constr_name(<a href=%MML%hidden.html#M1>m1_hidden</a>,set,set). constr_name(<a href=%MML%hidden.html#R1>r1_hidden</a>,'=',equals). constr_name(<a href=%MML%hidden.html#R2>r2_hidden</a>,in,in). constr_name(<a href=%MML%tarski.html#K1>k1_tarski</a>,'{..}',singleton). constr_name(<a href=%MML%tarski.html#K2>k2_tarski</a>,'{..}__2',unordered_pair). constr_name(<a href=%MML%tarski.html#R1>r1_tarski</a>,'c=',subset). constr_name(<a href=%MML%tarski.html#K3>k3_tarski</a>,union,union). constr_name(<a href=%MML%tarski.html#K4>k4_tarski</a>,'[..]',ordered_pair). constr_name(<a href=%MML%tarski.html#R2>r2_tarski</a>,are_equipotent,are_equipotent). constr_name(<a href=%MML%xboole_0.html#K1>k1_xboole_0</a>,'{}',empty_set). constr_name(<a href=%MML%xboole_0.html#K2>k2_xboole_0</a>,'\\/',set_union2). constr_name(<a href=%MML%xboole_0.html#K3>k3_xboole_0</a>,'/\\',set_intersection2). constr_name(<a href=%MML%xboole_0.html#K4>k4_xboole_0</a>,'\\',set_difference). constr_name(<a href=%MML%xboole_0.html#V1>v1_xboole_0</a>,empty,empty). constr_name(<a href=%MML%xboole_0.html#R1>r1_xboole_0</a>,misses,disjoint). constr_name(<a href=%MML%xboole_0.html#R2>r2_xboole_0</a>,'c<',proper_subset). constr_name(<a href=%MML%xboole_0.html#R3>r3_xboole_0</a>,'are_c=-comparable',inclusion_comparable). constr_name(<a href=%MML%xboole_0.html#K5>k5_xboole_0</a>,'\\+\\',symmetric_difference). constr_name(<a href=%MML%enumset1.html#K1>k1_enumset1</a>,'{..}__3',unordered_triple). constr_name(<a href=%MML%enumset1.html#K2>k2_enumset1</a>,'{..}__4',unordered_quadruple). constr_name(<a href=%MML%enumset1.html#K3>k3_enumset1</a>,'{..}__5',unordered_quintuple). constr_name(<a href=%MML%enumset1.html#K4>k4_enumset1</a>,'{..}__6',unordered_sextuple). constr_name(<a href=%MML%enumset1.html#K5>k5_enumset1</a>,'{..}__7',unordered_septuple). constr_name(<a href=%MML%enumset1.html#K6>k6_enumset1</a>,'{..}__8',unordered_octuple). constr_name(<a href=%MML%zfmisc_1.html#K1>k1_zfmisc_1</a>,bool,powerset). constr_name(<a href=%MML%zfmisc_1.html#K2>k2_zfmisc_1</a>,'[:..:]',cartesian_product2). constr_name(<a href=%MML%zfmisc_1.html#K3>k3_zfmisc_1</a>,'[:..:]__2',cartesian_product3). constr_name(<a href=%MML%zfmisc_1.html#K4>k4_zfmisc_1</a>,'[:..:]__3',cartesian_product4). constr_name(<a href=%MML%subset_1.html#M1>m1_subset_1</a>,'Element',element). constr_name(<a href=%MML%subset_1.html#M2>m2_subset_1</a>,'Element__2',subset_element). constr_name(<a href=%MML%subset_1.html#K1>k1_subset_1</a>,'{}__2',empty_subset). constr_name(<a href=%MML%subset_1.html#K2>k2_subset_1</a>,'[#]',cast_to_subset). constr_name(<a href=%MML%subset_1.html#K3>k3_subset_1</a>,'`',subset_complement). constr_name(<a href=%MML%subset_1.html#K4>k4_subset_1</a>,'\\/__2',subset_union2). constr_name(<a href=%MML%subset_1.html#K5>k5_subset_1</a>,'/\\__2',subset_intersection2). constr_name(<a href=%MML%subset_1.html#K6>k6_subset_1</a>,'\\__2',subset_difference). constr_name(<a href=%MML%subset_1.html#K7>k7_subset_1</a>,'\\+\\__2',subset_symmetric_difference). constr_name(<a href=%MML%subset_1.html#R1>r1_subset_1</a>,misses__2,disjoint_nonempty). constr_name(<a href=%MML%subset_1.html#R2>r2_subset_1</a>,meets,meets_nonempty). constr_name(<a href=%MML%subset_1.html#K8>k8_subset_1</a>,choose,choose_element). constr_name(<a href=%MML%setfam_1.html#K1>k1_setfam_1</a>,meet,_). constr_name(<a href=%MML%setfam_1.html#R1>r1_setfam_1</a>,is_finer_than,_). constr_name(<a href=%MML%setfam_1.html#R2>r2_setfam_1</a>,is_coarser_than,_). constr_name(<a href=%MML%setfam_1.html#K2>k2_setfam_1</a>,'UNION',_). constr_name(<a href=%MML%setfam_1.html#K3>k3_setfam_1</a>,'INTERSECTION',_). constr_name(<a href=%MML%setfam_1.html#K4>k4_setfam_1</a>,'DIFFERENCE',_). constr_name(<a href=%MML%setfam_1.html#K5>k5_setfam_1</a>,union__2,_). constr_name(<a href=%MML%setfam_1.html#K6>k6_setfam_1</a>,meet__2,_). constr_name(<a href=%MML%setfam_1.html#K7>k7_setfam_1</a>,'COMPLEMENT',_). constr_name(<a href=%MML%setfam_1.html#V1>v1_setfam_1</a>,'with_non-empty_elements',with_non_empty_elements). constr_name(<a href=%MML%setfam_1.html#K8>k8_setfam_1</a>,'Intersect',_). constr_name(<a href=%MML%setfam_1.html#V2>v2_setfam_1</a>,'empty-membered',_). constr_name(<a href=%MML%relat_1.html#V1>v1_relat_1</a>,'Relation-like',relation). constr_name(<a href=%MML%relat_1.html#K1>k1_relat_1</a>,dom,relation_dom). constr_name(<a href=%MML%relat_1.html#K2>k2_relat_1</a>,rng,relation_rng). constr_name(<a href=%MML%relat_1.html#K3>k3_relat_1</a>,field,relation_field). constr_name(<a href=%MML%relat_1.html#K4>k4_relat_1</a>,'~',relation_inverse). constr_name(<a href=%MML%relat_1.html#K5>k5_relat_1</a>,'*',relation_composition). constr_name(<a href=%MML%relat_1.html#V2>v2_relat_1</a>,'non-empty',relation_non_empty). constr_name(<a href=%MML%relat_1.html#K6>k6_relat_1</a>,id,identity_relation). constr_name(<a href=%MML%relat_1.html#K7>k7_relat_1</a>,'|',relation_dom_restriction). constr_name(<a href=%MML%relat_1.html#K8>k8_relat_1</a>,'|__2',relation_rng_restriction). constr_name(<a href=%MML%relat_1.html#K9>k9_relat_1</a>,'.:',relation_image). constr_name(<a href=%MML%relat_1.html#K10>k10_relat_1</a>,'"',relation_inverse_image). constr_name(<a href=%MML%relat_1.html#V3>v3_relat_1</a>,'empty-yielding',relation_empty_yielding). constr_name(<a href=%MML%funct_1.html#V1>v1_funct_1</a>,'Function-like',function). constr_name(<a href=%MML%funct_1.html#K1>k1_funct_1</a>,'.',apply). constr_name(<a href=%MML%funct_1.html#V2>v2_funct_1</a>,'one-to-one',one_to_one). constr_name(<a href=%MML%funct_1.html#K2>k2_funct_1</a>,'"__2',function_inverse). constr_name(<a href=%MML%relat_2.html#R1>r1_relat_2</a>,is_reflexive_in,is_reflexive_in). constr_name(<a href=%MML%relat_2.html#R2>r2_relat_2</a>,is_irreflexive_in,is_irreflexive_in). constr_name(<a href=%MML%relat_2.html#R3>r3_relat_2</a>,is_symmetric_in,is_symmetric_in). constr_name(<a href=%MML%relat_2.html#R4>r4_relat_2</a>,is_antisymmetric_in,is_antisymmetric_in). constr_name(<a href=%MML%relat_2.html#R5>r5_relat_2</a>,is_asymmetric_in,is_asymmetric_in). constr_name(<a href=%MML%relat_2.html#R6>r6_relat_2</a>,is_connected_in,is_connected_in). constr_name(<a href=%MML%relat_2.html#R7>r7_relat_2</a>,is_strongly_connected_in,is_strongly_connected_in). constr_name(<a href=%MML%relat_2.html#R8>r8_relat_2</a>,is_transitive_in,is_transitive_in). constr_name(<a href=%MML%relat_2.html#V1>v1_relat_2</a>,reflexive,reflexive). constr_name(<a href=%MML%relat_2.html#V2>v2_relat_2</a>,irreflexive,irreflexive). constr_name(<a href=%MML%relat_2.html#V3>v3_relat_2</a>,symmetric,symmetric). constr_name(<a href=%MML%relat_2.html#V4>v4_relat_2</a>,antisymmetric,antisymmetric). constr_name(<a href=%MML%relat_2.html#V5>v5_relat_2</a>,asymmetric,asymmetric). constr_name(<a href=%MML%relat_2.html#V6>v6_relat_2</a>,connected,connected). constr_name(<a href=%MML%relat_2.html#V7>v7_relat_2</a>,strongly_connected,strongly_connected). constr_name(<a href=%MML%relat_2.html#V8>v8_relat_2</a>,transitive,transitive). constr_name(<a href=%MML%ordinal1.html#K1>k1_ordinal1</a>,succ,succ). constr_name(<a href=%MML%ordinal1.html#V1>v1_ordinal1</a>,'epsilon-transitive',epsilon_transitive). constr_name(<a href=%MML%ordinal1.html#V2>v2_ordinal1</a>,'epsilon-connected',epsilon_connected). constr_name(<a href=%MML%ordinal1.html#V3>v3_ordinal1</a>,ordinal,ordinal). constr_name(<a href=%MML%ordinal1.html#R1>r1_ordinal1</a>,'c=__2',ordinal_subset). constr_name(<a href=%MML%ordinal1.html#V4>v4_ordinal1</a>,being_limit_ordinal,being_limit_ordinal). constr_name(<a href=%MML%ordinal1.html#V5>v5_ordinal1</a>,'T-Sequence-like',transfinite_sequence). constr_name(<a href=%MML%ordinal1.html#M1>m1_ordinal1</a>,'T-Sequence',transfinite_sequence_of). constr_name(<a href=%MML%ordinal1.html#K2>k2_ordinal1</a>,'|__3',tseq_dom_restriction). constr_name(<a href=%MML%ordinal1.html#V6>v6_ordinal1</a>,'c=-linear',inclusion_linear). constr_name(<a href=%MML%wellord1.html#K1>k1_wellord1</a>,'-Seg',_). constr_name(<a href=%MML%wellord1.html#V1>v1_wellord1</a>,well_founded,well_founded_relation). constr_name(<a href=%MML%wellord1.html#R1>r1_wellord1</a>,is_well_founded_in,is_well_founded_in). constr_name(<a href=%MML%wellord1.html#V2>v2_wellord1</a>,'well-ordering',well_ordering). constr_name(<a href=%MML%wellord1.html#R2>r2_wellord1</a>,well_orders,well_orders). constr_name(<a href=%MML%wellord1.html#K2>k2_wellord1</a>,'|_2',relation_restriction). constr_name(<a href=%MML%wellord1.html#R3>r3_wellord1</a>,is_isomorphism_of,relation_isomorphism). constr_name(<a href=%MML%wellord1.html#R4>r4_wellord1</a>,are_isomorphic,isomorphic_relations). constr_name(<a href=%MML%wellord1.html#K3>k3_wellord1</a>,canonical_isomorphism_of,canonical_isomorphism_of). constr_name(<a href=%MML%relset_1.html#M1>m1_relset_1</a>,'Relation',relation_of2). constr_name(<a href=%MML%relset_1.html#M2>m2_relset_1</a>,'Relation__2',relation_of2_as_subset). constr_name(<a href=%MML%relset_1.html#K1>k1_relset_1</a>,'\\/__3',_). constr_name(<a href=%MML%relset_1.html#K2>k2_relset_1</a>,'/\\__3',_). constr_name(<a href=%MML%relset_1.html#K3>k3_relset_1</a>,'\\__3',_). constr_name(<a href=%MML%relset_1.html#K4>k4_relset_1</a>,dom__2,_). constr_name(<a href=%MML%relset_1.html#K5>k5_relset_1</a>,rng__2,_). constr_name(<a href=%MML%relset_1.html#K6>k6_relset_1</a>,'~__2',_). constr_name(<a href=%MML%relset_1.html#K7>k7_relset_1</a>,'*__2',_). constr_name(<a href=%MML%relset_1.html#K8>k8_relset_1</a>,'|__4',_). constr_name(<a href=%MML%relset_1.html#K9>k9_relset_1</a>,'|__5',_). constr_name(<a href=%MML%relset_1.html#K10>k10_relset_1</a>,'.:__2',_). constr_name(<a href=%MML%relset_1.html#K11>k11_relset_1</a>,'"__3',_). constr_name(<a href=%MML%partfun1.html#K1>k1_partfun1</a>,'*__3',_). constr_name(<a href=%MML%partfun1.html#K2>k2_partfun1</a>,'|__6',_). constr_name(<a href=%MML%partfun1.html#K3>k3_partfun1</a>,'<:..:>',_). constr_name(<a href=%MML%partfun1.html#V1>v1_partfun1</a>,total,_). constr_name(<a href=%MML%partfun1.html#K4>k4_partfun1</a>,'PFuncs',_). constr_name(<a href=%MML%partfun1.html#R1>r1_partfun1</a>,tolerates,_). constr_name(<a href=%MML%partfun1.html#K5>k5_partfun1</a>,'TotFuncs',_). constr_name(<a href=%MML%partfun1.html#K6>k6_partfun1</a>,id__2,_). constr_name(<a href=%MML%mcart_1.html#K1>k1_mcart_1</a>,'`1',pair_first). constr_name(<a href=%MML%mcart_1.html#K2>k2_mcart_1</a>,'`2',pair_second). constr_name(<a href=%MML%mcart_1.html#K3>k3_mcart_1</a>,'[..]__2',_). constr_name(<a href=%MML%mcart_1.html#K4>k4_mcart_1</a>,'[..]__3',_). constr_name(<a href=%MML%mcart_1.html#K5>k5_mcart_1</a>,'`1__2',_). constr_name(<a href=%MML%mcart_1.html#K6>k6_mcart_1</a>,'`2__2',_). constr_name(<a href=%MML%mcart_1.html#K7>k7_mcart_1</a>,'`3',_). constr_name(<a href=%MML%mcart_1.html#K8>k8_mcart_1</a>,'`1__3',_). constr_name(<a href=%MML%mcart_1.html#K9>k9_mcart_1</a>,'`2__3',_). constr_name(<a href=%MML%mcart_1.html#K10>k10_mcart_1</a>,'`3__2',_). constr_name(<a href=%MML%mcart_1.html#K11>k11_mcart_1</a>,'`4',_). constr_name(<a href=%MML%mcart_1.html#K12>k12_mcart_1</a>,'[:..:]__4',_). constr_name(<a href=%MML%mcart_1.html#K13>k13_mcart_1</a>,'[:..:]__5',_). constr_name(<a href=%MML%mcart_1.html#K14>k14_mcart_1</a>,'[:..:]__6',_). constr_name(<a href=%MML%mcart_1.html#K15>k15_mcart_1</a>,pr1,_). constr_name(<a href=%MML%mcart_1.html#K16>k16_mcart_1</a>,pr2,_). constr_name(<a href=%MML%mcart_1.html#K17>k17_mcart_1</a>,'`11',_). constr_name(<a href=%MML%mcart_1.html#K18>k18_mcart_1</a>,'`12',_). constr_name(<a href=%MML%mcart_1.html#K19>k19_mcart_1</a>,'`21',_). constr_name(<a href=%MML%mcart_1.html#K20>k20_mcart_1</a>,'`22',_). constr_name(<a href=%MML%wellord2.html#K1>k1_wellord2</a>,'RelIncl',_). constr_name(<a href=%MML%wellord2.html#K2>k2_wellord2</a>,order_type_of,_). constr_name(<a href=%MML%wellord2.html#R1>r1_wellord2</a>,is_order_type_of,_). constr_name(<a href=%MML%wellord2.html#R2>r2_wellord2</a>,are_equipotent__2,_). constr_name(<a href=%MML%funct_2.html#V1>v1_funct_2</a>,quasi_total,quasi_total). constr_name(<a href=%MML%funct_2.html#K1>k1_funct_2</a>,'Funcs',_). constr_name(<a href=%MML%funct_2.html#K2>k2_funct_2</a>,'.:__3',function_image). constr_name(<a href=%MML%funct_2.html#K3>k3_funct_2</a>,'"__4',_). constr_name(<a href=%MML%funct_2.html#K4>k4_funct_2</a>,'*__4',_). constr_name(<a href=%MML%funct_2.html#V2>v2_funct_2</a>,onto,onto). constr_name(<a href=%MML%funct_2.html#V3>v3_funct_2</a>,bijective,bijective). constr_name(<a href=%MML%funct_2.html#K5>k5_funct_2</a>,'*__5',_). constr_name(<a href=%MML%funct_2.html#K6>k6_funct_2</a>,'"__5',_). constr_name(<a href=%MML%funct_2.html#K7>k7_funct_2</a>,'*__6',_). constr_name(<a href=%MML%funct_2.html#K8>k8_funct_2</a>,'.__2',_). constr_name(<a href=%MML%funct_2.html#K9>k9_funct_2</a>,':->',_). constr_name(<a href=%MML%funct_3.html#K1>k1_funct_3</a>,'.:__4',_). constr_name(<a href=%MML%funct_3.html#K2>k2_funct_3</a>,'.:__5',_). constr_name(<a href=%MML%funct_3.html#K3>k3_funct_3</a>,'"__6',_). constr_name(<a href=%MML%funct_3.html#K4>k4_funct_3</a>,chi,_). constr_name(<a href=%MML%funct_3.html#K5>k5_funct_3</a>,chi__2,_). constr_name(<a href=%MML%funct_3.html#K6>k6_funct_3</a>,incl,_). constr_name(<a href=%MML%funct_3.html#K7>k7_funct_3</a>,pr1__2,first_projection). constr_name(<a href=%MML%funct_3.html#K8>k8_funct_3</a>,pr2__2,second_projection). constr_name(<a href=%MML%funct_3.html#K9>k9_funct_3</a>,pr1__3,first_projection_as_func_of). constr_name(<a href=%MML%funct_3.html#K10>k10_funct_3</a>,pr2__3,second_projection_as_func_of). constr_name(<a href=%MML%funct_3.html#K11>k11_funct_3</a>,delta,_). constr_name(<a href=%MML%funct_3.html#K12>k12_funct_3</a>,delta__2,_). constr_name(<a href=%MML%funct_3.html#K13>k13_funct_3</a>,'<:..:>__2',_). constr_name(<a href=%MML%funct_3.html#K14>k14_funct_3</a>,'<:..:>__3',_). constr_name(<a href=%MML%funct_3.html#K15>k15_funct_3</a>,'[:..:]__7',_). constr_name(<a href=%MML%funct_3.html#K16>k16_funct_3</a>,'[:..:]__8',_). constr_name(<a href=%MML%domain_1.html#K1>k1_domain_1</a>,'[..]__4',_). constr_name(<a href=%MML%domain_1.html#K2>k2_domain_1</a>,'`1__4',_). constr_name(<a href=%MML%domain_1.html#K3>k3_domain_1</a>,'`2__4',_). constr_name(<a href=%MML%domain_1.html#K4>k4_domain_1</a>,'[..]__5',_). constr_name(<a href=%MML%domain_1.html#K5>k5_domain_1</a>,'[..]__6',_). constr_name(<a href=%MML%domain_1.html#K6>k6_domain_1</a>,'{..}__9',_). constr_name(<a href=%MML%domain_1.html#K7>k7_domain_1</a>,'{..}__10',_). constr_name(<a href=%MML%domain_1.html#K8>k8_domain_1</a>,'{..}__11',_). constr_name(<a href=%MML%domain_1.html#K9>k9_domain_1</a>,'{..}__12',_). constr_name(<a href=%MML%domain_1.html#K10>k10_domain_1</a>,'{..}__13',_). constr_name(<a href=%MML%domain_1.html#K11>k11_domain_1</a>,'{..}__14',_). constr_name(<a href=%MML%domain_1.html#K12>k12_domain_1</a>,'{..}__15',_). constr_name(<a href=%MML%domain_1.html#K13>k13_domain_1</a>,'{..}__16',_). constr_name(<a href=%MML%domain_1.html#K14>k14_domain_1</a>,'`11__2',_). constr_name(<a href=%MML%domain_1.html#K15>k15_domain_1</a>,'`12__2',_). constr_name(<a href=%MML%domain_1.html#K16>k16_domain_1</a>,'`21__2',_). constr_name(<a href=%MML%domain_1.html#K17>k17_domain_1</a>,'`22__2',_). constr_name(<a href=%MML%binop_1.html#K1>k1_binop_1</a>,'.__3',_). constr_name(<a href=%MML%binop_1.html#K2>k2_binop_1</a>,'.__4',_). constr_name(<a href=%MML%binop_1.html#V1>v1_binop_1</a>,commutative,_). constr_name(<a href=%MML%binop_1.html#V2>v2_binop_1</a>,associative,_). constr_name(<a href=%MML%binop_1.html#V3>v3_binop_1</a>,idempotent,_). constr_name(<a href=%MML%binop_1.html#R1>r1_binop_1</a>,is_a_left_unity_wrt,_). constr_name(<a href=%MML%binop_1.html#R2>r2_binop_1</a>,is_a_right_unity_wrt,_). constr_name(<a href=%MML%binop_1.html#R3>r3_binop_1</a>,is_a_unity_wrt,_). constr_name(<a href=%MML%binop_1.html#K3>k3_binop_1</a>,the_unity_wrt,_). constr_name(<a href=%MML%binop_1.html#R4>r4_binop_1</a>,is_left_distributive_wrt,_). constr_name(<a href=%MML%binop_1.html#R5>r5_binop_1</a>,is_right_distributive_wrt,_). constr_name(<a href=%MML%binop_1.html#R6>r6_binop_1</a>,is_distributive_wrt,_). constr_name(<a href=%MML%binop_1.html#R7>r7_binop_1</a>,is_distributive_wrt__2,_). constr_name(<a href=%MML%funcop_1.html#K1>k1_funcop_1</a>,'~__3',_). constr_name(<a href=%MML%funcop_1.html#K2>k2_funcop_1</a>,'-->',_). constr_name(<a href=%MML%funcop_1.html#K3>k3_funcop_1</a>,'.:__6',_). constr_name(<a href=%MML%funcop_1.html#K4>k4_funcop_1</a>,'[:]',_). constr_name(<a href=%MML%funcop_1.html#K5>k5_funcop_1</a>,'[;]',_). constr_name(<a href=%MML%funcop_1.html#K6>k6_funcop_1</a>,'.:__7',_). constr_name(<a href=%MML%funcop_1.html#K7>k7_funcop_1</a>,'[:]__2',_). constr_name(<a href=%MML%funcop_1.html#K8>k8_funcop_1</a>,'[;]__2',_). constr_name(<a href=%MML%funcop_1.html#K9>k9_funcop_1</a>,rng__3,_). constr_name(<a href=%MML%funcop_1.html#K10>k10_funcop_1</a>,'~__4',_). constr_name(<a href=%MML%funcop_1.html#V1>v1_funcop_1</a>,'Function-yielding',function_yielding). constr_name(<a href=%MML%funct_4.html#K1>k1_funct_4</a>,'+*',_). constr_name(<a href=%MML%funct_4.html#K2>k2_funct_4</a>,'~__5',_). constr_name(<a href=%MML%funct_4.html#K3>k3_funct_4</a>,'|:..:|',_). constr_name(<a href=%MML%funct_4.html#K4>k4_funct_4</a>,'-->__2',_). constr_name(<a href=%MML%funct_4.html#K5>k5_funct_4</a>,'-->__3',_). constr_name(<a href=%MML%ordinal2.html#K1>k1_ordinal2</a>,last,_). constr_name(<a href=%MML%ordinal2.html#K2>k2_ordinal2</a>,'On',_). constr_name(<a href=%MML%ordinal2.html#K3>k3_ordinal2</a>,'Lim',_). constr_name(<a href=%MML%ordinal2.html#K4>k4_ordinal2</a>,one,one). constr_name(<a href=%MML%ordinal2.html#K5>k5_ordinal2</a>,omega,omega). constr_name(<a href=%MML%ordinal2.html#K6>k6_ordinal2</a>,inf,ordinal_inf). constr_name(<a href=%MML%ordinal2.html#K7>k7_ordinal2</a>,sup,ordinal_sup). constr_name(<a href=%MML%ordinal2.html#V1>v1_ordinal2</a>,'Ordinal-yielding',ordinal_yielding). constr_name(<a href=%MML%ordinal2.html#K8>k8_ordinal2</a>,sup__2,_). constr_name(<a href=%MML%ordinal2.html#K9>k9_ordinal2</a>,inf__2,_). constr_name(<a href=%MML%ordinal2.html#K10>k10_ordinal2</a>,lim_sup,_). constr_name(<a href=%MML%ordinal2.html#K11>k11_ordinal2</a>,lim_inf,_). constr_name(<a href=%MML%ordinal2.html#R1>r1_ordinal2</a>,is_limes_of,_). constr_name(<a href=%MML%ordinal2.html#K12>k12_ordinal2</a>,lim,_). constr_name(<a href=%MML%ordinal2.html#K13>k13_ordinal2</a>,lim__2,_). constr_name(<a