the risk to pollute its environment

may be combined into a single overall risk value for the plant. We assume for this

purpose a simple function, which combines the different risks into five risk values:

high, large, medium, small, and null. This risk value is used for the classification of

plants into high risk plants (e.g., nuclear-power plants, molecular biological plants),

medium risk plants (e.g., automobile factories, chemical plants), and plants with small

or null risk (e.g., screw factories, furniture plants, or food production).

8 CHAPTER 2. BACK TUTORIAL

2.2 Modeling a Terminology

The purpose of a terminology or taxonomy is the organization of concepts and roles of

a domain dependent on their degree of specificity. Intuitively, a power plant is a plant

and thus the term ‘power plant’ should be more specific than the term ‘plant’. But,

how can this be realized? Just looking at the strings representing the concepts will

surely not suffice. Of course, we could explicitly enumerate all the objects belonging

to these concepts and compare set-theoretical their extensions, but clearly this would

be a tough task. Not only can these extensional sets be infinite, but also can we not

assume that all objects are known in advance. Thus, explicit enumeration is only

feasible for concepts representing a small, finite set of objects known in advance.

The usual way adopted in description logics is the intensional definition of concepts.

This can be achieved by describing concepts and roles in relation to other concepts

resp. roles. The automatic organization of concepts and roles into a terminology can

then be realized for terminological languages by a subsumption algorithm comparing

term structures. This algorithm is usually called classifier.

So let us see how the term ‘power plant’ can be defined intensionally. A power

plant is a plant and it is producing power. Thus, we can relate the concepts ‘plant’

and ‘power’ by a role ‘produces’ to define the more specific concept ‘power plant’.

Clearly, we can now quite easily infer by term subsumption that every ‘power plant’ is

also a ‘plant’, because the term ‘power plant’ is according to the subsumption relation

more specific than the term ‘plant’.

What we need of course is an appropriate term description language for defining

concepts and roles, and a way of determining subsumption relations between concepts

and roles. Such a term description language, i.e., the BACK representation language,

is described by examples in this section. Chapter 3 and the appendix describe the

language constructs in greater depth. The subsumption algorithm implemented in

BACK V5 is similar to the algorithm used in the previous version, its formal semantics

is given in the appendix.

For the purpose of this tutorial, we use the typographic convention that keywords of

the BACK language (terminals of the BNF syntax) are written in boldface. Terms which

were introduced in BACK as entities (e.g. concept, role, aset : : :) are written in sans

serif. We follow the most practical (and perhaps most natural) way of modeling: we

define first the terms we like to use in the example domain. Section 2.3 describes how

non-terminological inferences can be incorporated into a domain model. In Section

2.4 we describe how assertional information can be expressed. Section 2.5 shows

how terminological and assertional information can be retrieved, and how tests can be

performed.

2.2.1 Built-in Concepts

At least two terms are of special interest: a term for denoting all objects of a domain,

called anything, and a term for denoting the empty or incoherent concept, called

nothing. These terms are built-in concepts of BACK. Anything denotes the most

general concept which subsumes all other concepts; nothing denotes the most specific

concept which is subsumed by every concept.

2.2. MODELING A TERMINOLOGY 9

2.2.2 Primitive Concepts

Primitive concepts are used to represent the natural kinds of a domain which cannot

be or should not be further defined. They are taken as they are, which means that the

classifier will not change their position within the taxonomy. The right-hand side of

a primitive concept declaration represents necessary conditions for the classification

process.

Example 1: The terms ‘plant’ and ‘product’ represent natural kinds of our example

domain, hence we define them as primitive concepts. And because these are the most

general terms in our domain they are directly subsumed by the concept anything.

plant :< anything.

product :< anything.

Clearly, if we extend the representation we could state necessary and sufficient con-

ditions for determining whether an object is a plant resp. a product. These concepts

could then be introduced equally well as defined concepts1. But note that since we

cannot completely define all the concepts of a domain, some defined concepts will

always be based on primitive concepts2.

Of course, there are other necessary conditions plants as well as products must fulfill.

A ‘plant has a location’, it ‘is owned by somebody’, it ‘produces products’, ‘consumes

material and energy’, a ‘product has a weight and a price’, ‘consists of parts’ etc. Some

of these properties will be introduced as roles below.3

For the purpose of our example domain these concepts are still quite general

because we like to distinguish between mechanical, biological and chemical plants,

waste and products. Thus, we refine these primitive concepts in the following way:

Example 2: Mechanical, biological, or chemical plants are plants. Products can be

distinguished into mechanical products, chemical products, biological products, or

energy. Material and waste can be considered as a kind of product. Waste may be

toxic or non-toxic. Radioactive material is a material, and nuclear waste is a form of

toxic waste.

mechanical plant :< plant.

biological plant :< plant.

chemical plant :< plant.

mechanical product :< product.

biological product :< product.

chemical product :< product.

1Defined concepts will be introduced further below, after we have build-up some initial terminology.
2The decision which concepts should be introduced as primitives is beyond the scope of termino-

logical modeling, since this decision about concept granularity depends on the domain and the intended

application.
3Just for the purpose of this tutorial, we start with most general descriptions, and extend concepts and

roles step by step. We note that this modeling process is not practical as long as the domain was not

analyzed in advance. Instead, a thorough analysis of the domain should precede any modeling activity.

10 CHAPTER 2. BACK TUTORIAL

energy :< product.

material :< product.

waste :< product.

radioactive material :< material.

toxic waste :< waste.

non toxic waste :< waste.

nuclear waste :< toxic waste.

Although we can model a whole taxonomy just with primitive concepts, it is not

wise to do so. Since primitive concepts do not express sufficient conditions, it is not

possible to classify them automatically. Thus, the user has the complete responsibility

to organize the primitive concepts of a taxonomy. However, as we will see after we

have introduced roles, some of these concepts can be introduced as defined concepts.

2.2.3 Primitive Roles

Roles are used to represent binary relations. In analogy to primitive concepts, primitive

roles are used to define basic relations and represent – like primitive concepts –

necessary conditions for the classification process.

Example 3: Plants produce products and need energy. They also co produce waste.

Products may directly contain other products.

produces :< domain(plant) and range(product).

needs :< domain(plant) and range(energy).

co produces :< domain(plant) and range(waste).

directly contains :< domain(product) and range(product).

The keyword and is used to conjoin terms. Note that in BACK we denote with the

term range what is usually called in object-oriented models “domain of an attribute”.

Although the directly contains role states that a product may directly contain other

products, it does not model yet the transitive closure of the role contains, which we

like to represent and which will be introduced later. However, because we have

introduced material and waste as a kind of product, the directly contains role covers

already cases where a product contains material or waste.

This is just one form of introducing roles, where the domain and the range of the

role are explicitly mentioned, and where the role is introduced in advance. Another

form of role introduction, called forward introduction, is performed automatically if a

not yet introduced role is used.

Example 4: Let us reconsider the concept of a plant. A plant is located at a place

and is of a certain type. Thus, let us revise the concept plant, and let us introduce the

concepts place and type as primitive.

place :< anything.

type :< anything.

plant :< anything and all(located at,place) and all(is of type,type).

2.2. MODELING A TERMINOLOGY 11

These definitions have the following consequences: First, since the concept plant was

already introduced before, it is revised now with this new definition. Second, the roles

located at and is of type, which were not introduced before, are introduced now (this is

called ‘forward introduction’). Third, the concept anything becomes the domain and

range of the newly introduced roles. And fourth, the operator all restricts the introduced

role locally at the concept to the concept mentioned in the second argument. This is

called a value restriction and will be explained in more detail below.

2.2.4 Defined Concepts

Besides the definition of primitive concepts, concepts may also be defined. For

defined concepts the right-hand side of the concept definition represents necessary

and sufficient conditions for concept classification. The classifier will automatically

determine the right place in the taxonomy where the concept has to be integrated, and

will automatically recognize objects which are instances of a defined concept.

Example 5: Let us declare the concepts water energy plant and wind energy plant

as primitive plants producing energy. A plant producing power from wind or water

is a mechanical plant and at the same time it is a wind resp. water energy plant,

this definition is sufficient to classify any wind power plant and water power plant.

We may also like to use the defined concept of a mechanical energy plant for some

reason, which can be defined as a mechanical plant producing energy.

wind energy plant :< plant and all(produces,energy).

water energy plant :< plant and all(produces,energy).

wind power plant := mechanical plant and wind energy plant.

water power plant := mechanical plant and water energy plant.

mechanical energy plant := mechanical plant and all(produces,energy).

The classifier will determine the proper position in the taxonomy w.r.t. concept

subsumption and will detect that the introduced concepts wind power plant and wa-

ter power plant have to be subsumed by the concept mechanical energy plant, which is

subsumed by the concept mechanical plant. Additionally, the classifier will recognize

objects subsumed by the above defined concepts.

Example 6: Defined concepts can also be used to introduce synonym names for

concepts. For example, if we like to use the terms factory or workshop instead of plant,

we can declare them as synonym as follows:

factory := plant.

workshop := plant.

2.2.5 Revision of Concepts

Since we have roles available for relating concepts, we can revise – as promised above

– some of the previously introduced primitive concepts and introduce them more

precisely as defined concepts. Although the meaning of a defined concept is stronger

than the meaning of a primitive concept, the former have the nice property that the

classifier will determine their proper position in the taxonomy automatically, and as a

consequence, can automatically recognize their object instances.

12 CHAPTER 2. BACK TUTORIAL

Example 7: A mechanical, biological, or chemical plant is a plant which produces

mechanical, biological, resp. chemical products.

mechanical plant := plant and all(produces,mechanical product).

biological plant := plant and all(produces,biological product).

chemical plant := plant and all(produces,chemical product).

Again it should be noted that if we would declare mechanical, biological, and chem-

ical as primitive concepts, we could equally well introduce the concepts mechani-

cal product, biological product and chemical product as defined concepts.

As should be clear from the previous revision of the concept plant and the above

revisions, we can not only revise primitive concepts, but also a primitive concept can

be revised into a defined one, and vice versa. The same holds for roles. An example of

role revision will occur further below. Note however, that a concept cannot be revised

into a role or vice versa.

2.2.6 Disjoint Concepts

In the beginning we introduced the concepts energy and material as primitive concepts.

We have also seen that concepts can be conjoined. Thus, we could also formulate a

concept which is both ‘energy and material’. Although this will perfectly make sense

for a physician, it does not make much sense in our risk assessment domain. Because

of the intended level of granularity we will never encounter an object which is both

energy and material at the same time. Thus, we should revise these concepts and

should declare them more precisely as disjoint.

Example 8: Energy and material, as well as energy and waste are clearly distinguished

concepts, for which no common instance will exist in the example domain.

energy :< product.

material :< product and not(energy).

waste :< product and not(energy).

The concept operator not can only be applied to primitive concepts. Note that these

definitions do not declare the concepts material and waste as disjoint. Thus, objects

which are both material and waste are still representable. Although we could equally

well declare the concepts plant and product as disjoint, we would exclude that plants

can be considered as product resp. that plants can be produced in a plant. Again we

note that the decision which concepts need to be declared as disjoint is dependent on

the domain we like to model as well as on the intended application.

2.2.7 Defined Roles

We can also construct defined roles from primitive ones. As for defined concepts,

the right-hand side of a defined role declaration represents necessary and sufficient

conditions.

2.2. MODELING A TERMINOLOGY 13

Example 9: Plants produce products. If we need to represent the information which

product is produced by a certain plant, we can define this role as inverse of the role

produces. If products should contain products we need to represent the transitive

closure of directly contains. A plant also uses up materials during the production

process. A uses up role depends on the products produced and the materials contained

in these products, thus it can be defined in terms of a role composition.

produced by := inv(produces).

contains := trans(directly contains).

uses up := produces comp contains and range(material).

As should be obvious, the inv operator constructs the inverse role, the trans operator

the transitive closure, and comp constructs the role composition.

2.2.8 Closed Attribute Domains

Sometimes we want to describe concepts by unstructured atomic values. These values

are called attributes4 in BACK, and a set of such values forms an attribute domain.

We distinguish mainly between two types of attribute domains: closed and open ones.

Attributes of closed attribute domains must be given at declaration-time and are con-

sidered to be ordered.

Example 10: A risk in our domain may take on the values high, large, medium, small

or null. The duration of a pollution may be long, medium or short, while a plant can

be in the states: alert, monitored and unmonitored.

risk := attribute domain([high,large,medium,small,null]).

duration := attribute domain([long,medium,short]).

state := attribute domain([monitored,alert,unmonitored]).

Closed attribute domains are implicitly ordered from left to right, so that subranges

can be constructed out of them. If an attribute is encountered which was not previously

declared to belong to a closed attribute domain, an error will be reported.

2.2.9 Open Attribute Domains

It may be the case that we cannot specify the attributes belonging to an attribute

domain at declaration-time; only at run-time they may be available. In this case an

open attribute domain has to be declared, which allows us to collect during run-time

the occurring attribute values. Open attribute domains are regarded to be unordered.

Example 11: In the context of risk assessment, we may like to relate a plant to the

final judgement about the risk it represents. These judgements may stem from different

sources and may be described in different terms. For example, judgements may be

described by attributes like safe, secure, reliable, riskless, harmless etc. However, at

declaration time we do not know which attributes will be used.

4Note that the term attribute is used in other terminological representation systems to denote a role

which is functional and total on its domain.

14 CHAPTER 2. BACK TUTORIAL

judgement := attribute domain.

If it can be determined from the context that an attribute has to belong to an open

attribute domain, the corresponding attribute domain is automatically extended by this

attribute.

2.2.10 Attribute Sets

Sometimes we like to use a subset of attributes from an attribute domain or sets obtained

from set theoretical operations on two attribute domains, e.g., union, intersection and

subtraction (denoted without in BACK). Subsets of attribute domains can be chosen in

BACK with the aset operator.

Example 12: The term risky may refer to the range of risks between high and medium,

and the term unrisky to the risks small and null. Controlled by humans should consist

of the subset of values of the attribute domain state which indicate that a plant is

monitored by humans, whereas automatically controlled should be used to represent

the opposite case that the plant is monitored by automatic devices.

risky := aset(high..medium,risk).

unrisky := aset(small..null,risk).

controlled by humans := aset([alert,monitored],state).

automatically controlled := aset([unmonitored],state).

As described above closed attribute domains are implicitly ordered from left to right.

Note that the use of the range operator ‘..’ is not appropriate and may result in strange

subranges, if in an application domain attributes are considered to be unordered. Fur-

thermore, the range operator applied to an open attribute domain, which is considered

to be unordered, may result in strange subranges. Attribute sets can also be defined

by the set theoretical operators mentioned above; however, in our example domain we

have no interesting example for their use.

2.2.11 Number Ranges

Besides nominal attribute domains, it is also possible to use numbers and number

intervals. Intervals can be constructed by the number operators intersection and ‘..’

which are used to specify and to compute an interval. The operators lt (less than), gt

(greater than), le (less equal), and ge (greater equal) can be used to specify a range of

numbers below or above a certain threshold.

Example 13: The term harmfulness may be defined by a numerical range between 0

and 10. A harmfulness between 5 and 10 will be termed dangerous. If the harmfulness

of the waste is less than 3 we call it safe.

harmfulness := 0..10.

dangerous := harmfulness intersection gt(5).

safe := lt(3).

Note that numbers are not restricted to integers, although the above examples seem to

imply this. Simple numbers can always be used instead of a number range N..N; N is

equivalent to ‘N..N’, so that no problems arise if the intersection of an interval and a

number is constructed.

2.2. MODELING A TERMINOLOGY 15

2.2.12 Extended Role Definitions

Let us return once more to role definitions. Above we have discussed primitive and

defined roles whose ranges were restricted to concepts only. However, we also have

the possibility to restrict the range of roles to attribute domains, numbers, and strings.

Example 14: Plants have a risk to break down and a risk to pollute the environment.

Plants also operate in some mode, which can take on values of the attribute domain

state. Products may have a degree of harmfulness. Products usually have an identi-

fication code, which can be considered as an unstructured string. These roles can be

expressed as follows:

breakdown :< domain(plant) and range(risk).

pollution :< domain(plant) and range(risk).

op mode :< domain(plant) and range(state).

degree :< domain(product) and range(harmfulness).

id code :< domain(product) and range(string).

Whereas the range may be a concept, attribute domain, aset, number, or string5, the

domain can only be a concept.

2.2.13 Revising Roles

Although these role definitions represent already the intended domains and ranges

correctly, there is still some information missing. For example, a product usually has

at most one identification code, thus the role id code needs to be functional on its

domain. And further, since we like to assign to a plant at most one breakdown risk

and one pollution risk, and since a plant can be in at most one mode of operation,

the corresponding roles should be functional as well. Thus we revise the above role

definitions as follows:

breakdown :< domain(plant) and range(risk) type feature.

pollution :< domain(plant) and range(risk) type feature.

op mode :< domain(plant) and range(state) type feature.

degree :< domain(product) and range(harmfulness) type feature.

id code :< domain(product) and range(string) type feature.

The modifier type feature declares roles to be functional on their domain. The

declaration of a role as a feature has the effect that all number restrictions for the role

are unified with [0,1], which will be explained below.

2.2.14 Value Restrictions

As we have mentioned already above, the local range of a role attached to a concept

can be restricted at declaration time of the concept. We refer to this as value restriction.

The attached value restriction becomes a definitional part of the concept.

5Although the keyword string could be regarded as analogous to a predefined open attribute domain

of strings, it actually is not an attribute domain. In other words, no subset of string can be formed.

16 CHAPTER 2. BACK TUTORIAL

Example 15: Let us introduce some additional concepts which restrict the range of

roles locally. We can define the concept energy plant as a plant which produces energy.

The concept of a nuclear power plant can be defined as an energy plant which uses up

radioactive material and co produces nuclear waste. We can also define more complex

concepts like, e.g., a dangerous plant, which is a plant producing some products with

a dangerous degree of harmfulness, or a risky chemical plant, which can be defined as

a plant which only produces chemical products and whose breakdown risk is risky.

energy plant := plant and all(produces,energy).

nuclear power plant := energy plant and

all(uses up,radioactive material)

all(co produces,nuclear waste).

dangerous plant := plant and

some(produces,some(degree,dangerous)).

risky chemical plant := plant and

all(produces,chemical product) and

all(breakdown,risky).

some is a predefined macro in BACK with the meaning ‘atleast(1,r and range(c))’,

which expresses that there is at least one role-filler for r of type c. As the definition of

dangerous plant indicates, value restrictions do not have to be atomic but can consist

of complex terms.

2.2.15 Number Restrictions

A concept may be related over roles to other concepts; this is usually expressed by

value restrictions. However, a role may have only a certain number of allowed fillers.

Such a constraint on the cardinality of potential objects filling a role is called number

restriction. Number restrictions represent either a minimal or a maximal number of

role-fillers, thus they are distinguished into minimum resp. maximum restrictions. An

exact number of fillers may be modeled if the minimumrestriction equals the maximum

restriction.

Example 16: A plant producing exactly one product, called a mono plant, can have

exactly one filler belonging to the concept product in its produces role. A broken plant

does not produce anything, thus the number of fillers of its produces roles is zero. The

concept of a toxic waste plant can be defined as a plant, which co produces at least

one type of toxic waste. A solid product contains only objects of type material and

contains exactly one object, while a compound product contains also only objects of

type material, but needs to contain at least two of those objects. An assembled product

contains at least one product, hence its contains role needs to be filled with at least one

product. These concepts may be defined as:

mono plant := plant and

atleast(1,produces) and

atmost(1,produces).

broken plant := plant and atmost(0,produces).

toxic waste plant := plant and

2.2. MODELING A TERMINOLOGY 17

atleast(1,co produces,toxic waste).

solid product := product and all(contains,material) and

exactly(1,contains).

compound product := product and all(contains,material) and

atleast(2,contains).

assembled product := product and atleast(1,contains).