href=%MML%ordinal2.html#V2>v2_ordinal2</a>,increasing,ordinal_increasing). constr_name(<a href=%MML%ordinal2.html#V3>v3_ordinal2</a>,continuous,ordinal_continuous). constr_name(<a href=%MML%ordinal2.html#K14>k14_ordinal2</a>,'+^',ordinal_plus). constr_name(<a href=%MML%ordinal2.html#K15>k15_ordinal2</a>,'*^',ordinal_multiply). constr_name(<a href=%MML%ordinal2.html#K16>k16_ordinal2</a>,exp,ordinal_exp). constr_name(<a href=%MML%ordinal2.html#V4>v4_ordinal2</a>,natural,natural). constr_name(<a href=%MML%ordinal3.html#K1>k1_ordinal3</a>,'+^__2',_). constr_name(<a href=%MML%ordinal3.html#K2>k2_ordinal3</a>,'+^__3',_). constr_name(<a href=%MML%ordinal3.html#K3>k3_ordinal3</a>,'*^__2',_). constr_name(<a href=%MML%ordinal3.html#K4>k4_ordinal3</a>,'*^__3',_). constr_name(<a href=%MML%ordinal3.html#K5>k5_ordinal3</a>,'-^',_). constr_name(<a href=%MML%ordinal3.html#K6>k6_ordinal3</a>,'div^',_). constr_name(<a href=%MML%ordinal3.html#K7>k7_ordinal3</a>,'mod^',_). constr_name(<a href=%MML%arytm_3.html#K1>k1_arytm_3</a>,'+^__4',_). constr_name(<a href=%MML%arytm_3.html#K2>k2_arytm_3</a>,'*^__4',_). constr_name(<a href=%MML%arytm_3.html#R1>r1_arytm_3</a>,are_relative_prime,are_relative_prime). constr_name(<a href=%MML%arytm_3.html#R2>r2_arytm_3</a>,divides,_). constr_name(<a href=%MML%arytm_3.html#K3>k3_arytm_3</a>,lcm,_). constr_name(<a href=%MML%arytm_3.html#K4>k4_arytm_3</a>,hcf,_). constr_name(<a href=%MML%arytm_3.html#K5>k5_arytm_3</a>,'RED',_). constr_name(<a href=%MML%arytm_3.html#K6>k6_arytm_3</a>,'RAT+',positive_rationals). constr_name(<a href=%MML%arytm_3.html#K7>k7_arytm_3</a>,numerator,numerator). constr_name(<a href=%MML%arytm_3.html#K8>k8_arytm_3</a>,denominator,denominator). constr_name(<a href=%MML%arytm_3.html#K9>k9_arytm_3</a>,'/',_). constr_name(<a href=%MML%arytm_3.html#K10>k10_arytm_3</a>,'+',_). constr_name(<a href=%MML%arytm_3.html#K11>k11_arytm_3</a>,'*'',_). constr_name(<a href=%MML%arytm_3.html#K12>k12_arytm_3</a>,'{}__3',_). constr_name(<a href=%MML%arytm_3.html#K13>k13_arytm_3</a>,one__2,_). constr_name(<a href=%MML%arytm_3.html#R3>r3_arytm_3</a>,'<='',_). constr_name(<a href=%MML%arytm_2.html#K1>k1_arytm_2</a>,'DEDEKIND_CUTS',_). constr_name(<a href=%MML%arytm_2.html#K2>k2_arytm_2</a>,'REAL+',_). constr_name(<a href=%MML%arytm_2.html#K3>k3_arytm_2</a>,'DEDEKIND_CUT',_). constr_name(<a href=%MML%arytm_2.html#K4>k4_arytm_2</a>,'GLUED',_). constr_name(<a href=%MML%arytm_2.html#R1>r1_arytm_2</a>,'<='__2',_). constr_name(<a href=%MML%arytm_2.html#K5>k5_arytm_2</a>,'+__2',_). constr_name(<a href=%MML%arytm_2.html#K6>k6_arytm_2</a>,'*'__2',_). constr_name(<a href=%MML%arytm_2.html#K7>k7_arytm_2</a>,'+__3',_). constr_name(<a href=%MML%arytm_2.html#K8>k8_arytm_2</a>,'*'__3',_). constr_name(<a href=%MML%arytm_1.html#K1>k1_arytm_1</a>,'-'',_). constr_name(<a href=%MML%arytm_1.html#K2>k2_arytm_1</a>,'-',_). constr_name(<a href=%MML%finset_1.html#V1>v1_finset_1</a>,finite,finite). constr_name(<a href=%MML%finsub_1.html#V1>v1_finsub_1</a>,'cup-closed',cup_closed). constr_name(<a href=%MML%finsub_1.html#V2>v2_finsub_1</a>,'cap-closed',cap_closed). constr_name(<a href=%MML%finsub_1.html#V3>v3_finsub_1</a>,'diff-closed',diff_closed). constr_name(<a href=%MML%finsub_1.html#V4>v4_finsub_1</a>,preBoolean,preboolean). constr_name(<a href=%MML%finsub_1.html#K1>k1_finsub_1</a>,'\\/__4',prebool_union2). constr_name(<a href=%MML%finsub_1.html#K2>k2_finsub_1</a>,'\\__4',prebool_difference). constr_name(<a href=%MML%finsub_1.html#K3>k3_finsub_1</a>,'/\\__4',prebool_intersection2). constr_name(<a href=%MML%finsub_1.html#K4>k4_finsub_1</a>,'\\+\\__3',prebool_symm_difference). constr_name(<a href=%MML%finsub_1.html#K5>k5_finsub_1</a>,'Fin',finite_subsets). constr_name(<a href=%MML%setwiseo.html#K1>k1_setwiseo</a>,'{}.',_). constr_name(<a href=%MML%setwiseo.html#V1>v1_setwiseo</a>,having_a_unity,_). constr_name(<a href=%MML%setwiseo.html#K2>k2_setwiseo</a>,'{..}__17',_). constr_name(<a href=%MML%setwiseo.html#K3>k3_setwiseo</a>,'{..}__18',_). constr_name(<a href=%MML%setwiseo.html#K4>k4_setwiseo</a>,'{..}__19',_). constr_name(<a href=%MML%setwiseo.html#K5>k5_setwiseo</a>,'\\/__5',_). constr_name(<a href=%MML%setwiseo.html#K6>k6_setwiseo</a>,'\\__5',_). constr_name(<a href=%MML%setwiseo.html#K7>k7_setwiseo</a>,'$$',_). constr_name(<a href=%MML%setwiseo.html#K8>k8_setwiseo</a>,'.:__8',_). constr_name(<a href=%MML%setwiseo.html#K9>k9_setwiseo</a>,'FinUnion',_). constr_name(<a href=%MML%setwiseo.html#K10>k10_setwiseo</a>,'FinUnion__2',_). constr_name(<a href=%MML%setwiseo.html#K11>k11_setwiseo</a>,singleton,_). constr_name(<a href=%MML%fraenkel.html#V1>v1_fraenkel</a>,functional,_). constr_name(<a href=%MML%fraenkel.html#M1>m1_fraenkel</a>,'FUNCTION_DOMAIN',_). constr_name(<a href=%MML%fraenkel.html#M2>m2_fraenkel</a>,'Element__3',_). constr_name(<a href=%MML%fraenkel.html#K1>k1_fraenkel</a>,'Funcs__2',_). constr_name(<a href=%MML%numbers.html#K1>k1_numbers</a>,'REAL',_). constr_name(<a href=%MML%numbers.html#K2>k2_numbers</a>,'COMPLEX',_). constr_name(<a href=%MML%numbers.html#K3>k3_numbers</a>,'RAT',_). constr_name(<a href=%MML%numbers.html#K4>k4_numbers</a>,'INT',_). constr_name(<a href=%MML%numbers.html#K5>k5_numbers</a>,'NAT',_). constr_name(<a href=%MML%arytm_0.html#K1>k1_arytm_0</a>,'+__4',_). constr_name(<a href=%MML%arytm_0.html#K2>k2_arytm_0</a>,'*__7',_). constr_name(<a href=%MML%arytm_0.html#K3>k3_arytm_0</a>,opp,_). constr_name(<a href=%MML%arytm_0.html#K4>k4_arytm_0</a>,inv,_). constr_name(<a href=%MML%arytm_0.html#K5>k5_arytm_0</a>,'[*..*]',_). constr_name(<a href=%MML%xcmplx_0.html#V1>v1_xcmplx_0</a>,complex,_). constr_name(<a href=%MML%xcmplx_0.html#K1>k1_xcmplx_0</a>,'i',_). constr_name(<a href=%MML%xcmplx_0.html#K2>k2_xcmplx_0</a>,'+__5',_). constr_name(<a href=%MML%xcmplx_0.html#K3>k3_xcmplx_0</a>,'*__8',_). constr_name(<a href=%MML%xcmplx_0.html#K4>k4_xcmplx_0</a>,'-__2',_). constr_name(<a href=%MML%xcmplx_0.html#K5>k5_xcmplx_0</a>,'"__7',_). constr_name(<a href=%MML%xcmplx_0.html#K6>k6_xcmplx_0</a>,'-__3',_). constr_name(<a href=%MML%xcmplx_0.html#K7>k7_xcmplx_0</a>,'/__2',_). constr_name(<a href=%MML%xreal_0.html#V1>v1_xreal_0</a>,real,_). constr_name(<a href=%MML%xreal_0.html#R1>r1_xreal_0</a>,'<=',_). constr_name(<a href=%MML%xreal_0.html#V2>v2_xreal_0</a>,positive,_). constr_name(<a href=%MML%xreal_0.html#V3>v3_xreal_0</a>,negative,_). constr_name(<a href=%MML%real_1.html#K1>k1_real_1</a>,'-__4',_). constr_name(<a href=%MML%real_1.html#K2>k2_real_1</a>,'"__8',_). constr_name(<a href=%MML%real_1.html#K3>k3_real_1</a>,'+__6',_). constr_name(<a href=%MML%real_1.html#K4>k4_real_1</a>,'*__9',_). constr_name(<a href=%MML%real_1.html#K5>k5_real_1</a>,'-__5',_). constr_name(<a href=%MML%real_1.html#K6>k6_real_1</a>,'/__3',_). constr_name(<a href=%MML%square_1.html#K1>k1_square_1</a>,min,_). constr_name(<a href=%MML%square_1.html#K2>k2_square_1</a>,max,_). constr_name(<a href=%MML%square_1.html#K3>k3_square_1</a>,min__2,_). constr_name(<a href=%MML%square_1.html#K4>k4_square_1</a>,max__2,_). constr_name(<a href=%MML%square_1.html#K5>k5_square_1</a>,'^2',_). constr_name(<a href=%MML%square_1.html#K6>k6_square_1</a>,'^2__2',_). constr_name(<a href=%MML%square_1.html#K7>k7_square_1</a>,'^2__3',_). constr_name(<a href=%MML%square_1.html#K8>k8_square_1</a>,sqrt,_). constr_name(<a href=%MML%square_1.html#K9>k9_square_1</a>,sqrt__2,_). constr_name(<a href=%MML%nat_1.html#K1>k1_nat_1</a>,'+__7',_). constr_name(<a href=%MML%nat_1.html#K2>k2_nat_1</a>,'*__10',_). constr_name(<a href=%MML%nat_1.html#K3>k3_nat_1</a>,div,_). constr_name(<a href=%MML%nat_1.html#K4>k4_nat_1</a>,mod,_). constr_name(<a href=%MML%nat_1.html#R1>r1_nat_1</a>,divides__2,_). constr_name(<a href=%MML%nat_1.html#K5>k5_nat_1</a>,lcm__2,_). constr_name(<a href=%MML%nat_1.html#K6>k6_nat_1</a>,hcf__2,_). constr_name(<a href=%MML%int_1.html#V1>v1_int_1</a>,integer,_). constr_name(<a href=%MML%int_1.html#R1>r1_int_1</a>,are_congruent_mod,_). constr_name(<a href=%MML%int_1.html#K1>k1_int_1</a>,'[\\../]',_). constr_name(<a href=%MML%int_1.html#K2>k2_int_1</a>,'[/..\\]',_). constr_name(<a href=%MML%int_1.html#K3>k3_int_1</a>,frac,_). constr_name(<a href=%MML%int_1.html#K4>k4_int_1</a>,frac__2,_). constr_name(<a href=%MML%int_1.html#K5>k5_int_1</a>,div__2,_). constr_name(<a href=%MML%int_1.html#K6>k6_int_1</a>,mod__2,_). constr_name(<a href=%MML%int_1.html#R2>r2_int_1</a>,divides__3,_). constr_name(<a href=%MML%rat_1.html#V1>v1_rat_1</a>,rational,_). constr_name(<a href=%MML%rat_1.html#K1>k1_rat_1</a>,denominator__2,_). constr_name(<a href=%MML%rat_1.html#K2>k2_rat_1</a>,numerator__2,_). constr_name(<a href=%MML%binop_2.html#K1>k1_binop_2</a>,'-__6',_). constr_name(<a href=%MML%binop_2.html#K2>k2_binop_2</a>,'"__9',_). constr_name(<a href=%MML%binop_2.html#K3>k3_binop_2</a>,'+__8',_). constr_name(<a href=%MML%binop_2.html#K4>k4_binop_2</a>,'-__7',_). constr_name(<a href=%MML%binop_2.html#K5>k5_binop_2</a>,'*__11',_). constr_name(<a href=%MML%binop_2.html#K6>k6_binop_2</a>,'/__4',_). constr_name(<a href=%MML%binop_2.html#K7>k7_binop_2</a>,'-__8',_). constr_name(<a href=%MML%binop_2.html#K8>k8_binop_2</a>,'"__10',_). constr_name(<a href=%MML%binop_2.html#K9>k9_binop_2</a>,'+__9',_). constr_name(<a href=%MML%binop_2.html#K10>k10_binop_2</a>,'-__9',_). constr_name(<a href=%MML%binop_2.html#K11>k11_binop_2</a>,'*__12',_). constr_name(<a href=%MML%binop_2.html#K12>k12_binop_2</a>,'/__5',_). constr_name(<a href=%MML%binop_2.html#K13>k13_binop_2</a>,'-__10',_). constr_name(<a href=%MML%binop_2.html#K14>k14_binop_2</a>,'"__11',_). constr_name(<a href=%MML%binop_2.html#K15>k15_binop_2</a>,'+__10',_). constr_name(<a href=%MML%binop_2.html#K16>k16_binop_2</a>,'-__11',_). constr_name(<a href=%MML%binop_2.html#K17>k17_binop_2</a>,'*__13',_). constr_name(<a href=%MML%binop_2.html#K18>k18_binop_2</a>,'/__6',_). constr_name(<a href=%MML%binop_2.html#K19>k19_binop_2</a>,'-__12',_). constr_name(<a href=%MML%binop_2.html#K20>k20_binop_2</a>,'+__11',_). constr_name(<a href=%MML%binop_2.html#K21>k21_binop_2</a>,'-__13',_). constr_name(<a href=%MML%binop_2.html#K22>k22_binop_2</a>,'*__14',_). constr_name(<a href=%MML%binop_2.html#K23>k23_binop_2</a>,'+__12',_). constr_name(<a href=%MML%binop_2.html#K24>k24_binop_2</a>,'*__15',_). constr_name(<a href=%MML%binop_2.html#K25>k25_binop_2</a>,compcomplex,_). constr_name(<a href=%MML%binop_2.html#K26>k26_binop_2</a>,invcomplex,_). constr_name(<a href=%MML%binop_2.html#K27>k27_binop_2</a>,addcomplex,_). constr_name(<a href=%MML%binop_2.html#K28>k28_binop_2</a>,diffcomplex,_). constr_name(<a href=%MML%binop_2.html#K29>k29_binop_2</a>,multcomplex,_). constr_name(<a href=%MML%binop_2.html#K30>k30_binop_2</a>,divcomplex,_). constr_name(<a href=%MML%binop_2.html#K31>k31_binop_2</a>,compreal,_). constr_name(<a href=%MML%binop_2.html#K32>k32_binop_2</a>,invreal,_). constr_name(<a href=%MML%binop_2.html#K33>k33_binop_2</a>,addreal,_). constr_name(<a href=%MML%binop_2.html#K34>k34_binop_2</a>,diffreal,_). constr_name(<a href=%MML%binop_2.html#K35>k35_binop_2</a>,multreal,_). constr_name(<a href=%MML%binop_2.html#K36>k36_binop_2</a>,divreal,_). constr_name(<a href=%MML%binop_2.html#K37>k37_binop_2</a>,comprat,_). constr_name(<a href=%MML%binop_2.html#K38>k38_binop_2</a>,invrat,_). constr_name(<a href=%MML%binop_2.html#K39>k39_binop_2</a>,addrat,_). constr_name(<a href=%MML%binop_2.html#K40>k40_binop_2</a>,diffrat,_). constr_name(<a href=%MML%binop_2.html#K41>k41_binop_2</a>,multrat,_). constr_name(<a href=%MML%binop_2.html#K42>k42_binop_2</a>,divrat,_). constr_name(<a href=%MML%binop_2.html#K43>k43_binop_2</a>,compint,_). constr_name(<a href=%MML%binop_2.html#K44>k44_binop_2</a>,addint,_). constr_name(<a href=%MML%binop_2.html#K45>k45_binop_2</a>,diffint,_). constr_name(<a href=%MML%binop_2.html#K46>k46_binop_2</a>,multint,_). constr_name(<a href=%MML%binop_2.html#K47>k47_binop_2</a>,addnat,_). constr_name(<a href=%MML%binop_2.html#K48>k48_binop_2</a>,multnat,_). constr_name(<a href=%MML%membered.html#V1>v1_membered</a>,'complex-membered',_). constr_name(<a href=%MML%membered.html#V2>v2_membered</a>,'real-membered',_). constr_name(<a href=%MML%membered.html#V3>v3_membered</a>,'rational-membered',_). constr_name(<a href=%MML%membered.html#V4>v4_membered</a>,'integer-membered',_). constr_name(<a href=%MML%membered.html#V5>v5_membered</a>,'natural-membered',_). constr_name(<a href=%MML%complex1.html#K1>k1_complex1</a>,'Re',_). constr_name(<a href=%MML%complex1.html#K2>k2_complex1</a>,'Im',_). constr_name(<a href=%MML%complex1.html#K3>k3_complex1</a>,'Re__2',_). constr_name(<a href=%MML%complex1.html#K4>k4_complex1</a>,'Im__2',_). constr_name(<a href=%MML%complex1.html#K5>k5_complex1</a>,'0c',_). constr_name(<a href=%MML%complex1.html#K6>k6_complex1</a>,'1r',_). constr_name(<a href=%MML%complex1.html#K7>k7_complex1</a>,'i__2',_). constr_name(<a href=%MML%complex1.html#K8>k8_complex1</a>,'+__13',_). constr_name(<a href=%MML%complex1.html#K9>k9_complex1</a>,'*__16',_). constr_name(<a href=%MML%complex1.html#K10>k10_complex1</a>,'-__14',_). constr_name(<a href=%MML%complex1.html#K11>k11_complex1</a>,'-__15',_). constr_name(<a href=%MML%complex1.html#K12>k12_complex1</a>,'"__12',_). constr_name(<a href=%MML%complex1.html#K13>k13_complex1</a>,'/__7',_). constr_name(<a href=%MML%complex1.html#K14>k14_complex1</a>,'*'__4',_). constr_name(<a href=%MML%complex1.html#K15>k15_complex1</a>,'*'__5',_). constr_name(<a href=%MML%complex1.html#K16>k16_complex1</a>,'|....|',_). constr_name(<a href=%MML%complex1.html#K17>k17_complex1</a>,'|....|__2',_). constr_name(<a href=%MML%complex1.html#K18>k18_complex1</a>,abs,_). constr_name(<a href=%MML%absvalue.html#K1>k1_absvalue</a>,sgn,_). constr_name(<a href=%MML%absvalue.html#K2>k2_absvalue</a>,sgn__2,_). constr_name(<a href=%MML%card_1.html#V1>v1_card_1</a>,cardinal,_). constr_name(<a href=%MML%card_1.html#K1>k1_card_1</a>,'Card',_). constr_name(<a href=%MML%card_1.html#K2>k2_card_1</a>,nextcard,_). constr_name(<a href=%MML%card_1.html#V2>v2_card_1</a>,limit,_). constr_name(<a href=%MML%card_1.html#K3>k3_card_1</a>,alef,_). constr_name(<a href=%MML%card_1.html#K4>k4_card_1</a>,card,_). constr_name(<a href=%MML%finseq_1.html#K1>k1_finseq_1</a>,'Seg',_). constr_name(<a href=%MML%finseq_1.html#K2>k2_finseq_1</a>,'Seg__2',_). constr_name(<a href=%MML%finseq_1.html#V1>v1_finseq_1</a>,'FinSequence-like',_). constr_name(<a href=%MML%finseq_1.html#K3>k3_finseq_1</a>,len,_). constr_name(<a href=%MML%finseq_1.html#K4>k4_finseq_1</a>,dom__3,_). constr_name(<a href=%MML%finseq_1.html#M1>m1_finseq_1</a>,'FinSequence',_). constr_name(<a href=%MML%finseq_1.html#M2>m2_finseq_1</a>,'FinSequence__2',_). constr_name(<a href=%MML%finseq_1.html#K5>k5_finseq_1</a>,'<*..*>',_). constr_name(<a href=%MML%finseq_1.html#K6>k6_finseq_1</a>,'<*>',_). constr_name(<a href=%MML%finseq_1.html#K7>k7_finseq_1</a>,'^',_). constr_name(<a href=%MML%finseq_1.html#K8>k8_finseq_1</a>,'^__2',_). constr_name(<a href=%MML%finseq_1.html#K9>k9_finseq_1</a>,'<*..*>__2',_). constr_name(<a href=%MML%finseq_1.html#K10>k10_finseq_1</a>,'<*..*>__3',_). constr_name(<a href=%MML%finseq_1.html#K11>k11_finseq_1</a>,'<*..*>__4',_). constr_name(<a href=%MML%finseq_1.html#K12>k12_finseq_1</a>,'<*..*>__5',_). constr_name(<a href=%MML%finseq_1.html#K13>k13_finseq_1</a>,'*__17',_). constr_name(<a href=%MML%finseq_1.html#V2>v2_finseq_1</a>,'FinSubsequence-like',_). constr_name(<a href=%MML%finseq_1.html#K14>k14_finseq_1</a>,'Sgm',_). constr_name(<a href=%MML%finseq_1.html#K15>k15_finseq_1</a>,'Seq',_). constr_name(<a href=%MML%finseq_1.html#K16>k16_finseq_1</a>,'|__7',_). constr_name(<a href=%MML%finseq_1.html#K17>k17_finseq_1</a>,'[*]',_). constr_name(<a href=%MML%zf_lang.html#K1>k1_zf_lang</a>,'VAR',_). constr_name(<a href=%MML%zf_lang.html#K2>k2_zf_lang</a>,'x.',_). constr_name(<a href=%MML%zf_lang.html#K3>k3_zf_lang</a>,'<*..*>__6',_). constr_name(<a href=%MML%zf_lang.html#K4>k4_zf_lang</a>,''='',_). constr_name(<a href=%MML%zf_lang.html#K5>k5_zf_lang</a>,''in'',_). constr_name(<a href=%MML%zf_lang.html#K6>k6_zf_lang</a>,''not'',_). constr_name(<a href=%MML%zf_lang.html#K7>k7_zf_lang</a>,''&'',_). constr_name(<a href=%MML%zf_lang.html#K8>k8_zf_lang</a>,'All',_). constr_name(<a href=%MML%zf_lang.html#K9>k9_zf_lang</a>,'WFF',_). constr_name(<a href=%MML%zf_lang.html#V1>v1_zf_lang</a>,'ZF-formula-like',_). constr_name(<a href=%MML%zf_lang.html#V2>v2_zf_lang</a>,being_equality,_). constr_name(<a href=%MML%zf_lang.html#V3>v3_zf_lang</a>,being_membership,_). constr_name(<a href=%MML%zf_lang.html#V4>v4_zf_lang</a>,negative__2,_). constr_name(<a href=%MML%zf_lang.html#V5>v5_zf_lang</a>,conjunctive,_). constr_name(<a href=%MML%zf_lang.html#V6>v6_zf_lang</a>,universal,_). constr_name(<a href=%MML%zf_lang.html#V7>v7_zf_lang</a>,atomic,_). constr_name(<a href=%MML%zf_lang.html#K10>k10_zf_lang</a>,''or'',_). constr_name(<a href=%MML%zf_lang.html#K11>k11_zf_lang</a>,'=>',_). constr_name(<a href=%MML%zf_lang.html#K12>k12_zf_lang</a>,'<=>',_). constr_name(<a href=%MML%zf_lang.html#K13>k13_zf_lang</a>,'Ex',_). constr_name(<a href=%MML%zf_lang.html#V8>v8_zf_lang</a>,disjunctive,_). constr_name(<a href=%MML%zf_lang.html#V9>v9_zf_lang</a>,conditional,_). constr_name(<a href=%MML%zf_lang.html#V10>v10_zf_lang</a>,biconditional,_). constr_name(<a href=%MML%zf_lang.html#V11>v11_zf_lang</a>,existential,_). constr_name(<a href=%MML%zf_lang.html#K14>k14_zf_lang</a>,'All__2',_). constr_name(<a href=%MML%zf_lang.html#K15>k15_zf_lang</a>,'Ex__2',_). constr_name(<a href=%MML%zf_lang.html#K16>k16_zf_lang</a>,'All__3',_). constr_name(<a href=%MML%zf_lang.html#K17>k17_zf_lang</a>,'Ex__3',_). constr_name(<a href=%MML%zf_lang.html#K18>k18_zf_lang</a>,'Var1',_). constr_name(<a href=%MML%zf_lang.html#K19>k19_zf_lang</a>,'Var2',_). constr_name(<a href=%MML%zf_lang.html#K20>k20_zf_lang</a>,the_argument_of,_). constr_name(<a href=%MML%zf_lang.html#K21>k21_zf_lang</a>,the_left_argument_of,_). constr_name(<a href=%MML%zf_lang.html#K22>k22_zf_lang</a>,the_right_argument_of,_). constr_name(<a href=%MML%zf_lang.html#K23>k23_zf_lang</a>,bound_in,_). constr_name(<a href=%MML%zf_lang.html#K24>k24_zf_lang</a>,the_scope_of,_). constr_name(<a href=%MML%zf_lang.html#K25>k25_zf_lang</a>,the_antecedent_of,_). constr_name(<a href=%MML%zf_lang.html#K26>k26_zf_lang</a>,the_consequent_of,_). constr_name(<a href=%MML%zf_lang.html#K27>k27_zf_lang</a>,the_left_side_of,_). constr_name(<a href=%MML%zf_lang.html#K28>k28_zf_lang</a>,the_right_side_of,_). constr_name(<a href=%MML%zf_lang.html#R1>r1_zf_lang</a>,is_immediate_constituent_of,_). constr_name(<a href=%MML%zf_lang.html#R2>r2_zf_lang</a>,is_subformula_of,_). constr_name(<a href=%MML%zf_lang.html#R3>r3_zf_lang</a>,is_proper_subformula_of,_). constr_name(<a href=%MML%zf_lang.html#K29>k29_zf_lang</a>,'Subformulae',_). constr_name(<a href=%MML%zf_model.html#K1>k1_zf_model</a>,'Free',_). constr_name(<a href=%MML%zf_model.html#K2>k2_zf_model</a>,'Free__2',_). constr_name(<a href=%MML%zf_model.html#K3>k3_zf_model</a>,'VAL',_). constr_name(<a href=%MML%zf_model.html#K4>k4_zf_model</a>,'St',_). constr_name(<a href=%MML%zf_model.html#K5>k5_zf_model</a>,'St__2',_). constr_name(<a href=%MML%zf_model.html#R1>r1_zf_model</a>,'|=',_). constr_name(<a href=%MML%zf_model.html#R2>r2_zf_model</a>,'|=__2',_). constr_name(<a href=%MML%zf_model.html#K6>k6_zf_model</a>,the_axiom_of_extensionality,_). constr_name(<a href=%MML%zf_model.html#K7>k7_zf_model</a>,the_axiom_of_pairs,_). constr_name(<a href=%MML%zf_model.html#K8>k8_zf_model</a>,the_axiom_of_unions,_). constr_name(<a href=%MML%zf_model.html#K9>k9_zf_model</a>,the_axiom_of_infinity,_). constr_name(<a href=%MML%zf_model.html#K10>k10_zf_model</a>,the_axiom_of_power_sets,_). constr_name(<a href=%MML%zf_model.html#K11>k11_zf_model</a>,the_axiom_of_substitution_for,_). constr_name(<a href=%MML%zf_model.html#V1>v1_zf_model</a>,being_a_model_of_ZF,_). constr_name(<a href=%MML%zf_colla.html#K1>k1_zf_colla</a>,'Collapse',_). constr_name(<a href=%MML%zf_colla.html#R1>r1_zf_colla</a>,'is_epsilon-isomorphism_of',_). constr_name(<a href=%MML%zf_colla.html#R2>r2_zf_colla</a>,'are_epsilon-isomorphic',_). constr_name(<a href=%MML%orders_1.html#M1>m1_orders_1</a>,'Choice_Function',_). constr_name(<a href=%MML%orders_1.html#K1>k1_orders_1</a>,'BOOL',_). constr_name(<a href=%MML%orders_1.html#V1>v1_orders_1</a>,'being_quasi-order',_). constr_name(<a href=%MML%orders_1.html#V2>v2_orders_1</a>,'being_partial-order',_). constr_name(<a href=%MML%orders_1.html#V3>v3_orders_1</a>,'being_linear-order',_). constr_name(<a href=%MML%orders_1.html#R1>r1_orders_1</a>,quasi_orders,_). constr_name(<a href=%MML%orders_1.html#R2>r2_orders_1</a>,partially_orders,_). constr_name(<a href=%MML%orders_1.html#R3>r3_orders_1</a>,linearly_orders,_). constr_name(<a href=%MML%orders_1.html#R4>r4_orders_1</a>,has_upper_Zorn_property_wrt,_). constr_name(<a href=%MML%orders_1.html#R5>r5_orders_1</a>,has_lower_Zorn_property_wrt,_). constr_name(<a href=%MML%orders_1.html#R6>r6_orders_1</a>,is_maximal_in,_). constr_name(<a href=%MML%orders_1.html#R7>r7_orders_1</a>,is_minimal_in,_). constr_name(<a href=%MML%orders_1.html#R8>r8_orders_1</a>,is_superior_of,_). constr_name(<a href=%MML%orders_1.html#R9>r9_orders_1</a>,is_inferior_of,_). constr_name(<a href=%MML%eqrel_1.html#K1>k1_eqrel_1</a>,nabla,_). constr_name(<a href=%MML%eqrel_1.html#K2>k2_eqrel_1</a>,'/\\__5',_). constr_name(<a href=%MML%eqrel_1.html#K3>k3_eqrel_1</a>,'\\/__6',_). constr_name(<a href=%MML%eqrel_1.html#K4>k4_eqrel_1</a>,'/\\__6',_). constr_name(<a href=%MML%eqrel_1.html#K5>k5_eqrel_1</a>,'"\\/"',_). constr_name(<a href=%MML%eqrel_1.html#K6>k6_eqrel_1</a>,'Class',_). constr_name(<a href=%MML%eqrel_1.html#K7>k7_eqrel_1</a>,'Class__2',_). constr_name(<a href=%MML%eqrel_1.html#M1>m1_eqrel_1</a>,a_partition,_). constr_name(<a href=%MML%eqrel_1.html#K8>k8_eqrel_1</a>,'Class__3',_). constr_name(<a href=%MML%funct_5.html#K1>k1_funct_5</a>,proj1,_). constr_name(<a href=%MML%funct_5.html#K2>k2_funct_5</a>,proj2,_). constr_name(<a href=%MML%funct_5.html#K3>k3_funct_5</a>,curry,_). constr_name(<a href=%MML%funct_5.html#K4>k4_funct_5</a>,uncurry,_). constr_name(<a href=%MML%funct_5.html#K5>k5_funct_5</a>,'curry'',_). constr_name(<a href=%MML%funct_5.html#K6>k6_funct_5</a>,'uncurry'',_). constr_name(<a href=%MML%card_2.html#K1>k1_card_2</a>,'+`',_). constr_name(<a href=%MML%card_2.html#K2>k2_card_2</a>,'*`',_). constr_name(<a href=%MML%card_2.html#K3>k3_card_2</a>,exp__2,_). constr_name(<a href=%MML%trees_1.html#K1>k1_trees_1</a>,'ProperPrefixes',_). constr_name(<a href=%MML%trees_1.html#V1>v1_trees_1</a>,'Tree-like',_). constr_name(<a href=%MML%trees_1.html#M1>m1_trees_1</a>,'Element__4',_). constr_name(<a href=%MML%trees_1.html#K2>k2_trees_1</a>,elementary_tree,_). constr_name(<a href=%MML%trees_1.html#K3>k3_trees_1</a>,'Leaves',_). constr_name(<a href=%MML%trees_1.html#K4>k4_trees_1</a>,'|__8',_). constr_name(<a href=%MML%trees_1.html#M2>m2_trees_1</a>,'Leaf',_). constr_name(<a href=%MML%trees_1.html#M3>m3_trees_1</a>,'Subtree',_). constr_name(<a href=%MML%trees_1.html#K5>k5_trees_1</a>,'with-replacement',_). constr_name(<a href=%MML%trees_1.html#V2>v2_trees_1</a>,'AntiChain_of_Prefixes-like',_). constr_name(<a href=%MML%trees_1.html#M4>m4_trees_1</a>,'AntiChain_of_Prefixes',_). constr_name(<a href=%MML%trees_1.html#K6>k6_trees_1</a>,height,_). constr_name(<a href=%MML%trees_1.html#K7>k7_trees_1</a>,width,_). constr_name(<a href=%MML%finseq_2.html#K1>k1_finseq_2</a>,idseq,_). constr_name(<a href=%MML%finseq_2.html#K2>k2_finseq_2</a>,'|->',_). constr_name(<a href=%MML%finseq_2.html#M1>m1_finseq_2</a>,'FinSequenceSet',_). constr_name(<a href=%MML%finseq_2.html#K3>k3_finseq_2</a>,'*__18',_). constr_name(<a href=%MML%finseq_2.html#M2>m2_finseq_2</a>,'Element__5',_). constr_name(<a href=%MML%finseq_2.html#K4>k4_finseq_2</a>,'-tuples_on',_). constr_name(<a href=%MML%recdef_1.html#K1>k1_recdef_1</a>,'.__5',_). constr_name(<a href=%MML%classes1.html#V1>v1_classes1</a>,'subset-closed',_). constr_name(<a href=%MML%classes1.html#V2>v2_classes1</a>,'being_Tarski-Class',_). constr_name(<a href=%MML%classes1.html#R1>r1_classes1</a>,'is_Tarski-Class_of',_). constr_name(<a href=%MML%classes1.html#K1>k1_classes1</a>,'Tarski-Class',_). constr_name(<a href=%MML%classes1.html#K2>k2_classes1</a>,'Tarski-Class__2',_). constr_name(<a href=%MML%classes1.html#K3>k3_classes1</a>,'Tarski-Class__3',_). constr_name(<a href=%MML%classes1.html#K4>k4_classes1</a>,'Rank',_). constr_name(<a href=%MML%classes1.html#K5>k5_classes1</a>,'the_transitive-closure_of',_). constr_name(<a href=%MML%classes1.html#K6>k6_classes1</a>,the_rank_of,_). constr_name(<a href=%MML%card_3.html#V1>v1_card_3</a>,'Cardinal-yielding',_). constr_name(<a href=%MML%card_3.html#K1>k1_card_3</a>,'Card__2',_). constr_name(<a href=%MML%card_3.html#K2>k2_card_3</a>,disjoin,_). constr_name(<a href=%MML%card_3.html#K3>k3_card_3</a>,'Union',_). constr_name(<a href=%MML%card_3.html#K4>k4_card_3</a>,product,_). constr_name(<a href=%MML%card_3.html#K5>k5_card_3</a>,pi,_). constr_name(<a href=%MML%card_3.html#K6>k6_card_3</a>,'Sum',_). constr_name(<a href=%MML%card_3.html#K7>k7_card_3</a>,'Product',_). constr_name(<a href=%MML%classes2.html#V1>v1_classes2</a>,universal__2,_). constr_name(<a href=%MML%classes2.html#K1>k1_classes2</a>,'{..}__20',_). constr_name(<a href=%MML%classes2.html#K2>k2_classes2</a>,bool__2,_). constr_name(<a href=%MML%classes2.html#K3>k3_classes2</a>,union__3,_). constr_name(<a href=%MML%classes2.html#K4>k4_classes2</a>,meet__3,_). constr_name(<a href=%MML%classes2.html#K5>k5_classes2</a>,'{..}__21',_). constr_name(<a href=%MML%classes2.html#K6>k6_classes2</a>,'[..]__7',_). constr_name(<a href=%MML%classes2.html#K7>k7_classes2</a>,'\\/__7',_). constr_name(<a href=%MML%classes2.html#K8>k8_classes2</a>,'/\\__7',_). constr_name(<a href=%MML%classes2.html#K9>k9_classes2</a>,'\\__6',_). constr_name(<a href=%MML%classes2.html#K10>k10_classes2</a>,'\\+\\__4',_). constr_name(<a href=%MML%classes2.html#K11>k11_classes2</a>,'[:..:]__9',_). constr_name(<a href=%MML%classes2.html#K12>k12_classes2</a>,'Funcs__3',_). constr_name(<a href=%MML%classes2.html#K13>k13_classes2</a>,'FinSETS',_). constr_name(<a href=%MML%classes2.html#K14>k14_classes2</a>,'SETS',_). constr_name(<a href=%MML%classes2.html#K15>k15_classes2</a>,'Universe_closure',_). constr_name(<a href=%MML%classes2.html#K16>k16_classes2</a>,'UNIVERSE',_). constr_name(<a href=%MML%ordinal4.html#K1>k1_ordinal4</a>,'^__3',_). constr_name(<a href=%MML%ordinal4.html#M1>m1_ordinal4</a>,'Ordinal',_). constr_name(<a href=%MML%ordinal4.html#M2>m2_ordinal4</a>,'Ordinal-Sequence',_). constr_name(<a href=%MML%ordinal4.html#K2>k2_ordinal4</a>,'0-element_of',_). constr_name(<a href=%MML%ordinal4.html#K3>k3_ordinal4</a>,'1-element_of',_). constr_name(<a href=%MML%ordinal4.html#K4>k4_ordinal4</a>,'.__6',_). constr_name(<a href=%MML%ordinal4.html#K5>k5_ordinal4</a>,'*__19',_). constr_name(<a href=%MML%ordinal4.html#K6>k6_ordinal4</a>,succ__2,_). constr_name(<a href=%MML%ordinal4.html#K7>k7_ordinal4</a>,'+^__5',_). constr_name(<a href=%MML%ordinal4.html#K8>k8_ordinal4</a>,'*^__5',_). constr_name(<a href=%MML%finseq_3.html#K1>k1_finseq_3</a>,'-__16',_). constr_name(<a href=%MML%zfmodel1.html#K1>k1_zfmodel1</a>,'def_func'',_). constr_name(<a href=%MML%zfmodel1.html#K2>k2_zfmodel1</a>,def_func,_). constr_name(<a href=%MML%zfmodel1.html#R1>r1_zfmodel1</a>,is_definable_in,_). constr_name(<a href=%MML%zfmodel1.html#R2>r2_zfmodel1</a>,is_parametrically_definable_in,_). constr_name(<a href=%MML%zf_lang1.html#K1>k1_zf_lang1</a>,'/__8',_). constr_name(<a href=%MML%zf_lang1.html#K2>k2_zf_lang1</a>,'!',_). constr_name(<a href=%MML%zf_lang1.html#K3>k3_zf_lang1</a>,variables_in,_). constr_name(<a href=%MML%zf_lang1.html#K4>k4_zf_lang1</a>,variables_in__2,_). constr_name(<a href=%MML%zf_lang1.html#K5>k5_zf_lang1</a>,'/__9',_). constr_name(<a href=%MML%zf_lang1.html#K6>k6_zf_lang1</a>,'/__10',_). constr_name(<a href=%MML%zf_refle.html#K1>k1_zf_refle</a>,union__4,_). constr_name(<a href=%MML%zf_refle.html#K2>k2_zf_refle</a>,union__5,_). constr_name(<a href=%MML%zf_refle.html#K3>k3_zf_refle</a>,'\\/__8',_). constr_name(<a href=%MML%zf_refle.html#V1>v1_zf_refle</a>,'DOMAIN-yielding',_). constr_name(<a href=%MML%zf_refle.html#K4>k4_zf_refle</a>,'Union__2',_). constr_name(<a href=%MML%zf_refle.html#K5>k5_zf_refle</a>,'.__7',_). constr_name(<a href=%MML%zfrefle1.html#R1>r1_zfrefle1</a>,'|=__3',_). constr_name(<a href=%MML%zfrefle1.html#R2>r2_zfrefle1</a>,'<==>',_). constr_name(<a href=%MML%zfrefle1.html#R3>r3_zfrefle1</a>,is_elementary_subsystem_of,_). constr_name(<a href=%MML%zfrefle1.html#K1>k1_zfrefle1</a>,'ZF-axioms',_). constr_name(<a href=%MML%zfrefle1.html#K2>k2_zfrefle1</a>,'ZF-axioms__2',_). constr_name(<a href=%MML%zfrefle1.html#R4>r4_zfrefle1</a>,is_cofinal_with,_). constr_name(<a href=%MML%qc_lang1.html#K1>k1_qc_lang1</a>,'QC-variables',_). constr_name(<a href=%MML%qc_lang1.html#K2>k2_qc_lang1</a>,'bound_QC-variables',_). constr_name(<a href=%MML%qc_lang1.html#K3>k3_qc_lang1</a>,'fixed_QC-variables',_). constr_name(<a href=%MML%qc_lang1.html#K4>k4_qc_lang1</a>,'free_QC-variables',_). constr_name(<a href=%MML%qc_lang1.html#K5>k5_qc_lang1</a>,'QC-pred_symbols',_). constr_name(<a href=%MML%qc_lang1.html#K6>k6_qc_lang1</a>,the_arity_of,_). constr_name(<a href=%MML%qc_lang1.html#K7>k7_qc_lang1</a>,'-ary_QC-pred_symbols',_). constr_name(<a href=%MML%qc_lang1.html#M1>m1_qc_lang1</a>,'QC-variable_list',_). constr_name(<a href=%MML%qc_lang1.html#V1>v1_qc_lang1</a>,'QC-closed',_). constr_name(<a href=%MML%qc_lang1.html#K8>k8_qc_lang1</a>,'QC-WFF',_). constr_name(<a href=%MML%qc_lang1.html#K9>k9_qc_lang1</a>,'!__2',_). constr_name(<a href=%MML%qc_lang1.html#K10>k10_qc_lang1</a>,'@',_). constr_name(<a href=%MML%qc_lang1.html#K11>k11_qc_lang1</a>,'VERUM',_). constr_name(<a href=%MML%qc_lang1.html#K12>k12_qc_lang1</a>,''not'__2',_). constr_name(<a href=%MML%qc_lang1.html#K13>k13_qc_lang1</a>,''&'__2',_). constr_name(<a href=%MML%qc_lang1.html#K14>k14_qc_lang1</a>,'All__4',_). constr_name(<a href=%MML%qc_lang1.html#V2>v2_qc_lang1</a>,atomic__2,_). constr_name(<a href=%MML%qc_lang1.html#V3>v3_qc_lang1</a>,negative__3,_). constr_name(<a href=%MML%qc_lang1.html#V4>v4_qc_lang1</a>,conjunctive__2,_). constr_name(<a href=%MML%qc_lang1.html#V5>v5_qc_lang1</a>,universal__3,_). constr_name(<a href=%MML%qc_lang1.html#K15>k15_qc_lang1</a>,the_pred_symbol_of,_). constr_name(<a href=%MML%qc_lang1.html#K16>k16_qc_lang1</a>,the_arguments_of,_). constr_name(<a href=%MML%qc_lang1.html#K17>k17_qc_lang1</a>,the_argument_of__2,_). constr_name(<a href=%MML%qc_lang1.html#K18>k18_qc_lang1</a>,the_left_argument_of__2,_). constr_name(<a href=%MML%qc_lang1.html#K19>k19_qc_lang1</a>,the_right_argument_of__2,_). constr_name(<a href=%MML%qc_lang1.html#K20>k20_qc_lang1</a>,bound_in__2,_). constr_name(<a href=%MML%qc_lang1.html#K21>k21_qc_lang1</a>,the_scope_of__2,_). constr_name(<a href=%MML%qc_lang1.html#K22>k22_qc_lang1</a>,'still_not-bound_in',_). constr_name(<a href=%MML%qc_lang1.html#K23>k23_qc_lang1</a>,'{..}__22',_). constr_name(<a href=%MML%qc_lang1.html#K24>k24_qc_lang1</a>,'still_not-bound_in__2',_). constr_name(<a href=%MML%qc_lang1.html#V6>v6_qc_lang1</a>,closed,_). constr_name(<a href=%MML%qc_lang2.html#K1>k1_qc_lang2</a>,'FALSUM',_). constr_name(<a href=%MML%qc_lang2.html#K2>k2_qc_lang2</a>,'=>__2',_). constr_name(<a href=%MML%qc_lang2.html#K3>k3_qc_lang2</a>,''or'__2',_). constr_name(<a href=%MML%qc_lang2.html#K4>k4_qc_lang2</a>,'<=>__2',_). constr_name(<a href=%MML%qc_lang2.html#K5>k5_qc_lang2</a>,'Ex__4',_). constr_name(<a href=%MML%qc_lang2.html#K6>k6_qc_lang2</a>,'All__5',_). constr_name(<a href=%MML%qc_lang2.html#K7>k7_qc_lang2</a>,'Ex__5',_). constr_name(<a href=%MML%qc_lang2.html#K8>k8_qc_lang2</a>,'All__6',_). constr_name(<a href=%MML%qc_lang2.html#K9>k9_qc_lang2</a>,'Ex__6',_). constr_name(<a href=%MML%qc_lang2.html#V1>v1_qc_lang2</a>,disjunctive__2,_). constr_name(<a href=%MML%qc_lang2.html#V2>v2_qc_lang2</a>,conditional__2,_). constr_name(<a href=%MML%qc_lang2.html#V3>v3_qc_lang2</a>,biconditional__2,_). constr_name(<a href=%MML%qc_lang2.html#V4>v4_qc_lang2</a>,existential__2,_). constr_name(<a href=%MML%qc_lang2.html#K10>k10_qc_lang2</a>,the_left_disjunct_of,_). constr_name(<a href=%MML%qc_lang2.html#K11>k11_qc_lang2</a>,the_right_disjunct_of,_). constr_name(<a href=%MML%qc_lang2.html#K12>k12_qc_lang2</a>,the_antecedent_of__2,_). constr_name(<a href=%MML%qc_lang2.html#K13>k13_qc_lang2</a>,the_left_side_of__2,_). constr_name(<a href=%MML%qc_lang2.html#K14>k14_qc_lang2</a>,the_right_side_of__2,_). constr_name(<a href=%MML%qc_lang2.html#R1>r1_qc_lang2</a>,is_immediate_constituent_of__2,_). constr_name(<a href=%MML%qc_lang2.html#R2>r2_qc_lang2</a>,is_subformula_of__2,_). constr_name(<a href=%MML%qc_lang2.html#R3>r3_qc_lang2</a>,is_proper_subformula_of__2,_). constr_name(<a href=%MML%qc_lang2.html#K15>k15_qc_lang2</a>,'Subformulae__2',_). constr_name(<a href=%MML%qc_lang3.html#K1>k1_qc_lang3</a>,variables_in__3,_). constr_name(<a href=%MML%qc_lang3.html#K2>k2_qc_lang3</a>,'x.__2',_). constr_name(<a href=%MML%qc_lang3.html#K3>k3_qc_lang3</a>,'a.',_). constr_name(<a href=%MML%qc_lang3.html#K4>k4_qc_lang3</a>,'Vars',_). constr_name(<a href=%MML%qc_lang3.html#K5>k5_qc_lang3</a>,'Free__3',_). constr_name(<a href=%MML%qc_lang3.html#K6>k6_qc_lang3</a>,'Fixed',_). constr_name(<a href=%MML%cqc_lang.html#K1>k1_cqc_lang</a>,'IFEQ',_). constr_name(<a href=%MML%cqc_lang.html#K2>k2_cqc_lang</a>,'IFEQ__2',_). constr_name(<a href=%MML%cqc_lang.html#K3>k3_cqc_lang</a>,'.-->',_). constr_name(<a href=%MML%cqc_lang.html#K4>k4_cqc_lang</a>,'Subst',_). constr_name(<a href=%MML%cqc_lang.html#K5>k5_cqc_lang</a>,'Subst__2',_). constr_name(<a href=%MML%cqc_lang.html#K6>k6_cqc_lang</a>,'.-->__2',_). constr_name(<a href=%MML%cqc_lang.html#K7>k7_cqc_lang</a>,'CQC-WFF',_). constr_name(<a href=%MML%cqc_lang.html#V1>v1_cqc_lang</a>,'CQC-variable_list-like',_). constr_name(<a href=%MML%cqc_lang.html#K8>k8_cqc_lang</a>,'!__3',_). constr_name(<a href=%MML%cqc_lang.html#K9>k9_cqc_lang</a>,'VERUM__2',_). constr_name(<a href=%MML%cqc_lang.html#K10>k10_cqc_lang</a>,''not'__3',_). constr_name(<a href=%MML%cqc_lang.html#K11>k11_cqc_lang</a>,''&'__3',_). constr_name(<a href=%MML%cqc_lang.html#K12>k12_cqc_lang</a>,'=>__3',_). constr_name(<a href=%MML%cqc_lang.html#K13>k13_cqc_lang</a>,''or'__3',_). constr_name(<a href=%MML%cqc_lang.html#K14>k14_cqc_lang</a>,'<=>__3',_). constr_name(<a href=%MML%cqc_lang.html#K15>k15_cqc_lang</a>,'All__7',_). constr_name(<a href=%MML%cqc_lang.html#K16>k16_cqc_lang</a>,'Ex__7',_). constr_name(<a href=%MML%cqc_lang.html#K17>k17_cqc_lang</a>,'.__8',_). constr_name(<a href=%MML%pboole.html#M1>m1_pboole</a>,'ManySortedSet',_). constr_name(<a href=%MML%pboole.html#R1>r1_pboole</a>,in,_). constr_name(<a href=%MML%pboole.html#R2>r2_pboole</a>,'c=__3',_). constr_name(<a href=%MML%pboole.html#R3>r3_pboole</a>,in__2,_). constr_name(<a href=%MML%pboole.html#R4>r4_pboole</a>,overlaps,_). constr_name(<a href=%MML%pboole.html#R5>r5_pboole</a>,misses__3,_). constr_name(<a href=%MML%pboole.html#K1>k1_pboole</a>,'[0]',_). constr_name(<a href=%MML%pboole.html#K2>k2_pboole</a>,'\\/__9',_). constr_name(<a href=%MML%pboole.html#K3>k3_pboole</a>,'/\\__8',_). constr_name(<a href=%MML%pboole.html#K4>k4_pboole</a>,'\\__7',_). constr_name(<a href=%MML%pboole.html#K5>k5_pboole</a>,'\\+\\__5',_). constr_name(<a href=%MML%pboole.html#R6>r6_pboole</a>,'=',_). constr_name(<a href=%MML%pboole.html#R7>r7_pboole</a>,'[=',_). constr_name(<a href=%MML%pboole.html#V1>v1_pboole</a>,'empty-yielding__2',_). constr_name(<a href=%MML%pboole.html#V2>v2_pboole</a>,'non-empty__2',_). constr_name(<a href=%MML%pboole.html#M2>m2_pboole</a>,'Element__6',_). constr_name(<a href=%MML%pboole.html#M3>m3_pboole</a>,'ManySortedFunction',_). constr_name(<a href=%MML%pboole.html#K6>k6_pboole</a>,'#',_). constr_name(<a href=%MML%pboole.html#K7>k7_pboole</a>,'*__20',_). constr_name(<a href=%MML%pboole.html#K8>k8_pboole</a>,'*__21',_). constr_name(<a href=%MML%pboole.html#K9>k9_pboole</a>,'*-->',_). constr_name(<a href=%MML%pboole.html#K10>k10_pboole</a>,'-->__4',_). constr_name(<a href=%MML%pboole.html#K11>k11_pboole</a>,'[|..|]',_). constr_name(<a href=%MML%pboole.html#K12>k12_pboole</a>,'MSFuncs',_). constr_name(<a href=%MML%pboole.html#M4>m4_pboole</a>,'ManySortedSubset',_). constr_name(<a href=%MML%pboole.html#K13>k13_pboole</a>,'**',_). constr_name(<a href=%MML%pboole.html#K14>k14_pboole</a>,'.:.:',_). constr_name(<a href=%MML%seq_1.html#V1>v1_seq_1</a>,'real-yielding',_). constr_name(<a href=%MML%seq_1.html#K1>k1_seq_1</a>,'.__9',_). constr_name(<a href=%MML%seq_1.html#K2>k2_seq_1</a>,'.