If no number restrictions are specified for a role the minimum restriction is set to 0 and

the maximum restriction is set to ‘infinite’. This amounts in saying, that the role may

have an arbitrary number of fillers. The expression atleast (1,co produces,toxic waste)

uses the predefined macro atleast(n,r,c) of BACK which is expanded into the more

complex expression ‘atleast(n,r and range(c))’. Exactly(n,r) is also a predefined macro

with the meaning ‘atleast(n,r) and atmost(n,r)’.

Note that there exist small semantical differences between definitions which seem –

on the first sight – to express the same statement. For example, while a term of the

form ‘atleast(n,r) and all(r,c)’ states that all role-fillers for r are restricted to range c,

and that there are at least n role-fillers for r, the expression ‘atleast(n,r and range(c))’

states that there are at least n role-fillers for r of type c. The former definition restricts

all role-fillers for r, while the later restricts only some of them. Similar differences can

be found for the macros some, atmost and exactly.

Since we now have nearly all constructs available for defining concepts we can

once more revise some of the previously introduced concepts.

Example 17: A plant is located at exactly one place and is also of exactly one

type. An energy plant produces at most two forms of energy: heat and electric-

ity. A nuclear power plant uses up – besides other materials – at least one radioac-

tive material and co produces – besides other waste – at least nuclear waste. And

finally, a risky chemical plant produces at least one chemical product.

plant :< anything and

all(located at,place) and

exactly(1,located at) and

all(is of type,type) and

exactly(1,is of type).

energy plant := plant and

all(produces,energy) and

atmost(2,produces).

nuclear power plant := energy plant and

atleast(1,uses up,radioactive material) and

atleast(1,co produces,nuclear waste).

risky chemical plant := plant and

all(produces,chemical product) and

atleast(1,produces) and

all(breakdown,risky).

18 CHAPTER 2. BACK TUTORIAL

2.3 Non-Definitional Information

Above we have considered one part of terminological modeling. However, sometimes

concepts are not only related over their definition, but also by non-definitional in-

formation. Such information can sometimes be represented by implications between

concepts (I-links, rules).

Example 18: If a plant co produces toxic waste, we want to infer that its pollution risk

is risky. If we know that a plant is in mode controlled by humans, we can in accordance

with the intended meaning of the state attributes monitored and alert conclude that it is

necessarily a broken plant. Or as another example, consider fast breeders: if we know

that a certain nuclear power plant is of that type, we may like to conclude for some

reason that it is a dangerous plant.

some(co produces,toxic waste) => all(pollution,risky).

plant and all(op mode,controlled by humans) => broken plant.

nuclear power plant and is of type : fast breeder => dangerous plant.

As we see from these examples, the left-hand side of the ‘=>’ operator represents the

premise of a rule6, while the right-hand side represents the rule’s conclusion. These

rules have the effect that if an object is asserted7 as an instance of the premise, the

rule is executed, and the object description is extended by the rule’s conclusion. In the

first rule we have used the BACK macro some, which is predefined as ‘atleast(1,r and

range(c))’. The last two examples show that any well-formed concept expression can

be used as a premise. The last rule uses a filler expression (is of type : fast breeder)

which expresses that the role is of type is filled with an the object fast breeder. Filler

expressions will be described further below.

Example 19: Let us assume as a further rule: if a dangerous plant is broken we

conclude that its pollution risk is high. Although this rule represents more a ‘default’,

we assume that in the risk assessment domain it represents a hard fact, because of the

intended application.

broken plant and dangerous plant => pollution : high.

In conjunction with the last two rules of the previous example an assertion of an object

has the consequence that all rules are fired as long as they are applicable and until the

object description does not change anymore.

2.4 Representing a World

In the sections above we have defined the meanings of terms we want to use in our

example domain of risk assessment. These terms correspond to abstract entities, which

are used to describe the terminological structure of the domain under consideration.

6The meaning of ‘rule’ used here does not correspond to the usual meaning of this term in AI. Although

rules are used for ‘forward-chaining’ inferences, no conflict resolution has to be performed, since they

are regarded as logical constraints.
7How objects are created as instances of concepts will be described in the next section.

2.4. REPRESENTING A WORLD 19

Of course, terminology is not enough; we want to use it to describe concrete objects

and relations.

Before we can do anything with objects and relations we have to put them into

existence. Thus, we need a way for asserting objects and relations as instances of

concepts and roles. The possible assertion and retraction operations of BACK will be

described in this section, while the next section is devoted to queries which can be

answered by BACK.

2.4.1 Creating Named Objects

We describe a situation of the real world usually with some named objects which are

instances of some concepts. Since an object is an instance of a concept, we need a

way of creating named concept instances.

Example 20: Three Miles Island is the well-known nuclear power plant near Harris-

burg. For accessing the risk Three Miles Island represents for the environment we need

to create an instance of the concept nuclear power plant.

’Three Miles Island’ :: nuclear power plant and located at : ’Harrisburg’.

Note that upper case names (i.e. ’Three Miles Island’ and ’Harrisburg’) need to be

quoted in Prolog, because otherwise they are regarded as variables. Such an ob-

ject description triggers the creation of a named object instance of the concept nu-

clear power plant, and fills its located at role with the value ’Harrisburg’. Additional,

information from the concept definition is inherited to the object: Three Miles Island

uses up radioactive material, co produces nuclear waste and produces energy. Also

new information is inferred by the classifier, e.g. that ’Harrisburg’ must be some place,

etc. Furthermore some of the rules are triggered which add new information to the

object, e.g. that the pollution risk of ’Three Mile Island’ is risky. The names used for

objects must follow the ‘unique names assumption’, i.e., every name can only be used

to name one object at a time, and objects having different names are supposed to be

different objects.

Example 21: If we know that ’Three Miles Island’ is a fast breeder, then we can

extend the object description with this new information. Of course, we also need to

update the description of the object Three Miles Island if an accident occurs in Three

Miles Island. Let us assume that Three Miles Island is broken in the sense that it does

not produce energy any longer, and that it co produces some nuclear waste.

’Three Miles Island’ :: is of type : fast breeder.

’Three Miles Island’ :: broken plant.

While the first update only adds new information to Three Miles Island, the second

update additionally now triggers another non-terminological rule. Thus, after the

second update, the maximum restriction of its produces role is set to 0, which means

that Three Miles Island produces nothing, and the pollution role will be filled with value

high derived from the corresponding rule shown above.

20 CHAPTER 2. BACK TUTORIAL

2.4.2 Retracting Partial Descriptions

Further non-terminological rules may be triggered if new information about an ob-

ject arrives. However, it may also happen that we have to retract previously given

information in later modeling steps.

Example 22: Three Miles Island will be surely repaired one day or the other, and

thus we have to update the object again. Let us assume that Three Miles Island is

repaired, that it again produces energy, and that its production of nuclear waste again

is “normal”, Then we need to retract the information that it is a broken plant.

backtell(forget(’Three Miles Island’ :: broken plant)).

Note that only user-told facts about objects and rules can be retracted by the user. The

system, however will not only retract this information,, but also information derived

from Three Miles Island being a broken plant, i.e., the information that it produces

nothing and that its pollution risk is high.

Although the backtell command is the usual command for asserting new information

in BACK, we have not used it in the previous examples. This was possible since the

operators ’:<’, ’:=’, ’=>’, ’::’, ’?<’ and ’?:’ are recognized as BACK tell- resp. ask-

expressions. The only exceptional operator is ’=’, which needs always to be enclosed in

a backretrieve, since it is predefined in Prolog. For deciding where to use a backtell,

backask, or backretrieve command the following rule of thumb may be useful: if a

command consists of a Prolog predicate rather than an operator, it should be enclosed

in a backtell, backask, or backretrieve.

2.4.3 Revising and Retracting Objects

Clearly, if we can retract partial descriptions of objects we have the opportunity to revise

them following the motto: revision = subtraction + addition. But since object revision

and retraction via a sequence of single retraction operations is a time consuming

process, the representation language of BACK includes abbreviating constructs.

Example 23: Suppose we have created an Erroneous Input object in two steps as an

instance of the concepts toxic waste and wind power plant. Once we have detected

that this object makes no sense in our application we could revise it in two separate

steps. However, it is computationally cheaper to do this in one operation.

’Erroneous Input’ :: toxic waste.

’Erroneous Input’ :: wind power plant.

backtell(redescribe(’Erroneous Input’ :: mechanical product and

wind power plant)).

A redescription is computationally cheaper since an update of the ABox needs to be

performed only once. This will pay off if several other objects must be updated which

are connected over roles to the revised object.

Example 24: Suppose we notice later that we do not need the object Erroneous Input

at all. We can retract it completely with a forget operation.

2.4. REPRESENTING A WORLD 21

backtell(forget(’Erroneous Input’)).

A complete retraction is computationally cheaper than retracting every partial descrip-

tion in isolation.

2.4.4 Creating Unnamed Objects and Filling Roles

Sometimes we need to represent an object, but have no name for it. Either because we

actually do not know its name, or because temporarily we do not know its name. Such

situations occur frequently in the context of ‘hypothetical reasoning’, if we assume

that there exists an object with such and such properties, but we cannot identify which

object it is.

Example 25: Let us assume we receive the incomplete information that ‘an envi-

ronmental pollution happened with the toxical chemical waste ‘Dioxin’ in a chemical

plant’. Although we do not know yet the name of the plant, we need to represent it for

determining preliminary information about the risk of this event.

’Dioxin’ :: toxic waste and chemical product

X :: chemical plant and co produces : ’Dioxin’.

This description creates an object as instance of chemical plant and fills its co produces

role with the filler Dioxin. The object is in turn recognized by the classifier as a

toxic waste plant, because Dioxin was previously introduced as a form of toxic waste.

The X represents a Prolog variable which is bound after the creation of the object to

a unique constant uc(i) generated by BACK, which can be used to refer later to this

object.

The unique identifier generated by the above object description can be used either

to extend the object description or to name the object later on.

Example 26: Let us assume that in the last example uc(261) was generated and

that we receive the information that the chemical accident happened in plant 17 of

ChemoPharm, then we can easily update the object description, so that we can later

refer to this object with the name ChemoPharm Plant 17.

backtell(name(uc(261),’ChemoPharm Plant 17’)).

It should be obvious that the number associated with an unique constant depends on the

order in which unnamed objects were processed. Thus, if the formalization preceding

this example is slightly modified, e.g. an additional unnamed object is introduced or

the order in which unnamed objects were created has changed, we cannot expect that

the above uc denotes the right object.

Although this example in isolation seems to suggest that the user could also introduce

uc’s as names for other uc’s, this is not possible in BACK. BACK will check whether

the second argument of the name command corresponds to an identifier starting with

uc. In this case the name command will fail, since uc’s are generated only by BACK.

22 CHAPTER 2. BACK TUTORIAL

2.4.5 Indirectly Referencing Objects

If we neither know the name of an object nor a unique constant denoting it, we can use

– in some situations – as a further possibility for referring to objects indirect references,

where an indirect reference is a description which identifies an object uniquely.

Example 27: Let us return to the broken plant near Harrisburg. We can imagine that

several nuclear power plants are represented in our knowledge base under which Three

Miles Island is at the moment the only one which is broken. Thus, to represent the

information that the broken nuclear power plant uses up uranium, we can assert:

theknown(nuclear power plant and broken plant) ::

uses up : (’Uranium’ :: radioactive material).

Note that indirect referencing with the construct theknown requires that the object

is uniquely determinable. If none or several objects are determinable under indirect

referencing, theknown will fail.

2.4.6 Asserting Unnamed Objects in Nested Descriptions

As for roles during the modeling of the terminology we can also nest descriptions of

role-fillers. This is especially useful if we have to fill a role at the end of a role chain

and don’t know yet any of the intermediate objects in the chain.

Example 28: We may have to represent the information that a mechanical plant

produces something which contains a subcomponent, which itself contains chloroflu-

orocarbon (CFC).

’CFC’ :: material and chemical product.

X :: mechanical plant and

produces : (Y :: contains : (Z :: contains : ’CFC’)).

Instead of variables in nested expressions we can also use unique constants (if a

corresponding uc was already created) or an indirect reference.

2.4.7 Closing Roles

Usually we have the possibility to extend an object by an arbitrary number of relations

to other objects. However, in certain situations we can be sure that an object can only

be related to a certain, fixed number of other objects, and that an extension of the

object’s role-fillers would be an error. To fix the number of role-fillers at an object we

have to close the role.

Example 29: Let us assume a plant producing hair spray. Each atomizer contains

some gas and the product which should be sprayed. That are all components inside

the atomizer, and thus we can close the contains role.

hair spray :: material and chemical product.

X :: compound product and

contains : close(’CFC’ and hair spray).

2.4. REPRESENTING A WORLD 23

Closing a role has the effect that an atmost restriction is added to the object descrip-

tion which depends on the number of role-fillers given to close as argument. Thus,

with closing the role-fillers of contains, we state that only the mentioned fillers are

related to the object, and no further fillers can occur. An equivalent way to express

this is to write ‘X :: compound product and contains : (’CFC’ and hair spray) and

atmost(2,contains)’.

Example 30: Let us assume, we describe an atomizer incorrectly as a com-

pound product which only contains CFC; then this object description is clearly in-

consistent w.r.t. the definition of a compound product which needs to contain at least

two products.

X :: compound product and close(contains : ’CFC’).

This object is not recognized as compound product. Because it has not the required

number of role-fillers, it is rejected.

2.4.8 Filling a Role with a Set of Objects

It may happen that we need to fill a role with all known objects at a particular point of

time. For example, if we like to build a concept which is defined on the basis of all

known objects of a particular type.

Example 31: Let us assume that ‘NNPPCD’ is the ‘National Nuclear Power Plant

Controlling Department’, which is responsible for controlling all existing nuclear

power plants.

’NNPPCD’ :: controlling department and

responsible : allknown(nuclear power plants).

Do not worry at the moment how the concept controlling department is defined, we

will define it immediately below. Here allknown does the job: it determines all the

role-fillers which are instances of nuclear power plants at invocation time, and fills

the responsible role with this set. Note that allknown is nothing more then a macro

facility: if after the use of allknown new nuclear power plants are added, they will not

be recognized as role-fillers for NNPPCD.

We can restrict a role filled with allknown by closing the role. This restricts its

fillers to only the objects that are known at closing time. Thus, the responsibility of

the office can be restricted to only the plants that are currently known.

Example 32: Let us assume that no further nuclear power plants will be build in

the future. Thus, we can close the responsible role of NNPPCD, which restricts the

responsibility of NNPPCD to all and only the known nuclear power plants at the

moment.

’NNPPCD’ :: controlling department and

responsible : close(allknown(nuclear power plants)).

24 CHAPTER 2. BACK TUTORIAL

2.4.9 Defining Concepts by a Set of Objects

In the beginning of Section 2.2, we have mentioned that in some situations we can

define concepts extensionally by enumerating all of their instances if the number of

objects constituting such a concept is reasonably small. Since in such definitions

objects will play a role, we need to return once more to the definition of concepts. The

following illustrates how primitive and defined concept can be defined extensionally.

Example 33: Let us assume that the number of controlling departments in a govern-

ment is small. This set of objects also does not change very often. Thus, we can

represent it as an extensional concept.

controlling department :< oneof([’NNPPCD’, ’CIA’, : : : , police]) and

atleast(1,responsible).

As should be obvious oneof can be regarded as a set construction from an explicitly

given list of objects. Although it seems that such a set is similar to an attribute set,

there is one major difference between both. Objects are structured, thus the objects

in a oneof term can have roles and fillers on their own, they are classified as usual,

and information about them can be asserted and retracted. This is not the case for

attributes, which are regarded as ‘atomic values’.

2.5 Querying the System

Of course, once we have created a terminology and asserted some objects and relations,

we want to use this information. There are different possibilities for querying BACK.

First, because of the distinction between terminological and assertional information.

Second, we can distinguish different forms of queries: boolean queries, which deliver

only a truth value, and retrieval queries, where we actually like to get some result. We

refer in the following with the term testing to the first query type and with retrieval to

the latter type.

We like to point out here that BACK’s representation language for concepts and

role-fillers is not yet completely described. There are three language constructs which

can only be used in queries. However, because of didactical reasons, we delay the

description of these constructs until the end of this section. In the following we use

the term entity8 in a very broad sense to denote nearly everything, from a concept or

role, over a macro or attribute set, to a value and object.

2.5.1 Retrieving Entities

Retrieval of objects can be realized with the getall construct, which can be regarded as

the BACK analogue to a combination of the ‘from’ and ‘where’ modifiers in a ‘select’

command of conventional, relational database systems.

Example 34: We may like to retrieve e.g. all nuclear power plants, all plants which

are co producing some toxic waste, or all products which contain the material ‘CFC’.

8For a more precise description what an entity can be, see the graphical hierarchy in Figure 3.1 in

Chapter 3.

2.5. QUERYING THE SYSTEM 25

backretrieve(getall(nuclear power plant)).

backretrieve(getall(plant and some(co produces,toxic waste))).

backretrieve(getall(product and contains : ’CFC’)).

The getall construct simply retrieves all objects belonging to the mentioned concept.

For retrieving further information about these objects getall is usually combined with

some output formatting constructs, which will be described in more detail below. As

can be seen from these examples, getall can be used to formulate complex retrieval

queries.

All retrieval commands described in the following may occur in two forms, either

prefixed with a variable assignment (X =) or without such a prefix.9 In the latter case

the retrieved information is just pretty printed to the current output stream, while in

the former case the Prolog variable is bound to the retrieved result. Just for brevity we

describe only the non-prefixed version.

2.5.2 Describing Entities

BACK provides several means (called output functions or actions) to retrieve different

kinds of information for entities, covering more general information such as an entities

definition, and more specific information such as an entities filler for a particular role.

We start with the action describe which is used to retrieve the most specific information

known about an entity. The easiest way to use describe is to apply it to a simple entity.

Example 35: Let us assume we want to inspect the description of the object ’Dioxin’.

This can be realized by the following command:

backretrieve(describe ’Dioxin’).

>>> ’Dioxin’

describe: chemical product

and toxic waste

and (inv(prim(co produces)) and

domain(toxic waste) and range(plant)

) : ’ChemoPharm Plant 17’

and oneof([’Dioxin’])

Note, that the retrieved description – like the retrieved descriptions below – may contain

so called ‘primitive components’. Intuitively, ‘primitive components’ of a primitive

concept are exactly those components which make it primitive, i.e., the components

the user cannot (or does not want to) define further. Although BACK’s parser will

recognize primitive components, so that definitions obtained by a retrieval query can

be read by BACK, the user can use a ‘primitive component’ only if it was previouly

introduced by BACK. Thus, the user cannot construct arbitrary ‘primitive components’.

9In contrast to other interaction operations described above, we need to enclose retrieval queries in

a backretrieve command. This depends on the definition of =/2 in Prolog as an operator with a certain

precedence, which cannot be changed without major modifications in the used Quintus libraries.

26 CHAPTER 2. BACK TUTORIAL

2.5.3 Applying Output Functions to Multiple Entities

The action describe – as well as all other actions and output functions described below

– can also be applied to multiple entities. Instead of a simple entity, a list of entities is

given as argument, and the action is applied to each element of the list.