__10',_). constr_name(<a href=%MML%seq_1.html#K3>k3_seq_1</a>,'+__14',_). constr_name(<a href=%MML%seq_1.html#K4>k4_seq_1</a>,'-__17',_). constr_name(<a href=%MML%seq_1.html#K5>k5_seq_1</a>,'(#)',_). constr_name(<a href=%MML%seq_1.html#K6>k6_seq_1</a>,'+__15',_). constr_name(<a href=%MML%seq_1.html#K7>k7_seq_1</a>,'-__18',_). constr_name(<a href=%MML%seq_1.html#K8>k8_seq_1</a>,'(#)__2',_). constr_name(<a href=%MML%seq_1.html#K9>k9_seq_1</a>,'+__16',_). constr_name(<a href=%MML%seq_1.html#K10>k10_seq_1</a>,'-__19',_). constr_name(<a href=%MML%seq_1.html#K11>k11_seq_1</a>,'(#)__3',_). constr_name(<a href=%MML%seq_1.html#K12>k12_seq_1</a>,'(#)__4',_). constr_name(<a href=%MML%seq_1.html#K13>k13_seq_1</a>,'(#)__5',_). constr_name(<a href=%MML%seq_1.html#K14>k14_seq_1</a>,'(#)__6',_). constr_name(<a href=%MML%seq_1.html#K15>k15_seq_1</a>,'-__20',_). constr_name(<a href=%MML%seq_1.html#K16>k16_seq_1</a>,'-__21',_). constr_name(<a href=%MML%seq_1.html#K17>k17_seq_1</a>,'-__22',_). constr_name(<a href=%MML%seq_1.html#K18>k18_seq_1</a>,'"__13',_). constr_name(<a href=%MML%seq_1.html#K19>k19_seq_1</a>,'/"',_). constr_name(<a href=%MML%seq_1.html#K20>k20_seq_1</a>,abs__2,_). constr_name(<a href=%MML%seq_1.html#K21>k21_seq_1</a>,abs__3,_). constr_name(<a href=%MML%seq_1.html#K22>k22_seq_1</a>,abs__4,_). constr_name(<a href=%MML%seq_2.html#V1>v1_seq_2</a>,bounded_above,_). constr_name(<a href=%MML%seq_2.html#V2>v2_seq_2</a>,bounded_below,_). constr_name(<a href=%MML%seq_2.html#V3>v3_seq_2</a>,bounded,_). constr_name(<a href=%MML%seq_2.html#V4>v4_seq_2</a>,convergent,_). constr_name(<a href=%MML%seq_2.html#K1>k1_seq_2</a>,lim__3,_). constr_name(<a href=%MML%seq_2.html#K2>k2_seq_2</a>,lim__4,_). constr_name(<a href=%MML%prob_1.html#V1>v1_prob_1</a>,'compl-closed',_). constr_name(<a href=%MML%prob_1.html#K1>k1_prob_1</a>,'.__11',_). constr_name(<a href=%MML%prob_1.html#K2>k2_prob_1</a>,'Union__3',_). constr_name(<a href=%MML%prob_1.html#K3>k3_prob_1</a>,'Complement',_). constr_name(<a href=%MML%prob_1.html#K4>k4_prob_1</a>,'Intersection',_). constr_name(<a href=%MML%prob_1.html#V2>v2_prob_1</a>,'non-increasing',_). constr_name(<a href=%MML%prob_1.html#V3>v3_prob_1</a>,'non-decreasing',_). constr_name(<a href=%MML%prob_1.html#M1>m1_prob_1</a>,'SigmaField',_). constr_name(<a href=%MML%prob_1.html#M2>m2_prob_1</a>,'SetSequence',_). constr_name(<a href=%MML%prob_1.html#M3>m3_prob_1</a>,'Event',_). constr_name(<a href=%MML%prob_1.html#K5>k5_prob_1</a>,'[#]__2',_). constr_name(<a href=%MML%prob_1.html#K6>k6_prob_1</a>,'/\\__9',_). constr_name(<a href=%MML%prob_1.html#K7>k7_prob_1</a>,'\\/__10',_). constr_name(<a href=%MML%prob_1.html#K8>k8_prob_1</a>,'\\__8',_). constr_name(<a href=%MML%prob_1.html#K9>k9_prob_1</a>,'*__22',_). constr_name(<a href=%MML%prob_1.html#K10>k10_prob_1</a>,'.__12',_). constr_name(<a href=%MML%prob_1.html#M4>m4_prob_1</a>,'Probability',_). constr_name(<a href=%MML%prob_1.html#K11>k11_prob_1</a>,sigma,_). constr_name(<a href=%MML%prob_1.html#K12>k12_prob_1</a>,halfline,_). constr_name(<a href=%MML%prob_1.html#K13>k13_prob_1</a>,'Family_of_halflines',_). constr_name(<a href=%MML%prob_1.html#K14>k14_prob_1</a>,'Borel_Sets',_). constr_name(<a href=%MML%seqm_3.html#V1>v1_seqm_3</a>,increasing__2,_). constr_name(<a href=%MML%seqm_3.html#V2>v2_seqm_3</a>,decreasing,_). constr_name(<a href=%MML%seqm_3.html#V3>v3_seqm_3</a>,'non-decreasing__2',_). constr_name(<a href=%MML%seqm_3.html#V4>v4_seqm_3</a>,'non-increasing__2',_). constr_name(<a href=%MML%seqm_3.html#V5>v5_seqm_3</a>,constant,_). constr_name(<a href=%MML%seqm_3.html#V6>v6_seqm_3</a>,monotone,_). constr_name(<a href=%MML%seqm_3.html#V7>v7_seqm_3</a>,'natural-yielding',_). constr_name(<a href=%MML%seqm_3.html#K1>k1_seqm_3</a>,'^\\',_). constr_name(<a href=%MML%seqm_3.html#K2>k2_seqm_3</a>,'.__13',_). constr_name(<a href=%MML%seqm_3.html#K3>k3_seqm_3</a>,'*__23',_). constr_name(<a href=%MML%seqm_3.html#K4>k4_seqm_3</a>,'*__24',_). constr_name(<a href=%MML%seqm_3.html#M1>m1_seqm_3</a>,subsequence,_). constr_name(<a href=%MML%seq_4.html#V1>v1_seq_4</a>,bounded_above__2,_). constr_name(<a href=%MML%seq_4.html#V2>v2_seq_4</a>,bounded_below__2,_). constr_name(<a href=%MML%seq_4.html#V3>v3_seq_4</a>,bounded__2,_). constr_name(<a href=%MML%seq_4.html#K1>k1_seq_4</a>,'{..}__23',_). constr_name(<a href=%MML%seq_4.html#K2>k2_seq_4</a>,upper_bound,_). constr_name(<a href=%MML%seq_4.html#K3>k3_seq_4</a>,lower_bound,_). constr_name(<a href=%MML%seq_4.html#K4>k4_seq_4</a>,upper_bound__2,_). constr_name(<a href=%MML%seq_4.html#K5>k5_seq_4</a>,lower_bound__2,_). constr_name(<a href=%MML%margrel1.html#K1>k1_margrel1</a>,'-->__5',_). constr_name(<a href=%MML%margrel1.html#V1>v1_margrel1</a>,'relation-like',_). constr_name(<a href=%MML%margrel1.html#K2>k2_margrel1</a>,the_arity_of__2,_). constr_name(<a href=%MML%margrel1.html#M1>m1_margrel1</a>,relation_length,_). constr_name(<a href=%MML%margrel1.html#M2>m2_margrel1</a>,relation,_). constr_name(<a href=%MML%margrel1.html#M3>m3_margrel1</a>,relation__2,_). constr_name(<a href=%MML%margrel1.html#K3>k3_margrel1</a>,relations_on,_). constr_name(<a href=%MML%margrel1.html#R1>r1_margrel1</a>,'=__2',_). constr_name(<a href=%MML%margrel1.html#K4>k4_margrel1</a>,empty_rel,_). constr_name(<a href=%MML%margrel1.html#K5>k5_margrel1</a>,the_arity_of__3,_). constr_name(<a href=%MML%margrel1.html#K6>k6_margrel1</a>,'BOOLEAN',_). constr_name(<a href=%MML%margrel1.html#K7>k7_margrel1</a>,'FALSE',_). constr_name(<a href=%MML%margrel1.html#K8>k8_margrel1</a>,'TRUE',_). constr_name(<a href=%MML%margrel1.html#V2>v2_margrel1</a>,boolean,_). constr_name(<a href=%MML%margrel1.html#K9>k9_margrel1</a>,''not'__4',_). constr_name(<a href=%MML%margrel1.html#K10>k10_margrel1</a>,''&'__4',_). constr_name(<a href=%MML%margrel1.html#K11>k11_margrel1</a>,''not'__5',_). constr_name(<a href=%MML%margrel1.html#K12>k12_margrel1</a>,''&'__5',_). constr_name(<a href=%MML%margrel1.html#K13>k13_margrel1</a>,'ALL',_). constr_name(<a href=%MML%margrel1.html#K14>k14_margrel1</a>,'ALL__2',_). constr_name(<a href=%MML%prob_2.html#K1>k1_prob_2</a>,'.__14',_). constr_name(<a href=%MML%prob_2.html#K2>k2_prob_2</a>,'@Intersection',_). constr_name(<a href=%MML%prob_2.html#K3>k3_prob_2</a>,'@Complement',_). constr_name(<a href=%MML%prob_2.html#V1>v1_prob_2</a>,disjoint_valued,_). constr_name(<a href=%MML%prob_2.html#V2>v2_prob_2</a>,disjoint_valued__2,_). constr_name(<a href=%MML%prob_2.html#R1>r1_prob_2</a>,are_independent_respect_to,_). constr_name(<a href=%MML%prob_2.html#R2>r2_prob_2</a>,are_independent_respect_to__2,_). constr_name(<a href=%MML%prob_2.html#K4>k4_prob_2</a>,'.|.',_). constr_name(<a href=%MML%rcomp_1.html#K1>k1_rcomp_1</a>,'[....]',_). constr_name(<a href=%MML%rcomp_1.html#K2>k2_rcomp_1</a>,']....[',_). constr_name(<a href=%MML%rcomp_1.html#V1>v1_rcomp_1</a>,compact,_). constr_name(<a href=%MML%rcomp_1.html#V2>v2_rcomp_1</a>,closed__2,_). constr_name(<a href=%MML%rcomp_1.html#V3>v3_rcomp_1</a>,open,_). constr_name(<a href=%MML%rcomp_1.html#M1>m1_rcomp_1</a>,'Neighbourhood',_). constr_name(<a href=%MML%multop_1.html#K1>k1_multop_1</a>,'.__15',_). constr_name(<a href=%MML%multop_1.html#K2>k2_multop_1</a>,'.__16',_). constr_name(<a href=%MML%multop_1.html#K3>k3_multop_1</a>,'.__17',_). constr_name(<a href=%MML%multop_1.html#K4>k4_multop_1</a>,'.__18',_). constr_name(<a href=%MML%mcart_2.html#K1>k1_mcart_2</a>,'[..]__8',_). constr_name(<a href=%MML%mcart_2.html#K2>k2_mcart_2</a>,'[:..:]__10',_). constr_name(<a href=%MML%mcart_2.html#K3>k3_mcart_2</a>,'`1__5',_). constr_name(<a href=%MML%mcart_2.html#K4>k4_mcart_2</a>,'`2__5',_). constr_name(<a href=%MML%mcart_2.html#K5>k5_mcart_2</a>,'`3__3',_). constr_name(<a href=%MML%mcart_2.html#K6>k6_mcart_2</a>,'`4__2',_). constr_name(<a href=%MML%mcart_2.html#K7>k7_mcart_2</a>,'`5',_). constr_name(<a href=%MML%mcart_2.html#K8>k8_mcart_2</a>,'[:..:]__11',_). constr_name(<a href=%MML%mcart_3.html#K1>k1_mcart_3</a>,'[..]__9',_). constr_name(<a href=%MML%mcart_3.html#K2>k2_mcart_3</a>,'[:..:]__12',_). constr_name(<a href=%MML%mcart_3.html#K3>k3_mcart_3</a>,'`1__6',_). constr_name(<a href=%MML%mcart_3.html#K4>k4_mcart_3</a>,'`2__6',_). constr_name(<a href=%MML%mcart_3.html#K5>k5_mcart_3</a>,'`3__4',_). constr_name(<a href=%MML%mcart_3.html#K6>k6_mcart_3</a>,'`4__3',_). constr_name(<a href=%MML%mcart_3.html#K7>k7_mcart_3</a>,'`5__2',_). constr_name(<a href=%MML%mcart_3.html#K8>k8_mcart_3</a>,'`6',_). constr_name(<a href=%MML%mcart_4.html#K1>k1_mcart_4</a>,'[..]__10',_). constr_name(<a href=%MML%mcart_4.html#K2>k2_mcart_4</a>,'[:..:]__13',_). constr_name(<a href=%MML%mcart_4.html#K3>k3_mcart_4</a>,'`1__7',_). constr_name(<a href=%MML%mcart_4.html#K4>k4_mcart_4</a>,'`2__7',_). constr_name(<a href=%MML%mcart_4.html#K5>k5_mcart_4</a>,'`3__5',_). constr_name(<a href=%MML%mcart_4.html#K6>k6_mcart_4</a>,'`4__4',_). constr_name(<a href=%MML%mcart_4.html#K7>k7_mcart_4</a>,'`5__3',_). constr_name(<a href=%MML%mcart_4.html#K8>k8_mcart_4</a>,'`6__2',_). constr_name(<a href=%MML%mcart_4.html#K9>k9_mcart_4</a>,'`7',_). constr_name(<a href=%MML%mcart_5.html#K1>k1_mcart_5</a>,'[..]__11',_). constr_name(<a href=%MML%mcart_5.html#K2>k2_mcart_5</a>,'[:..:]__14',_). constr_name(<a href=%MML%mcart_5.html#K3>k3_mcart_5</a>,'`1__8',_). constr_name(<a href=%MML%mcart_5.html#K4>k4_mcart_5</a>,'`2__8',_). constr_name(<a href=%MML%mcart_5.html#K5>k5_mcart_5</a>,'`3__6',_). constr_name(<a href=%MML%mcart_5.html#K6>k6_mcart_5</a>,'`4__5',_). constr_name(<a href=%MML%mcart_5.html#K7>k7_mcart_5</a>,'`5__4',_). constr_name(<a href=%MML%mcart_5.html#K8>k8_mcart_5</a>,'`6__3',_). constr_name(<a href=%MML%mcart_5.html#K9>k9_mcart_5</a>,'`7__2',_). constr_name(<a href=%MML%mcart_5.html#K10>k10_mcart_5</a>,'`8',_). constr_name(<a href=%MML%mcart_6.html#K1>k1_mcart_6</a>,'[..]__12',_). constr_name(<a href=%MML%mcart_6.html#K2>k2_mcart_6</a>,'[:..:]__15',_). constr_name(<a href=%MML%mcart_6.html#K3>k3_mcart_6</a>,'`1__9',_). constr_name(<a href=%MML%mcart_6.html#K4>k4_mcart_6</a>,'`2__9',_). constr_name(<a href=%MML%mcart_6.html#K5>k5_mcart_6</a>,'`3__7',_). constr_name(<a href=%MML%mcart_6.html#K6>k6_mcart_6</a>,'`4__6',_). constr_name(<a href=%MML%mcart_6.html#K7>k7_mcart_6</a>,'`5__5',_). constr_name(<a href=%MML%mcart_6.html#K8>k8_mcart_6</a>,'`6__4',_). constr_name(<a href=%MML%mcart_6.html#K9>k9_mcart_6</a>,'`7__3',_). constr_name(<a href=%MML%mcart_6.html#K10>k10_mcart_6</a>,'`8__2',_). constr_name(<a href=%MML%mcart_6.html#K11>k11_mcart_6</a>,'`9',_). constr_name(<a href=%MML%finseq_4.html#R1>r1_finseq_4</a>,'is_one-to-one_at',_). constr_name(<a href=%MML%finseq_4.html#R2>r2_finseq_4</a>,just_once_values,_). constr_name(<a href=%MML%finseq_4.html#K1>k1_finseq_4</a>,'<-',_). constr_name(<a href=%MML%finseq_4.html#K2>k2_finseq_4</a>,'<*..*>__7',_). constr_name(<a href=%MML%finseq_4.html#K3>k3_finseq_4</a>,'<*..*>__8',_). constr_name(<a href=%MML%finseq_4.html#K4>k4_finseq_4</a>,'/.',_). constr_name(<a href=%MML%finseq_4.html#K5>k5_finseq_4</a>,'..',_). constr_name(<a href=%MML%finseq_4.html#K6>k6_finseq_4</a>,'-|',_). constr_name(<a href=%MML%finseq_4.html#K7>k7_finseq_4</a>,'|--',_). constr_name(<a href=%MML%finseqop.html#K1>k1_finseqop</a>,'.:__9',_). constr_name(<a href=%MML%finseqop.html#K2>k2_finseqop</a>,'[:]__3',_). constr_name(<a href=%MML%finseqop.html#K3>k3_finseqop</a>,'[;]__3',_). constr_name(<a href=%MML%finseqop.html#K4>k4_finseqop</a>,'|->__2',_). constr_name(<a href=%MML%finseqop.html#K5>k5_finseqop</a>,'*__25',_). constr_name(<a href=%MML%finseqop.html#R1>r1_finseqop</a>,is_an_inverseOp_wrt,_). constr_name(<a href=%MML%finseqop.html#V1>v1_finseqop</a>,having_an_inverseOp,_). constr_name(<a href=%MML%finseqop.html#K6>k6_finseqop</a>,the_inverseOp_wrt,_). constr_name(<a href=%MML%finseqop.html#K7>k7_finseqop</a>,'*__26',_). constr_name(<a href=%MML%finseqop.html#K8>k8_finseqop</a>,'*__27',_). constr_name(<a href=%MML%finsop_1.html#K1>k1_finsop_1</a>,'|->__3',_). constr_name(<a href=%MML%finsop_1.html#K2>k2_finsop_1</a>,'"**"',_). constr_name(<a href=%MML%finsop_1.html#K3>k3_finsop_1</a>,'-->__6',_). constr_name(<a href=%MML%finsop_1.html#K4>k4_finsop_1</a>,'+*__2',_). constr_name(<a href=%MML%finsop_1.html#K5>k5_finsop_1</a>,dom__4,_). constr_name(<a href=%MML%setwop_2.html#K1>k1_setwop_2</a>,'[#]__3',_). constr_name(<a href=%MML%setwop_2.html#K2>k2_setwop_2</a>,'Seg__3',_). constr_name(<a href=%MML%setwop_2.html#K3>k3_setwop_2</a>,dom__5,_). constr_name(<a href=%MML%rvsum_1.html#K1>k1_rvsum_1</a>,sqrreal,_). constr_name(<a href=%MML%rvsum_1.html#K2>k2_rvsum_1</a>,multreal__2,_). constr_name(<a href=%MML%rvsum_1.html#K3>k3_rvsum_1</a>,'+__17',_). constr_name(<a href=%MML%rvsum_1.html#K4>k4_rvsum_1</a>,'+__18',_). constr_name(<a href=%MML%rvsum_1.html#K5>k5_rvsum_1</a>,'-__23',_). constr_name(<a href=%MML%rvsum_1.html#K6>k6_rvsum_1</a>,'-__24',_). constr_name(<a href=%MML%rvsum_1.html#K7>k7_rvsum_1</a>,'-__25',_). constr_name(<a href=%MML%rvsum_1.html#K8>k8_rvsum_1</a>,'-__26',_). constr_name(<a href=%MML%rvsum_1.html#K9>k9_rvsum_1</a>,'*__28',_). constr_name(<a href=%MML%rvsum_1.html#K10>k10_rvsum_1</a>,'*__29',_). constr_name(<a href=%MML%rvsum_1.html#K11>k11_rvsum_1</a>,sqr,_). constr_name(<a href=%MML%rvsum_1.html#K12>k12_rvsum_1</a>,sqr__2,_). constr_name(<a href=%MML%rvsum_1.html#K13>k13_rvsum_1</a>,mlt,_). constr_name(<a href=%MML%rvsum_1.html#K14>k14_rvsum_1</a>,mlt__2,_). constr_name(<a href=%MML%rvsum_1.html#K15>k15_rvsum_1</a>,'Sum__2',_). constr_name(<a href=%MML%rvsum_1.html#K16>k16_rvsum_1</a>,'Product__2',_). constr_name(<a href=%MML%cqc_the1.html#V1>v1_cqc_the1</a>,being_a_theory,_). constr_name(<a href=%MML%cqc_the1.html#K1>k1_cqc_the1</a>,'Cn',_). constr_name(<a href=%MML%cqc_the1.html#K2>k2_cqc_the1</a>,'Proof_Step_Kinds',_). constr_name(<a href=%MML%cqc_the1.html#R1>r1_cqc_the1</a>,is_a_correct_step_wrt,_). constr_name(<a href=%MML%cqc_the1.html#R2>r2_cqc_the1</a>,is_a_proof_wrt,_). constr_name(<a href=%MML%cqc_the1.html#K3>k3_cqc_the1</a>,'Effect',_). constr_name(<a href=%MML%cqc_the1.html#K4>k4_cqc_the1</a>,'TAUT',_). constr_name(<a href=%MML%cqc_the1.html#R3>r3_cqc_the1</a>,'|-',_). constr_name(<a href=%MML%cqc_the1.html#V2>v2_cqc_the1</a>,valid,_). constr_name(<a href=%MML%partfun2.html#K1>k1_partfun2</a>,id__3,_). constr_name(<a href=%MML%partfun2.html#K2>k2_partfun2</a>,'"__14',_). constr_name(<a href=%MML%partfun2.html#K3>k3_partfun2</a>,'|__9',_). constr_name(<a href=%MML%partfun2.html#K4>k4_partfun2</a>,'-->__7',_). constr_name(<a href=%MML%partfun2.html#R1>r1_partfun2</a>,is_constant_on,_). constr_name(<a href=%MML%rfunct_1.html#K1>k1_rfunct_1</a>,'/__11',_). constr_name(<a href=%MML%rfunct_1.html#K2>k2_rfunct_1</a>,'/__12',_). constr_name(<a href=%MML%rfunct_1.html#K3>k3_rfunct_1</a>,'^__4',_). constr_name(<a href=%MML%rfunct_1.html#K4>k4_rfunct_1</a>,'^__5',_). constr_name(<a href=%MML%rfunct_1.html#K5>k5_rfunct_1</a>,chi__3,_). constr_name(<a href=%MML%rfunct_1.html#R1>r1_rfunct_1</a>,is_bounded_above_on,_). constr_name(<a href=%MML%rfunct_1.html#R2>r2_rfunct_1</a>,is_bounded_below_on,_). constr_name(<a href=%MML%rfunct_1.html#R3>r3_rfunct_1</a>,is_bounded_on,_). constr_name(<a href=%MML%valuat_1.html#K1>k1_valuat_1</a>,'Valuations_in',_). constr_name(<a href=%MML%valuat_1.html#K2>k2_valuat_1</a>,'Valuations_in__2',_). constr_name(<a href=%MML%valuat_1.html#V1>v1_valuat_1</a>,'boolean-valued',_). constr_name(<a href=%MML%valuat_1.html#K3>k3_valuat_1</a>,''not'__6',_). constr_name(<a href=%MML%valuat_1.html#K4>k4_valuat_1</a>,''&'__6',_). constr_name(<a href=%MML%valuat_1.html#K5>k5_valuat_1</a>,''not'__7',_). constr_name(<a href=%MML%valuat_1.html#K6>k6_valuat_1</a>,''&'__7',_). constr_name(<a href=%MML%valuat_1.html#K7>k7_valuat_1</a>,'FOR_ALL',_). constr_name(<a href=%MML%valuat_1.html#K8>k8_valuat_1</a>,'*'__6',_). constr_name(<a href=%MML%valuat_1.html#K9>k9_valuat_1</a>,''in'__2',_). constr_name(<a href=%MML%valuat_1.html#K10>k10_valuat_1</a>,'.__19',_). constr_name(<a href=%MML%valuat_1.html#M1>m1_valuat_1</a>,interpretation,_). constr_name(<a href=%MML%valuat_1.html#K11>k11_valuat_1</a>,'.__20',_). constr_name(<a href=%MML%valuat_1.html#K12>k12_valuat_1</a>,'Valid',_). constr_name(<a href=%MML%valuat_1.html#R1>r1_valuat_1</a>,'|=__4',_). constr_name(<a href=%MML%valuat_1.html#R2>r2_valuat_1</a>,'|=__5',_). constr_name(<a href=%MML%rfunct_2.html#K1>k1_rfunct_2</a>,rng__4,_). constr_name(<a href=%MML%rfunct_2.html#K2>k2_rfunct_2</a>,'*__30',_). constr_name(<a href=%MML%rfunct_2.html#R1>r1_rfunct_2</a>,is_increasing_on,_). constr_name(<a href=%MML%rfunct_2.html#R2>r2_rfunct_2</a>,is_decreasing_on,_). constr_name(<a href=%MML%rfunct_2.html#R3>r3_rfunct_2</a>,is_non_decreasing_on,_). constr_name(<a href=%MML%rfunct_2.html#R4>r4_rfunct_2</a>,is_non_increasing_on,_). constr_name(<a href=%MML%rfunct_2.html#R5>r5_rfunct_2</a>,is_monotone_on,_). constr_name(<a href=%MML%fcont_1.html#R1>r1_fcont_1</a>,is_continuous_in,_). constr_name(<a href=%MML%fcont_1.html#R2>r2_fcont_1</a>,is_continuous_on,_). constr_name(<a href=%MML%fcont_1.html#R3>r3_fcont_1</a>,is_Lipschitzian_on,_). constr_name(<a href=%MML%fcont_2.html#R1>r1_fcont_2</a>,is_uniformly_continuous_on,_). constr_name(<a href=%MML%fdiff_1.html#V1>v1_fdiff_1</a>,convergent_to_0,_). constr_name(<a href=%MML%fdiff_1.html#V2>v2_fdiff_1</a>,'REST-like',_). constr_name(<a href=%MML%fdiff_1.html#V3>v3_fdiff_1</a>,linear,_). constr_name(<a href=%MML%fdiff_1.html#R1>r1_fdiff_1</a>,is_differentiable_in,_). constr_name(<a href=%MML%fdiff_1.html#K1>k1_fdiff_1</a>,diff,_). constr_name(<a href=%MML%fdiff_1.html#R2>r2_fdiff_1</a>,is_differentiable_on,_). constr_name(<a href=%MML%fdiff_1.html#K2>k2_fdiff_1</a>,'`|',_). constr_name(<a href=%MML%limfunc1.html#K1>k1_limfunc1</a>,max__3,_). constr_name(<a href=%MML%limfunc1.html#K2>k2_limfunc1</a>,left_closed_halfline,_). constr_name(<a href=%MML%limfunc1.html#K3>k3_limfunc1</a>,right_closed_halfline,_). constr_name(<a href=%MML%limfunc1.html#K4>k4_limfunc1</a>,right_open_halfline,_). constr_name(<a href=%MML%limfunc1.html#V1>v1_limfunc1</a>,'divergent_to+infty',_). constr_name(<a href=%MML%limfunc1.html#V2>v2_limfunc1</a>,'divergent_to-infty',_). constr_name(<a href=%MML%limfunc1.html#V3>v3_limfunc1</a>,'convergent_in+infty',_). constr_name(<a href=%MML%limfunc1.html#V4>v4_limfunc1</a>,'divergent_in+infty_to+infty',_). constr_name(<a href=%MML%limfunc1.html#V5>v5_limfunc1</a>,'divergent_in+infty_to-infty',_). constr_name(<a href=%MML%limfunc1.html#V6>v6_limfunc1</a>,'convergent_in-infty',_). constr_name(<a href=%MML%limfunc1.html#V7>v7_limfunc1</a>,'divergent_in-infty_to+infty',_). constr_name(<a href=%MML%limfunc1.html#V8>v8_limfunc1</a>,'divergent_in-infty_to-infty',_). constr_name(<a href=%MML%limfunc1.html#K5>k5_limfunc1</a>,'lim_in+infty',_). constr_name(<a href=%MML%limfunc1.html#K6>k6_limfunc1</a>,'lim_in-infty',_). constr_name(<a href=%MML%limfunc2.html#R1>r1_limfunc2</a>,is_left_convergent_in,_). constr_name(<a href=%MML%limfunc2.html#R2>r2_limfunc2</a>,'is_left_divergent_to+infty_in',_). constr_name(<a href=%MML%limfunc2.html#R3>r3_limfunc2</a>,'is_left_divergent_to-infty_in',_). constr_name(<a href=%MML%limfunc2.html#R4>r4_limfunc2</a>,is_right_convergent_in,_). constr_name(<a href=%MML%limfunc2.html#R5>r5_limfunc2</a>,'is_right_divergent_to+infty_in',_). constr_name(<a href=%MML%limfunc2.html#R6>r6_limfunc2</a>,'is_right_divergent_to-infty_in',_). constr_name(<a href=%MML%limfunc2.html#K1>k1_limfunc2</a>,lim_left,_). constr_name(<a href=%MML%limfunc2.html#K2>k2_limfunc2</a>,lim_right,_). constr_name(<a href=%MML%limfunc3.html#R1>r1_limfunc3</a>,is_convergent_in,_). constr_name(<a href=%MML%limfunc3.html#R2>r2_limfunc3</a>,'is_divergent_to+infty_in',_). constr_name(<a href=%MML%limfunc3.html#R3>r3_limfunc3</a>,'is_divergent_to-infty_in',_). constr_name(<a href=%MML%limfunc3.html#K1>k1_limfunc3</a>,lim__5,_). constr_name(<a href=%MML%realset1.html#R1>r1_realset1</a>,is_in,_). constr_name(<a href=%MML%realset1.html#M1>m1_realset1</a>,'Preserv',_). constr_name(<a href=%MML%realset1.html#K1>k1_realset1</a>,'||',_). constr_name(<a href=%MML%realset1.html#V1>v1_realset1</a>,trivial,_). constr_name(<a href=%MML%realset1.html#R2>r2_realset1</a>,is_Bin_Op_Preserv,_). constr_name(<a href=%MML%realset1.html#M2>m2_realset1</a>,'Presv',_). constr_name(<a href=%MML%realset1.html#K2>k2_realset1</a>,'|||',_). constr_name(<a href=%MML%realset1.html#M3>m3_realset1</a>,'DnT',_). constr_name(<a href=%MML%realset1.html#K3>k3_realset1</a>,'!