Example 36: Let us assume that we need to inspect some concepts and objects at

once, e.g. ’Three Miles Island’, the known chemical plant which co produces ’Dioxin’

and the concept of a mechanical plant.

backretrieve(describe [’Three Miles Island’,

theknown(chemical plant and co produces : ’Dioxin’),

mechanical plant]).

>>> ’Three Miles Island’

describe: broken plant

and dangerous plant

and nuclear power plant

and is of type : fast breeder

and located at : ’Harrisburg’

and all(pollution,risky)

and pollution : high

and uses up : ’Uranium’

and inv(responsible) : ’NNPPCD’

and oneof([’Three Miles Island’])

>>> theknown(chemical plant and co produces:’Dioxin’)

describe: chemical plant

and toxic waste plant

and all(pollution,risky)

and (co produces and range(toxic waste)) : ’Dioxin’

and oneof([’ChemoPharm Plant 17’])

>>> mechanical plant

describe: plant

and all(produces,mechanical product)

Another possibility exists for the retrieval of information related to objects. The

application of actions or output functions can be combined with getall. Such a

combined retrieval expression is evaluated by first determining the result set of the

getall query followed by an application of the action (resp. output function), e.g.

describe, to each object in the result list.

Example 37: Let us assume that we are interested in the retrieval of descriptions of

all instances of materials which are chemical products.

backretrieve(describe getall(material and chemical product)).

2.5. QUERYING THE SYSTEM 27

Instance #1 of getall(material and chemical product)

describe: chemical product

and material

and (trans(inv(directly contains)) and

domain(material) and range(product)

) : (uc(268) and uc(265) and uc(264))

and inv(uses up) : uc(266)

and oneof([’CFC’])

Instance #2 of getall(material and chemical product)

describe: chemical product

and material

and (trans(inv(directly contains)) and

domain(material) and range(product)) : uc(268)

and oneof([hair spray])

Here getall produces the desired effect of retrieving all instances of materials which are

chemical products, while the describe action produces their description. In contrast

to the previous retrieval examples where the entity to be described was given, the term

getall is evaluated in this example first, and the obtained set of entities is described.

2.5.4 Disambiguating Entities

Although the retrieval mechanism is quite powerful, under certain circumstances we

must disambiguate the entity we want to retrieve. I.e., disambiguation via the operator

‘/’ has to be used if some objects, concepts, and attribute domains have the same

name. If there are several entities with the same name and the retrieval query is not

disambiguated the query will produce an error message and will fail. However, it may

happen that the user can not remember whether the entity to be retrieved was introduced

as concept, role, aset, attribute domain, or object. In this case introduced as can be

used to disambiguate the entity.

Example 38: Let us assume that the name Three Miles Island is ambiguous and a

preceding retrieval query which was not disambiguated failed. Let us further assume

that the name was introduced as a concept, an object, and an attribute of an aset. Then

a disambiguation via introduced as will produce the following output:

backretrieve(X = introduced as ’Three Miles Island’),

X = [[[conc]-[conc,aset]]]

The output produced by introduced as consists of two lists of descriptors separated by

’-’. The first list contains at most two elements describing for which “class” the name

in question was defined. Here conc indicates that Three Miles Island was defined as

concept. The second list describes the classes for which an “instance” with the name

in question exists. Here conc indicates that Three Miles Island is an object instance of

a concept, while aset indicates that it is an attribute instance of an aset.

28 CHAPTER 2. BACK TUTORIAL

2.5.5 Full Description of Entities

The following retrieval actions can be used like the above describe action in different

forms, either for retrieving information about just one entity, about several entities, or

for all objects belonging to a concept. Like stated above, prefixed with a variable, the

variable will be bound to the retrieved description. Without prefix the result will be

pretty printed.

While the previously described action describe produces a minimal description of

an entity, a full, possibly redundant description of an entity is produced with the action

describe fully.

Example 39: Let us describe some concepts and objects of the previous describe

examples to see how a full description of them looks like. Since describe fully

produces rather lengthy output, we have excluded the full description of ‘Three Miles

Island’.

backretrieve(describe fully ’Dioxin’).

>>> ’Dioxin’

describe fully: anything

and prim(product)

and prim(chemical product)

and prim(waste)

and prim(toxic waste)

and not(energy)

and all(inv(co produces),plant)

and atleast(1,inv(co produces))

and inv(co produces) : ’ChemoPharm Plant 17’

and all(inv(prim(co produces)) and

domain(toxic waste) and range(plant), plant)

and atleast(1,inv(prim(co produces)) and

domain(toxic waste) and range(plant))

and (inv(prim(co produces)) and

domain(toxic waste) and range(plant)) : ’ChemoPharm Plant 17’

and oneof([’Dioxin’])

backretrieve(describe fully [theknown(chemical plant and co produces : ’Dioxin’),

mechanical plant]).

>>> theknown(chemical plant and co produces:’Dioxin’)

describe fully: anything

and prim(plant)

and all(is of type,type)

and atleast(1,is of type)

and atmost(1,is of type)

and all(located at,place)

and atleast(1,located at)

and atmost(1,located at)

and all(co produces,waste)

and atleast(1,co produces)

and co produces : ’Dioxin’

and all(pollution,risky)

and atmost(1,pollution)

and all(produces,chemical product)

2.5. QUERYING THE SYSTEM 29

and all(co produces and range(toxic waste),toxic waste)

and atleast(1,co produces and range(toxic waste))

and (co produces and range(toxic waste)) : ’Dioxin’

and oneof([’ChemoPharm Plant 17’])

>>> mechanical plant

describe fully: anything

and prim(plant)

and all(is of type,type)

and atleast(1,is of type)

and atmost(1,is of type)

and all(located at,place)

and atleast(1,located at)

and atmost(1,located at)

and all(produces,mechanical product)

backretrieve(describe fully getall(material and chemical product)).

Instance #1 of getall(material and chemical product)

describe fully: anything

and prim(product)

and prim(chemical product)

and prim(material)

and not(energy)

and all(inv(contains),product)

and atleast(3,inv(contains))

and inv(contains) : (uc(268) and uc(265) and uc(264))

and all(trans(inv(directly contains)) and

domain(material) and range(product), product)

and atleast(3,trans(inv(directly contains)) and

domain(material) and range(product))

and (trans(inv(directly contains)) and

domain(material) and range(product)

) : (uc(268) and uc(265) and uc(264))

and all(inv(uses up),plant)

and atleast(1,inv(uses up))

and inv(uses up) : uc(266)

and oneof([’CFC’])

Instance #2 of getall(material and chemical product)

describe fully: anything

and prim(product)

and prim(chemical product)

and prim(material)

and not(energy)

and all(inv(contains),product)

and atleast(1,inv(contains))

and inv(contains) : uc(268)

and all(trans(inv(directly contains)) and

domain(material) and range(product), product)

and atleast(1,trans(inv(directly contains)) and

domain(material) and range(product))

and (trans(inv(directly contains)) and

domain(material) and range(product)) : uc(268)

and oneof([hair spray])

30 CHAPTER 2. BACK TUTORIAL

2.5.6 Retrieving User-Given Descriptions

The above discussed retrieval actions returned not only the description the user gave,

but also information that was inferred by BACK. However, the user-given descriptions

can be retrieved in isolation with the action defined as as well.

Example 40: Let us use the concepts of the last examples to show how the retrieval

of user-given descriptions differs from the above two explained retrieval forms.

backretrieve(defined as ’Dioxin’).

>>> ’Dioxin’

defined as: ’Dioxin’ :: chemical product and toxic waste

backretrieve(defined as [’Three Miles Island’,

theknown(chemical plant and

co produces : ’Dioxin’),

mechanical plant]).

>>> ’Three Miles Island’

defined as: ’Three Miles Island’ :: broken plant and

nuclear power plant and

is of type : fast breeder and

located at : ’Harrisburg’ and

uses up : ’Uranium’

>>> theknown(chemical plant and co produces:’Dioxin’)

defined as: ’ChemoPharm Plant 17’ :: chemical plant and

co produces : ’Dioxin’

>>> mechanical plant

defined as: mechanical plant := plant and

all(produces,mechanical product)

backretrieve(defined as getall(material and chemical product)).

Instance #1 of getall(material and chemical product)

defined as: ’CFC’ :: chemical product and material

Instance #2 of getall(material and chemical product)

defined as: hair spray :: chemical product and material

Retrieving the user-given description of terminological entities results in retrieving

the current active description, because terminological entities can be redescribed (i.e.

overwritten with a new definition). For objects, the union of all user-given active

descriptions is retrieved.

2.5. QUERYING THE SYSTEM 31

2.5.7 Retrieving Combined Information

While the above retrieval operations produced one description per entity, we sometimes

need to retrieve the names of certain entities occurring in other entities. Sometimes we

also need to retrieve combined information about an entity. For example, we may need

to inspect at the same time the user given definition of an entity, the value restrictions

of a particular role, and its associated number restrictions. For these purposes the user

has the possibility of combining various output functions.

Example 41: Let us consider plants of our formalization. We may need to know

the names of all currently known plants, the most specific concept under which they

are subsumed, the value restriction of their uses up role, their associated number

restrictions, or all objects used up by these plants.

backretrieve([describe] for getall(plant)).

backretrieve([describe fully] for getall(plant)).

backretrieve([define as] for getall(plant)).

backretrieve([introduced as] for getall(plant)).

backretrieve([self] for getall(plant)).

backretrieve([msc] for getall(plant)).

backretrieve([vr(uses up)] for getall(plant)).

backretrieve([nr(uses up)] for getall(plant)).

backretrieve([rf(uses up)] for getall(plant)).

backretrieve([vr(inv(uses up))] for getall(product)).

backretrieve([nr(inv(uses up))] for getall(product)).

backretrieve([rf(inv(uses up))] for getall(product)).

While the first four actions return exactly the same information as described in the

previous sections, the output function self returns a list of plant names, and msc returns

a list of possibly incomplete most specific concept names (that is a list of most specific

direct super concepts). The other output functions are used for retrieving information

about roles resp. inverse roles: vr retrieves the value restriction of the specified role, nr

its number restrictions, and rf retrieves the role-fillers. The last three output functions

return the nr, nr resp. vr of the inverse role of uses up.

With a combination of the above described output functions we can also produce

more complex results, e.g., a list of object/filler tuples for a certain role, or a list of

msc’s for the fillers of a certain role.

Example 42: We want to know which plant co produces which toxic waste. And

further we like to retrieve all most specific concepts of all materials contained in all

known compound products.

backretrieve(X = [self,rf(co produces)] for

getall(all(co produces,toxic waste))).

backretrieve(X = [self,msc] for getall

inv(contains) : allknown(compound product)).

32 CHAPTER 2. BACK TUTORIAL

In the first case the retrieval result is a list of tuples describing in the first place the plant

and in the second place the toxic waste it produces. The second retrieval results in a

list of tuples describing in the first place the material and in the second place a list of

the material’s msc. The operator allknown will be discussed below in Section 2.5.13.

2.5.8 Testing Subsumption

One of the main services of a terminological representation system is the determination

of subsumption relations between terms by the classifier.

Example 43: We have defined above nuclear waste as a primitive form of toxic waste,

and a nuclear power plant as a kind of energy plant which co produces nuclear waste.

We can determine whether such a plant is also a toxic waste plant, if we test whether

a subsumption relation exists between these terms. In addition, we can determine

by a subsumption test whether toxic waste is also a product, and whether all plants

co producing waste are producing products.

nuclear power plant ?< toxic waste plant.

toxic waste ?< product.

all(co produces,waste) ?< all(produces,product).

Although the correct answer ‘yes’ to the latter two questions seems to be strange, it

is a consequence of the formalization we made above. Instead of term1 ?< term2,

also backask(subsumes(term2 ,term1)) can be used to test subsumption. Note that the

argument order is different.

2.5.9 Testing Equivalence

Because subsumption is a partial order relation, we can easily determine whether two

concepts or roles are equivalent. Here we just show a simple example how equivalence

queries can be made. More complex tests can be stated also, but we avoid them for

briefness.

Example 44: In the early beginning of this chapter, we have introduced synonyms

for the term plant. Was factory a synonym for plant? And was manufactory another

synonym?

backask(equivalent(factory,plant)).

backask(equivalent(manufactory,plant)).

Note that an equivalent test needs to be enclosed by the command backask. The

former test succeeds and yields the result ‘yes’, thus both terms are synonym. Because

manufactory was not yet introduced, the last query is evaluated to ‘no’. Thus, the term

manufactory cannot be equivalent to plant.

2.5. QUERYING THE SYSTEM 33

2.5.10 Testing Incoherence and Disjointness

Sometimes the creation of an object leads to an error if BACK can determine that the

object is subsumed by an incoherent concept. Thus, it may be useful to determine in

advance whether some concepts or roles are incoherent. This can easily be achieved

by determining either whether the concept in question is subsumed by nothing, by

querying whether the concept is incoherent, or by testing whether two concepts are

disjoint.

Example 45: Let us assume we want to create an object which is energy as well

as material and are surprised that BACK rejects this object. Thus, we should check

whether it is in general possible to use a concept which is both energy and material. A

further incoherence concerns products. For example, can their be a product which is

a solid product as well as a compound product?

energy and material ?< nothing.

backask(disjoint(energy,material)).

backask(incoherent(solid product and compound product)).

Like an equivalent test, tests for disjointness and incoherence need to be enclosed in a

backask command. The first example is incoherent because energy and material were

declared disjoint; the second disjointness query succeeds for the same reason. The

last example is incoherent because of conflicting number restrictions. These are just

simple cases; more often we will encounter more difficult cases where the incoherence

is not so obvious. Note that the creation of an object as instance of an incoherent

concept is not possible; BACK will reject it.

2.5.11 Testing Concept Membership

It may be necessary to test whether an object is an instance of a certain concept. Because

we have several ways of creating objects (named, unique, and indirect referenced),

BACK offers different possibilities for checking concept membership.

Example 46: Is Three Miles Island a broken plant? Is uc(266) an instance of the

concept mechanical plant? Is the known plant co producing Dioxin a chemical plant?

’Three Miles Island’ ?: broken plant.

uc(266) ?: mechanical plant.

theknown(plant and co produces : ’Dioxin’) ?: chemical plant.

2.5.12 Retrieving the Difference between Entities

For the purpose of inspection and correction, it is sometimes useful to retrieve the

difference between two entities of the same type.

Example 47: Suppose at a certain stage in the modeling process we are confused what

we intended to represent with the concepts compound product and assembled product.

Although we can inspect both descriptions, another way of finding out the difference

between these concepts is the determination of their “conceptual distance”. The

difference operator is used for this purpose.

34 CHAPTER 2. BACK TUTORIAL

backretrieve(X = difference(compound product,assembled product)).

X = [anything,atleast(2,contains) and all(contains,material)]

The result bound to X has to be interpreted as follows: The first element of the list must

be added to the entity of the first argument, and the second element must be added to

the entity of the second element, to make both semantically equivalent.

2.5.13 Language Constructs Restricted to Queries

As promised in the beginning of this section we return now to three language constructs

which still need to be described. While the language constructs introduced in section

2.2 and 2.4 can be used arbitrarily either for modeling or querying, the constructs

or and someknown are restricted to queries only. They are not available for the

construction of concepts and the assertion of objects. However, they can be evaluated

at query-time.

The use of the or operator is restricted to queries only; more precisely, to the

outermost level of ABox-queries and to filler expressions of ABox queries.

Example 48: We can use or to test, whether Three Miles Island is an instance of

a chemical plant or a nuclear power plant, and we can retrieve all plants which are

risky chemical plants or dangerous nuclear power plants.

’Three Miles Island’ ?: chemical plant or nuclear power plant.

backretrieve(X = [self] for getall(risky chemical plant or

(dangerous plant and nuclear power plant))).

Note that or can only be used for the retrieval of objects with getall and for testing

whether an object is an instance of a concept term (see ?:).

The concept or of the previous example finds its ABox counterpart in the role-filler

or, which can be used to query for disjunctive role-filler expressions.

Example 49: Does ChemoPharm Plant 17 produce Dioxin or someknown product,

which contains CFC? Retrieve all objects, which contain Dioxin or CFC.

’ChemoPharm Plant 17’ ?: co produces : (’Dioxin’ or

someknown(contains : ’CFC’))

backretrieve(X = [self] for getall(contains : (’Dioxin’ or ’CFC’))).

Of course, if the number of alternatives in an or-query is large it is difficult to list

all alternatives. And even if the number of alternatives is small it is sometimes difficult

to remember them. Thus, BACK contains a language construct, which can be regarded

as a generalized form of the or operator, the construct: someknown.

Example 50: Let us look again at the example of ChemoPharm Plant 17 co producing

Dioxin introduced above. If we want to find out whether this object co produces any

kind of toxic waste, we can use the following query.

’ChemoPharm Plant 17’ ?: co produces : someknown(toxic waste).

Obviously, the someknown operator makes only sense in an ABox query, since BACK

allows disjunctive role-filler expressions only in queries.

Chapter 3

Back Manual

This chapter describes the syntax of BACK V5 in detail. Because some of the syntactical

constructs (i.e. entities) are used frequently in this chapter, we summarize them by the

hierarchy of entities shown in Figure 3.1 for avoiding redundant descriptions in the

manual’s entries. In general, every entry in this manual consists of a heading line

entity

term value

conceptual-type

role macro

concept

aset number

string

attribute-name

number-instance

string-instance

obj-ref

object-nameuc(i)

theknown(concept)

�

�

�

�

�

�

�

�*

Q

Q

Q

Q

Q

Qk

�

�

�

�>

6

Q

Q

Q

Q
Qk

�

�

�

�7

@

@

@

@I

P

P

P

P

Pi

A

A

AK

�

�

�

�

�

��

�

�

�

�

��

6

@

@

@

@

@I

�

�

�

�

�

��

B

B

B

B

B

BM

6

Figure 3.1: Hierarchy of Entities

consisting of the construct’s name1 and a grouping keyword. In the case that several

constructs have the same name (e.g. or) we group them together. Every subentry

will then be distinguished by the name and a grouping keyword. Entries consist of

a short summary of the construct, its syntax in BNF, its formal semantics, a detailed

description of the construct, some examples, a short description of the difference to

BACK V4, and the construct’s idiosyncrasies.

1For some operators like ‘..’, ‘:<’ etc. we use their Prolog functor as name. A functor consists of a

predicate symbol and the number of it’s arguments separated by ‘/’.

35

36 CHAPTER 3. BACK MANUAL

:</2 Tell Expression

Synopsis: Introduction or revision of primitive term-names.

Syntax: hdefinition i ::= hconcept-NAME i :< hconcept i

j hrole-NAME i :< hrole i

Semantics: M j= t

n

:< t iff [[t
n

]]

I

� [[t]]

I

Description: The operator :</2 is used to introduce primitive terms into the knowl-

edge base. For primitive terms only necessary but no sufficient condi-

tions are given. Internally, an introduction of a primitive concept c :<

anything is transformed into the equivalent definition c := prim(c)

and anything (analogously for primitive roles). prim(c) is called a

primitive component2 and represents the information contained in c

which is not completely specified by the user, i.e., which makes the

term primitive.

To revise a primitive introduction, one simply has to give a new defi-

nition for a term: if a terminology contains more than one introduction

of a term-name t
n

:< t1, : : : , t
n

:< t
i

, the last introduction is taken to

be the actual one; earlier introductions are simply overwritten.

Example: plant :< anything.

chemical plant :< plant.

produces :< domain(plant) and range(product).

Idiosyncrasy: The description of a primitive term contains its primitive component,

i.e., plant is described by the system as prim(plant) and anything.

This is to ensure that the term returned as description is indeed equiv-

alent to the term being described. Note that a primitive component

is only accepted in a definition of a term with the same name as

the name occurring within the primitive component. Thus plant :=

prim(plant) and anything is accepted, while dummy := prim(plant)

and anything is rejected by the system.

See also: :=/2

2See [Nebel, 1990] for the technical details of introducing primitive components.

37

:=/2 Tell Expression

Synopsis: Introduction or revision of defined term-names.

Syntax: hdefinition i ::= hterm-NAME i := hterm i

Semantics: M j= t

n

:= t iff [[t
n

]]

I

= [[t]]

I

Description: The operator :=/2 is used to introduce defined terms into the knowl-

edge base. A term-name is defined and can subsequently be used

as an abbreviation of the term given as its definition. Unlike in the

case of primitive terms the definition is taken to contain necessary

and sufficient conditions, i.e., every instance satisfying the definition

is taken to be an instance of the defined name.

To revise a definition, one simply has to give a new definition for a

term: if a terminology contains more than one definition for a term-

name t
n

:= t1, : : : , t
n

:= t
i

, the last definition is taken to be the actual

one; earlier definitions are simply overwritten.

Example: mechanical plant := plant and all(produces,mechanical product).

co produces := produces and range(waste).

contains := trans(directly contains).

Version 4: In V4 only the definition of concepts was supported, whereas roles

could only be introduced as primitive, i.e., defined roles were not

allowed.

See also: :</2

38 CHAPTER 3. BACK MANUAL

=>/2 Tell Expression

Synopsis: Specification of a rule.

Syntax: hrule i ::= hconcept i => hconcept i

Semantics: M j= c1 => c2 iff [[c1]]
I

� [[c2]]
I

Description: A rule or constraint is specified: all instances of c1 are constrained to

be also instances of c2. Rules are taken into account for subsumption

queries unless noibox is specified. Both c1 and c2 can be complex

concept terms. Rules between roles are not supported, however.

Example: some(co produces,toxical waste) => all(pollution,high).

nuclear power plant and

all(is of type,’Tschernobyl’) => dangerous plant.

Idiosyncrasy: Cyclic rules, such as c => all(r,c) are accepted but inferences for

subsumption are incomplete w.r.t. them.

Another incompleteness results from the fact that rules are not treated

as material implications but only as forward chaining rules: if an

object is known to be a c1 it will be inferred that it is also a c2. No

contraposition or reasoning by case is employed.

Furthermore, rules are not applied to value restrictions. Thus, a rule

c1 => c2 does not yield a subsumption between all(r,c1) and all(r,c2).

39

::/2 Tell Expression

Synopsis: Enter new facts into the knowledge base.

Syntax: hdescription i ::= hobj-ref i :: hconcept i

j PROLOG-VAR :: hconcept i

Description: The operator ::/2 is used to enter new facts into the knowledge

base, and to create new objects. The left hand side, hobj-ref i or

PROLOG-VAR, determines whether the information of the right hand

side, hconcept i, is asserted for an existing object or a new object. If

hobj-ref i refers to an existing object – by an object name, unique con-

stant (uc(i)), or by a theknown expression – then hconcept i is added

to the known object description. Note that in contrast to concept and

role definitions, hconcept i does not replace the object’s previous de-

scription. If hobj-ref i is a Prolog atom not associated with any object,

a new object is created whose description is hconcept i, and whose

name is hobj-ref i. If PROLOG-VAR is an unbound Prolog variable,

a new object is created whose description is hconcept i; the system

generates an internal name, a unique constant of the form uc(i), and

associates it with the object.

If any inconsistency occurs, the assertion is rejected, and ::/2 fails,

e.g., if hconcept i is incoherent or causes an inference that would

introduce an inconsistency at another object.

Example: ’Harrisburg’ :: nuclear plant.

X :: plant and name : bio plant2.

theknown(plant and name : bio plant2) :: wind power plant.

Version 4: This operator was called =/2 in V4. The prefix-operator new of V4

has been ommited: if an object name is unknown a new object is

created.

Idiosyncrasy: The user must not create objects with a name consisting of a not yet

introduced uc(i).

See also: theknown, uc(i)

40 CHAPTER 3. BACK MANUAL

?</2 Ask Expression

Synopsis: Subsumption test.

Syntax: hask-expression i ::= hterm i ?< hterm i [noibox]

Semantics: t1 ?< t2 iff Θ [R j= t1 v t2

t1 ?< t2 noibox iff Θ j= t1 v t2

Description: The operator performs a boolean test whether the hterm i on the left

hand side is subsumed by the hterm i on the right hand side. The

answer includes the application of rules; if they are to be ignored, the

noibox option must be used.

Example: nuclear plant ?< energy plant.

atleast(12,r) and all(r,d) ?< atleast(12,s).

c1 ?< c2 noibox.

Idiosyncrasy: Note that the order of the arguments of ?< and subsumes differs.

See also: equivalent, subsumes

41

?:/2 Ask Expression

Synopsis: Test whether an object instantiates a concept expression.

Syntax: hask-expression i ::= hobj-ref i ?: hconcept i [noibox]

Semantics: o ?: c iff Γ j= o :: c

o ?: c noibox iff Θ [A j= o :: c

Description: The operator performs a boolean test whether the object referred to by

hobj-ref i instantiates the description given as hconcept i. hconcept i

may contain disjunctive elements, e.g., disjunctive role-filler expres-

sions. The answer includes the application of rules; if they are to be

ignored, the noibox option must be used.

Example: ’Harrisburg’ ?: nuclear plant.

x23 ?: c2 and s : (y21 or y22) noibox.

Version 4: Was isa/2.

See also: getall

42 CHAPTER 3. BACK MANUAL

�=/2 Macro

Synopsis: Operator for macro definition.

Syntax: hmacro-definition i ::= hmacro i �= hterm i

hmacro i ::= hmacro-NAME i[(PROLOG-VARf,PROLOG-VARg
�)]

See also: backmacro

43

:/2 Concept Term

Synopsis: Specification of role-fillers.

Syntax: hconcept i ::= hrole i:hfiller-expr i

hfiller-expr i ::= hvalue i

j (hfiller-expr i)

j (hdescription i)�

Semantics: [[r : o]]I = fd : [[o]]I 2 [[r]]

I

(d)g

Description: An object is specified as a role-filler for a role. This operator allows

the use of constants in concept definitions.

Example: residence :< range(country) type feature.

italy :: european country.

italian company := company and residence : italy.

datamont :: company and residence : italy.

italian company ?< the(residence,european country).

no.

Version 4: In V4 this operator was only allowed in the ABox.

Idiosyncrasy: Descriptions of role-fillers have no impact on concept sub-

sumption. That is, asserting the fact that italy is an euro-

pean country does not make italian company a subconcept of

the(residence,european country).

44 CHAPTER 3. BACK MANUAL

[: : :] Attribute Set Term

Synopsis: Specification of a list of attributes by enumeration.

Syntax: hattribute-spec i ::= ‘[’hattribute-listi‘]’

hattribute-listi ::= hattribute-NAME if,hattribute-NAME ig�

Description: Lists of attribute names can be used for defining attribute sets and

for declaring attribute domains. Attribute lists are considered to be

ordered, so that subranges can be chosen with the operator ../2.

Example: risk := attribute domain([high,large,medium,small,null]).

risky := aset([high,large,medium], risk).

See also: attribute domain, aset, ../2

45

../2 Attribute Set Term

Synopsis: Specification of a range of attributes.

Syntax: hattribute-spec i ::= hattribute-NAME i .. hattribute-NAME i

Description: For defining attribute sets on user-defined, closed attribute domains

attribute sets can conveniently be defined by specifying a range de-

fined by a first and a last element. The range is evaluated with respect

to the list defining the attribute domain. In the example, risky1 and

risky2 are equivalent.

Example: risk := attribute domain([high,large,medium,small,null]).

risky1 := aset(high..medium, risk).

risky2 := aset([high,large,medium], risk).

See also: [: : :], aset, attribute domain

46 CHAPTER 3. BACK MANUAL

../2 Number Term

Synopsis: Constructs from a lower and an upper bound a closed numerical

interval.

Syntax: hnumber-range i ::= hlower-limit i

j hupper-limit i

j hlower-limit i .. hupper-limit i

Semantics: [[(p1::p2)]]
I

= [[ge(p1)]]
I

\ [[le(p2)]]
I

Description: This operator is used to represent the closed numerical interval be-

tween the given lower and upper limit, where lower and upper limit

are numbers. An interval where the lower limit is equal to the upper

limit contains just a single value.

Example: baby := person and all(age,0..2).

Idiosyncrasy: Note that the range N..N is equivalent to the number N.

See also: le, lt, ge, gt, intersection

47

all Concept Term

Synopsis: Value Restriction.

Syntax: hconcept i ::= all(hrole i,hconceptual-type i)

Semantics: [[all(r; c)]]

I

= fd : [[r]]I(d) � [[c]]

I

g

Description: All fillers for role r must be of type c. Note that this restricts only the

fillers locally at a concept. To restrict the fillers of a role globally, the

range operator must be used.

Example: biological plant := plant and all(produces,biological product).

Idiosyncrasy: This construct does not imply the existence of any role-filler. Objects

having no role-filler for role r(i.e. atmost(0,r)), are trivially instances

of all(r,c) for arbitrary c.

See also: no, some

48 CHAPTER 3. BACK MANUAL

allknown Filler Expression

Synopsis: Embedded conjunctive subquery.

Syntax: hfiller-expr i ::= allknown(hconcept i)�

Semantics: allknown(c)

def
= andfo : Γ j= o :: cg

r : allknown(c)
def
= anything (if Γ j= c v nothing)

Description: With the allknown operator an embedded subquery is formulated

which returns a filler expression. This filler expression consists of a

conjunction of all known instances of the specified concept expression

(as if one asks a getall query for the given concept, and conjoins all

retrieved objects by and).

An allknown expression is only evaluated once, and is substituted

by the resulting filler expression. It is not maintained, however, by

BACK. Consequently, if an object is described by means of allknown,

and later a new instance of the given concept is created, this instance

will not be added as a filler to the object described by allknown.

Example: ?- r :< domain(c) and range(d).

yes

?- y1 :: d, y2 :: d,

x :: r : allknown(d).

yes

?- x ?: r : allknown(d).

yes

?- x ?: all(r,d). % no: the r-filler set of x is not closed

no

?- y3 :: d, x ?: r : allknown(d).

no

Version 4: This operator was called all in V4; the change was made to distinguish

it from the value restriction operator all.

Idiosyncrasy: Note that according to the semantics, all objects will match a query

filler expression ‘hrole i: allknown(hconcept i)’ if the extension of

hconcept i is empty.

Only allowed in ABox expressions. A description containing an

allknown filler-expression depends on the order in which facts are

entered into the knowledge base.

See also: :/2, all, someknown, theknown

49

and Concept Term

Synopsis: Conjunction of concepts.

Syntax: hconcept i ::= hconcept i and hconcept i

Semantics: [[c1 and c2]]
I

= [[c1]]
I

\ [[c2]]
I

Description: The operator and is the basic construct for combining concept terms.

The resulting term represents the conjunction of both terms.

Example: chemical plant := plant and all(produces,chemical product).

Version 4: and can be used universally to combine concept terms and thus the

operator andwith which was used in V4 is not needed anymore.

See also: or, not

50 CHAPTER 3. BACK MANUAL

and Role Term

Synopsis: Conjunction of roles.

Syntax: hrole i ::= hrole i and hrole i

Semantics: [[r1 and r2]]
I

= [[r1]]
I

\ [[r2]]
I

Description: The operator and is used for combining role tems. The resulting term

represents the conjunction resp. intersection of both roles.

Example: to the south east of := to the south of and to the east of.

Version 4: In the previous version this operator was only allowed for primitive

role introductions.

Idiosyncrasy: The and operator for roles is not allowed in ABox tells and queries.

Conjunctions consisting of domain and range restrictions only are not

allowed within defined role introductions, i.e., r := domain(c) and

range(d). is not accepted.

See also: domain, range

51

and Filler Expression

Synopsis: Conjunction of filler expression.

Syntax: hfiller-expr i ::= hvalue i and hfiller-expr i

Description: The and operator allows for the conjunction of filler expressions. As

usual, and binds stronger than or.

Example: o1 :: c and r : (o2 and o3 and o4).

o1 ?: c and r : (o2 or o3 and o4
| {z }

).

backretrieve(getall c and r : (theknown(d and s : y1) and

theknown(d and s : y2))).

Idiosyncrasy: For each role expression hrole i: hfiller-expr i, the filler expression

must be enclosed in parentheses if it contains an and or an or.

See also: or

52 CHAPTER 3. BACK MANUAL

anything Concept Term

Synopsis: Built-in topmost concept.

Syntax: hconcept i ::= anything

Semantics: [[anything]]

I

= D

Description: anything is the topmost concept and can be used to build up primitive

concept hierarchies.

Example: product :< anything.

plant :< anything.

Idiosyncrasy: anything is disjoint from the other topmost conceptual types aset,

number, and string.

See also: aset, nothing, number, string.

53

aset Attribute Set Term

Synopsis: Operator for denoting the topmost attribute set and constructing at-

tribute sets by extension.

Syntax: haset i ::= aset

j aset(‘[’hattribute-listi‘]’)

j aset(hattribute-spec i,hdomain-NAME i)

Semantics: [[aset(t1; : : : ; tn)]]
I

= f[[t

i

]]

I : 1 � i � ng

Description: The operator aset without argument represents the topmost attribute

set, which can be considered as a predefined open attribute domain.

Other more specific attribute sets are specified by enumerating their

extensions, i.e., the set of attributes they denote. An attribute set

is defined either on the built-in attribute domain, or on an attribute

domain explicitly declared by the user. In this case, the name of the

attribute domain must be explicitly provided.

Example: risky := aset([high,large,medium], risk).

risky ?< aset.

yes

Idiosyncrasy: aset is disjoint from anything and the other topmost conceptual types

number and string. Note that in BACK the term attribute refers to

constants of an attribute domain and not to functional roles like in

other terminological systems.

See also: [: : :], ../2, anything, attribute domain, number, string

54 CHAPTER 3. BACK MANUAL

atleast Concept Term

Synopsis: Minimum restriction of roles.

Syntax: hconcept i ::= atleast(hINTEGER i,hrole i)

Semantics: [[atleast(n; r)]]

I

= fd : j[[r]]I(d)j � ng

Description: There are at least n role-fillers for role r.

Example: mono plant := plant and atleast(1,product) and atmost(1,product).

Version 4: atleast can be used anywhere in ABox descriptions and hence the

operator card used in V4 is not needed anymore.

See also: atmost, exactly

55

atleast Macro

Synopsis: Qualifying minimum restriction.

Syntax: hmacro-concept i ::= atleast(hINTEGER i,hrole i,hconceptual-type i)

Semantics: [[atleast(n; r; c)]]

I

= fd : j[[r]]I(d) \ [[c]]

I

j � ng

Description: There are at least n role-filler of type c at role r.

Example: compound product := product and atleast(2,contains,material).

Version 4: Could not be expressed in V4.

Idiosyncrasy: The macro atleast(n,r,c) is internally expanded into atleast(n,r and

range(c))

See also: atmost, exactly

56 CHAPTER 3. BACK MANUAL

atmost Concept Term

Synopsis: Maximum restriction of roles.

Syntax: hconcept i ::= atmost(hINTEGER i,hrole i)

Semantics: [[atmost(n; r)]]

I

= fd : j[[r]]I(d)j � ng

Description: There are at most n role-fillers at role r.

Example: mono plant := plant and atleast(1,product) and atmost(1,product).

Version 4: atmost can be used anywhere in ABox descriptions and hence the

operator card used in V4 is not needed anymore.

See also: atleast, exactly

57

atmost Macro

Synopsis: Qualifying maximum restriction.

Syntax: hmacro-concept i ::= atmost(hINTEGER i,hrole i,hconceptual-type i)

Semantics: [[atmost(n; r; c)]]

I

= fd : j[[r]]I(d) \ [[c]]

I

j � ng

Description: There are at most n role-fillers of type c at role r.

Example: clean plant := atmost(0,produces,toxical waste).

Version 4: Could not be expressed in V4.

Idiosyncrasy: The macro atmost(n,r,c) is internally expanded into atmost(n,r and

range(c))

See also: atleast, exactly

58 CHAPTER 3. BACK MANUAL

attribute domain Tell Expression

Synopsis: Declaration of new attribute domains.

Syntax: hdeclaration i ::= hdomain-NAMEi := attribute domain

j hdomain-NAMEi := attribute domain(hattribute-list i)

Description: New attribute domains are declared with the attribute domain key-

word. They are either open (first alternative) or closed (second al-

ternative). In the first case new attributes can be added any time,

whereas in the second case the set is fixed at the time of declaration.

Attribute domains are mutually disjoint. A separate name space is

opened for each newly declared domain.

Example: keyword := attribute domain.

switch state := attribute domain([on,off]).

Version 4: In BACK V4 the built-in attribute domain attributes was the union of

all user-defined attribute domains. Attribute domains were not nec-

essarily disjoint, since there was only one name space for attributes.

See also: aset

59

backask Interaction

Synopsis: Performs a boolean query according to the question supplied in the

argument.

Syntax: hinteraction i ::= backask(hask-expression i[noibox])

Description: This operator is used to perform a boolean query in the form of an ask-

expression on the contents of the knowledge base. With the additional

operator noibox, the answering process does not take information

inferred by IBox rules into account.

Example: backask(‘Harrisburg’ ?< nuclear power plant noibox).

compound product ?< product.

Version 4: This predicate unifies the functionality of tboxask, aboxask and

iboxask.

Idiosyncrasy: The backask operator can be omitted for expressions containing the

operators ?</2 or ?:/2, since they uniquely identify an expression as

a backask.

See also: backretrieve

60 CHAPTER 3. BACK MANUAL

backdump Interaction

Synopsis: Dumps the internal representation of the current knowledge base.

Syntax: hinteraction i ::= backdump[(hfile-NAME i)]

Description: backdump without argument dumps the the contents of all boxes

(TBox, ABox and IBox) to the standard output. With an argument

specifying a hfile-NAME i it dumps the contents into the specified file,

so that it can be restored later with backload.

Example: backdump.

backdump(’MyFavoriteFilename’).

Version 4: This predicate combines the functionality of tboxdump and abox-

dump.

Idiosyncrasy: The form of the file name depends on your local site, but should

be quoted according to the Prolog convention if it contains special

characters.

See also: backload

61

backinit Interaction

Synopsis: Initializes the BACK system partially or totally.

Syntax: hinteraction i ::= backinit[(hbox i)]

hbox i ::= tbox

j ibox

j abox

Description: backinit without argument initializes the BACK system completely,

that means that the internal data structures are initialized, that state

variables are set back to their value at start-up time, and that previ-

ously defined macros are removed. With an argument the boxes are

initialized as follows:

tbox All boxes are initialized.

ibox Only the IBox is initialized, but also information inferred by

the application of rules is removed from the ABox.

abox Only the Abox is initialized.

Example: backinit.

backinit(ibox).

Version 4: This predicate combines the functionality of tboxinit and aboxinit.

In contrast to BACK V4, the abox needs not to be initialized explicitly.