__4',_). constr_name(<a href=%MML%realset1.html#M4>m4_realset1</a>,'OnePoint',_). constr_name(<a href=%MML%realset1.html#K4>k4_realset1</a>,'{..}__24',_). constr_name(<a href=%MML%rpr_1.html#K1>k1_rpr_1</a>,prob,_). constr_name(<a href=%MML%rpr_1.html#K2>k2_rpr_1</a>,prob__2,_). constr_name(<a href=%MML%rpr_1.html#R1>r1_rpr_1</a>,are_independent,_). constr_name(<a href=%MML%supinf_1.html#K1>k1_supinf_1</a>,'+infty',_). constr_name(<a href=%MML%supinf_1.html#V1>v1_supinf_1</a>,'+Inf-like',_). constr_name(<a href=%MML%supinf_1.html#K2>k2_supinf_1</a>,'-infty',_). constr_name(<a href=%MML%supinf_1.html#V2>v2_supinf_1</a>,'-Inf-like',_). constr_name(<a href=%MML%supinf_1.html#V3>v3_supinf_1</a>,'ext-real',_). constr_name(<a href=%MML%supinf_1.html#K3>k3_supinf_1</a>,'ExtREAL',_). constr_name(<a href=%MML%supinf_1.html#K4>k4_supinf_1</a>,'+infty__2',_). constr_name(<a href=%MML%supinf_1.html#K5>k5_supinf_1</a>,'-infty__2',_). constr_name(<a href=%MML%supinf_1.html#R1>r1_supinf_1</a>,'<='__3',_). constr_name(<a href=%MML%supinf_1.html#M1>m1_supinf_1</a>,majorant,_). constr_name(<a href=%MML%supinf_1.html#M2>m2_supinf_1</a>,minorant,_). constr_name(<a href=%MML%supinf_1.html#K6>k6_supinf_1</a>,'REAL__2',_). constr_name(<a href=%MML%supinf_1.html#V4>v4_supinf_1</a>,bounded_above__3,_). constr_name(<a href=%MML%supinf_1.html#V5>v5_supinf_1</a>,bounded_below__3,_). constr_name(<a href=%MML%supinf_1.html#V6>v6_supinf_1</a>,bounded__3,_). constr_name(<a href=%MML%supinf_1.html#K7>k7_supinf_1</a>,'SetMajorant',_). constr_name(<a href=%MML%supinf_1.html#K8>k8_supinf_1</a>,'SetMinorant',_). constr_name(<a href=%MML%supinf_1.html#K9>k9_supinf_1</a>,sup__3,_). constr_name(<a href=%MML%supinf_1.html#K10>k10_supinf_1</a>,inf__3,_). constr_name(<a href=%MML%supinf_1.html#K11>k11_supinf_1</a>,'{..}__25',_). constr_name(<a href=%MML%supinf_1.html#K12>k12_supinf_1</a>,'{..}__26',_). constr_name(<a href=%MML%supinf_1.html#M3>m3_supinf_1</a>,bool_DOMAIN,_). constr_name(<a href=%MML%supinf_1.html#K13>k13_supinf_1</a>,'SUP',_). constr_name(<a href=%MML%supinf_1.html#K14>k14_supinf_1</a>,'INF',_). constr_name(<a href=%MML%zf_fund1.html#K1>k1_zf_fund1</a>,'(#)__7',_). constr_name(<a href=%MML%zf_fund1.html#K2>k2_zf_fund1</a>,'(#)__8',_). constr_name(<a href=%MML%zf_fund1.html#K3>k3_zf_fund1</a>,decode,_). constr_name(<a href=%MML%zf_fund1.html#K4>k4_zf_fund1</a>,'x".',_). constr_name(<a href=%MML%zf_fund1.html#K5>k5_zf_fund1</a>,code,_). constr_name(<a href=%MML%zf_fund1.html#K6>k6_zf_fund1</a>,'Free__4',_). constr_name(<a href=%MML%zf_fund1.html#K7>k7_zf_fund1</a>,'{..}__27',_). constr_name(<a href=%MML%zf_fund1.html#K8>k8_zf_fund1</a>,'{..}__28',_). constr_name(<a href=%MML%zf_fund1.html#K9>k9_zf_fund1</a>,'{..}__29',_). constr_name(<a href=%MML%zf_fund1.html#K10>k10_zf_fund1</a>,'Diagram',_). constr_name(<a href=%MML%zf_fund1.html#V1>v1_zf_fund1</a>,closed_wrt_A1,_). constr_name(<a href=%MML%zf_fund1.html#V2>v2_zf_fund1</a>,closed_wrt_A2,_). constr_name(<a href=%MML%zf_fund1.html#V3>v3_zf_fund1</a>,closed_wrt_A3,_). constr_name(<a href=%MML%zf_fund1.html#V4>v4_zf_fund1</a>,closed_wrt_A4,_). constr_name(<a href=%MML%zf_fund1.html#V5>v5_zf_fund1</a>,closed_wrt_A5,_). constr_name(<a href=%MML%zf_fund1.html#V6>v6_zf_fund1</a>,closed_wrt_A6,_). constr_name(<a href=%MML%zf_fund1.html#V7>v7_zf_fund1</a>,closed_wrt_A7,_). constr_name(<a href=%MML%zf_fund1.html#V8>v8_zf_fund1</a>,'closed_wrt_A1-A7',_). constr_name(<a href=%MML%quin_1.html#K1>k1_quin_1</a>,delta__3,_). constr_name(<a href=%MML%quin_1.html#K2>k2_quin_1</a>,delta__4,_). constr_name(<a href=%MML%funct_6.html#K1>k1_funct_6</a>,'SubFuncs',_). constr_name(<a href=%MML%funct_6.html#K2>k2_funct_6</a>,doms,_). constr_name(<a href=%MML%funct_6.html#K3>k3_funct_6</a>,rngs,_). constr_name(<a href=%MML%funct_6.html#K4>k4_funct_6</a>,meet__4,_). constr_name(<a href=%MML%funct_6.html#K5>k5_funct_6</a>,'..__2',_). constr_name(<a href=%MML%funct_6.html#K6>k6_funct_6</a>,'<:..:>__4',_). constr_name(<a href=%MML%funct_6.html#K7>k7_funct_6</a>,'Frege',_). constr_name(<a href=%MML%funct_6.html#K8>k8_funct_6</a>,'Funcs__4',_). constr_name(<a href=%MML%funct_6.html#K9>k9_funct_6</a>,'Funcs__5',_). constr_name(<a href=%MML%funct_6.html#K10>k10_funct_6</a>,commute,_). constr_name(<a href=%MML%sysrel.html#K1>k1_sysrel</a>,'CL',_). constr_name(<a href=%MML%seqfunc.html#M1>m1_seqfunc</a>,'Functional_Sequence',_). constr_name(<a href=%MML%seqfunc.html#K1>k1_seqfunc</a>,'.__21',_). constr_name(<a href=%MML%seqfunc.html#K2>k2_seqfunc</a>,'(#)__9',_). constr_name(<a href=%MML%seqfunc.html#K3>k3_seqfunc</a>,'"__15',_). constr_name(<a href=%MML%seqfunc.html#K4>k4_seqfunc</a>,'-__27',_). constr_name(<a href=%MML%seqfunc.html#K5>k5_seqfunc</a>,abs__5,_). constr_name(<a href=%MML%seqfunc.html#K6>k6_seqfunc</a>,'+__19',_). constr_name(<a href=%MML%seqfunc.html#K7>k7_seqfunc</a>,'-__28',_). constr_name(<a href=%MML%seqfunc.html#K8>k8_seqfunc</a>,'(#)__10',_). constr_name(<a href=%MML%seqfunc.html#K9>k9_seqfunc</a>,'/__13',_). constr_name(<a href=%MML%seqfunc.html#R1>r1_seqfunc</a>,common_on_dom,_). constr_name(<a href=%MML%seqfunc.html#K10>k10_seqfunc</a>,'#__2',_). constr_name(<a href=%MML%seqfunc.html#R2>r2_seqfunc</a>,is_point_conv_on,_). constr_name(<a href=%MML%seqfunc.html#R3>r3_seqfunc</a>,is_unif_conv_on,_). constr_name(<a href=%MML%seqfunc.html#K11>k11_seqfunc</a>,lim__6,_). constr_name(<a href=%MML%comseq_1.html#K1>k1_comseq_1</a>,'.__22',_). constr_name(<a href=%MML%comseq_1.html#V1>v1_comseq_1</a>,'non-zero',_). constr_name(<a href=%MML%comseq_1.html#K2>k2_comseq_1</a>,'+__20',_). constr_name(<a href=%MML%comseq_1.html#K3>k3_comseq_1</a>,'(#)__11',_). constr_name(<a href=%MML%comseq_1.html#K4>k4_comseq_1</a>,'(#)__12',_). constr_name(<a href=%MML%comseq_1.html#K5>k5_comseq_1</a>,'-__29',_). constr_name(<a href=%MML%comseq_1.html#K6>k6_comseq_1</a>,'-__30',_). constr_name(<a href=%MML%comseq_1.html#K7>k7_comseq_1</a>,'"__16',_). constr_name(<a href=%MML%comseq_1.html#K8>k8_comseq_1</a>,'/"__2',_). constr_name(<a href=%MML%comseq_1.html#K9>k9_comseq_1</a>,'|....|__3',_). constr_name(<a href=%MML%gate_1.html#K1>k1_gate_1</a>,'NOT1',_). constr_name(<a href=%MML%gate_1.html#K2>k2_gate_1</a>,'AND2',_). constr_name(<a href=%MML%gate_1.html#K3>k3_gate_1</a>,'OR2',_). constr_name(<a href=%MML%gate_1.html#K4>k4_gate_1</a>,'XOR2',_). constr_name(<a href=%MML%gate_1.html#K5>k5_gate_1</a>,'EQV2',_). constr_name(<a href=%MML%gate_1.html#K6>k6_gate_1</a>,'NAND2',_). constr_name(<a href=%MML%gate_1.html#K7>k7_gate_1</a>,'NOR2',_). constr_name(<a href=%MML%gate_1.html#K8>k8_gate_1</a>,'AND3',_). constr_name(<a href=%MML%gate_1.html#K9>k9_gate_1</a>,'OR3',_). constr_name(<a href=%MML%gate_1.html#K10>k10_gate_1</a>,'XOR3',_). constr_name(<a href=%MML%gate_1.html#K11>k11_gate_1</a>,'MAJ3',_). constr_name(<a href=%MML%gate_1.html#K12>k12_gate_1</a>,'NAND3',_). constr_name(<a href=%MML%gate_1.html#K13>k13_gate_1</a>,'NOR3',_). constr_name(<a href=%MML%gate_1.html#K14>k14_gate_1</a>,'AND4',_). constr_name(<a href=%MML%gate_1.html#K15>k15_gate_1</a>,'OR4',_). constr_name(<a href=%MML%gate_1.html#K16>k16_gate_1</a>,'NAND4',_). constr_name(<a href=%MML%gate_1.html#K17>k17_gate_1</a>,'NOR4',_). constr_name(<a href=%MML%gate_1.html#K18>k18_gate_1</a>,'AND5',_). constr_name(<a href=%MML%gate_1.html#K19>k19_gate_1</a>,'OR5',_). constr_name(<a href=%MML%gate_1.html#K20>k20_gate_1</a>,'NAND5',_). constr_name(<a href=%MML%gate_1.html#K21>k21_gate_1</a>,'NOR5',_). constr_name(<a href=%MML%gate_1.html#K22>k22_gate_1</a>,'AND6',_). constr_name(<a href=%MML%gate_1.html#K23>k23_gate_1</a>,'OR6',_). constr_name(<a href=%MML%gate_1.html#K24>k24_gate_1</a>,'NAND6',_). constr_name(<a href=%MML%gate_1.html#K25>k25_gate_1</a>,'NOR6',_). constr_name(<a href=%MML%gate_1.html#K26>k26_gate_1</a>,'AND7',_). constr_name(<a href=%MML%gate_1.html#K27>k27_gate_1</a>,'OR7',_). constr_name(<a href=%MML%gate_1.html#K28>k28_gate_1</a>,'NAND7',_). constr_name(<a href=%MML%gate_1.html#K29>k29_gate_1</a>,'NOR7',_). constr_name(<a href=%MML%gate_1.html#K30>k30_gate_1</a>,'AND8',_). constr_name(<a href=%MML%gate_1.html#K31>k31_gate_1</a>,'OR8',_). constr_name(<a href=%MML%gate_1.html#K32>k32_gate_1</a>,'NAND8',_). constr_name(<a href=%MML%gate_1.html#K33>k33_gate_1</a>,'NOR8',_). constr_name(<a href=%MML%gate_1.html#K34>k34_gate_1</a>,'MODADD2',_). constr_name(<a href=%MML%gate_1.html#K35>k35_gate_1</a>,'ADD2',_). constr_name(<a href=%MML%gate_1.html#K36>k36_gate_1</a>,'CARR2',_). constr_name(<a href=%MML%gate_1.html#K37>k37_gate_1</a>,'ADD3',_). constr_name(<a href=%MML%gate_1.html#K38>k38_gate_1</a>,'CARR3',_). constr_name(<a href=%MML%gate_1.html#K39>k39_gate_1</a>,'ADD4',_). constr_name(<a href=%MML%gate_1.html#K40>k40_gate_1</a>,'CARR4',_). constr_name(<a href=%MML%intpro_1.html#V1>v1_intpro_1</a>,with_FALSUM,_). constr_name(<a href=%MML%intpro_1.html#V2>v2_intpro_1</a>,with_int_implication,_). constr_name(<a href=%MML%intpro_1.html#V3>v3_intpro_1</a>,with_int_conjunction,_). constr_name(<a href=%MML%intpro_1.html#V4>v4_intpro_1</a>,with_int_disjunction,_). constr_name(<a href=%MML%intpro_1.html#V5>v5_intpro_1</a>,with_int_propositional_variables,_). constr_name(<a href=%MML%intpro_1.html#V6>v6_intpro_1</a>,with_modal_operator,_). constr_name(<a href=%MML%intpro_1.html#V7>v7_intpro_1</a>,'MC-closed',_). constr_name(<a href=%MML%intpro_1.html#K1>k1_intpro_1</a>,'MC-wff',_). constr_name(<a href=%MML%intpro_1.html#K2>k2_intpro_1</a>,'FALSUM__2',_). constr_name(<a href=%MML%intpro_1.html#K3>k3_intpro_1</a>,'=>__4',_). constr_name(<a href=%MML%intpro_1.html#K4>k4_intpro_1</a>,''&'__8',_). constr_name(<a href=%MML%intpro_1.html#K5>k5_intpro_1</a>,''or'__4',_). constr_name(<a href=%MML%intpro_1.html#K6>k6_intpro_1</a>,'Nes',_). constr_name(<a href=%MML%intpro_1.html#V8>v8_intpro_1</a>,'IPC_theory',_). constr_name(<a href=%MML%intpro_1.html#K7>k7_intpro_1</a>,'CnIPC',_). constr_name(<a href=%MML%intpro_1.html#K8>k8_intpro_1</a>,'IPC-Taut',_). constr_name(<a href=%MML%intpro_1.html#K9>k9_intpro_1</a>,neg,_). constr_name(<a href=%MML%intpro_1.html#K10>k10_intpro_1</a>,'IVERUM',_). constr_name(<a href=%MML%intpro_1.html#V9>v9_intpro_1</a>,'CPC_theory',_). constr_name(<a href=%MML%intpro_1.html#K11>k11_intpro_1</a>,'CnCPC',_). constr_name(<a href=%MML%intpro_1.html#K12>k12_intpro_1</a>,'CPC-Taut',_). constr_name(<a href=%MML%intpro_1.html#V10>v10_intpro_1</a>,'S4_theory',_). constr_name(<a href=%MML%intpro_1.html#K13>k13_intpro_1</a>,'CnS4',_). constr_name(<a href=%MML%intpro_1.html#K14>k14_intpro_1</a>,'S4-Taut',_). constr_name(<a href=%MML%int_2.html#K1>k1_int_2</a>,abs__6,_). constr_name(<a href=%MML%int_2.html#K2>k2_int_2</a>,'lcm'',_). constr_name(<a href=%MML%int_2.html#K3>k3_int_2</a>,gcd,_). constr_name(<a href=%MML%int_2.html#R1>r1_int_2</a>,are_relative_prime__2,_). constr_name(<a href=%MML%int_2.html#V1>v1_int_2</a>,prime,_). constr_name(<a href=%MML%int_2.html#R2>r2_int_2</a>,are_relative_prime__3,_). constr_name(<a href=%MML%newton.html#K1>k1_newton</a>,'|->__4',_). constr_name(<a href=%MML%newton.html#K2>k2_newton</a>,'|^',_). constr_name(<a href=%MML%newton.html#K3>k3_newton</a>,'|^__2',_). constr_name(<a href=%MML%newton.html#K4>k4_newton</a>,idseq__2,_). constr_name(<a href=%MML%newton.html#K5>k5_newton</a>,'!__5',_). constr_name(<a href=%MML%newton.html#K6>k6_newton</a>,'!__6',_). constr_name(<a href=%MML%newton.html#K7>k7_newton</a>,choose__2,_). constr_name(<a href=%MML%newton.html#K8>k8_newton</a>,choose__3,_). constr_name(<a href=%MML%newton.html#K9>k9_newton</a>,'In_Power',_). constr_name(<a href=%MML%newton.html#K10>k10_newton</a>,'Newton_Coeff',_). constr_name(<a href=%MML%newton.html#K11>k11_newton</a>,'!__7',_). constr_name(<a href=%MML%newton.html#K12>k12_newton</a>,'SetPrimes',_). constr_name(<a href=%MML%newton.html#K13>k13_newton</a>,'SetPrimenumber',_). constr_name(<a href=%MML%newton.html#K14>k14_newton</a>,primenumber,_). constr_name(<a href=%MML%prepower.html#K1>k1_prepower</a>,abs__7,_). constr_name(<a href=%MML%prepower.html#K2>k2_prepower</a>,'GeoSeq',_). constr_name(<a href=%MML%prepower.html#K3>k3_prepower</a>,'|^__3',_). constr_name(<a href=%MML%prepower.html#K4>k4_prepower</a>,'-Root',_). constr_name(<a href=%MML%prepower.html#K5>k5_prepower</a>,'-Root__2',_). constr_name(<a href=%MML%prepower.html#K6>k6_prepower</a>,'#Z',_). constr_name(<a href=%MML%prepower.html#K7>k7_prepower</a>,'#Z__2',_). constr_name(<a href=%MML%prepower.html#K8>k8_prepower</a>,'#Q',_). constr_name(<a href=%MML%prepower.html#K9>k9_prepower</a>,'#Q__2',_). constr_name(<a href=%MML%prepower.html#V1>v1_prepower</a>,'Rational_Sequence-like',_). constr_name(<a href=%MML%prepower.html#K10>k10_prepower</a>,'.__23',_). constr_name(<a href=%MML%prepower.html#K11>k11_prepower</a>,'#Q__3',_). constr_name(<a href=%MML%prepower.html#K12>k12_prepower</a>,'#R',_). constr_name(<a href=%MML%prepower.html#K13>k13_prepower</a>,'#R__2',_). constr_name(<a href=%MML%fdiff_2.html#K1>k1_fdiff_2</a>,'-__31',_). constr_name(<a href=%MML%zf_fund2.html#K1>k1_zf_fund2</a>,'Section',_). constr_name(<a href=%MML%zf_fund2.html#V1>v1_zf_fund2</a>,predicatively_closed,_). constr_name(<a href=%MML%comseq_2.html#K1>k1_comseq_2</a>,'*'__7',_). constr_name(<a href=%MML%comseq_2.html#V1>v1_comseq_2</a>,bounded__4,_). constr_name(<a href=%MML%comseq_2.html#V2>v2_comseq_2</a>,convergent__2,_). constr_name(<a href=%MML%comseq_2.html#K2>k2_comseq_2</a>,lim__7,_). constr_name(<a href=%MML%gate_5.html#K1>k1_gate_5</a>,'MULT210',_). constr_name(<a href=%MML%gate_5.html#K2>k2_gate_5</a>,'MULT211',_). constr_name(<a href=%MML%gate_5.html#K3>k3_gate_5</a>,'MULT212',_). constr_name(<a href=%MML%gate_5.html#K4>k4_gate_5</a>,'MULT213',_). constr_name(<a href=%MML%gate_5.html#K5>k5_gate_5</a>,'MULT310',_). constr_name(<a href=%MML%gate_5.html#K6>k6_gate_5</a>,'MULT311',_). constr_name(<a href=%MML%gate_5.html#K7>k7_gate_5</a>,'MULT312',_). constr_name(<a href=%MML%gate_5.html#K8>k8_gate_5</a>,'MULT313',_). constr_name(<a href=%MML%gate_5.html#K9>k9_gate_5</a>,'MULT314',_). constr_name(<a href=%MML%gate_5.html#K10>k10_gate_5</a>,'MULT321',_). constr_name(<a href=%MML%gate_5.html#K11>k11_gate_5</a>,'MULT322',_). constr_name(<a href=%MML%gate_5.html#K12>k12_gate_5</a>,'MULT323',_). constr_name(<a href=%MML%gate_5.html#K13>k13_gate_5</a>,'MULT324',_). constr_name(<a href=%MML%gate_5.html#K14>k14_gate_5</a>,'CLAADD2',_). constr_name(<a href=%MML%gate_5.html#K15>k15_gate_5</a>,'CLACARR2',_). constr_name(<a href=%MML%gate_5.html#K16>k16_gate_5</a>,'CLAADD3',_). constr_name(<a href=%MML%gate_5.html#K17>k17_gate_5</a>,'CLACARR3',_). constr_name(<a href=%MML%gate_5.html#K18>k18_gate_5</a>,'CLAADD4',_). constr_name(<a href=%MML%gate_5.html#K19>k19_gate_5</a>,'CLACARR4',_). constr_name(<a href=%MML%cfunct_1.html#K1>k1_cfunct_1</a>,'/__14',_). constr_name(<a href=%MML%cfunct_1.html#K2>k2_cfunct_1</a>,'^__6',_). constr_name(<a href=%MML%cfunct_1.html#R1>r1_cfunct_1</a>,is_bounded_on__2,_). constr_name(<a href=%MML%power.html#K1>k1_power</a>,'-root',_). constr_name(<a href=%MML%power.html#K2>k2_power</a>,'-root__2',_). constr_name(<a href=%MML%power.html#K3>k3_power</a>,to_power,_). constr_name(<a href=%MML%power.html#K4>k4_power</a>,to_power__2,_). constr_name(<a href=%MML%power.html#K5>k5_power</a>,log,_). constr_name(<a href=%MML%power.html#K6>k6_power</a>,log__2,_). constr_name(<a href=%MML%power.html#K7>k7_power</a>,number_e,_). constr_name(<a href=%MML%power.html#K8>k8_power</a>,number_e__2,_). constr_name(<a href=%MML%series_1.html#K1>k1_series_1</a>,'Partial_Sums',_). constr_name(<a href=%MML%series_1.html#V1>v1_series_1</a>,summable,_). constr_name(<a href=%MML%series_1.html#K2>k2_series_1</a>,'Sum__3',_). constr_name(<a href=%MML%series_1.html#K3>k3_series_1</a>,to_power__3,_). constr_name(<a href=%MML%series_1.html#V2>v2_series_1</a>,absolutely_summable,_). constr_name(<a href=%MML%polyeq_1.html#K1>k1_polyeq_1</a>,'Poly1',_). constr_name(<a href=%MML%polyeq_1.html#K2>k2_polyeq_1</a>,'Poly1__2',_). constr_name(<a href=%MML%polyeq_1.html#K3>k3_polyeq_1</a>,'Poly2',_). constr_name(<a href=%MML%polyeq_1.html#K4>k4_polyeq_1</a>,'Poly2__2',_). constr_name(<a href=%MML%polyeq_1.html#K5>k5_polyeq_1</a>,'Quard',_). constr_name(<a href=%MML%polyeq_1.html#K6>k6_polyeq_1</a>,'Quard__2',_). constr_name(<a href=%MML%polyeq_1.html#K7>k7_polyeq_1</a>,'Poly3',_). constr_name(<a href=%MML%polyeq_1.html#K8>k8_polyeq_1</a>,'Poly3__2',_). constr_name(<a href=%MML%polyeq_1.html#K9>k9_polyeq_1</a>,'Tri',_). constr_name(<a href=%MML%polyeq_1.html#K10>k10_polyeq_1</a>,'Tri__2',_). constr_name(<a href=%MML%hilbert1.html#V1>v1_hilbert1</a>,with_VERUM,_). constr_name(<a