Idiosyncrasy: Note that backinit = backinit(tbox). Note further that after installing

the BACK system, it is not yet initialized. Thus, a backinit should be

issued to initialize the system after installation.

62 CHAPTER 3. BACK MANUAL

backload Interaction

Synopsis: Loads a dumped internal representation from a file.

Syntax: hinteraction i ::= backload(hfile-NAME i)

Description: backload loads a previously dumped knowledge base from file

hfile-NAME i back into the BACK system, so that the state of the BACK

system is restored to the state of BACK before the knowledge base was

dumped.

Example: backload(’MyFavoriteFilename’).

Version 4: This predicate combines the functionality of tboxload and aboxload.

Idiosyncrasy: The form of the file name depends on your local site, but should

be quoted according to the Prolog convention if it contains special

characters.

See also: backdump

63

backmacro Interaction

Synopsis: Definition of a macro.

Syntax: hinteraction i ::= backmacro(hmacro-definition i)

Description: The macro-facility can be used to define new term-forming operators

or to rename existing term-forming operators. Note that the Prolog-

variables occurring in the term on the right-hand side must all be

bound by arguments on the left-hand side of the macro.

Example: backmacro(all1(R,C) � = all(R,C) and atleast(1,R)).

backmacro(min(N,R)� = atleast(N,R)).

Idiosyncrasy: The macro-facility is restricted to macros for terms. Whole interaction

sequences with BACK V5 can be easily defined as Prolog-predicates:

my init :- backinit,

backstate(verbosity=infos).

64 CHAPTER 3. BACK MANUAL

backread Interaction

Synopsis: Reads BACK commands from a file.

Syntax: hinteraction i ::= backread(hfile-NAME i)

Description: Reads from the specified file interaction operations for building up and

accessing a BACK knowledge base. As soon as backread encounters

a failure, either a syntax error or a backask or backretrieve which

fails, it stops automatically.

The file read by backread may contain further interaction opera-

tions. Thus, it is possible to issue backinit, backread, backwrite,

backload, and backdump operations from the file read.

For assuring that a file is read into an initialized empty BACK system

the file should contain as first statement a backinit. For assuring that

BACK understands some predefined macros a further statement can be

explicitly issued to load them: backread(<macro file name>).

Depending on the verbosity setting, messages will be produced and

written to the current standard output.

Example: backread(risk accessment).

Version 4: This predicate combines the functionality of tboxread and aboxread.

Idiosyncrasy: The form of the file name depends on your local site, but should

be quoted according to the Prolog convention if it contains special

characters.

Although a file read by backread may contain arbitrary calls to Pro-

log, it should be noted that this is an additional feature of the Prolog

implementation of BACK, which might not be supported in other im-

plementations.

See also: backwrite, backstate

65

backretrieve Interaction

Synopsis: Retrieve information from the system.

Syntax: hinteraction i ::= backretrieve(hretrievali[noibox])

hretrieval i ::= [PROLOG-VAR =] [hgeneratori] hargumentsi

hargumentsi ::= hentity i[/hdisambig i]

j ‘[’hentity i[/hdisambig i]f,hentity i[/hdisambig i]g�‘]’

hdisambig i ::= conc

j obj

j hdomain-NAME iˆcls

j hdomain-NAME iˆobj

Description: With the backretrieve command information is retrieved from the

knowledge base. The result is either pretty-printed to the current

output stream, or is bound to the PROLOG-VAR. The answer takes the

application of rules into account; if they are to be ignored, the noibox

option must be used. Depending on the setting of the retrieval state,

a backretrieve may fail or still succeed, if an error is encountered in

its arguments. In the former case backretrieve prints an appropriate

error message, in the latter case as many results as possible will be

returned.

The retrieval consists of the application of retrieval actions or a tuple

generator to the specified arguments. For the possible actions and the

generator see the references below. Arguments are either specified

explicitly, or are retrieved by means of a getall query.

backretrieve requires all specified arguments to be unambigous.

Since BACK allows for overlapping name spaces it may be neces-

sary to disambiguate arguments explicitly. This is done by appending

to the name a disambiguator, separated from the name by a slash ’/’.

To express that a name refers to an object or concept, the correspond-

ing keywords obj or conc are used. To express that a name refers to

an attribute-domain the name of the attribute domain has to be used

in conjunction with the operator ‘ˆ’ and the keyword cls; to express

that a name refers to an attribute the name of the attribute domain has

to be used in conjunction with the operator ‘ˆ’ and the keyword obj.

The disambiguator may alternatively be applied to the entire argument

specification list. The entities retrieved with getall are interpreted as

objects. If one of the explicitly specified names is ambiguous this is

treated as an error, yielding an appropriate message or structure to be

returned.

Example: ?- c :< anything, c :: c.

yes

?- backretrieve(getall c).

66 CHAPTER 3. BACK MANUAL

[c]

yes

?- backretrieve(R = defined as c).

[wrong argument(ambiguous(c))]

yes

?- backretrieve(defined as c/conc).

>>> c/conc

defined as:

c :< anything

yes

?- backretrieve(R=[self, msc] for [c/obj]).

R = [[c,[c]]]

yes

Version 4: This operator combines the functionality of tboxask, aboxask, and

iboxask of V4.

Users of BACK V4 will notice that the operator getallrel is not sup-

ported in V5. The extension of a role r can be retrieved by the pattern

‘backretrieve([self, rf(r)] for getall anything)’. The result list may

contain objects with an empty filler list. If the user knows the range

(-type) of the role the query may be formulated more precisely, e.g.,

if r has range-type anything: ‘backretrieve([self, rf(r)] for getall r :

someknown(anything))’.

See also: backask, defined as, describe, describe fully, for, getall, intro-

duced as, self, msc

67

backstate Interaction

Synopsis: Displays, modifies or retrieves the values of global state variables.

Syntax: hinteraction i ::= backstate[(hstate i)]

hstate i ::= verbosity = silent

j verbosity = error

j verbosity = warning

j verbosity = infos

j verbosity = trace

j introduction = forward

j introduction = noforward

j revision = true

j revision = false

j retrieval = fail

j retrieval = succeed

j tboxrevision = fail

j tboxrevision = succeed

j aboxfilled = false

j aboxfilled = true

j aboxfilled = abox

j iboxfilled = false

j iboxfilled = true

Description: backstate without arguments displays the settings of BACK’s global

state variables. BACK’s state variables are distinguished into user

modifiable and read-only variables.

backstate with argument can be used to set or retrieve the value

of user-modifiable variables. In the case that the value of a user-

modifiable variable is a constant, the state variable is set to this value,

if the value is valid. If instead a Prolog variable is used, the actual

value of the state variable is retrieved. Modifiable variables are:

verbosity determines which types of output messages are produced.

silent no output is produced

errors only errors are reported

warnings errors and warnings are issued

info additional information is reported

trace produces an exhaustive trace of what happens in BACK.

introduction determines whether undefined names are introduced

automatically.

noforward Forward introduction of names is not performed.

Thus, names have to be defined before they are used.

68 CHAPTER 3. BACK MANUAL

forward If a name is used without being previously defined,

it will be introduced automatically as a primitive term.

revision determines whether concepts and roles can be revised.

false means revision of concepts or roles is not possible.

true means revisions can be performed.

retrieval determines how failures during retrieval are handled.

fail the retrieval action will fail, if an error is encountered.

succeed means, the retrieval action will retrieve as much as

possible and will succeed.

tboxrevision determines how a TBox revision affects the ABox.

fail If a TBox revision fails, the state of the ABox is restored

to the state before the revision was tried.

succeed A revision of the TBox should succeed always. If an

ABox incoherence is detected, an implicite ABox revision

is performed on user-given object definitions.

Note that while forward introduction is useful for small test cases,

it may be problematic for modeling large domains – spelling errors

will be difficult to detect, since misspelled terms are automatically

introduced as new terms.

Read-only state variables can only be retrieved by the user and are set

by BACK depending on the processing state. Read-only variables are:

aboxfilled indicates whether objects were created.

false indicates that no object was created.

true indicates that at least one object was created in the TBox.

abox indicates that at least one object was created in the ABox.

This value will not be superseded by later creation of TBox

objects.

iboxfilled indicates whether rules were asserted.

false indicates that no rule was asserted.

true indicates that at least one rule was asserted.

Instead of the full name of state variables and their values unambigu-

ous abbreviations can be used.

Example: backstate(verbosity =errors).

backstate(ve = err).

backstate(aboxfilled = X).

Version 4: This predicate combines the functionality of tboxstate and aboxstate.

Most of the states available in BACK V4 are no longer available.

69

backtell Interaction

Synopsis: Tells the BACK system the information conveyed in the argument.

Syntax: hinteraction i ::= backtell(htell-expression i)

Description: This operator is used to assert new information in the form of tell-

expressions.

Example: backtell(power plant := plant and all(produces,energy)).

energy :< product.

Version 4: This predicate combines the functionality of tboxtell, aboxtell and

iboxtell.

Idiosyncrasy: You may drop the backtell for tell-expressions consisting of the op-

erators :=/2, :</2, =>/2 or ::/2, since they uniquely identify an ex-

pression as a backtell.

70 CHAPTER 3. BACK MANUAL

backwrite Interaction

Synopsis: Writes the contents of the knowledge base partially or totally in human

readable form into a file.

Syntax: hinteraction i ::= backwrite(hfile-NAME i[,hbox i])

hbox i ::= tbox

j ibox

j abox

Description: backwrite with one argument writes the definitions read in by back-

tell or backread into the file specified by the hfile-NAME i, so that it

can be read by an user or by backread. With two arguments, the

contents of one or several boxes is written into the file, according to

the following rules:

� If TBox is specified, only the TBox is written.

� If IBox is specified, the IBox and TBox are written.

� If ABox is specified, all boxes are written.

Example: backwrite(modified risk accessment).

Version 4: This predicate unifies the functionality of tboxwrite and aboxwrite,

and realizes additional write operations for the IBox.

Idiosyncrasy: Note that backwrite(hfile-NAME i) = backwrite(hfile-NAME i,abox).

The form of the file name depends on your local site, but should

be quoted according to the Prolog convention if it contains special

characters.

See also: backread

71

close Filler Expression

Synopsis: Close a filler expression locally.

Syntax: hfiller-expr i ::= close(hfiller-expr i)

Semantics: r : close(fe)
def
= r : fe and atmost(n; r)

where n is the cardinality of the filler-expression

Description: With the close operator the filler expression given as the argument is

closed locally: the number of fillers in the filler expression is deter-

mined, and a corresponding atmost restriction is added to the overall

description. Thus ‘r : close(x1 and x2 and x3)’ � ‘atmost(3,r) and r

: (x1 and x2 and x3).’ If the filler expression contains a disjunction

or a someknown operator, the number of sure fillers is used in the

atmost restriction. Sure fillers are the fillers which are contained in

every conjunct of the filler expression in disjunctive normal form: ‘r

: close(x1 and (x2 or x3))’ � ‘atmost(1,r) and r : ((x1 and x2) or (x1

and x3))’ since only x1 is sure. Note also that close is applied locally

on the expression passed as its argument; ‘r : (x1 and close(x2))’ is

not ‘atmost(2,r) and r : (x1 and x2))’ but ‘atmost(1,r) and r : (x1

and x2)),’ and is thus incoherent. A close expression is only evaluated

once, and is then substituted by the resulting filler expression. It is

not maintained, however, by the system.

The close operator is most useful when applied in combination with

a allknown subquery where the number of (sure) fillers may not be

known a priori.

Example: x :: c and close(y1 and y2).

backretrieve(getall c and r: close(allknown(d))).

See also: :/2, allknown, someknown, theknown

72 CHAPTER 3. BACK MANUAL

comp Role Term

Synopsis: Infix operator for composition of two roles.

Syntax: hrole i ::= hrole i comp hrole i�

Semantics: [[r1 comp r2]]
I

= [[r1]]
I

� [[r2]]
I

Description: The role operator comp produces the composition of two roles. It

leads to incompletenesses in several cases, e.g. in combination with

the trans operator. Additionally during ABox inferences, instances

of role chains longer than two are not recognized, if they depend on

an instance of a role, which is itself a composition.

Example: is grandfather of := is father of comp is parent of.

Version 4: Role composition was not possible in V4.

Idiosyncrasy: The comp/2 operator is not allowed in ABox tells and queries.

See also: inv, trans

73

defined as Retrieval

Synopsis: Action for retrieving user-given definitions of entities.

Syntax: haction i ::= defined as

Description: This action outputs the sorted and non-redundant user-given definition

of a concept, role, attribute domain, aset, number, or object which

corresponds to the actual definition of the entity given by the user and

which was read by BACK. For objects it combines all descriptions

given by the user.

Example: t :< a and r : close(b and c).

backretrieve(defined as t).

>>> t

defined as:

t :< a and r : close(b and c)

Idiosyncrasy: The arguments on which defined as operates have to be unambiguous.

See also: backretrieve, describe, describe fully, introduced as

74 CHAPTER 3. BACK MANUAL

describe Retrieval

Synopsis: Action for retrieving minimal definitions of entities.

Syntax: haction i ::= describe

Description: This action constructs a minimal description – in terms of user-given

names – of concepts, roles, attribute domains, asets, numbers, or

objects. The definition is minimal in the sense, that only a most

specific definition is returned. However, in contrast to defined as, this

description may contain additional information, which was inferred

by BACK.

Example: t :< a and r : close(b and c).

backretrieve(describe t).

>>> t

describe: a

and prim(t)

and atmost(2,r)

and r : (b and c)

Idiosyncrasy: The arguments on which describe operates have to be unambiguous.

Primitive concepts and roles are internally represented in BACK V5 as

defined concepts resp. roles which contain an additional – so called

– primitive component. This primitive component will occur in def-

initions constructed by describe. Although the parser of BACK will

correctly recognize primitive components, the user can use this con-

struct in a definition only if the corresponding primitive component

was already introduced by BACK. Thus, the user cannot introduce

arbitrary primitive components.

See also: backretrieve, defined as, describe fully, introduced as

75

describe fully Retrieval

Synopsis: Action for retrieving the complete definition of entities.

Syntax: haction i ::= describe fully

Description: This action constructs the maximal description of concepts, roles,

attribute sets, asets, numbers and objects. The definition is maximal

in the sense, that it contains in addition to the user-given definition all

internally inferred information.

Example: t :< a and r : close(b and c).

backretrieve(describe fully t).

>>> t

describe fully

anything

and prim(a)

and prim(t)

and all(r,anything)

and atleast(2,r)

and atmost(2,r)

and r : (b and c)

Idiosyncrasy: The arguments on which describe fully operates have to be unam-

biguous.

Since in some cases BACK constructs unnamed concepts resp. roles

internally, a description constructed by describe fully may contain

internally generated keys for which no user-given name exists. Thus,

the output produced by describe fully is not necessarily understand-

able directly for an user. However, for debugging purposes of a

knowledge base, the produced information reflects the actual infor-

mation represented and inferred by BACK and will thus be useful.

Primitive concepts and roles are internally represented in BACK V5

as defined concepts resp. roles, which contain an additional – so

called – primitive component. This primitive component will occur

in definitions constructed by describe fully. Although the parser

of BACK will correctly recognize primitive components, the user can

use this construct in a definition only if the corresponding primitive

component was already introduced by BACK. Thus, the user cannot

introduce arbitrary primitive components.

See also: backretrieve, defined as, describe, introduced as

76 CHAPTER 3. BACK MANUAL

difference Retrieval

Synopsis: Difference between two entities.

Syntax: hretrieval i ::= difference(hentity i,hentity i)

Description: The semantic difference between two entities is computed. Returned

is a list of two terms, which make the first and the second entity

semantically equivalent when they are added to the entities. If the en-

tities are objects, the difference between their conceptual descriptions

is computed.

Example: p1 :< anything.

p2 :< anything.

r1 :< domain(p1) and range(p2).

p3 :< p2.

c4 := p1 and all(r1,p3).

c5 := atleast(1,r1).

backretrieve(X = difference(c4,c5)).

X = [atleast(1,r1),all(r1,p3)]

Idiosyncrasy: If there is a difference concerning two value restrictions, the value re-

strictions which are returned are not necessarily minimal, but minimal

with respect to the concepts already existing in the TBox. In other

words, no new concepts are created to answer a difference query.

77

disjoint Ask Expression

Synopsis: Tests the disjointness of terms.

Syntax: hask-expression i ::= disjoint(hterm i,hterm i) [noibox]

Description: disjoint performs a boolean test to determine whether the two terms

given as arguments are disjoint, i.e., it conjoins both terms and deter-

mines whether the conjoined definition is subsumed by nothing. The

answer includes the application of rules; if they are to be ignored, the

noibox option must be used.

Example: disjoint(energy,material).

energy and material ?< nothing.

See also: ?</2, incoherent, nothing

78 CHAPTER 3. BACK MANUAL

domain Role Term

Synopsis: Restricts the domain of a role to the specified concept.

Syntax: hrole i ::= domain(hconcept i)

Semantics: [[domain(c)]]

I

= [[c]]

I

�D

Description: The role operator domain restricts the domain of a role, i.e. the first

argument of an role instance has to be an instance of the specified

concept. The domain has to be of type concept, because instances

of other types, aset, number and string, are not allowed to have

role-fillers.

Example: is father of := is parent of and domain(male).

Version 4: In the previous version this operator was only allowed within primitive

role introductions.

Idiosyncrasy: Defined role introductions, containing only a domain restriction, i.e.,

r := domain(c), are forbidden.

Note that the term domain usually denotes in database and object-

oriented systems what is called range in BACK.

See also: and, range

79

equivalent Ask Expression

Synopsis: Tests the equivalence of terms.

Syntax: hask-expression i ::= equivalent(hterm i,hterm i) [noibox]

Description: equivalent performs a boolean test to determine whether the two

terms given as arguments are equivalent, i.e., it tests whether each

term is subsumed by the other. The answer includes the application

of rules; if they are to be ignored, the noibox option must be used.

Example: equivalent(workshop,plant).

subsumes(workshop,plant), subsumes(plant,workshop).

workshop ?< plant, plant ?< workshop.

See also: ?</2, subsumes

80 CHAPTER 3. BACK MANUAL

exactly Macro

Synopsis: Minimum and maximum restriction.

Syntax: hmacro-concept i ::= exactly(hINTEGER i,hrole i)

j exactly(hINTEGER i,hrole i,hconceptual-type i)

Semantics: [[exactly(n; r)]]

I

= fd : j[[r]]I(d)j = ng

[[exactly(n; r; c)]]

I

= fd : j[[r]]I \ [[c]]

I

j = ng

Description: There are exactly n role-fillers at role r, resp. there are exactly n

role-fillers of type c.

Example: named thing := anything and exactly(1,name).

Idiosyncrasy: The macro exactly(n,r) is internally expanded to atleast(n,r) and

atmost(n,r). The macro exactly(n,r,c) is internally expanded to

atleast(n,r and range(c)) and atmost(n,r and range(c)).

See also: atleast, atmost

81

for Retrieval

Synopsis: Application of a tuple generator on retrieved entities.

Syntax: hgenerator i ::= ‘[’houtput-functioni f, houtput-functionig

�‘]’‘ for

Description: With the for operator it is possible to specify which extra information

is going to be retrieved for a set of BACK entities. This set of entities

is determined by what follows the for, i.e., a getall query, a list of

entity references, or a single entity reference.

The list preceding the for serves as output specification: It is applied to

each element of the set of argument entities, and substitutes each entity

by an output tuple represented by a Prolog list. Each tuple contains an

element for each houtput-functioni in the output specification – the

structure of tuple elements depends on the used houtput-functioni–

and their order is determined by the order of the output specification.