href=%MML%hilbert1.html#V2>v2_hilbert1</a>,with_implication,_). constr_name(<a href=%MML%hilbert1.html#V3>v3_hilbert1</a>,with_conjunction,_). constr_name(<a href=%MML%hilbert1.html#V4>v4_hilbert1</a>,with_propositional_variables,_). constr_name(<a href=%MML%hilbert1.html#V5>v5_hilbert1</a>,'HP-closed',_). constr_name(<a href=%MML%hilbert1.html#K1>k1_hilbert1</a>,'HP-WFF',_). constr_name(<a href=%MML%hilbert1.html#K2>k2_hilbert1</a>,'VERUM__3',_). constr_name(<a href=%MML%hilbert1.html#K3>k3_hilbert1</a>,'=>__5',_). constr_name(<a href=%MML%hilbert1.html#K4>k4_hilbert1</a>,''&'__9',_). constr_name(<a href=%MML%hilbert1.html#V6>v6_hilbert1</a>,'Hilbert_theory',_). constr_name(<a href=%MML%hilbert1.html#K5>k5_hilbert1</a>,'CnPos',_). constr_name(<a href=%MML%hilbert1.html#K6>k6_hilbert1</a>,'HP_TAUT',_). constr_name(<a href=%MML%card_4.html#V1>v1_card_4</a>,countable,_). constr_name(<a href=%MML%card_4.html#K1>k1_card_4</a>,'|^__4',_). constr_name(<a href=%MML%fdiff_3.html#R1>r1_fdiff_3</a>,is_Lcontinuous_in,_). constr_name(<a href=%MML%fdiff_3.html#R2>r2_fdiff_3</a>,is_Rcontinuous_in,_). constr_name(<a href=%MML%fdiff_3.html#R3>r3_fdiff_3</a>,is_right_differentiable_in,_). constr_name(<a href=%MML%fdiff_3.html#R4>r4_fdiff_3</a>,is_left_differentiable_in,_). constr_name(<a href=%MML%fdiff_3.html#K1>k1_fdiff_3</a>,'Ldiff',_). constr_name(<a href=%MML%fdiff_3.html#K2>k2_fdiff_3</a>,'Rdiff',_). constr_name(<a href=%MML%comseq_3.html#K1>k1_comseq_3</a>,'GeoSeq__2',_). constr_name(<a href=%MML%comseq_3.html#K2>k2_comseq_3</a>,'#N',_). constr_name(<a href=%MML%comseq_3.html#K3>k3_comseq_3</a>,'Re__3',_). constr_name(<a href=%MML%comseq_3.html#K4>k4_comseq_3</a>,'Im__3',_). constr_name(<a href=%MML%comseq_3.html#K5>k5_comseq_3</a>,'*__31',_). constr_name(<a href=%MML%comseq_3.html#K6>k6_comseq_3</a>,'^\\__2',_). constr_name(<a href=%MML%comseq_3.html#K7>k7_comseq_3</a>,'Partial_Sums__2',_). constr_name(<a href=%MML%comseq_3.html#K8>k8_comseq_3</a>,'Sum__4',_). constr_name(<a href=%MML%comseq_3.html#M1>m1_comseq_3</a>,subsequence__2,_). constr_name(<a href=%MML%comseq_3.html#V1>v1_comseq_3</a>,summable__2,_). constr_name(<a href=%MML%comseq_3.html#V2>v2_comseq_3</a>,absolutely_summable__2,_). constr_name(<a href=%MML%supinf_2.html#K1>k1_supinf_2</a>,'0.',_). constr_name(<a href=%MML%supinf_2.html#K2>k2_supinf_2</a>,'+__21',_). constr_name(<a href=%MML%supinf_2.html#K3>k3_supinf_2</a>,'-__32',_). constr_name(<a href=%MML%supinf_2.html#K4>k4_supinf_2</a>,'-__33',_). constr_name(<a href=%MML%supinf_2.html#K5>k5_supinf_2</a>,'+__22',_). constr_name(<a href=%MML%supinf_2.html#K6>k6_supinf_2</a>,'-__34',_). constr_name(<a href=%MML%supinf_2.html#K7>k7_supinf_2</a>,rng__5,_). constr_name(<a href=%MML%supinf_2.html#K8>k8_supinf_2</a>,sup__4,_). constr_name(<a href=%MML%supinf_2.html#K9>k9_supinf_2</a>,inf__4,_). constr_name(<a href=%MML%supinf_2.html#K10>k10_supinf_2</a>,'.__24',_). constr_name(<a href=%MML%supinf_2.html#K11>k11_supinf_2</a>,'+__23',_). constr_name(<a href=%MML%supinf_2.html#K12>k12_supinf_2</a>,'-__35',_). constr_name(<a href=%MML%supinf_2.html#V1>v1_supinf_2</a>,bounded_above__4,_). constr_name(<a href=%MML%supinf_2.html#V2>v2_supinf_2</a>,bounded_below__4,_). constr_name(<a href=%MML%supinf_2.html#V3>v3_supinf_2</a>,bounded__5,_). constr_name(<a href=%MML%supinf_2.html#V4>v4_supinf_2</a>,denumerable,_). constr_name(<a href=%MML%supinf_2.html#V5>v5_supinf_2</a>,nonnegative,_). constr_name(<a href=%MML%supinf_2.html#M1>m1_supinf_2</a>,'Num',_). constr_name(<a href=%MML%supinf_2.html#K13>k13_supinf_2</a>,'.__25',_). constr_name(<a href=%MML%supinf_2.html#K14>k14_supinf_2</a>,'Ser',_). constr_name(<a href=%MML%supinf_2.html#M2>m2_supinf_2</a>,'Set_of_Series',_). constr_name(<a href=%MML%supinf_2.html#K15>k15_supinf_2</a>,rng__6,_). constr_name(<a href=%MML%supinf_2.html#K16>k16_supinf_2</a>,'SUM',_). constr_name(<a href=%MML%supinf_2.html#R1>r1_supinf_2</a>,is_sumable,_). constr_name(<a href=%MML%supinf_2.html#K17>k17_supinf_2</a>,rng__7,_). constr_name(<a href=%MML%supinf_2.html#K18>k18_supinf_2</a>,'Ser__2',_). constr_name(<a href=%MML%supinf_2.html#V6>v6_supinf_2</a>,nonnegative__2,_). constr_name(<a href=%MML%supinf_2.html#K19>k19_supinf_2</a>,'SUM__2',_). constr_name(<a href=%MML%supinf_2.html#V7>v7_supinf_2</a>,summable__3,_). constr_name(<a href=%MML%trees_2.html#V1>v1_trees_2</a>,'finite-order',_). constr_name(<a href=%MML%trees_2.html#M1>m1_trees_2</a>,'Chain',_). constr_name(<a href=%MML%trees_2.html#M2>m2_trees_2</a>,'Level',_). constr_name(<a href=%MML%trees_2.html#K1>k1_trees_2</a>,succ__3,_). constr_name(<a href=%MML%trees_2.html#K2>k2_trees_2</a>,'-level',_). constr_name(<a href=%MML%trees_2.html#V2>v2_trees_2</a>,'Branch-like',_). constr_name(<a href=%MML%trees_2.html#V3>v3_trees_2</a>,'DecoratedTree-like',_). constr_name(<a href=%MML%trees_2.html#M3>m3_trees_2</a>,'ParametrizedSubset',_). constr_name(<a href=%MML%trees_2.html#K3>k3_trees_2</a>,'.__26',_). constr_name(<a href=%MML%trees_2.html#K4>k4_trees_2</a>,'Leaves__2',_). constr_name(<a href=%MML%trees_2.html#K5>k5_trees_2</a>,'|__10',_). constr_name(<a href=%MML%trees_2.html#K6>k6_trees_2</a>,'Leaves__3',_). constr_name(<a href=%MML%trees_2.html#K7>k7_trees_2</a>,'|__11',_). constr_name(<a href=%MML%trees_2.html#K8>k8_trees_2</a>,'with-replacement__2',_). constr_name(<a href=%MML%trees_2.html#K9>k9_trees_2</a>,'-->__8',_). constr_name(<a href=%MML%trees_2.html#K10>k10_trees_2</a>,branchdeg,_). constr_name(<a href=%MML%card_5.html#K1>k1_card_5</a>,cf,_). constr_name(<a href=%MML%card_5.html#K2>k2_card_5</a>,'-powerfunc_of',_). constr_name(<a href=%MML%card_5.html#V1>v1_card_5</a>,regular,_). constr_name(<a href=%MML%cfcont_1.html#K1>k1_cfcont_1</a>,'*__32',_). constr_name(<a href=%MML%cfcont_1.html#R1>r1_cfcont_1</a>,is_continuous_in__2,_). constr_name(<a href=%MML%cfcont_1.html#R2>r2_cfcont_1</a>,is_continuous_on__2,_). constr_name(<a href=%MML%cfcont_1.html#V1>v1_cfcont_1</a>,compact__2,_). constr_name(<a href=%MML%measure1.html#K1>k1_measure1</a>,'.__27',_). constr_name(<a href=%MML%measure1.html#M1>m1_measure1</a>,'Measure',_). constr_name(<a href=%MML%measure1.html#K2>k2_measure1</a>,'\\/__11',_). constr_name(<a href=%MML%measure1.html#K3>k3_measure1</a>,'/\\__10',_). constr_name(<a href=%MML%measure1.html#K4>k4_measure1</a>,'\\__9',_). constr_name(<a href=%MML%measure1.html#R1>r1_measure1</a>,is_measurable,_). constr_name(<a href=%MML%measure1.html#M2>m2_measure1</a>,measure_zero,_). constr_name(<a href=%MML%measure1.html#V1>v1_measure1</a>,'sigma_Field_Subset-like',_). constr_name(<a href=%MML%measure1.html#K5>k5_measure1</a>,rng__8,_). constr_name(<a href=%MML%measure1.html#M3>m3_measure1</a>,sigma_Measure,_). constr_name(<a href=%MML%measure1.html#R2>r2_measure1</a>,is_measurable__2,_). constr_name(<a href=%MML%measure1.html#M4>m4_measure1</a>,measure_zero__2,_). constr_name(<a href=%MML%measure2.html#M1>m1_measure2</a>,'N_Measure_fam',_). constr_name(<a href=%MML%measure2.html#K1>k1_measure2</a>,meet__5,_). constr_name(<a href=%MML%measure2.html#K2>k2_measure2</a>,union__6,_). constr_name(<a href=%MML%measure2.html#V1>v1_measure2</a>,'non-decreasing__3',_). constr_name(<a href=%MML%measure2.html#V2>v2_measure2</a>,'non-increasing__3',_). constr_name(<a href=%MML%measure3.html#K1>k1_measure3</a>,rng__9,_). constr_name(<a href=%MML%measure3.html#R1>r1_measure3</a>,is_complete,_). constr_name(<a href=%MML%measure3.html#M1>m1_measure3</a>,thin,_). constr_name(<a href=%MML%measure3.html#K2>k2_measure3</a>,'COM',_). constr_name(<a href=%MML%measure3.html#K3>k3_measure3</a>,'MeasPart',_). constr_name(<a href=%MML%measure3.html#K4>k4_measure3</a>,'COM__2',_). constr_name(<a href=%MML%cqc_sim1.html#K1>k1_cqc_sim1</a>,'NEGATIVE',_). constr_name(<a href=%MML%cqc_sim1.html#K2>k2_cqc_sim1</a>,'CON',_). constr_name(<a href=%MML%cqc_sim1.html#K3>k3_cqc_sim1</a>,'UNIVERSAL',_). constr_name(<a href=%MML%cqc_sim1.html#K4>k4_cqc_sim1</a>,'*__33',_). constr_name(<a href=%MML%cqc_sim1.html#K5>k5_cqc_sim1</a>,'ATOMIC',_). constr_name(<a href=%MML%cqc_sim1.html#K6>k6_cqc_sim1</a>,'QuantNbr',_). constr_name(<a href=%MML%cqc_sim1.html#K7>k7_cqc_sim1</a>,'.__28',_). constr_name(<a href=%MML%cqc_sim1.html#K8>k8_cqc_sim1</a>,'SepFunc',_). constr_name(<a href=%MML%cqc_sim1.html#K9>k9_cqc_sim1</a>,'SepFunc__2',_). constr_name(<a href=%MML%cqc_sim1.html#K10>k10_cqc_sim1</a>,min__3,_). constr_name(<a href=%MML%cqc_sim1.html#K11>k11_cqc_sim1</a>,'NBI',_). constr_name(<a href=%MML%cqc_sim1.html#K12>k12_cqc_sim1</a>,index,_). constr_name(<a href=%MML%cqc_sim1.html#K13>k13_cqc_sim1</a>,id__4,_). constr_name(<a href=%MML%cqc_sim1.html#K14>k14_cqc_sim1</a>,'SepVar',_). constr_name(<a href=%MML%cqc_sim1.html#R1>r1_cqc_sim1</a>,'is_Sep-closed_on',_). constr_name(<a href=%MML%cqc_sim1.html#K15>k15_cqc_sim1</a>,'{..}__30',_). constr_name(<a href=%MML%cqc_sim1.html#K16>k16_cqc_sim1</a>,'SepQuadruples',_). constr_name(<a href=%MML%cqc_sim1.html#R2>r2_cqc_sim1</a>,are_similar,_). constr_name(<a href=%MML%toler_1.html#K1>k1_toler_1</a>,'|_2__2',_). constr_name(<a href=%MML%toler_1.html#K2>k2_toler_1</a>,'|_2__3',_). constr_name(<a href=%MML%toler_1.html#M1>m1_toler_1</a>,'TolSet',_). constr_name(<a href=%MML%toler_1.html#V1>v1_toler_1</a>,'TolClass-like',_). constr_name(<a href=%MML%toler_1.html#K3>k3_toler_1</a>,'TolSets',_). constr_name(<a href=%MML%toler_1.html#K4>k4_toler_1</a>,'TolClasses',_). constr_name(<a href=%MML%measure4.html#K1>k1_measure4</a>,rng__10,_). constr_name(<a href=%MML%measure4.html#K2>k2_measure4</a>,'*__34',_). constr_name(<a href=%MML%measure4.html#M1>m1_measure4</a>,'C_Measure',_). constr_name(<a href=%MML%measure4.html#K3>k3_measure4</a>,sigma_Field,_). constr_name(<a href=%MML%measure4.html#K4>k4_measure4</a>,union__7,_). constr_name(<a href=%MML%measure4.html#K5>k5_measure4</a>,sigma_Meas,_). constr_name(<a href=%MML%measure4.html#K6>k6_measure4</a>,'.__29',_). constr_name(<a href=%MML%measure4.html#K7>k7_measure4</a>,sigma_Meas__2,_). constr_name(<a href=%MML%measure5.html#K1>k1_measure5</a>,'[....]__2',_). constr_name(<a href=%MML%measure5.html#K2>k2_measure5</a>,']....[__2',_). constr_name(<a href=%MML%measure5.html#K3>k3_measure5</a>,']....]',_). constr_name(<a href=%MML%measure5.html#K4>k4_measure5</a>,'[....[',_). constr_name(<a href=%MML%measure5.html#V1>v1_measure5</a>,open_interval,_). constr_name(<a href=%MML%measure5.html#V2>v2_measure5</a>,closed_interval,_). constr_name(<a href=%MML%measure5.html#V3>v3_measure5</a>,right_open_interval,_). constr_name(<a href=%MML%measure5.html#V4>v4_measure5</a>,left_open_interval,_). constr_name(<a href=%MML%measure5.html#V5>v5_measure5</a>,interval,_). constr_name(<a href=%MML%measure5.html#K5>k5_measure5</a>,vol,_). constr_name(<a href=%MML%measure5.html#K6>k6_measure5</a>,'{}__4',_). constr_name(<a href=%MML%modal_1.html#K1>k1_modal_1</a>,'Root',_). constr_name(<a href=%MML%modal_1.html#K2>k2_modal_1</a>,'Root__2',_). constr_name(<a href=%MML%modal_1.html#K3>k3_modal_1</a>,'MP-variables',_). constr_name(<a href=%MML%modal_1.html#K4>k4_modal_1</a>,'MP-conectives',_). constr_name(<a href=%MML%modal_1.html#K5>k5_modal_1</a>,branchdeg__2,_). constr_name(<a href=%MML%modal_1.html#M1>m1_modal_1</a>,'DOMAIN_DecoratedTree',_). constr_name(<a href=%MML%modal_1.html#M2>m2_modal_1</a>,'Element__7',_). constr_name(<a href=%MML%modal_1.html#K6>k6_modal_1</a>,'MP-WFF',_). constr_name(<a href=%MML%modal_1.html#K7>k7_modal_1</a>,'|__12',_). constr_name(<a href=%MML%modal_1.html#K8>k8_modal_1</a>,the_arity_of__4,_). constr_name(<a href=%MML%modal_1.html#K9>k9_modal_1</a>,'@__2',_). constr_name(<a href=%MML%modal_1.html#K10>k10_modal_1</a>,''not'__8',_). constr_name(<a href=%MML%modal_1.html#K11>k11_modal_1</a>,'(#)__13',_). constr_name(<a href=%MML%modal_1.html#K12>k12_modal_1</a>,''&'__10',_). constr_name(<a href=%MML%modal_1.html#K13>k13_modal_1</a>,'?',_). constr_name(<a href=%MML%modal_1.html#K14>k14_modal_1</a>,''or'__5',_). constr_name(<a href=%MML%modal_1.html#K15>k15_modal_1</a>,'=>__6',_). constr_name(<a href=%MML%modal_1.html#K16>k16_modal_1</a>,'@__3',_). constr_name(<a href=%MML%modal_1.html#K17>k17_modal_1</a>,'VERUM__4',_). constr_name(<a href=%MML%modal_1.html#V1>v1_modal_1</a>,atomic__3,_). constr_name(<a href=%MML%modal_1.html#V2>v2_modal_1</a>,negative__4,_). constr_name(<a href=%MML%modal_1.html#V3>v3_modal_1</a>,necessitive,_). constr_name(<a href=%MML%modal_1.html#V4>v4_modal_1</a>,conjunctive__3,_). constr_name(<a href=%MML%trees_3.html#K1>k1_trees_3</a>,'Trees',_). constr_name(<a href=%MML%trees_3.html#K2>k2_trees_3</a>,'FinTrees',_). constr_name(<a href=%MML%trees_3.html#V1>v1_trees_3</a>,'constituted-Trees',_). constr_name(<a href=%MML%trees_3.html#V2>v2_trees_3</a>,'constituted-FinTrees',_). constr_name(<a href=%MML%trees_3.html#V3>v3_trees_3</a>,'constituted-DTrees',_). constr_name(<a href=%MML%trees_3.html#M1>m1_trees_3</a>,'Element__8',_). constr_name(<a href=%MML%trees_3.html#M2>m2_trees_3</a>,'Element__9',_). constr_name(<a href=%MML%trees_3.html#M3>m3_trees_3</a>,'Element__10',_). constr_name(<a href=%MML%trees_3.html#M4>m4_trees_3</a>,'DTree-set',_). constr_name(<a href=%MML%trees_3.html#M5>m5_trees_3</a>,'Element__11',_). constr_name(<a href=%MML%trees_3.html#M6>m6_trees_3</a>,'Relation__3',_). constr_name(<a href=%MML%trees_3.html#K3>k3_trees_3</a>,'Funcs__6',_). constr_name(<a href=%MML%trees_3.html#K4>k4_trees_3</a>,'Trees__2',_). constr_name(<a href=%MML%trees_3.html#K5>k5_trees_3</a>,'FinTrees__2',_). constr_name(<a href=%MML%trees_3.html#V4>v4_trees_3</a>,'Tree-yielding',_). constr_name(<a href=%MML%trees_3.html#V5>v5_trees_3</a>,'FinTree-yielding',_). constr_name(<a href=%MML%trees_3.html#V6>v6_trees_3</a>,'DTree-yielding',_). constr_name(<a href=%MML%trees_3.html#K6>k6_trees_3</a>,'<:..:>__5',_). constr_name(<a href=%MML%trees_3.html#K7>k7_trees_3</a>,'*__35',_). constr_name(<a href=%MML%trees_3.html#K8>k8_trees_3</a>,pr1__4,_). constr_name(<a href=%MML%trees_3.html#K9>k9_trees_3</a>,pr2__4,_). constr_name(<a href=%MML%trees_3.html#K10>k10_trees_3</a>,'`1__10',_). constr_name(<a href=%MML%trees_3.html#K11>k11_trees_3</a>,'`2__10',_). constr_name(<a href=%MML%trees_3.html#M7>m7_trees_3</a>,'Element__12',_). constr_name(<a href=%MML%trees_3.html#M8>m8_trees_3</a>,'Leaf__2',_). constr_name(<a href=%MML%trees_3.html#M9>m9_trees_3</a>,'T-Substitution',_). constr_name(<a href=%MML%trees_3.html#K12>k12_trees_3</a>,'with-replacement__3',_). constr_name(<a href=%MML%trees_3.html#K13>k13_trees_3</a>,tree,_). constr_name(<a href=%MML%trees_3.html#K14>k14_trees_3</a>,'^__7',_). constr_name(<a href=%MML%trees_3.html#K15>k15_trees_3</a>,tree__2,_). constr_name(<a href=%MML%trees_3.html#K16>k16_trees_3</a>,roots,_). constr_name(<a href=%MML%trees_4.html#K1>k1_trees_4</a>,'root-tree',_). constr_name(<a href=%MML%trees_4.html#K2>k2_trees_4</a>,'root-tree__2',_). constr_name(<a href=%MML%trees_4.html#K3>k3_trees_4</a>,'-flat_tree',_). constr_name(<a href=%MML%trees_4.html#K4>k4_trees_4</a>,'-tree',_). constr_name(<a href=%MML%trees_4.html#K5>k5_trees_4</a>,'-tree__2',_). constr_name(<a href=%MML%trees_4.html#K6>k6_trees_4</a>,'-tree__3',_). constr_name(<a href=%MML%trees_4.html#K7>k7_trees_4</a>,'-flat_tree__2',_). constr_name(<a href=%MML%trees_4.html#K8>k8_trees_4</a>,'-tree__4',_). constr_name(<a href=%MML%trees_4.html#K9>k9_trees_4</a>,'-tree__5',_). constr_name(<a href=%MML%trees_4.html#K10>k10_trees_4</a>,'-tree__6',_). constr_name(<a href=%MML%trees_4.html#K11>k11_trees_4</a>,doms__2,_). constr_name(<a href=%MML%trees_4.html#K12>k12_trees_4</a>,'-tree__7',_). constr_name(<a href=%MML%trees_4.html#M1>m1_trees_4</a>,'FinSequence__3',_). constr_name(<a href=%MML%trees_4.html#K13>k13_trees_4</a>,'<-__2',_). constr_name(<a href=%MML%trees_4.html#K14>k14_trees_4</a>,'<-__3',_). constr_name(<a href=%MML%rfinseq.html#R1>r1_rfinseq</a>,are_fiberwise_equipotent,_). constr_name(<a href=%MML%rfinseq.html#K1>k1_rfinseq</a>,'/^',_). constr_name(<a href=%MML%rfinseq.html#K2>k2_rfinseq</a>,'MIM',_). constr_name(<a href=%MML%rfinseq.html#V1>v1_rfinseq</a>,'non-increasing__4',_). constr_name(<a href=%MML%rfunct_3.html#K1>k1_rfunct_3</a>,min__4,_). constr_name(<a href=%MML%rfunct_3.html#K2>k2_rfunct_3</a>,'max+',_). constr_name(<a href=%MML%rfunct_3.html#K3>k3_rfunct_3</a>,'max-',_). constr_name(<a href=%MML%rfunct_3.html#M1>m1_rfunct_3</a>,'PartFunc-set',_). constr_name(<a href=%MML%rfunct_3.html#M2>m2_rfunct_3</a>,'Element__13',_). constr_name(<a href=%MML%rfunct_3.html#K4>k4_rfunct_3</a>,'PFuncs__2',_). constr_name(<a href=%MML%rfunct_3.html#K5>k5_rfunct_3</a>,'-->__9',_). constr_name(<a href=%MML%rfunct_3.html#K6>k6_rfunct_3</a>,'+__24',_). constr_name(<a href=%MML%rfunct_3.html#K7>k7_rfunct_3</a>,'-__36',_). constr_name(<a href=%MML%rfunct_3.html#K8>k8_rfunct_3</a>,'(#)__14',_). constr_name(<a href=%MML%rfunct_3.html#K9>k9_rfunct_3</a>,'/__15',_). constr_name(<a href=%MML%rfunct_3.html#K10>k10_rfunct_3</a>,abs__8,_). constr_name(<a href=%MML%rfunct_3.html#K11>k11_rfunct_3</a>,'-__37',_). constr_name(<a href=%MML%rfunct_3.html#K12>k12_rfunct_3</a>,'^__8',_). constr_name(<a href=%MML%rfunct_3.html#K13>k13_rfunct_3</a>,'(#)__15',_). constr_name(<a href=%MML%rfunct_3.html#K14>k14_rfunct_3</a>,addpfunc,_). constr_name(<a href=%MML%rfunct_3.html#K15>k15_rfunct_3</a>,'Sum__5',_). constr_name(<a href=%MML%rfunct_3.html#K16>k16_rfunct_3</a>,'CHI',_). constr_name(<a href=%MML%rfunct_3.html#K17>k17_rfunct_3</a>,'(#)__16',_). constr_name(<a href=%MML%rfunct_3.html#K18>k18_rfunct_3</a>,'#__3',_). constr_name(<a href=%MML%rfunct_3.html#R1>r1_rfunct_3</a>,is_common_for_dom,_). constr_name(<a href=%MML%rfunct_3.html#K19>k19_rfunct_3</a>,'max+__2',_). constr_name(<a href=%MML%rfunct_3.html#K20>k20_rfunct_3</a>,'max-__2',_). constr_name(<a href=%MML%rfunct_3.html#K21>k21_rfunct_3</a>,'-__38',_). constr_name(<a href=%MML%rfunct_3.html#R2>r2_rfunct_3</a>,is_convex_on,_). constr_name(<a href=%MML%rfunct_3.html#K22>k22_rfunct_3</a>,'FinS',_). constr_name(<a href=%MML%rfunct_3.html#K23>k23_rfunct_3</a>,'|__13',_). constr_name(<a href=%MML%rfunct_3.html#K24>k24_rfunct_3</a>,'Sum__6',_). constr_name(<a href=%MML%rearran1.html#K1>k1_rearran1</a>,'(#)__17',_). constr_name(<a href=%MML%rearran1.html#V1>v1_rearran1</a>,'terms've_same_card_as_number',_). constr_name(<a href=%MML%rearran1.html#V2>v2_rearran1</a>,ascending,_). constr_name(<a href=%MML%rearran1.html#V3>v3_rearran1</a>,lenght_equal_card_of_set,_). constr_name(<a href=%MML%rearran1.html#K2>k2_rearran1</a>,'Co_Gen',_). constr_name(<a href=%MML%rearran1.html#K3>k3_rearran1</a>,'Rland',_). constr_name(<a href=%MML%rearran1.html#K4>k4_rearran1</a>,'Rlor',_). constr_name(<a href=%MML%cqc_the3.html#R1>r1_cqc_the3</a>,'|-__2',_). constr_name(<a href=%MML%cqc_the3.html#R2>r2_cqc_the3</a>,'|-__3',_). constr_name(<a href=%MML%cqc_the3.html#R3>r3_cqc_the3</a>,'|-__4',_). constr_name(<a href=%MML%cqc_the3.html#R4>r4_cqc_the3</a>,'|-|',_). constr_name(<a href=%MML%cqc_the3.html#R5>r5_cqc_the3</a>,'|-|__2',_). constr_name(<a href=%MML%cqc_the3.html#R6>r6_cqc_the3</a>,is_an_universal_closure_of,_). constr_name(<a href=%MML%cqc_the3.html#R7>r7_cqc_the3</a>,'<==>__2',_). constr_name(<a href=%MML%trees_a.html#K1>k1_trees_a</a>,tree__3,_). constr_name(<a href=%MML%trees_a.html#K2>k2_trees_a</a>,'{..}__31',_). constr_name(<a href=%MML%trees_a.html#K3>k3_trees_a</a>,tree__4,_). constr_name(<a href=%MML%trees_a.html#K4>k4_trees_a</a>,tree__5,_). constr_name(<a href=%MML%card_fil.html#K1>k1_card_fil</a>,'\\__10',_). constr_name(<a href=%MML%card_fil.html#M1>m1_card_fil</a>,'Filter',_). constr_name(<a href=%MML%card_fil.html#M2>m2_card_fil</a>,'Ideal',_). constr_name(<a href=%MML%card_fil.html#K2>k2_card_fil</a>,dual,_). constr_name(<a href=%MML%card_fil.html#R1>r1_card_fil</a>,is_multiplicative_with,_). constr_name(<a href=%MML%card_fil.html#R2>r2_card_fil</a>,is_additive_with,_). constr_name(<a href=%MML%card_fil.html#V1>v1_card_fil</a>,uniform,_). constr_name(<a href=%MML%card_fil.html#V2>v2_card_fil</a>,principal,_). constr_name(<a href=%MML%card_fil.html#V3>v3_card_fil</a>,being_ultrafilter,_). constr_name(<a href=%MML%card_fil.html#K3>k3_card_fil</a>,'Extend_Filter',_). constr_name(<a href=%MML%card_fil.html#K4>k4_card_fil</a>,'Filters',_). constr_name(<a href=%MML%card_fil.html#K5>k5_card_fil</a>,'Frechet_Filter',_). constr_name(<a href=%MML%card_fil.html#K6>k6_card_fil</a>,'Frechet_Ideal',_). constr_name(<a href=%MML%card_fil.html#R3>r3_card_fil</a>,'GCH',_). constr_name(<a href=%MML%card_fil.html#V4>v4_card_fil</a>,inaccessible,_). constr_name(<a href=%MML%card_fil.html#V5>v5_card_fil</a>,strong_limit,_). constr_name(<a href=%MML%card_fil.html#V6>v6_card_fil</a>,strongly_inaccessible,_). constr_name(<a href=%MML%card_fil.html#V7>v7_card_fil</a>,measurable,_). constr_name(<a href=%MML%card_fil.html#K7>k7_card_fil</a>,predecessor,_). constr_name(<a href=%MML%card_fil.html#R4>r4_card_fil</a>,is_Ulam_Matrix_of,_). constr_name(<a href=%MML%card_lar.html#K1>k1_card_lar</a>,'/\\__11',_). constr_name(<a href=%MML%card_lar.html#R1>r1_card_lar</a>,is_unbounded_in,_). constr_name(<a href=%MML%card_lar.html#R2>r2_card_lar</a>,is_closed_in,_). constr_name(<a href=%MML%card_lar.html#R3>r3_card_lar</a>,is_club_in,_). constr_name(<a href=%MML%card_lar.html#V1>v1_card_lar</a>,unbounded,_). constr_name(<a href=%MML%card_lar.html#V2>v2_card_lar</a>,closed__3,_). constr_name(<a href=%MML%card_lar.html#K2>k2_card_lar</a>,'LBound',_). constr_name(<a href=%MML%card_lar.html#K3>k3_card_lar</a>,'\\__11',_). constr_name(<a href=%MML%card_lar.html#V3>v3_card_lar</a>,stationary,_). constr_name(<a href=%MML%card_lar.html#R4>r4_card_lar</a>,is_stationary_in,_). constr_name(<a href=%MML%card_lar.html#M1>m1_card_lar</a>,'Element__14',_). constr_name(<a href=%MML%card_lar.html#K4>k4_card_lar</a>,limpoints,_). constr_name(<a href=%MML%card_lar.html#V4>v4_card_lar</a>,'Mahlo',_). constr_name(<a href=%MML%card_lar.html#V5>v5_card_lar</a>,strongly_Mahlo,_). constr_name(<a href=%MML%pre_ff.html#K1>k1_pre_ff</a>,'`1__11',_). constr_name(<a href=%MML%pre_ff.html#K2>k2_pre_ff</a>,'`2__11',_). constr_name(<a href=%MML%pre_ff.html#K3>k3_pre_ff</a>,'Fib',_). constr_name(<a href=%MML%pre_ff.html#K4>k4_pre_ff</a>,'.__30',_). constr_name(<a href=%MML%pre_ff.html#K5>k5_pre_ff</a>,'Fusc',_). constr_name(<a href=%MML%binarith.html#K1>k1_binarith</a>,''or'__6',_). constr_name(<a href=%MML%binarith.html#K2>k2_binarith</a>,''xor'',_). constr_name(<a href=%MML%binarith.html#K3>k3_binarith</a>,''or'__7',_). constr_name(<a href=%MML%binarith.html#K4>k4_binarith</a>,''xor'__2',_). constr_name(<a href=%MML%binarith.html#K5>k5_binarith</a>,'-'__2',_). constr_name(<a href=%MML%binarith.html#K6>k6_binarith</a>,''not'__9',_). constr_name(<a href=%MML%binarith.html#K7>k7_binarith</a>,carry,_). constr_name(<a href=%MML%binarith.html#K8>k8_binarith</a>,'Binary',_). constr_name(<a href=%MML%binarith.html#K9>k9_binarith</a>,'Absval',_). constr_name(<a href=%MML%binarith.html#K10>k10_binarith</a>,'+__25',_). constr_name(<a href=%MML%binarith.html#K11>k11_binarith</a>,add_ovfl,_). constr_name(<a href=%MML%binarith.html#R1>r1_binarith</a>,are_summable,_). constr_name(<a href=%MML%binarith.html#K12>k12_binarith</a>,'^__9',_). constr_name(<a href=%MML%binarith.html#K13>k13_binarith</a>,'<*..*>__9',_). constr_name(<a href=%MML%binari_2.html#K1>k1_binari_2</a>,'IFEQ__3',_). constr_name(<a href=%MML%binari_2.html#K2>k2_binari_2</a>,'Bin1',_). constr_name(<a href=%MML%binari_2.html#K3>k3_binari_2</a>,'Neg2',_). constr_name(<a href=%MML%binari_2.html#K4>k4_binari_2</a>,'Intval',_). constr_name(<a href=%MML%binari_2.html#K5>k5_binari_2</a>,'Int_add_ovfl',_). constr_name(<a href=%MML%binari_2.html#K6>k6_binari_2</a>,'Int_add_udfl',_). constr_name(<a href=%MML%binari_2.html#K7>k7_binari_2</a>,'-__39',_). constr_name(<a href=%MML%measure6.html#K1>k1_measure6</a>,'R_EAL',_). constr_name(<a href=%MML%measure6.html#K2>k2_measure6</a>,'Seg__4',_). constr_name(<a href=%MML%measure6.html#K3>k3_measure6</a>,len__2,_). constr_name(<a href=%MML%measure6.html#K4>k4_measure6</a>,'-infty__3',_). constr_name(<a href=%MML%measure6.html#K5>k5_measure6</a>,'+infty__3',_). constr_name(<a href=%MML%measure6.html#K6>k6_measure6</a>,'^^',_). constr_name(<a href=%MML%measure6.html#K7>k7_measure6</a>,'^^__2',_). constr_name(<a href=%MML%measure6.html#K8>k8_measure6</a>,'+__26',_). constr_name(<a href=%MML%extreal1.html#K1>k1_extreal1</a>,'*__36',_). constr_name(<a href=%MML%extreal1.html#K2>k2_extreal1</a>,'*__37',_). constr_name(<a href=%MML%extreal1.html#K3>k3_extreal1</a>,'/__16',_). constr_name(<a href=%MML%extreal1.html#K4>k4_extreal1</a>,'|....|__4',_). constr_name(<a href=%MML%mesfunc1.html#K1>k1_mesfunc1</a>,'INT-',_). constr_name(<a href=%MML%mesfunc1.html#K2>k2_mesfunc1</a>,'INT__2',_). constr_name(<a href=%MML%mesfunc1.html#K3>k3_mesfunc1</a>,'RAT_with_denominator',_). constr_name(<a href=%MML%mesfunc1.html#K4>k4_mesfunc1</a>,'.__31',_). constr_name(<a href=%MML%mesfunc1.html#K5>k5_mesfunc1</a>,'+__27',_). constr_name(<a href=%MML%mesfunc1.html#K6>k6_mesfunc1</a>,'-__40',_). constr_name(<a href=%MML%mesfunc1.html#K7>k7_mesfunc1</a>,'(#)__18',_). constr_name(<a href=%MML%mesfunc1.html#K8>k8_mesfunc1</a>,'(#)__19',_). constr_name(<a href=%MML%mesfunc1.html#K9>k9_mesfunc1</a>,'-__41',_). constr_name(<a href=%MML%mesfunc1.html#K10>k10_mesfunc1</a>,'1.',_). constr_name(<a href=%MML%mesfunc1.html#K11>k11_mesfunc1</a>,'/__17',_). constr_name(<a href=%MML%mesfunc1.html#K12>k12_mesfunc1</a>,'|....|__5',_). constr_name(<a href=%MML%mesfunc1.html#K13>k13_mesfunc1</a>,'+__28',_). constr_name(<a href=%MML%mesfunc1.html#K14>k14_mesfunc1</a>,'(#)__20',_). constr_name(<a href=%MML%mesfunc1.html#R1>r1_mesfunc1</a>,is_measurable_on,_). constr_name(<a href=%MML%mesfunc1.html#K15>k15_mesfunc1</a>,less_dom,_). constr_name(<a href=%MML%mesfunc1.html#K16>k16_mesfunc1</a>,less_eq_dom,_). constr_name(<a href=%MML%mesfunc1.html#K17>k17_mesfunc1</a>,great_dom,_). constr_name(<a href=%MML%mesfunc1.html#K18>k18_mesfunc1</a>,great_eq_dom,_). constr_name(<a href=%MML%mesfunc1.html#K19>k19_mesfunc1</a>,eq_dom,_). constr_name(<a href=%MML%mesfunc1.html#R2>r2_mesfunc1</a>,is_measurable_on__2,_). constr_name(<a href=%MML%extreal2.html#K1>k1_extreal2</a>,min__5,_). constr_name(<a href=%MML%extreal2.html#K2>k2_extreal2</a>,max__4,_). constr_name(<a href=%MML%finseq_5.html#K1>k1_finseq_5</a>,'-:',_). constr_name(<a href=%MML%finseq_5.html#K2>k2_finseq_5</a>,':-',_). constr_name(<a href=%MML%finseq_5.html#K3>k3_finseq_5</a>,'Rev',_). constr_name(<a href=%MML%finseq_5.html#K4>k4_finseq_5</a>,'Rev__2',_). constr_name(<a href=%MML%finseq_5.html#K5>k5_finseq_5</a>,'Ins',_). constr_name(<a href=%MML%finseq_6.html#V1>v1_finseq_6</a>,circular,_). constr_name(<a href=%MML%finseq_6.html#K1>k1_finseq_6</a>,'Rotate',_). constr_name(<a href=%MML%mesfunc2.html#R1>r1_mesfunc2</a>,is_finite,_). constr_name(<a href=%MML%mesfunc2.html#K1>k1_mesfunc2</a>,'max+__3',_). constr_name(<a href=%MML%mesfunc2.html#K2>k2_mesfunc2</a>,'max-__3',_). constr_name(<a href=%MML%mesfunc2.html#K3>k3_mesfunc2</a>,chi__4,_). constr_name(<a href=%MML%mesfunc2.html#R2>r2_mesfunc2</a>,is_simple_func_in,_). constr_name(<a href=%MML%pre_circ.html#K1>k1_pre_circ</a>,max__5,_). constr_name(<a href=%MML%pre_circ.html#V1>v1_pre_circ</a>,'locally-finite',_). constr_name(<a href=%MML%pre_circ.html#K2>k2_pre_circ</a>,'-->__10',_). constr_name(<a href=%MML%pre_circ.html#K3>k3_pre_circ</a>,'|__14',_). constr_name(<a href=%MML%trees_9.html#M1>m1_trees_9</a>,'Element__15',_). constr_name(<a href=%MML%trees_9.html#V1>v1_trees_9</a>,root,_). constr_name(<a href=%MML%trees_9.html#V2>v2_trees_9</a>,'finite-branching',_). constr_name(<a href=%MML%trees_9.html#V3>v3_trees_9</a>,'finite-order__2',_). constr_name(<a href=%MML%trees_9.html#V4>v4_trees_9</a>,'finite-branching__2',_). constr_name(<a href=%MML%trees_9.html#K1>k1_trees_9</a>,succ__4,_). constr_name(<a href=%MML%trees_9.html#K2>k2_trees_9</a>,succ__5,_). constr_name(<a href=%MML%trees_9.html#K3>k3_trees_9</a>,'Subtrees',_). constr_name(<a href=%MML%trees_9.html#K4>k4_trees_9</a>,'Subtrees__2',_). constr_name(<a href=%MML%trees_9.html#K5>k5_trees_9</a>,'Subtrees__3',_). constr_name(<a href=%MML%trees_9.html#K6>k6_trees_9</a>,'FixedSubtrees',_). constr_name(<a href=%MML%trees_9.html#K7>k7_trees_9</a>,'-Subtrees',_). constr_name(<a href=%MML%trees_9.html#K8>k8_trees_9</a>,'-ImmediateSubtrees',_). constr_name(<a href=%MML%trees_9.html#K9>k9_trees_9</a>,'Subtrees__4',_). constr_name(<a href=%MML%trees_9.html#K10>k10_trees_9</a>,'Subtrees__5',_). constr_name(<a href=%MML%trees_9.html#K11>k11_trees_9</a>,'Subtrees__6',_). constr_name(<a href=%MML%trees_9.html#K12>k12_trees_9</a>,'-Subtrees__2',_). constr_name(<a href=%MML%trees_9.html#K13>k13_trees_9</a>,'-ImmediateSubtrees__2',_). constr_name(<a href=%MML%measure7.html#K1>k1_measure7</a>,'.__32',_). constr_name(<a href=%MML%measure7.html#K2>k2_measure7</a>,'On__2',_). constr_name(<a href=%MML%measure7.html#M1>m1_measure7</a>,'Interval_Covering',_). constr_name(<a href=%MML%measure7.html#K3>k3_measure7</a>,'.__33',_). constr_name(<a href=%MML%measure7.html#M2>m2_measure7</a>,'Interval_Covering__2',_). constr_name(<a href=%MML%measure7.html#K4>k4_measure7</a>,vol__2,_). constr_name(<a href=%MML%measure7.html#K5>k5_measure7</a>,'.__34',_). constr_name(<a href=%MML%measure7.html#K6>k6_measure7</a>,vol__3,_). constr_name(<a href=%MML%measure7.html#K7>k7_measure7</a>,vol__4,_). constr_name(<a href=%MML%measure7.html#K8>k8_measure7</a>,vol__5,_). constr_name(<a href=%MML%measure7.html#K9>k9_measure7</a>,'Svc',_). constr_name(<a href=%MML%measure7.html#K10>k10_measure7</a>,'COMPLEX__2',_). constr_name(<a href=%MML%measure7.html#K11>k11_measure7</a>,'OS_Meas',_). constr_name(<a href=%MML%measure7.html#K12>k12_measure7</a>,pr1__5,_). constr_name(<a href=%MML%measure7.html#K13>k13_measure7</a>,pr2__5,_). constr_name(<a href=%MML%measure7.html#K14>k14_measure7</a>,'On__3',_). constr_name(<a href=%MML%measure7.html#K15>k15_measure7</a>,'OS_Meas__2',_). constr_name(<a href=%MML%measure7.html#K16>k16_measure7</a>,'Lmi_sigmaFIELD',_). constr_name(<a href=%MML%measure7.html#K17>k17_measure7</a>,'L_mi',_). constr_name(<a href=%MML%qc_lang4.html#K1>k1_qc_lang4</a>,list_of_immediate_constituents,_). constr_name(<a href=%MML%qc_lang4.html#K2>k2_qc_lang4</a>,tree_of_subformulae,_). constr_name(<a href=%MML%qc_lang4.html#K3>k3_qc_lang4</a>,'-entry_points_in_subformula_tree_of',_). constr_name(<a href=%MML%qc_lang4.html#M1>m1_qc_lang4</a>,'Subformula',_). constr_name(<a href=%MML%qc_lang4.html#M2>m2_qc_lang4</a>,'Entry_Point_in_Subformula_Tree',_). constr_name(<a href=%MML%qc_lang4.html#K4>k4_qc_lang4</a>,entry_points_in_subformula_tree,_). constr_name(<a href=%MML%mboolean.html#K1>k1_mboolean</a>,bool__3,_). constr_name(<a href=%MML%mboolean.html#K2>k2_mboolean</a>,union__8,_). constr_name(<a href=%MML%pzfmisc1.html#K1>k1_pzfmisc1</a>,'{..}__32',_). constr_name(<a href=%MML%pzfmisc1.html#K2>k2_pzfmisc1</a>,'{..}__33',_). constr_name(<a href=%MML%pzfmisc1.html#R1>r1_pzfmisc1</a>,is_transformable_to,_). constr_name(<a href=%MML%mssubfam.html#K1>k1_mssubfam</a>,doms__3,_). constr_name(<a href=%MML%mssubfam.html#K2>k2_mssubfam</a>,rngs__2,_). constr_name(<a href=%MML%mssubfam.html#K3>k3_mssubfam</a>,bool__4,_). constr_name(<a href=%MML%mssubfam.html#K4>k4_mssubfam</a>,'.__35',_). constr_name(<a href=%MML%mssubfam.html#K5>k5_mssubfam</a>,meet__6,_). constr_name(<a href=%MML%mssubfam.html#K6>k6_mssubfam</a>,meet__7,_). constr_name(<a href=%MML%mssubfam.html#V1>v1_mssubfam</a>,additive,_). constr_name(<a href=%MML%mssubfam.html#V2>v2_mssubfam</a>,'absolutely-additive',_). constr_name(<a href=%MML%mssubfam.html#V3>v3_mssubfam</a>,multiplicative,_). constr_name(<a href=%MML%mssubfam.html#V4>v4_mssubfam</a>,'absolutely-multiplicative',_). constr_name(<a href=%MML%mssubfam.html#V5>v5_mssubfam</a>,'properly-upper-bound',_). constr_name(<a href=%MML%mssubfam.html#V6>v6_mssubfam</a>,'properly-lower-bound',_). constr_name(<a href=%MML%mssubfam.html#K7>k7_mssubfam</a>,bool__5,_). constr_name(<a href=%MML%rewrite1.html#K1>k1_rewrite1</a>,'$^',_). constr_name(<a href=%MML%rewrite1.html#M1>m1_rewrite1</a>,'RedSequence',_). constr_name(<a href=%MML%rewrite1.html#R1>r1_rewrite1</a>,reduces,_). constr_name(<a href=%MML%rewrite1.html#R2>r2_rewrite1</a>,are_convertible_wrt,_). constr_name(<a href=%MML%rewrite1.html#R3>r3_rewrite1</a>,is_a_normal_form_wrt,_). constr_name(<a href=%MML%rewrite1.html#R4>r4_rewrite1</a>,is_a_normal_form_of,_). constr_name(<a href=%MML%rewrite1.html#R5>r5_rewrite1</a>,are_convergent_wrt,_). constr_name(<a href=%MML%rewrite1.html#R6>r6_rewrite1</a>,are_divergent_wrt,_). constr_name(<a href=%MML%rewrite1.html#R7>r7_rewrite1</a>,'are_convergent<=1_wrt',_). constr_name(<a href=%MML%rewrite1.html#R8>r8_rewrite1</a>,'are_divergent<=1_wrt',_). constr_name(<a href=%MML%rewrite1.html#R9>r9_rewrite1</a>,has_a_normal_form_wrt,_). constr_name(<a href=%MML%rewrite1.html#K2>k2_rewrite1</a>,nf,_). constr_name(<a href=%MML%rewrite1.html#V1>v1_rewrite1</a>,'co-well_founded',_). constr_name(<a href=%MML%rewrite1.html#V2>v2_rewrite1</a>,'weakly-normalizing',_). constr_name(<a href=%MML%rewrite1.html#V3>v3_rewrite1</a>,'strongly-normalizing',_). constr_name(<a href=%MML%rewrite1.html#R10>r10_rewrite1</a>,'commutes-weakly_with',_). constr_name(<a href=%MML%rewrite1.html#R11>r11_rewrite1</a>,commutes_with,_). constr_name(<a href=%MML%rewrite1.html#V4>v4_rewrite1</a>,with_UN_property,_). constr_name(<a href=%MML%rewrite1.html#V5>v5_rewrite1</a>,with_NF_property,_). constr_name(<a href=%MML%rewrite1.html#V6>v6_rewrite1</a>,subcommutative,_). constr_name(<a href=%MML%rewrite1.html#V7>v7_rewrite1</a>,confluent,_). constr_name(<a href=%MML%rewrite1.html#V8>v8_rewrite1</a>,'with_Church-Rosser_property',_). constr_name(<a href=%MML%rewrite1.html#V9>v9_rewrite1</a>,'locally-confluent',_). constr_name(<a href=%MML%rewrite1.html#V10>v10_rewrite1</a>,complete,_). constr_name(<a href=%MML%rewrite1.html#R12>r12_rewrite1</a>,are_equivalent,_). constr_name(<a href=%MML%rewrite1.html#R13>r13_rewrite1</a>,are_critical_wrt,_). constr_name(<a href=%MML%rewrite1.html#M2>m2_rewrite1</a>,'Completion',_). constr_name(<a href=%MML%funct_7.html#K1>k1_funct_7</a>,'In',_). constr_name(<a href=%MML%funct_7.html#R1>r1_funct_7</a>,equal_outside,_). constr_name(<a href=%MML%funct_7.html#K2>k2_funct_7</a>,'+*__3',_). constr_name(<a href=%MML%funct_7.html#K3>k3_funct_7</a>,'+*__4',_). constr_name(<a href=%MML%funct_7.html#K4>k4_funct_7</a>,compose,_). constr_name(<a href=%MML%funct_7.html#K5>k5_funct_7</a>,apply,_). constr_name(<a href=%MML%funct_7.html#K6>k6_funct_7</a>,firstdom,_). constr_name(<a href=%MML%funct_7.html#K7>k7_funct_7</a>,lastrng,_). constr_name(<a href=%MML%funct_7.html#V1>v1_funct_7</a>,'FuncSeq-like',_). constr_name(<a href=%MML%funct_7.html#M1>m1_funct_7</a>,'FuncSequence',_). constr_name(<a href=%MML%funct_7.html#K8>k8_funct_7</a>,compose__2,_). constr_name(<a href=%MML%funct_7.html#M2>m2_funct_7</a>,'FuncSequence__2',_). constr_name(<a href=%MML%funct_7.html#K9>k9_funct_7</a>,iter,_). constr_name(<a href=%MML%euler_1.html#K1>k1_euler_1</a>,'Euler',_). constr_name(<a href=%MML%afinsq_1.html#K1>k1_afinsq_1</a>,len__3,_). constr_name(<a href=%MML%afinsq_1.html#K2>k2_afinsq_1</a>,dom__6,_). constr_name(<a href=%MML%afinsq_1.html#K3>k3_afinsq_1</a>,'<%..%>',_). constr_name(<a href=%MML%afinsq_1.html#K4>k4_afinsq_1</a>,'<%>',_). constr_name(<a href=%MML%afinsq_1.html#K5>k5_afinsq_1</a>,'^__10',_). constr_name(<a href=%MML%afinsq_1.html#K6>k6_afinsq_1</a>,'<%..%>__2',_). constr_name(<a href=%MML%afinsq_1.html#K7>k7_afinsq_1</a>,'<%..%>__3',_). constr_name(<a href=%MML%afinsq_1.html#K8>k8_afinsq_1</a>,'<%..%>__4',_). constr_name(<a href=%MML%afinsq_1.html#K9>k9_afinsq_1</a>,'<%..%>__5',_). constr_name(<a href=%MML%afinsq_1.html#K10>k10_afinsq_1</a>,'^omega',_). constr_name(<a href=%MML%afinsq_1.html#K11>k11_afinsq_1</a>,'Replace',_). constr_name(<a href=%MML%sin_cos.html#K1>k1_sin_cos</a>,'CHK',_). constr_name(<a href=%MML%sin_cos.html#K2>k2_sin_cos</a>,'Prod_complex_n',_). constr_name(<a href=%MML%sin_cos.html#K3>k3_sin_cos</a>,'Prod_real_n',_). constr_name(<a href=%MML%sin_cos.html#K4>k4_sin_cos</a>,'!c',_). constr_name(<a href=%MML%sin_cos.html#K5>k5_sin_cos</a>,'!