The permitted houtput-functioni include those actions that may be

applied directly on retrieved entities (defined as, describe, de-

scribe fully, introduced as, msc, self); additionally the operators

nr, rf, and vr are supported.

If backretrieve is called without the optional Prolog variable to bind

the result to, the tuples are pretty printed to the current output stream.

Example: ?- backretrieve(getall c).

[x1,x2,x3: : : , x23]

yes

?- backretrieve([self, rf(r)] for getall c).

[[x1,[y1,y2]], [x2,[]], [x3,[y1,y4,y5]],: : : , [x23,[y45]]]

yes

?- backretrieve([[x]] = [self] for x).

yes

Version 4: In V4 several tuples could be returned for a single object, e.g., if it

had several role-fillers. Now, there is exactly one tuple for each entity

on which the output specification is applied.

See also: backretrieve, defined as, describe, describe fully, getall, intro-

duced as, msc, nr, rf, self, vr

82 CHAPTER 3. BACK MANUAL

forget Tell Expression

Synopsis: Retraction of previously asserted information.

Syntax: hrevision i ::= forget hrule i

j forget hobj-ref i

j forget hobj-ref i :: hconcept i

Description: With the forget operator information can be retracted from the knowl-

edge base. This applies for three kinds of information: inference rules,

partial object descriptions, and entire objects. The retraction will re-

move all semantical consequences based on the retracted information.

Rules have to be passed as argument in the same way they were intro-

duced. If an object reference alone is passed as argument the entire

object will be removed. For objects, any part of previously given

descriptions may be retracted in an arbitrary combination. System

derived facts can not be retracted. If forget is called with a description

not explicitly told, an error message is raised and the call fails.

Definitions of other BACK entities can not be retracted; instead they

can be overwritten by a new definition. If the descriptions of an

object should be replaced by a new one, it is advisable to use directly

redescribe rather than a sequence of forget operations in combination

with a subsequent assertion.

Example: ?- backtell(forget c1 => c2).

yes

?- x :: c1, x :: c2 and all(r,c3), x :: r:(y and z).

yes

?- x ?: atleast(2,r).

yes

?- y ?: c3.

yes

?- backtell(forget x :: atleast(2,r)).

ERROR atleast(2,r) was not told for x

no

?- backtell(forget x :: c1 and all(r,c3)).

yes

?- y ?: c3.

no

?- backtell(forget z).

yes

?- x ?: r:z.

no

See also: redescribe

83

ge, gt Number Term

Synopsis: Constructs a numerical interval with infinite upper bound.

Syntax: hlower-limit i ::= ge(hnumber-INSTANCE i)

j gt(hnumber-INSTANCE i)

j hnumber-INSTANCE i

Semantics: [[ge(p)]]

I

= fp1 : p1 � pg

[[gt(p)]]

I

= fp1 : p1 > pg

Description: These operators construct from a given number an interval with an

infinite upper bound and either closed lower bound (in case of ge) or

open lower bound (in case of gt).

Example: adult := person and all(age,ge(18)).

retired woman := woman and all(age,gt(63)).

See also: ../2, le, lt, intersection

84 CHAPTER 3. BACK MANUAL

getall Retrieval

Synopsis: Retrieval of instances.

Syntax: harguments i ::= getall hconcept i

j getall haset i

j getall string

Semantics: o 2 getall(c) iff Γ j= o :: c

Description: With the getall keyword a query is issued that retrieves all known

instances of a given hterm i. hterm i is limited to concepts, asets, and

the built-in type string. The known instances of a concept are those

explicitly introduced objects which instantiate the queried concept.

The known instances of a aset are those attributes that were introduced

for the queried aset. The known instances of string are those string

values that have been used in the knowledge base as fillers of a role

with range string.

Example: backretrieve(getall c and r : x and s : (y or z)).

backretrieve(R = getall aset(high .. medium,risk)).

Version 4: The operator getallrel is not supported in V5, neither is a role an

admissible argument for the getall operator. But see the entry for

backretrieve.

Idiosyncrasy: getall queries for number ranges are not supported. First, number

instances in BACK V5 are not limited to integers; thus an enumeration

of all known numbers in a given range is impossible. Second, we

do not consider the enumeration of thousands of values, as e.g. with

‘getall 0 .. 1999’, as really useful.

See also: backretrieve, defined as, describe, describe fully, for, intro-

duced as, self, msc

85

incoherent Ask Expression

Synopsis: Tests whether a term is incoherent.

Syntax: hask-expression i ::= incoherent(hterm i) [noibox]

Description: incoherent tests whether the term given as argument is incoherent,

i.e., whether it is subsumed by nothing. The answer includes the

application of rules; if they are to be ignored, the noibox option must

be used.

Example: incoherent(atleast(2,r) and atmost(1,r)).

incoherent(energy and material).

atleast(2,r) and atmost(1,r) ?< nothing.

See also: ?</2, disjoint, nothing

86 CHAPTER 3. BACK MANUAL

intersection Attribute Set Term

Synopsis: Operator for intersecting two attribute sets.

Syntax: haset i ::= (haset i intersection haset i)

Semantics: [[(a1 intersection a2)]]
I

= [[a1]]
I

\ [[a2]]
I

Description: The intersection operator for attribute sets corresponds to the and

operator for concepts. It denotes the intersection of two attribute sets.

Note that the intersection of two disjoint asets results in an empty aset

which is equivalent to nothing.

Example: risk := attribute domain([high,large,medium,small,null]).

risky := aset([high,large,medium], risk).

medium risk := risky intersection aset([medium,small,null])

See also: aset, union, without

87

intersection Number Term

Synopsis: Constructs the intersection of two numerical intervals.

Syntax: hnumber i ::= (hnumber i intersection hnumber i)

Semantics: [[(p1 intersection p2)]]
I

= [[p1]]
I

\ [[p2]]
I

Description: Constructs the intersection interval of two numerical intervals. If both

intervals are disjoint, i.e., have no value in common, the result will be

the empty interval which is equivalent to nothing.

Example: working person := person and working and

all(age,ge(16) intersection le(63)).

See also: ../2, le, lt, ge, gt

88 CHAPTER 3. BACK MANUAL

introduced as Retrieval

Synopsis: Action for disambiguating entities.

Syntax: haction i ::= introduced as

Description: This action disambiguates entities. It produces as output two lists of

descriptors separated by ’-’.

The first list contains at most two descriptors which describe the

“classes” for which the entity in question exists. One of these descrip-

tors is either conc, role, aset, or number, while the other descriptor

can be the name of an attribute domain.

The second list may contain an arbitrary list of descriptors describing

all “classes” for which the entity in question is an “instance”. It may

consist of the descriptors conc, aset, string, or the names of attribute

domains in which the entity in question is an instance.

Example: c := all(r,d).

foo := aset([a,b,c]).

name :< range(string).

c :: c and name : c.

backretrieve(L = [self,introduced as] for c/obj).

L = [[c,[conc]-[aset,string,conc]]]

Version 4: This was not needed in V4, since only a single name space was

maintained.

Idiosyncrasy: Note that conc in the second list denotes objectes. While the name of

an attribute domain in the first list denotes the attribute domain itself,

the name of an attribute domain denotes in the second list the attribute

domain in which the entity in questions occurs as attribute.

See also: backretrieve, defined as, describe, describe fully

89

inv Role Term

Synopsis: Construction of inverse roles.

Syntax: hrole i ::= inv(hrole i)

Semantics: [[inv(r)]]

I

= fhd; ei 2 D �D : he; di 2 [[r]]

I

g

Description: inv is a role operator for defining the inverse of a role. The argument

of inv may be a role name or an arbitrary role term.

Example: is child of := inv(is parent of).

Version 4: In V4 inv was only allowed in ABox queries.

Idiosyncrasy: Note that you can not invert a role if its range is of type aset, number

or string.

See also: comp, trans

90 CHAPTER 3. BACK MANUAL

le, lt Number Term

Synopsis: Constructs a numerical interval with infinite lower bound.

Syntax: hupper-limit i ::= le(hnumber-INSTANCE i)

j lt(hnumber-INSTANCE i)

j hnumber-INSTANCE i

Semantics: [[le(p)]]

I

= fp1 : p1 � pg

[[lt(p)]]

I

= fp1 : p1 < pg

Description: These operators construct from a given number an interval with infi-

nite lower bound and an either closed upper bound (in case of le) or

an open upper bound (in case of lt).

Example: child := person and all(age,lt(18)).

poor person := person and all(income in DM,le(1000)).

See also: ../2, ge, gt, intersection

91

msc Retrieval

Synopsis: Retrieving an entity’s MSC set.

Syntax: haction i ::= msc

Description: The operator msc retrieves the MSC set of an object or attribute. The

MSC set is the set of the most specific concepts instantiated by an

object, or the most specific attribute sets an attribute belongs to. The

MSC set is represented by a list which contains the names of the most

specific concepts or attribute sets. In the case of objects, the elements

in the MSC set are either the concept anything, or concepts defined

by the user; in the case of attributes, the elements in the MSC set

are either the predefined attribute set aset, or attribute domains or

attribute sets defined by the user.

Example: ?- backretrieve(describe x17).

>>> x17

describe: c1

and c2

and atleast(2,r)

and r : uc(24)

and oneof([x17])

yes

?- backretrieve(R=[self,msc] for x17).

R = [[x17,[c1,c2]]]

yes

See also: defined as, describe, describe fully, for, getall, introduced as, nr,

rf, self, vr

92 CHAPTER 3. BACK MANUAL

name Tell Expression

Synopsis: Renaming of objects.

Syntax: hrevision i ::= name(hobj-ref i,hobject-NAME i)

Description: This operator is used to name objects which were previously named

by BACK automatically with an unique constant uc(i). Note that once

an uc(i) object was renamed this way, it cannot be renamed again.

Example: backtell(name(uc(124),’My favorite object name’)).

Version 4: This operation was performed in V4 through the introduction of an

alias name with the operator new.

Idiosyncrasy: With this operation it is only possible to rename previously introduced

uc(i)’s; renaming of named objects or naming of not yet introduced

objects is not possible.

See also: uc(i)

93

no Macro

Synopsis: Nonexistence restriction.

Syntax: hmacro-concept i ::= no(hrole i,hconceptual-type i)

j no(hrole i)

Semantics: [[no(r)]]

I

= fd : [[r]]I(d) = ;g

[[no(r; c)]]

I

= fd : [[r]]I(d) \ [[c]]

I

= ;g

Description: There are no role-fillers at role r, resp. there are no role-fillers of type

c at role r.

Example: broken plant := plant and no(produces).

Version 4: no(r,c) could not be expressed in V4.

Idiosyncrasy: The macro no(r) is internally expanded into atmost(0,r). The macro

no(r,c) is internally expanded into atmost(0,r and range(c)).

See also: all, some

94 CHAPTER 3. BACK MANUAL

not Concept Term

Synopsis: Negation of primitive concepts.

Syntax: hconcept i ::= not(hconcept i)�

Semantics: [[not(c

p

)]]

I

= D n [[c

p

]]

I

Description: The not operator can be used to negate primitive concepts. Therefore

its argument has to be the name of a concept defined by c :< term.

If c is not a primitive concept but a defined one, the term is rejected.

Note that only the primitive component is negated, thus not(c) is

actually interpreted as not(prim(c)). If c is introduced, for example,

as c :< anything and atleast(1,r), than not(c) does not contain the

information atmost(0,r). Since the negation is symmetric from c1 :=

not(c2) it will be inferred that no instance of c2 is an instance of c1,

and vice versa. Thus not can be used to express disjointness.

Example: energy :< product.

material :< product and not(energy).

waste :< product and not(energy).

Version 4: Was expressed as disjointness restriction in V4. To guarantee up-

ward compatibility the system still accepts disjointness restrictions.

They should not be used, however, since they can lead to inefficient

revisions. E.g. consider the following tells:

energy :< product.

material :< product.

disjoint(energy,material).

These will be transformed by the system into the tells:

energy :< product.

material :< product.

material :< product and not(energy).

Idiosyncrasy: c must be a primitive concept. Only its primitive component is

negated.

See also: and, or

95

not Role Term

Synopsis: Negation of primitive roles.

Syntax: hrole i ::= not(hrole i)�

Semantics: [[not(r

p

)]]

I

= D �D n [[r

p

]]

I

Description: The not operator can be used to negate primitive roles. Therefore its

argument has to be the name of a role defined by r :< term. With not

disjointness of primitive roles can be defined in the same way as for

concepts. It is handled by the system quite similar to the not operator

for primitive concepts.

Example: to the south of :< anyrole

to the north of :< not(to the south of).

Version 4: Disjointness of roles could not be expressed in V4.

96 CHAPTER 3. BACK MANUAL

nothing Term

Synopsis: The incoherent concept.

Syntax: hconcept i ::= nothing

Semantics: [[nothing]]

I

= ;

Description: The incoherent concept which has no instances at all. It can be used

to check the incoherence of concepts, e.g., c ?< nothing, or to check

whether value restrictions are incoherent, e.g., c ?< all(r,nothing). It

is also useful for specifying non-primitive disjointness via rules, e.g.,

atleast(2,r) and atmost(3,s) => nothing.

Example: material and energy ?< nothing.

Idiosyncrasy: nothing stands for incoherent concepts, asets, numbers, and roles.

See also: anything, disjoint, incoherent

97

nr Retrieval

Synopsis: Retrieving an entity’s cardinality information for a given role.

Syntax: houtput-functioni ::= nr(hrole i)

j nr(inv(hrole i))

Description: The operator nr retrieves the cardinality information (number-

restriction) of a BACK entity. For each entity to which it is applied

nr adds to the output tuple a structure m–n where m is the most spe-

cific minimum cardinality of the filler set, and n is the most specific

maximum cardinality of the filler set. If the maximum cardinality is

unrestricted, in is returned as the maximum.

Example: ?- x :: atmost(4,r) and r:(y and z).

yes

?- backretrieve(R = [self, nr(r)] for [x,y]).

R = [[x,2–4], [y,0-in]]

yes

Idiosyncrasy: nr is only applicable to entities that may have roles and fillers, i.e., to

concepts and their instances.

See also: defined as, describe, describe fully, for, getall, introduced as, rf,

self, vr

98 CHAPTER 3. BACK MANUAL

number Number Term

Synopsis: Built-in topmost number.

Syntax: hnumber i ::= number

Description: number is the topmost number.

Example: 20th century := 1900 .. 1999.

20th century ?< number.

yes

Idiosyncrasy: number is disjoint from anything and the other topmost conceptual

types aset and string.

See also: aset, anything, string

99

oneof Concept Term

Synopsis: Extensional concept definition.

Syntax: hconcept i ::= oneof(‘[’hobject-NAME i)f,hobject-NAME ig�‘]’

Semantics: [[oneof([o1; : : : ; on])]]
I

= f[[o1]]
I

; : : : ; [[o

n

]]

I

g

Description: An extensional concept term is defined by its instances o1,: : : ,o
n

.

This construct is similar to an aset description, but the attributes

mentioned in an aset cannot be further described in the ABox. The

instances mentioned in a oneof description, on the other hand, are

full-fledged ABox objects and can have roles on their own, etc.

Example: skandinavian country := oneof([denmark,finland,norway,sweden]).

Version 4: Could not be expressed in V4.

Idiosyncrasy: If intensional and extensional specifications are mixed (e.g., skan-

dinavian country := country and oneof([denmark, finland, norway,

sweden]) it does not follow semantically that the constants mentioned

extensionally are instances of the defined concept. Thus the above

definition does not entail that denmark is a skandinavian country,

since it is not asserted that denmark is a country.

See also: aset

100 CHAPTER 3. BACK MANUAL

or Concept Term

Synopsis: Concept disjunction.

Syntax: hconcept i ::= hconcept i or hconcept i?>

Semantics: [[c1 or c2]]
I

= [[c1]]
I

[[[c2]]
I

Description: The instances of c1 or c2 are all objects which are either instances of

c1 or of c2, or of both. This concept constructor can only be used in

ABox queries at the top level and is implemented as a simple union

of the instances retrieved for the combined queries.

Example: backretrieve(getall(chemical plant or biological plant)).

Version 4: In V4 the operator union was used to retrieve the union of two ABox

queries.

Idiosyncrasy: Since this operator is implemented as a simple union of the instances

retrieved for the combined query, the system does not treat disjunction

in a complete way. Thus a query getall(atleast(1,r) or atmost(0,r))

does not return all objects (as would be semantically correct), but

only those for which it is known that they have at least one role-filler

or that they cannot have a role-filler.

See also: and, not

101

or Filler Expression

Synopsis: Disjunction of filler expression.

Syntax: hfiller-expr i ::= hvalue i or hfiller-expr i?�

Description: The or operator allows for the disjunction of filler expressions. As

usual, or binds weaker than and.

Example: o1 ?: c and r : (o2 or o3 or o4).

o1 ?: c and r : ((o2 or o3) and o4).

backretrieve(getall c and r : (theknown(d and s : y1)

or theknown(d and s : y2))).

Idiosyncrasy: Disjunction of filler expressions is only allowed in ABox queries. For

each role expression hrole i:hfiller-expr i, the filler expression must be

enclosed in parentheses if it contains an and or an or.

See also: and

102 CHAPTER 3. BACK MANUAL

range Role Term

Synopsis: Restricts the range of a role.

Syntax: hrole i ::= range(hconceptual-type i)

Semantics: [[range(c)]]

I

= D � [[c]]

I

Description: range is a role operator that restricts the fillers of a role to instances

of a given entity, i.e., concepts, numbers, asets or string. A role

can be inverted only if its range is of type concept. Defined role

introductions, containing only a range restriction, i.e. r := range(c)

are forbidden.

Example: is son of := is child of and range(male).

Version 4: In V4 the operator was only allowed in primitive role introductions.

Idiosyncrasy: The range operator is not allowed in ABox tells and queries. If a role

is introduced without an explicit range restriction, then the system

sets its range to anything. Especially all forward introduced roles get

range(anything).

See also: inv, domain

103

redescribe Tell Expression

Synopsis: Redescribe an object.

Syntax: hrevision i ::= redescribe(hobj-ref i :: hconcept i)

Description: With the redescribe command an object’s current description is re-

placed by the description passed as the argument. Together with the

replaced description all of its semantic consequences are removed

from the knowledge base.

redescribe may be thought of as a shortcut for first retrieving an

object’s current description, retracting it from the knowledge base by

forget, and asserting a new description. Using redescribe is faster

than performing the sequence of single steps. On the other hand, if the

new description is a monotonic extension of the former description,

a normal object tell should be issued rather than redescribe.

Example: ?- x :: c1, x :: c2 and all(r,c3), x :: r:(y and z).

yes

?- y ?: c3.

yes

?- backtell(redescribe(x :: c1 and r:y)).

yes

?- y ?: c3.

no

?- x ?: r:z.

no

See also: ::/2, forget

104 CHAPTER 3. BACK MANUAL

rf Retrieval

Synopsis: Retrieving an entity’s fillers for a given role.

Syntax: houtput-functioni ::= rf(hrole-NAME i)

j rf(inv(hrole-NAME i))

Description: The operator rf retrieves the role-fillers of a BACK entity. For each

entity to which it is applied rf adds to the output tuple a list containing

the entity’s known fillers for the specified role; if the entity has no

known fillers the list is empty. Fillers are given by their names, or

unique constants (uc(i)) if no name has been provided.

Example: ?- backretrieve([self, rf(r)] for getall c).

[[x1,[y1,y2]], [x2,[]], [x3,[y1,y4,y5]],: : : , [x23,[y45]]]

yes

?- backretrieve(R = [rf(inv(r)),self, rf(s)] for [y1,x1]).

R = [[[x1,x3,uc(182)],y1,[z1,z2]],[[],x1,[z3]]]

yes

Version 4: In V4 only one filler at a time was retrieved; if a tuple was in the result

relation but no filler existed for a requested role, an uninstantiated

Prolog variable was returned. In the second of the above examples,

for y1 six different tuples would have been returned (all possible

combinations of the retrieved fillers, e.g., [x3,y1,z2]); for x1 a single

tuple [V,x1,z3] would have been returned, where V is a variable.

Idiosyncrasy: rf is only applicable to entities that may have roles and fillers, i.e., to

concepts and their instances.

See also: defined as, describe, describe fully, for, getall, introduced as,

msc, nr, self, vr

105

rvm some Macro

Synopsis: Existence role value map.

Syntax: hmacro-concept i ::= rvm some(hrole i,hrole i)

Semantics: [[rvm some(r1; r2)]]
I

= fd : [[r1]]
I

(d) \ [[r2]]
I

(d) 6= ;g

Description: There is at least one object being a role-filler both at r1 and at r2.

This operator is symmetric, i.e. , rvm some(r1,r2) is equivalent to

rvm some(r2,r1).

Example: happy employee := rvm some(colleague,friend).

Version 4: Could not be expressed in V4.

Idiosyncrasy: The macro rvm some(r1,r2) is expanded into atleast(1,r1 and r2)

See also: rvm no

106 CHAPTER 3. BACK MANUAL

rvm no Macro

Synopsis: Nonexistence role value map.

Syntax: hmacro-concept i ::= rvm no(hrole i,hrole i)

Semantics: [[rvm some(r1; r2)]]
I

= fd : [[r1]]
I

(d) \ [[r2]]
I

(d) = ;g

Description: There is no object being a role-filler both at r1 and at r2. This operator

is symmetric, i.e. , rvm no(r1,r2) is equivalent to rvm no(r2,r1).

Example: unhappy employee := rvm no(colleague,friend).

Version 4: Could not be expressed in V4.

Idiosyncrasy: The macro rvm no(r1,r2) is expanded into atmost(0,r1 and r2)

See also: rvm some

107

self Retrieval

Synopsis: Retrieving an entity’s name.

Syntax: haction i ::= self

Description: The operator self retrieves the name of a BACK entity. If the entity

has no user-given name its internal identifier is returned in external

representation, i.e., a unique constant uc(i) for objects, conc(i) for

concepts, etc. Typically self is used in two situations: 1) to find the

name of a described object, and 2) to include the entity in larger tuples

when required by further processing of the result relation.

Example: ?- backretrieve(getall c19).

[x1,x2]

yes

?- backretrieve([self] for getall c19).

[[x1], [x2]]

yes

?- backretrieve(self theknown(c68 and r : y76)).

[x23]

yes

See also: defined as, describe, describe fully, for, getall, introduced as,

msc, nr, rf, vr

108 CHAPTER 3. BACK MANUAL

some Macro

Synopsis: Existence restriction.

Syntax: hmacro-concept i ::= some(hrole i,hconceptual-type i)

j some(hrole i)

Semantics: [[some(r)]]

I

= fd : [[r]]I(d) 6= ;g

[[some(r; c)]]

I

= fd : [[r]]I(d) \ [[c]]

I

6= ;g

Description: There is at least one role-filler at role r, resp. there is at least one

role-filler of type c at role r.

Example: assembled product := product and some(contains,product).

Version 4: some(r,c) could not be expressed in V4.

Idiosyncrasy: The macro some(r) is internally expanded into atleast(1,r). The

macro some(r,c) is internally expanded into atleast(1,r and range(c))

See also: all, no, atleast

109

someknown Filler Expression

Synopsis: Embedded disjunctive subquery.

Syntax: hfiller-expr i ::= someknown(hconcept i)?�

Semantics: someknown(c)

def
= orfo : Γ j= o :: cg

r : someknown(c)

def
= nothing (if Γ j= c v nothing)

Description: With the someknown operator an embedded subquery is formulated

which returns a filler expression. This filler expression consists of a

disjunction of all known instances of the specified concept expression

(as if one asks a getall query for the given concept, and conjoins all

retrieved objects by or).

A someknown expression is only evaluated once, and is substituted

by the resulting filler expression. It is not maintained, however, by

the system.

Note that according to the semantics, no object will match a

filler expression hrole i:someknown(hconcept i) if the extension of

hconcept iis empty.

Example: ?- d1 :< d, r :< domain(c) and range(d).

yes

?- y1 :: d1, y2 :: d1,

x :: r : (y3 and y4).

yes

?- x ?: r : someknown(d1).

no

?- y3 :: d1, x ?: r : someknown(d1).

yes

Version 4: This operator was called some in V4; the change was made to distin-

guish it from the restriction operator some which other terminological

systems provide, and which BACK supports as a macro.

Idiosyncrasy: Only allowed in ABox queries. A description containing a some-

known filler-expression depends on the order in which facts are en-

tered into the knowledge base.

See also: :/2, allknown, theknown

110 CHAPTER 3. BACK MANUAL

string Term

Synopsis: Built-in topmost string.

Syntax: hconceptual-type i ::= string

Semantics: [[string]]

I

= S

Description: string is the topmost string having all other strings as instances.

Example: name :< domain(person) and range(string).

hans :: person and name : ’Hans Meier’.

Idiosyncrasy: Strings in BACK are arbitrary Prolog atoms and need to be enclosed –

according to the Prolog convention – in single-quotes if they contain

special characters. string is disjoint from anything and the other

topmost conceptual types aset and number.

See also: aset, anything, number

111

subsumes Ask Expression

Synopsis: Subsumption test.

Syntax: hask-expression i ::= subsumes(hterm i hterm i) [noibox]

Description: This operator performs a boolean test whether the hterm i contained

in the first argument subsumes the hterm i contained in the second

argument. Actually it is equivalent to ?<. The answer takes the

application of rules into account; if they are to be ignored, the noibox

option must be used.

Example: backask(subsumes(atleast(12,s),atleast(12,r) and all(r,d))).

backask(subsumes(energy plant,nuclear plant)).

backask(subsumes(c2,c1) noibox).

Idiosyncrasy: Note that subsumes differs from ?< only in the order of the argu-

ments.

See also: ?<, equivalent

112 CHAPTER 3. BACK MANUAL

the Macro

Synopsis: Uniqueness restriction.

Syntax: hmacro-concept i ::= the(hrole i,hconceptual-type i)

Semantics: [[the(r; c)]]

I

= fd : j[[r]]I(d)j = 1 ^ [[r]]

I

(d) � [[c]]

I

g

Description: There is exactly one role-filler at role r, and this role-filler is of type c.

This operator makes value restrictions for functional roles (features)

more readable, since all(age,ge(18)) easily has the connotation that

an object has more than one age.

Example: adult := the(age,ge(18)).

Idiosyncrasy: The macro the(r,c) is internally expanded into exactly(1,r) and

all(r,c)

See also: all, some, no

113

theknown Object Term

Synopsis: Object-reference by description.

Syntax: hobj-ref i ::= theknown(concept)�

Semantics: theknown(c)

def
= o (if o is the only o

i

such that Γ j= o

i

:: c)

Description: With the theknown operator an object can be referred to by the given

description. A theknown expression is only evaluated once, and is

substituted by the identifier of the referred object. It is not maintained,

however, by the system. The reference must be unambiguous: if

the given concept has more than one instance, or none, the object

reference is undefined; this may cause surrounding goals to raise an

error, and to fail.

Example: ?- d1 :< d, r :< domain(c) and range(d).

yes

?- y1 :: d, y2 :: d1,

x :: r : (y1 and theknown(d1)).

yes

?- x ?: r : theknown(d).

no

?- theknown(d1) ?: d.

yes

Version 4: This operator was called the in V4.

Idiosyncrasy: Only allowed in ABox expressions. A description containing a the-

known filler-expression depends on the order in which facts are en-

tered into the knowledge base.

See also: :/2, allknown, someknown, uc(i)

114 CHAPTER 3. BACK MANUAL

trans Role Term

Synopsis: Transitive closure of roles.

Syntax: hrole i ::= trans(hrole i)�

Semantics: [[trans(r)]]

I

= ([[r]]

I

)

+

Description: trans is a role operator constructing the transitive closure of its argu-

ment. The combination of comp and trans leads to incompleteness

in some cases. For transitively closed roles, number restrictions are

not inferred from restrictions at their transitive closure.

Example: is ancestor of := trans(is parent of).

Version 4: trans is a new operator in version 5.

Idiosyncrasy: The trans operator is not allowed in ABox tells and queries.

See also: comp, inv

115

type Tell Expression

Synopsis: Type specification.

Syntax: htell-expression i ::= hdefinition i[type hmodifier i]

j hrule i

j hdescription i

j hrevision i

j hdeclaration i

hmodifier i ::= concept

j role

j feature

j aset

j number

j string

Description: The type constructor specifies the type of an expression as being

a concept, an aset, a number, a string, a role, or a feature. This

constructor serves several purposes: it can be used to make lists of

tell-expressions more readable for the user even if all expressions

are unambigous for the system; it can be used to make certain tell-

expressions unambigous (e.g., those involving the operator and which

is used for concepts as well as for roles); and it is used to distinguish

features (functional roles) from roles.

Example: product :< anything type concept.

energy :< product type concept.

produces :< domain(plant) and range(product) type role.

a := b and c type concept.

wife :< domain(man) type feature.

Version 4: In V4 the type constructor was not needed, since ambiguities did not

arise, and features were not supported.

116 CHAPTER 3. BACK MANUAL

uc(i) Object Term

Synopsis: System generated unique identifier for objects.

Syntax: hobj-ref i ::= uc(i)�

Description: A unique constant is a unique identifier that the system generates for

each object; its external representation is uc(i) where i is the unique

identifier. The user will be confronted with a uc(i) when system

output has to refer to an object for which no other name was provided

upon its introduction. The uc(i) may be used also for referring to an

object. Note that when an input file is changed and read again, an

object may get assigned a different uc(i). The user must not introduce

an object with a name uc(i) when uc(i) has not already been generated

by the system.

Example: ?- X :: person and name : peter.

X = uc(13)

?- mary :: has friend : uc(13).

yes

?- uc(99) :: person and name : jack.

no

Version 4: The new notation uc(i) replaces theuc i format which is still accepted

for compatibility reasons.

Idiosyncrasy: Note, that the unique constant depends on the order of input and the

prior state of BACK.

See also: ::/2, name, theknown

117

union Attribute Set Term

Synopsis: Operator for forming the union of two attribute sets.

Syntax: haset i ::= haset i union haset i

Semantics: [[a1 union a2]]
I

= [[a1]]
I

[[[a2]]
I

Description: The union operator for attribute sets corresponds semantically to the

(in BACK V5 non-existing) or operator for concepts. It denotes the

union of two attribute sets.

Example: risky := aset([high,large,medium], risk).

unrisky := aset([medium,small,null], risk).

risks := risky union unrisky

See also: aset, intersection, without

118 CHAPTER 3. BACK MANUAL

vr Retrieval

Synopsis: Retrieving an entity’s value restriction for a given role.

Syntax: houtput-functioni ::= haction i

j vr(hrole-NAME i)

j vr(inv(hrole i))

Description: The operator vr retrieves the value restriction of a BACK entity. For

each entity to which it is applied, vr adds to the output tuple a single

concept that represents the conjunction of the entity’s known value

restrictions for the specified role.

Example: ?- c1 :< anything, c2 :< anything,

x :: all(r,c1) and all(r,c2).

yes

?- backretrieve(R = [self, vr(r)] for x).

R = [[x, conc(1298)]]

yes

?- c3 := c1 and c2.

yes

?- backretrieve(R = [self, vr(r)] for x).

R = [[x, c3]]

yes

Idiosyncrasy: vr is only applicable to entities that may have roles and fillers, i.e., on

concepts and their instances.

The application of vr returns a value restriction as has been determined

up to that point. It does not initiate the application of any inference

services. For objects this means that the returned restriction may

be incomplete: The abstraction of value restrictions for closed filler

sets is triggered by according concept entries in the taxonomy. It

therefore can happen that a queried object posses a more special

value restriction than returned by vr.

See also: defined as, describe, describe fully, for, getall, introduced as, nr,

rf, self

119

without Attribute Set Term

Synopsis: Operator for subtracting an attribute set from another.

Syntax: haset i ::= haset i without haset i

Semantics: [[a1 without a2]]
I

= [[a1]]
I

n [[a2]]
I

Description: The without operator performs the intersection of an attribute set with

the set complement of the other one. Note that if a subtraction results

in the empty aset it is equivalent to nothing.

Example: risk := attribute domain([high,large,medium,small,null]).

risky := aset([high,large,medium], risk).

norisk := risk without (risky union aset([small]))

See also: aset, union, without

Bibliography

[Baader and Hollunder, 1992] F. Baader and B. Hollunder. Embedding defaults into

terminological knowledge representation formalisms. In B. Nebel, C. Rich, and

W. Swartout, editors, Principles of Knowledge Representation and Reasoning:

Proceedings of the Third International Conference (KR’92), San Mateo, 1992.

Morgan Kaufmann.

[Brachman and Schmolze, 1985] Ronald J. Brachman and James G. Schmolze. An

overview of the KL-ONE knowledge representation system. Cognitive Science,

9(2):171–216, April 1985.

[Brachman, 1977] Ronald J. Brachman. A Structural Paradigm for Representing

Knowledge. PhD thesis, Havard University, 1977.

[Brachman, 1979] Ronald J. Brachman. On the epistemological status of semantic

networks. In N. V. Findler, editor, Associative Networks: Representation and Use

of Knowledge by Computers, pages 3–50. Academic Press, New York, N.Y., 1979.

[Donini et al., 1991a] F.M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The Com-

plexity of Concept Languages. In KR ’91, pages 151–162, 1991.

[Donini et al., 1991b] F.M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. Tractable

concept languages. In Proceedings of the 12th International Joint Conference on

Artificial Intelligence, pages 458–463, 1991.

[Donini et al., 1992] F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Adding

epistemic operators to concept languages. In B. Nebel, C. Rich, and W. Swartout,

editors, Principles of Knowledge Representation and Reasoning: Proceedings of

the Third International Conference (KR’92), San Mateo, 1992. Morgan Kaufmann.

[Hayes, 1977] Patrick J. Hayes. In defence of logic. In Proceedings of the 5th In-

ternational Joint Conference on Artificial Intelligence, pages 559–565, Cambridge,

Mass., 1977.

[Minsky, 1968] M. Minsky. Semantic Information Processing. MIT Press, Cambridge

(Mass), 1968.

[Minsky, 1975] Marvin Minsky. A framework for representing knowledge. In P. Win-

ston, editor, The Psychology of Computer Vision, pages 211–277. McGraw-Hill,

New York, N.Y., 1975.

120

BIBLIOGRAPHY 121

[Nebel and Peltason, 1990] B. Nebel and Ch. Peltason. Terminological Reasoning

and Information Management. KIT Report 85, Department of Computer Science,

Technische Universität Berlin, Berlin, Germany, October 1990.

[Nebel, 1990] Bernhard Nebel. Reasoning and Revision in Hybrid Representation

Systems, volume 422 of Lecture Notes in Artificail Intelligence. Springer-Verlag,

Berlin, Germany, 1990.

[Pearce and Wagner, 1992] D. Pearce and G. Wagner, editors. Logics in AI, Proceed-

ings of JELIA’92, Berlin, 1992. Springer.

[Quillian, 1968] M.R. Quillian. Semantic Memory, pages 216–270. In Minsky [1968],

1968.

[Rich, 1991] Charles Rich. Special issue on implemented knowledge representation

and reasoning systems. SIGART Bulletin, 2(3), June 1991.

[Royer and Quantz, 1992] V. Royer and J.J. Quantz. Deriving inference rules for

terminological logics. In Pearce and Wagner [1992], pages 84–105.

[Woods, 1975] William A. Woods. What’s in a link: Foundations for semantic net-

works. In D. G. Bobrow and A. M. Collins, editors, Representation and Under-

standing: Studies in Cognitive Science, pages 35–82. Academic Press, New York,

N.Y., 1975.

Appendix A

Installation of BACK

BACK V5 is currently implemented under Quintus Prolog for SUN stations running Unix

SunOS 4.1.2. Past versions of BACK were designed to be as independent as possible

from particular Prolog dialects. Since BACK V5 takes advantage of Quintus Prolog

specific libraries, we couldn’t maintain this strategy. However, we intend to provide

an adaptation to SWI-Prolog (and maybe also for C-Prolog and SICSTUS-Prolog) in

the near future. We will see what we can do about it.

1. Ensure that a supported Prolog dialect is installed on your local site.

2. Create a new directory and copy ‘BACK.tar.Z’ into it.

3. Uncompress the file ‘BACK.tar.Z’ with the command:

uncompress BACK.tar.Z

4. Untar afterwards the file ‘BACK.tar’ with the command:

tar -xf BACK.tar

5. The directory contains now the following files:

Documentation & Installation

Readme.Back51 Contents of files, Installation procedure and remarks.

Install.Back51 Prolog file for installing BACK.

WhatIsNew.Back51 Documentation of changes from BACK V5.0.

Doc.Back50 Syntax card and documentation of major changes from

BACK V4 to BACK V5.

TBox & ABox

backops.pl Operator definitions.

dynamic.quintus Declarations of dynamic predicates for Quintus Prolog.

quintus.library Loader for used Quintus library files.

tbox1.pl & tbox2.pl TBox and IBox of BACK.

abox.pl Abox of BACK.

btl.pl Term language interface.

122

123

util.pl Some utilities.

back.patch BACK’s patch file (is empty after every major release).

Tests & Examples These files are contained in a subdirectory called ‘tests’:

� alltests.pl

� cmk.abox

� ibox tests.pl

� jantest.abox

� jantest.iabox

� jantest.retrieval

� jantest.tbox

� macro tests.pl

� revision tests.pl

� role tests.pl

� value tests.pl

Syntax Converter Tools for converting from previous syntax versions to

BACK V5

README Brief description of the purpose of the following files.

translate.pl Translation tool.

b5tf.pl Definition of translation rules.

v42v5 Translation rules for BACK V4.2 syntax to BACK V5 syntax

mb2v5 1 Translation rules for �BACKsyntax to BACK V5 syntax (Part 1)

mb2v5 2 Translation rules for �BACKsyntax to BACK V5 syntax (Part 2)

6. Now you are ready to install BACK. For this purpose call Quintus Prolog, consult

the file ‘Install.Back51’ and compile BACK with the command:

:- back.

7. After BACK was compiled, it needs to be initialized with the command:

:- backinit.

8. Now you should save the current state of the Prolog system into a binary file

with the Prolog command

:- save program(<FileName>).

for avoiding that BACK needs to be installed from the scratch every time you

need it.

Appendix B

Syntax Overview

In the syntax overview we use the following conventions of the extended Backus-Naur

Form (EBNF):

� optional arguments are put into brackets, e.g., [optional];

� when brackets are intended as terminal symbols, they are quoted, e.g., ‘[’list‘]’;

� iteration is indicated by braces, e.g., f,elementg�;

� parentheses are always terminal symbols, e.g. backinit(tbox);

Some constructs in the syntax overview are only applicable in a restricted way (as

described above). We mark this by the following signs:

� argument must be primitive;

� operator may only be used in TBox tells and queries, i.e. not in terms used to

describe objects;

? operator may only be used in ABox queries, i.e. in object ?: concept or in the

getall part of retrievals;

� operator may only be used in ABox expressions, i.e. in terms used to describe

objects;

! operator may only be used in tells;

> operator may only be used at the top-most level.

124

125

Interaction

hinteraction i ::= backinit[(hbox i)]

j backtell(htell-expression i)

j backask(hask-expression i[noibox])

j backstate[(hstate i)]

j backretrieve(hretrieval i[noibox])

j backmacro(hmacro-definition i)

j backread(hfile-NAME i)

j backload(hfile-NAME i)

j backwrite(hfile-NAME i[,hbox i])

j backdump[(hfile-NAME i)]

hretrieval i ::= [PROLOG-VAR =] [hgenerator i] harguments i

j difference(hentity i,hentity i)

hgenerator i ::= haction i

j ‘[houtput-functionif,houtput-functionig�‘]’ for

haction i ::= describe

j describe fully

j defined as

j introduced as

j self

j msc

houtput-functioni ::= haction i

j vr(hrole-NAME i)

j vr(inv(hrole i))

j nr(hrole-NAME i)

j nr(inv(hrole i))

j rf(hrole-NAME i)

j rf(inv(hrole i))

harguments i ::= harg-spec i[/hdisambig i]

j getall(hconcept i)

j getall(haset i)

j getall(string)

harg-spec i ::= hentity i

j ‘[’hentity i[/hdisambig i] f,hentity i[/hdisambig i]g�‘]’

hdisambigi ::= conc

j obj

j hdomain-NAME iˆcls

j hdomain-NAME iˆobj

126 APPENDIX B. SYNTAX OVERVIEW

hmacro-definition i ::= hmacro i �= hterm i

hmacro i ::= hmacro-NAME i[(PROLOG-VARf,PROLOG-VARg�)]

hstate i ::= verbosity = silent

j verbosity = error

j verbosity = warning

j verbosity = info

j verbosity = trace

j introduction = forward

j introduction = noforward

j revision = true

j revision = false

j retrieval = fail

j retrieval = succeed

j tboxrevision = fail

j tboxrevision = succeed

j aboxfilled = false

j aboxfilled = true

j aboxfilled = abox

j iboxfilled = false

j iboxfilled = true

hbox i ::= tbox

j ibox

j abox

Tell/Ask Expressions

htell-expression i ::= hdefinition i[type hmodifier i]

j hrule i

j hdescription i

j hrevision i

j hdeclaration i

hdefinition i ::= hterm-NAME i := hterm i

j hconcept-NAME i :< hconcept i

j hrole-NAME i :< hrole i

hrule i ::= hconcept i => hconcept i

hdescription i ::= hobj-ref i :: hconcept i

j PROLOG-VAR :: hconcept i

hrevision i ::= forget(hrule i)

j forget(hobj-ref i :: hconcept i)

j forget(hobj-ref i)

j redescribe(hobj-ref i :: hconcept i)

j name(hobj-ref i,hobject-NAME i)

127

hdeclaration i ::= hdomain-NAME i := attribute domain

j hdomain-NAME i := attribute domain(hattribute-list i)

hmodifier i ::= concept

j role

j feature

j aset

j number

j string

hask-expression i ::= hterm i ?< hterm i

j hobj-ref i ?: hconcept i

j disjoint(hterm i,hterm i)

j subsumes(hterm i hterm i)

j equivalent(hterm i,hterm i)

j incoherent(hterm i)

Terms

hentity i ::= hterm i

j hvalue i

hterm i ::= hconceptual-type i

j hrole i

j hmacro i

hconceptual-type i ::= hconcept i

j haset i

j hnumber i

j string

hvalue i ::= hobj-ref i

j hattribute-NAME i

j hnumber-INSTANCE i

j hstring-INSTANCE i

hobj-ref i ::= hobject-NAME i

j uc(hINTEGER i)�

j theknown(concept)�

128 APPENDIX B. SYNTAX OVERVIEW

Concept Terms

hconcept i ::= hconcept-NAME i

j anything

j nothing

j hconcept i and hconcept i

j hconcept i or hconcept i?>

j not(hconcept i)�

j all(hrole i,hconceptual-type i)

j atleast(hINTEGER i,hrole i)

j atmost(hINTEGER i,hrole i)

j oneof(‘[’hobject-NAME if,hobject-NAME ig
�‘]’)

j hrole i:hfiller-expr i

Role Terms

hrole i ::= hrole-NAME i

j hrole i and hrole i

j not(hrole i)�

j domain(hconcept i)

j range(hconceptual-type i)

j inv(hrole i)

j hrole i comp hrole i�

j trans(hrole i)�

Attribute Set Terms

haset i ::= aset

j haset-NAME i

j haset i union haset i

j (haset i intersection haset i)

j haset i without haset i

j aset(‘[’hattribute-listi‘]’)

j aset(hattribute-spec i,hdomain-NAME i)

hattribute-spec i ::= ‘[’hattribute-listi‘]’

j hattribute-NAME i .. hattribute-NAME i

hattribute-listi ::= hattribute-NAME if,hattribute-NAME ig�

129

Number Terms

hnumber i ::= number

j hnumber-NAME i

j hnumber-range i

j (hnumber i intersection hnumber i)

j hnumber-INSTANCE i

hnumber-range i ::= hlower-limit i

j hupper-limit i

j hnumber-INSTANCE i.. hnumber-INSTANCE i

hlower-limit i ::= gt(hnumber-INSTANCE i)

j ge(hnumber-INSTANCE i)

hupper-limit i ::= lt(hnumber-INSTANCE i)

j le(hnumber-INSTANCE i)

Filler Expressions

hfiller-expr i ::= hvalue i

j (hdescription i)!�

j close(hfiller-expr i)

j someknown(hconcept i)?�

j allknown(hconcept i)�

j hvalue i and hfiller-expr i

j hvalue i or hfiller-expr i?�

j (hfiller-expr i)

Macro Library

hmacro-concept i ::= some(hrole i,hconceptual-type i)

j some(hrole i)

j the(hrole i,hconceptual-type i)

j no(hrole i,hconceptual-type i)

j no(hrole i)

j exactly(hINTEGER i,hrole i)

j atleast(hINTEGER i,hrole i,hconceptual-type i)

j atmost(hINTEGER i,hrole i,hconceptual-type i)

j exactly(hINTEGER i,hrole i,hconceptual-type i)

j rvm some(hrole i,hrole i)

j rvm no(hrole i,hrole i)

Appendix C

Formal Semantics Overview

We begin by giving a model-theoretic semantics for the terminological logic underlying

BACK V5. To do so, we first summarize the syntax of concepts, roles, and formulae.

We use t for terms in general, i.e. concepts or roles, the index n for names, e.g. c
n

,

and the index p for primitive components, e.g. c

p

:

c ::= anything j nothing j c

p

j c

n

j not(c
p

) j c1 and c2 j r:o

j all(r,c1) j atleast(n,r,c1) j atmost(n,r,c1)

r ::= nothing j r

p

j r

n

j not(r
p

) j r1 and r2 j inv(r1) j r1 comp r2

j domain(c) j range(c)

 ::= t1 v t2 j o :: c

We assume the usual model-theoretic semantics where a model M of a set of

TL-formulae Γ is a pair hD; Ii. The interpretation function [[�]]

I maps concepts into

subsets of the domain D, roles into subsets of D � D, and object-names injectively

into D, respecting the following equations (we use r(d) to denote fe : hd; ei 2 rg):

[[anything]]

I

= D (C.1)

[[nothing]]

I

= ; (C.2)

[[not(t

p

)]]

I

= D n [[t

p

]]

I (C.3)

[[t1 and t2]]
I

= [[t1]]
I

\ [[t2]]
I (C.4)

[[all(r; c)]]

I

= fd : [[r]]I(d) � [[c]]

I

g (C.5)

[[atleast(n; r; c)]]

I

= fd : j[[r]]I(d) \ [[c]]

I

j � ng (C.6)

[[atmost(n; r; c)]]

I

= fd : j[[r]]I(d) \ [[c]]

I

j � ng (C.7)

[[r : o]]I = fd : [[o]]I 2 [[r]]

I

(d)g (C.8)

[[inv(r1)]]
I

= fhd; ei : he; di 2 [[r]]

I

g (C.9)

[[r1 comp r2]]
I

= [[r1]]
I

� [[r2]]
I (C.10)

[[domain(c)]]

I

= [[c]]

I

�D (C.11)

[[range(c)]]

I

= D � [[c]]

I (C.12)

Satisfaction of formulae is then defined as follows:

M j= t1 � t2 iff [[t2]]
I

v [[t1]]
I (C.13)

M j= o :: c iff [[o]]

I

2 [[c]]

I (C.14)

130

131

A structureM is a model of a formula iff M j= ; it is a model of a set of formulae

Γ iff it is a model of every formula in Γ. A formula is entailed by a set of formulae

Γ (written Γ j=) iff every structure which is a model of Γ is also a model of . A set

of TL-formulae Γ is satisfiable iff it has a model, otherwise it is inconsistent.

The attentive reader may have noticed some discrepancies between the syntax

of BACK V5 and the syntax of the terminologic logic given above. For one thing,

definitions in BACK V5 have the form t

n

:< t or t
n

:= t. These definitions correspond

to the (sets of) formulae t

n

v t and ft
n

v t; t v t

n

g respectively. Furthermore, a rule

c1 => c2 corresponds to a formula c1v c2.

Thus a list of backtells can be seen as a set of TL-formulae Γ. The semantics

of a backask then is reducible to the entailment of a formula by Γ. There are two

peculiarities, however. First, we do not take into account ABox descriptions when

computing term subsumption, second we allow the noibox operator to ignore rules. If

we thus have a set of TL-formulae Γ, consisting of a set of definitions Θ, a set of rules

R and a set of descriptionsA we define the semantics of backask as follows:

backask(t1 ? < t2) iff Θ [R j= t1 v t2 (C.15)

backask(t1 ? < t2) noibox iff Θ j= t1 v t2 (C.16)

backask(o ? : c) iff Γ j= o :: c (C.17)

backask(o ? : c) noibox iff Θ [A j= o :: c (C.18)

Another semantic issue concerns the completeness of rules. Given the semantics

above, rules are like material implications and thus contraposition and reasoning by

case should be possible. However, these latter inferences are not implemented in

BACK V5, and thus, this is a source of incompleteness of the current version. The

alternative would be to specify a semantics which treats rules as triggered forward-

chaining rules (see [Baader and Hollunder, 1992] and [Donini et al., 1992]). Given

such a semantics BACK V5 would be complete with respect to rules.

In the semantics above, interpretation functions map roles into subsets of D �D.

BACK V5 supports special kinds of roles, namely features, whose interpretation has to

be functional. Thus, a model of a set of TL-formulae has to fulfill some additional

requirements:

8d; d

0

; d

00

2 D[hd; d

0

i 2 [[r]]

I

^ hd; d

00

i 2 [[r]]

I

! d

0

= d

00

] (C.19)

if r is a feature.

Besides “ordinary” concepts BACK V5 also supports special concepts, namely asets,

numbers, and strings. To capture this formally we would have to extend the domain

D by additional sets standing for the interpretations of these conceptual types. The

interpretation of number would be the set of real numbers. We do not give the formal

details here, since we think that the meaning of the term-forming operators provided

for asets and numbers are self-explanatory.

We now give a semantics for the getall part of backretrieve. In general this

functionality returns the instances of a concept:

o 2 getall(c) iff Γ j= o :: c (C.20)

Note that the use of the noibox operator leads to taking Θ[A instead of Γ, i.e. the set

of rules R is ignored.

132 APPENDIX C. FORMAL SEMANTICS OVERVIEW

Finally a word concerning filler-expressions, i.e. expressions that can be used in

connection with the fills construct r:o. Instead of specifying a single object as a filler of

role r, the user can specify a filler-expression, which mostly are interpreted as macros.

Some of these expressions may only be used in ABox descriptions or only in queries

(see the syntax). The operators and and or can be used to combine filler-expressions.

Note that disjunctions are only allowed in queries. The operators someknown and

allknown are interpreted as macros, disjoining and conjoining all the instances of a

concept currently known in the knowledge base:

someknown(c)

def
= orfo : Γ j= o :: cg (C.21)

allknown(c)

def
= andfo : Γ j= o :: cg (C.22)

Note that we use andfo1; :::; ong for the term o1 and ... and o

n

. Note further that

these operators are treated as macros and not as semantic descriptions: thus when

evaluating a term containing these macros they are expanded, i.e. substituted by the

disjunction or conjunction of the currently known instances of c. Therefore, the use

of someknown and allknown is order-dependent, whereas the other constructs of

BACK V5 are order-independent.

The attentive reader will have noticed a problem with our semantics for some-

known and allknown: what if there are currently no instances of c? In that case it is

not possible to expand the macro someknown(c). We can, however, expand the whole

concept term in which the filler-expression occurs:

r : someknown(c)

def
= nothing (C.23)

if Γ j= c v nothing

r : allknown(c)
def
= anything (C.24)

if Γ j= c v nothing

The operator theknown can be used to refer to an object by using a description:

theknown(c)

def
= o (C.25)

if o is the only o

i

such that Γ j= o

i

:: c

Note again that theknown is syntactically expanded as a macro and is thus order-

dependent.

Finally, a word concerning the close operator. It is also treated as a macro and

adds an atmost(n,r) restriction.

r : close(fe)
def
= r : fe and atmost(n; r) (C.26)

where n is the cardinality of the filler-expression

Thus the close is local and takes into account only the role-fillers specified in the

filler-expression and not the ones currently known. It is therefore order-independent.

Appendix D

Programming Interface

The programming interface (PIF) provides a “low-level” access to the BACK-system;

thus, circumventing the parser of BACK. Since the actual PIF is restricted in certain

ways and differs from the PIF of BACK V4, the following remarks are necessary:

� In contrast to BACK’s user interface – PIF operates solely on names. All ex-

pressions of PIF use names of the kind indicated in the description below as

arguments. The only exceptions are Min and Max which use a number, Type

which uses the type of an entity, and Source.

� None of the arguments needs to be instantiated. Backtracking is performed over

all known names of the appropiate type.

� There are no error messages. Calls with unknown names or ill-formed calls will

simply fail.

� The ‘kind’ expression can be used to determine the type and the source of a

name. While the returned value for source consists either of the constant ‘user’,

‘predef’ or ‘anonym’, the type may be bound to ‘conc’ resp. ‘role/X’, where X

denotes the type of the role’s range. In case a non-user defined name is found,

the backretrieve actions can be used to generate an equivalent description of the

name.

� Incoherent entities can only be dealt with by predicates containing the prefix ‘in-

coherent ’ in their name. All other predicates, except for ‘super prim concept’,

‘primitive concept’ and ‘defined concept’, will always fail on incoherent con-

cepts, roles, asets, or numbers. In addition, they will never generate incoherent

entities upon backtracking.

� Since PIF provides functionality for determining the “supers” and “direct supers”

of an entity, the following names are used for denoting the “top” elements:

anything for concepts

aset for asets

number for numbers

string for strings

133

134 APPENDIX D. PROGRAMMING INTERFACE

The determined supers of an entity will never include names of equivalent

entities. The predicate ‘role’ can be used to retrieve the names of all existing

roles, since the top role ‘anyrole’ is no longer available.

� Predicates containing the prefix ‘equivalent ’ in their name and predicates for

determining the different types of “supers” of an entity will never succeed with

two identical names. Thus, they also will not return an entity as its own super

or its own equivalent.

� Additionally predicates containing the substring ‘super’ in their name will not

return equivalent entities.

� The uninstantiated predicate ‘disjoint’ generates all disjoint entities and not

only disjoint entities of one domain. Thus, it is better to instantiate at least one

argument.

The predicates ‘synonym’ and ‘individual concept’ are no longer available, be-

cause of the change of the syntax and functionality from BACK V4 to BACK V5. Since

the functionality of BACK V5 now incorporates ‘defined roles’, PIF was extended by

the predicates ‘role’, ‘primitive role’, ‘defined role, and ‘super prim role’.

tboxget(htbox-get-expr i)

htbox-get-expr i ::= primitive(hterm-name i)

j defined(hterm-name i)

j super(hterm-name i; hterm-name i)

j direct super(hterm-name i; hterm-name i)

j equivalent(hterm-name i; hterm-name i)

j disjoint(hterm-name i; hterm-name i)

j incoherent(hterm-name i)

j kind(hterm-name i; htype i; hsource i)

j primitive concept(hconcept-name i)

j defined concept(hconcept-name i)

j super concept(hconcept-name i; hconcept-name i)

j super prim concept(hconcept-name i; hconcept-name i)

j direct super concept(hconcept-name i; hconcept-name i)

j user direct super concept(hconcept-name i; hconcept-name i)

j equivalent concept(hconcept-name i; hconcept-name i)

j disjoint concept(hconcept-name i; hconcept-name i)

j user disjoint prim concept(hconcept-name i; hconcept-name i)

j incoherent concept(hconcept-name i)

j value restriction(hconcept-name i; hrole-name i; hany-name i)

j user value restriction(hconcept-name i; hrole-name i; hany-name i)

j number restriction(hconcept-name i; hrole-name i; hmin i; hmax i)

j user number restriction(hconcept-name i; hrole-name i; hmin i; hmax i)

j restriction(hconcept-name i; hrole-name i; hany-name i; hmin i; hmax i)

j user restriction(hconcept-name i; hrole-name i; hany-name i; hmin i; hmax i)

135

j role(hrole-name i)

j primitive role(hrole-name i)

j defined role(hrole-name i)

j super role(hrole-name i; hrole-name i)

j super prim role(hrole-name i; hrole-name i)

j direct super role(hrole-name i; hrole-name i)

j equivalent role(hrole-name i; hrole-name i)

j disjoint role(hrole-name i; hrole-name i)

j incoherent role(hrole-name i)

j range(hrole-name i; hany-name i)

j user range(hrole-name i; hany-name i)

j domain(hrole-name i; hconcept-name i)

j user domain(hrole-name i; hconcept-name i)

j super aset(haset-name i; haset-name i)

j equivalent aset(haset-name i; haset-name i)

j disjoint aset(haset-name i; haset-name i)

j incoherent aset(haset-name i)

j element(hattribute-namei; haset-name i)

j attribute domain(haset-name i; hattribute-domain-namei)

j super number(hnumber-name i; hnumber-name i)

j equivalent number(hnumber-name i; hnumber-name i)

j disjoint number(hnumber-name i; hnumber-name i)

j incoherent number(hnumber-name i)

iboxget(hibox-get-expr i)

hibox-get-expr i ::= super concept(hconcept-name i; hconcept-name i)

j direct super concept(hconcept-name i; hconcept-name i)

j user direct super concept(hconcept-name i; hconcept-name i)

j equivalent concept(hconcept-name i; hconcept-name i)

j disjoint concept(hconcept-name i; hconcept-name i)

j incoherent concept(hconcept-name i)

j value restriction(hconcept-name i; hrole-name i; hany-name i)

j number restriction(hconcept-name i; hrole-name i; hmin i; hmax i)

j restriction(hconcept-name i; hrole-name i; hany-name i; hmin i; hmax i)

j equivalent role(hrole-name i; hrole-name i)

j disjoint role(hrole-name i; hrole-name i)

j incoherent role(hrole-name i)