__8',_). constr_name(<a href=%MML%sin_cos.html#K6>k6_sin_cos</a>,'ExpSeq',_). constr_name(<a href=%MML%sin_cos.html#K7>k7_sin_cos</a>,'ExpSeq__2',_). constr_name(<a href=%MML%sin_cos.html#K8>k8_sin_cos</a>,'Coef',_). constr_name(<a href=%MML%sin_cos.html#K9>k9_sin_cos</a>,'Coef_e',_). constr_name(<a href=%MML%sin_cos.html#K10>k10_sin_cos</a>,'Sift',_). constr_name(<a href=%MML%sin_cos.html#K11>k11_sin_cos</a>,'Expan',_). constr_name(<a href=%MML%sin_cos.html#K12>k12_sin_cos</a>,'Expan_e',_). constr_name(<a href=%MML%sin_cos.html#K13>k13_sin_cos</a>,'Alfa',_). constr_name(<a href=%MML%sin_cos.html#K14>k14_sin_cos</a>,'Conj',_). constr_name(<a href=%MML%sin_cos.html#K15>k15_sin_cos</a>,'Conj__2',_). constr_name(<a href=%MML%sin_cos.html#K16>k16_sin_cos</a>,exp__3,_). constr_name(<a href=%MML%sin_cos.html#K17>k17_sin_cos</a>,exp__4,_). constr_name(<a href=%MML%sin_cos.html#K18>k18_sin_cos</a>,sin,_). constr_name(<a href=%MML%sin_cos.html#K19>k19_sin_cos</a>,sin__2,_). constr_name(<a href=%MML%sin_cos.html#K20>k20_sin_cos</a>,sin__3,_). constr_name(<a href=%MML%sin_cos.html#K21>k21_sin_cos</a>,cos,_). constr_name(<a href=%MML%sin_cos.html#K22>k22_sin_cos</a>,cos__2,_). constr_name(<a href=%MML%sin_cos.html#K23>k23_sin_cos</a>,cos__3,_). constr_name(<a href=%MML%sin_cos.html#K24>k24_sin_cos</a>,'P_sin',_). constr_name(<a href=%MML%sin_cos.html#K25>k25_sin_cos</a>,'P_cos',_). constr_name(<a href=%MML%sin_cos.html#K26>k26_sin_cos</a>,exp__5,_). constr_name(<a href=%MML%sin_cos.html#K27>k27_sin_cos</a>,exp__6,_). constr_name(<a href=%MML%sin_cos.html#K28>k28_sin_cos</a>,exp__7,_). constr_name(<a href=%MML%sin_cos.html#K29>k29_sin_cos</a>,'P_dt',_). constr_name(<a href=%MML%sin_cos.html#K30>k30_sin_cos</a>,'P_t',_). constr_name(<a href=%MML%sin_cos.html#K31>k31_sin_cos</a>,'PI',_). constr_name(<a href=%MML%sin_cos.html#K32>k32_sin_cos</a>,'PI__2',_). constr_name(<a href=%MML%sin_cos2.html#K1>k1_sin_cos2</a>,sinh,_). constr_name(<a href=%MML%sin_cos2.html#K2>k2_sin_cos2</a>,sinh__2,_). constr_name(<a href=%MML%sin_cos2.html#K3>k3_sin_cos2</a>,sinh__3,_). constr_name(<a href=%MML%sin_cos2.html#K4>k4_sin_cos2</a>,cosh,_). constr_name(<a href=%MML%sin_cos2.html#K5>k5_sin_cos2</a>,cosh__2,_). constr_name(<a href=%MML%sin_cos2.html#K6>k6_sin_cos2</a>,cosh__3,_). constr_name(<a href=%MML%sin_cos2.html#K7>k7_sin_cos2</a>,tanh,_). constr_name(<a href=%MML%sin_cos2.html#K8>k8_sin_cos2</a>,tanh__2,_). constr_name(<a href=%MML%sin_cos2.html#K9>k9_sin_cos2</a>,tanh__3,_). constr_name(<a href=%MML%sin_cos3.html#K1>k1_sin_cos3</a>,sin_C,_). constr_name(<a href=%MML%sin_cos3.html#K2>k2_sin_cos3</a>,cos_C,_). constr_name(<a href=%MML%sin_cos3.html#K3>k3_sin_cos3</a>,sinh_C,_). constr_name(<a href=%MML%sin_cos3.html#K4>k4_sin_cos3</a>,cosh_C,_). constr_name(<a href=%MML%abian.html#V1>v1_abian</a>,even,_). constr_name(<a href=%MML%abian.html#K1>k1_abian</a>,iter__2,_). constr_name(<a href=%MML%abian.html#R1>r1_abian</a>,is_a_fixpoint_of,_). constr_name(<a href=%MML%abian.html#R2>r2_abian</a>,is_a_fixpoint_of__2,_). constr_name(<a href=%MML%abian.html#R3>r3_abian</a>,has_a_fixpoint,_). constr_name(<a href=%MML%abian.html#V2>v2_abian</a>,covering,_). constr_name(<a href=%MML%abian.html#K2>k2_abian</a>,'=_',_). constr_name(<a href=%MML%struct_0.html#L1>l1_struct_0</a>,'1-sorted',one_sorted_str). constr_name(<a href=%MML%struct_0.html#V1>v1_struct_0</a>,'strict__1-sorted',strict_one_sorted). constr_name(<a href=%MML%struct_0.html#U1>u1_struct_0</a>,carrier,the_carrier). constr_name(<a href=%MML%struct_0.html#G1>g1_struct_0</a>,'1-sorted_constr',one_sorted_str_of). constr_name(<a href=%MML%struct_0.html#L2>l2_struct_0</a>,'ZeroStr',zero_str). constr_name(<a href=%MML%struct_0.html#V2>v2_struct_0</a>,strict__ZeroStr,strict_zero_str). constr_name(<a href=%MML%struct_0.html#U2>u2_struct_0</a>,'Zero',the_zero). constr_name(<a href=%MML%struct_0.html#G2>g2_struct_0</a>,'ZeroStr_constr',zero_str_of). constr_name(<a href=%MML%struct_0.html#V3>v3_struct_0</a>,empty__2,empty_carrier). constr_name(<a href=%MML%struct_0.html#K1>k1_struct_0</a>,'{..}__34',singleton_as_carrier_subset). constr_name(<a href=%MML%struct_0.html#K2>k2_struct_0</a>,'{..}__35',unordered_pair_as_carrier_subset). constr_name(<a href=%MML%struct_0.html#M1>m1_struct_0</a>,'Element__16',element_as_carrier_subset). constr_name(<a href=%MML%incsp_1.html#L1>l1_incsp_1</a>,'IncProjStr',_). constr_name(<a href=%MML%incsp_1.html#V1>v1_incsp_1</a>,strict__IncProjStr,_). constr_name(<a href=%MML%incsp_1.html#U1>u1_incsp_1</a>,'Points',the_Points). constr_name(<a href=%MML%incsp_1.html#U2>u2_incsp_1</a>,'Lines',the_Lines). constr_name(<a href=%MML%incsp_1.html#U3>u3_incsp_1</a>,'Inc',the_Inc). constr_name(<a href=%MML%incsp_1.html#G1>g1_incsp_1</a>,'IncProjStr_constr',_). constr_name(<a href=%MML%incsp_1.html#L2>l2_incsp_1</a>,'IncStruct',_). constr_name(<a href=%MML%incsp_1.html#V2>v2_incsp_1</a>,strict__IncStruct,_). constr_name(<a href=%MML%incsp_1.html#U4>u4_incsp_1</a>,'Planes',the_Planes). constr_name(<a href=%MML%incsp_1.html#U5>u5_incsp_1</a>,'Inc2',the_Inc2). constr_name(<a href=%MML%incsp_1.html#U6>u6_incsp_1</a>,'Inc3',the_Inc3). constr_name(<a href=%MML%incsp_1.html#G2>g2_incsp_1</a>,'IncStruct_constr',_). constr_name(<a href=%MML%incsp_1.html#R1>r1_incsp_1</a>,on,_). constr_name(<a href=%MML%incsp_1.html#R2>r2_incsp_1</a>,on__2,_). constr_name(<a href=%MML%incsp_1.html#R3>r3_incsp_1</a>,on__3,_). constr_name(<a href=%MML%incsp_1.html#R4>r4_incsp_1</a>,on__4,_). constr_name(<a href=%MML%incsp_1.html#R5>r5_incsp_1</a>,on__5,_). constr_name(<a href=%MML%incsp_1.html#V3>v3_incsp_1</a>,linear__2,_). constr_name(<a href=%MML%incsp_1.html#V4>v4_incsp_1</a>,planar,_). constr_name(<a href=%MML%incsp_1.html#V5>v5_incsp_1</a>,'IncSpace-like',_). constr_name(<a href=%MML%incsp_1.html#K1>k1_incsp_1</a>,'Line',_). constr_name(<a href=%MML%incsp_1.html#K2>k2_incsp_1</a>,'Plane',_). constr_name(<a href=%MML%incsp_1.html#K3>k3_incsp_1</a>,'Plane__2',_). constr_name(<a href=%MML%incsp_1.html#K4>k4_incsp_1</a>,'Plane__3',_). constr_name(<a href=%MML%cat_1.html#K1>k1_cat_1</a>,'.-->__3',_). constr_name(<a href=%MML%cat_1.html#L1>l1_cat_1</a>,'CatStr',cat_str). constr_name(<a href=%MML%cat_1.html#V1>v1_cat_1</a>,strict__CatStr,strict_cat_str). constr_name(<a href=%MML%cat_1.html#U1>u1_cat_1</a>,'Objects',the_objects). constr_name(<a href=%MML%cat_1.html#U2>u2_cat_1</a>,'Morphisms',the_morphisms). constr_name(<a href=%MML%cat_1.html#U3>u3_cat_1</a>,'Dom',the_dom__cat). constr_name(<a href=%MML%cat_1.html#U4>u4_cat_1</a>,'Cod',the_cod__cat). constr_name(<a href=%MML%cat_1.html#U5>u5_cat_1</a>,'Comp',the_comp__cat). constr_name(<a href=%MML%cat_1.html#U6>u6_cat_1</a>,'Id',the_id). constr_name(<a href=%MML%cat_1.html#G1>g1_cat_1</a>,'CatStr_constr',cat_str_of). constr_name(<a href=%MML%cat_1.html#K2>k2_cat_1</a>,dom__7,_). constr_name(<a href=%MML%cat_1.html#K3>k3_cat_1</a>,cod,_). constr_name(<a href=%MML%cat_1.html#K4>k4_cat_1</a>,'*__38',_). constr_name(<a href=%MML%cat_1.html#K5>k5_cat_1</a>,id__5,_). constr_name(<a href=%MML%cat_1.html#K6>k6_cat_1</a>,'Hom',_). constr_name(<a href=%MML%cat_1.html#M1>m1_cat_1</a>,'Morphism',_). constr_name(<a href=%MML%cat_1.html#V2>v2_cat_1</a>,'Category-like',category_like). constr_name(<a href=%MML%cat_1.html#K7>k7_cat_1</a>,'1Cat',_). constr_name(<a href=%MML%cat_1.html#V3>v3_cat_1</a>,monic,_). constr_name(<a href=%MML%cat_1.html#V4>v4_cat_1</a>,epi,_). constr_name(<a href=%MML%cat_1.html#V5>v5_cat_1</a>,invertible,_). constr_name(<a href=%MML%cat_1.html#K8>k8_cat_1</a>,'*__39',_). constr_name(<a href=%MML%cat_1.html#K9>k9_cat_1</a>,id__6,_). constr_name(<a href=%MML%cat_1.html#K10>k10_cat_1</a>,'"__17',_). constr_name(<a href=%MML%cat_1.html#V6>v6_cat_1</a>,terminal,_). constr_name(<a href=%MML%cat_1.html#V7>v7_cat_1</a>,initial,_). constr_name(<a href=%MML%cat_1.html#R1>r1_cat_1</a>,are_isomorphic__2,_). constr_name(<a href=%MML%cat_1.html#M2>m2_cat_1</a>,'Functor',cat__functor). constr_name(<a href=%MML%cat_1.html#K11>k11_cat_1</a>,'Obj',_). constr_name(<a href=%MML%cat_1.html#K12>k12_cat_1</a>,'.__36',_). constr_name(<a href=%MML%cat_1.html#K13>k13_cat_1</a>,'*__40',cat__functor_composition). constr_name(<a href=%MML%cat_1.html#K14>k14_cat_1</a>,id__7,_). constr_name(<a href=%MML%cat_1.html#V8>v8_cat_1</a>,isomorphic,_). constr_name(<a href=%MML%cat_1.html#V9>v9_cat_1</a>,full,_). constr_name(<a href=%MML%cat_1.html#V10>v10_cat_1</a>,faithful,_). constr_name(<a href=%MML%cat_1.html#K15>k15_cat_1</a>,hom,_). constr_name(<a href=%MML%net_1.html#L1>l1_net_1</a>,'Net',_). constr_name(<a href=%MML%net_1.html#V1>v1_net_1</a>,strict__Net,_). constr_name(<a href=%MML%net_1.html#U1>u1_net_1</a>,'Places',the_Places). constr_name(<a href=%MML%net_1.html#U2>u2_net_1</a>,'Transitions',the_Transitions). constr_name(<a href=%MML%net_1.html#U3>u3_net_1</a>,'Flow',the_Flow). constr_name(<a href=%MML%net_1.html#G1>g1_net_1</a>,'Net_constr',_). constr_name(<a href=%MML%net_1.html#V2>v2_net_1</a>,'Petri',_). constr_name(<a href=%MML%net_1.html#K1>k1_net_1</a>,'Elements',_). constr_name(<a href=%MML%net_1.html#R1>r1_net_1</a>,pre,_). constr_name(<a href=%MML%net_1.html#R2>r2_net_1</a>,post,_). constr_name(<a href=%MML%net_1.html#K2>k2_net_1</a>,'Pre',_). constr_name(<a href=%MML%net_1.html#K3>k3_net_1</a>,'Post',_). constr_name(<a href=%MML%net_1.html#K4>k4_net_1</a>,enter,_). constr_name(<a href=%MML%net_1.html#K5>k5_net_1</a>,exit,_). constr_name(<a href=%MML%net_1.html#K6>k6_net_1</a>,field__2,_). constr_name(<a href=%MML%net_1.html#K7>k7_net_1</a>,'Prec',_). constr_name(<a href=%MML%net_1.html#K8>k8_net_1</a>,'Postc',_). constr_name(<a href=%MML%net_1.html#K9>k9_net_1</a>,'Entr',_). constr_name(<a href=%MML%net_1.html#K10>k10_net_1</a>,'Ext',_). constr_name(<a href=%MML%net_1.html#K11>k11_net_1</a>,'Input',_). constr_name(<a href=%MML%net_1.html#K12>k12_net_1</a>,'Output',_). constr_name(<a href=%MML%graph_1.html#L1>l1_graph_1</a>,'MultiGraphStruct',_). constr_name(<a href=%MML%graph_1.html#V1>v1_graph_1</a>,strict__MultiGraphStruct,_). constr_name(<a href=%MML%graph_1.html#U1>u1_graph_1</a>,'Vertices',the_Vertices). constr_name(<a href=%MML%graph_1.html#U2>u2_graph_1</a>,'Edges',the_Edges). constr_name(<a href=%MML%graph_1.html#U3>u3_graph_1</a>,'Source',the_Source). constr_name(<a href=%MML%graph_1.html#U4>u4_graph_1</a>,'Target',the_Target). constr_name(<a href=%MML%graph_1.html#G1>g1_graph_1</a>,'MultiGraphStruct_constr',_). constr_name(<a href=%MML%graph_1.html#V2>v2_graph_1</a>,'Graph-like',_). constr_name(<a href=%MML%graph_1.html#K1>k1_graph_1</a>,'\\/__12',_). constr_name(<a href=%MML%graph_1.html#R1>r1_graph_1</a>,is_sum_of,_). constr_name(<a href=%MML%graph_1.html#V3>v3_graph_1</a>,oriented,_). constr_name(<a href=%MML%graph_1.html#V4>v4_graph_1</a>,'non-multi',_). constr_name(<a href=%MML%graph_1.html#V5>v5_graph_1</a>,simple,_). constr_name(<a href=%MML%graph_1.html#V6>v6_graph_1</a>,connected__2,_). constr_name(<a href=%MML%graph_1.html#V7>v7_graph_1</a>,finite__2,_). constr_name(<a href=%MML%graph_1.html#R2>r2_graph_1</a>,joins,_). constr_name(<a href=%MML%graph_1.html#R3>r3_graph_1</a>,are_incydent,_). constr_name(<a href=%MML%graph_1.html#M1>m1_graph_1</a>,'Chain__2',_). constr_name(<a href=%MML%graph_1.html#M2>m2_graph_1</a>,'Chain__3',_). constr_name(<a href=%MML%graph_1.html#V8>v8_graph_1</a>,oriented__2,_). constr_name(<a href=%MML%graph_1.html#V9>v9_graph_1</a>,'one-to-one__2',_). constr_name(<a href=%MML%graph_1.html#V10>v10_graph_1</a>,cyclic,_). constr_name(<a href=%MML%graph_1.html#M3>m3_graph_1</a>,'Subgraph',_). constr_name(<a href=%MML%graph_1.html#K2>k2_graph_1</a>,'VerticesCount',_). constr_name(<a href=%MML%graph_1.html#K3>k3_graph_1</a>,'EdgesCount',_). constr_name(<a href=%MML%graph_1.html#K4>k4_graph_1</a>,'EdgesIn',_). constr_name(<a href=%MML%graph_1.html#K5>k5_graph_1</a>,'EdgesOut',_). constr_name(<a href=%MML%graph_1.html#K6>k6_graph_1</a>,'Degree',_). constr_name(<a href=%MML%graph_1.html#R4>r4_graph_1</a>,'c=__4',_). constr_name(<a href=%MML%graph_1.html#K7>k7_graph_1</a>,bool__6,_). constr_name(<a href=%MML%lattices.html#L1>l1_lattices</a>,'/\\-SemiLattStr',meet_semilatt_str). constr_name(<a href=%MML%lattices.html#V1>v1_lattices</a>,'strict__/\\-SemiLattStr',strict_meet_semilatt_str). constr_name(<a href=%MML%lattices.html#U1>u1_lattices</a>,'L_meet',the_L_meet). constr_name(<a href=%MML%lattices.html#G1>g1_lattices</a>,'/\\-SemiLattStr_constr',meet_semilatt_str_of). constr_name(<a href=%MML%lattices.html#L2>l2_lattices</a>,'\\/-SemiLattStr',join_semilatt_str). constr_name(<a href=%MML%lattices.html#V2>v2_lattices</a>,'strict__\\/-SemiLattStr',strict_join_semilatt_str). constr_name(<a href=%MML%lattices.html#U2>u2_lattices</a>,'L_join',the_L_join). constr_name(<a href=%MML%lattices.html#G2>g2_lattices</a>,'\\/-SemiLattStr_constr',join_semilatt_str_of). constr_name(<a href=%MML%lattices.html#L3>l3_lattices</a>,'LattStr',latt_str). constr_name(<a href=%MML%lattices.html#V3>v3_lattices</a>,strict__LattStr,strict_latt_str). constr_name(<a href=%MML%lattices.html#G3>g3_lattices</a>,'LattStr_constr',latt_str_of). constr_name(<a href=%MML%lattices.html#K1>k1_lattices</a>,'"\\/"__2',join). constr_name(<a href=%MML%lattices.html#K2>k2_lattices</a>,'"/\\"',meet). constr_name(<a href=%MML%lattices.html#R1>r1_lattices</a>,'[=__2',below). constr_name(<a href=%MML%lattices.html#V4>v4_lattices</a>,'join-commutative',join_commutative). constr_name(<a href=%MML%lattices.html#V5>v5_lattices</a>,'join-associative',join_associative). constr_name(<a href=%MML%lattices.html#V6>v6_lattices</a>,'meet-commutative',meet_commutative). constr_name(<a href=%MML%lattices.html#V7>v7_lattices</a>,'meet-associative',meet_associative). constr_name(<a href=%MML%lattices.html#V8>v8_lattices</a>,'meet-absorbing',meet_absorbing). constr_name(<a href=%MML%lattices.html#V9>v9_lattices</a>,'join-absorbing',join_absorbing). constr_name(<a href=%MML%lattices.html#V10>v10_lattices</a>,'Lattice-like',lattice). constr_name(<a href=%MML%lattices.html#K3>k3_lattices</a>,'"\\/"__3',join_commut). constr_name(<a href=%MML%lattices.html#K4>k4_lattices</a>,'"/\\"__2',meet_commut). constr_name(<a href=%MML%lattices.html#V11>v11_lattices</a>,distributive,distributive_lattstr). constr_name(<a href=%MML%lattices.html#V12>v12_lattices</a>,modular,modular_lattstr). constr_name(<a href=%MML%lattices.html#V13>v13_lattices</a>,'lower-bounded',lower_bounded_semilattstr). constr_name(<a href=%MML%lattices.html#V14>v14_lattices</a>,'upper-bounded',upper_bounded_semilattstr). constr_name(<a href=%MML%lattices.html#V15>v15_lattices</a>,bounded__6,bounded_lattstr). constr_name(<a href=%MML%lattices.html#K5>k5_lattices</a>,'Bottom',bottom_of_semilattstr). constr_name(<a href=%MML%lattices.html#K6>k6_lattices</a>,'Top',top_of_semilattstr). constr_name(<a href=%MML%lattices.html#R2>r2_lattices</a>,is_a_complement_of,is_a_complement_on_lattstr). constr_name(<a href=%MML%lattices.html#V16>v16_lattices</a>,complemented,complemented_lattstr). constr_name(<a href=%MML%lattices.html#V17>v17_lattices</a>,'Boolean',boolean_lattstr). constr_name(<a href=%MML%lattices.html#R3>r3_lattices</a>,'[=__3',below_refl). constr_name(<a href=%MML%lattices.html#K7>k7_lattices</a>,'`__2',complement_on_lattice). constr_name(<a href=%MML%pre_topc.html#L1>l1_pre_topc</a>,'TopStruct',top_str). constr_name(<a href=%MML%pre_topc.html#V1>v1_pre_topc</a>,strict__TopStruct,strict_top_str). constr_name(<a href=%MML%pre_topc.html#U1>u1_pre_topc</a>,topology,the_topology). constr_name(<a href=%MML%pre_topc.html#G1>g1_pre_topc</a>,'TopStruct_constr',top_str_of). constr_name(<a href=%MML%pre_topc.html#V2>v2_pre_topc</a>,'TopSpace-like',topological_space). constr_name(<a href=%MML%pre_topc.html#K1>k1_pre_topc</a>,'{}__5',_). constr_name(<a href=%MML%pre_topc.html#K2>k2_pre_topc</a>,'[#]__4',_). constr_name(<a href=%MML%pre_topc.html#V3>v3_pre_topc</a>,open__2,open_subset). constr_name(<a href=%MML%pre_topc.html#V4>v4_pre_topc</a>,closed__4,closed_subset). constr_name(<a href=%MML%pre_topc.html#R1>r1_pre_topc</a>,is_a_cover_of,is_a_cover_of_carrier). constr_name(<a href=%MML%pre_topc.html#M1>m1_pre_topc</a>,'SubSpace',_). constr_name(<a href=%MML%pre_topc.html#K3>k3_pre_topc</a>,'|__15',_). constr_name(<a href=%MML%pre_topc.html#K4>k4_pre_topc</a>,'.:__10',_). constr_name(<a href=%MML%pre_topc.html#K5>k5_pre_topc</a>,'"__18',_). constr_name(<a href=%MML%pre_topc.html#V5>v5_pre_topc</a>,continuous__2,_). constr_name(<a href=%MML%pre_topc.html#K6>k6_pre_topc</a>,'Cl',_). constr_name(<a href=%MML%tops_1.html#K1>k1_tops_1</a>,'Int',_). constr_name(<a href=%MML%tops_1.html#K2>k2_tops_1</a>,'Fr',_). constr_name(<a href=%MML%tops_1.html#V1>v1_tops_1</a>,dense,_). constr_name(<a href=%MML%tops_1.html#V2>v2_tops_1</a>,boundary,_). constr_name(<a href=%MML%tops_1.html#V3>v3_tops_1</a>,nowhere_dense,_). constr_name(<a href=%MML%tops_1.html#V4>v4_tops_1</a>,condensed,_). constr_name(<a href=%MML%tops_1.html#V5>v5_tops_1</a>,closed_condensed,_). constr_name(<a href=%MML%tops_1.html#V6>v6_tops_1</a>,open_condensed,_). constr_name(<a href=%MML%connsp_1.html#R1>r1_connsp_1</a>,are_separated,_). constr_name(<a href=%MML%connsp_1.html#V1>v1_connsp_1</a>,connected__3,_). constr_name(<a href=%MML%connsp_1.html#V2>v2_connsp_1</a>,connected__4,_). constr_name(<a href=%MML%connsp_1.html#R2>r2_connsp_1</a>,are_joined,_). constr_name(<a href=%MML%connsp_1.html#R3>r3_connsp_1</a>,is_a_component_of,_). constr_name(<a href=%MML%connsp_1.html#R4>r4_connsp_1</a>,is_a_component_of__2,_). constr_name(<a href=%MML%connsp_1.html#K1>k1_connsp_1</a>,skl,_). constr_name(<a href=%MML%tops_2.html#V1>v1_tops_2</a>,open__3,_). constr_name(<a href=%MML%tops_2.html#V2>v2_tops_2</a>,closed__5,_). constr_name(<a href=%MML%tops_2.html#K1>k1_tops_2</a>,'|__16',_). constr_name(<a href=%MML%tops_2.html#K2>k2_tops_2</a>,'/"__3',_). constr_name(<a href=%MML%tops_2.html#V3>v3_tops_2</a>,being_homeomorphism,_). constr_name(<a href=%MML%rlvect_1.html#L1>l1_rlvect_1</a>,'LoopStr',loop_str). constr_name(<a href=%MML%rlvect_1.html#V1>v1_rlvect_1</a>,strict__LoopStr,strict_loop_str). constr_name(<a href=%MML%rlvect_1.html#U1>u1_rlvect_1</a>,add,the_add). constr_name(<a href=%MML%rlvect_1.html#G1>g1_rlvect_1</a>,'LoopStr_constr',loop_str_of). constr_name(<a href=%MML%rlvect_1.html#L2>l2_rlvect_1</a>,'RLSStruct',rls_str). constr_name(<a href=%MML%rlvect_1.html#V2>v2_rlvect_1</a>,strict__RLSStruct,strict_rls_str). constr_name(<a href=%MML%rlvect_1.html#U2>u2_rlvect_1</a>,'Mult',the_Mult). constr_name(<a href=%MML%rlvect_1.html#G2>g2_rlvect_1</a>,'RLSStruct_constr',rls_str_of). constr_name(<a href=%MML%rlvect_1.html#R1>r1_rlvect_1</a>,in__3,in_carrier). constr_name(<a href=%MML%rlvect_1.html#K1>k1_rlvect_1</a>,'0.__2',the_zero__1). constr_name(<a href=%MML%rlvect_1.html#K2>k2_rlvect_1</a>,'+__29',loop_str_plus). constr_name(<a href=%MML%rlvect_1.html#K3>k3_rlvect_1</a>,'*__41',loop_str_multiply). constr_name(<a href=%MML%rlvect_1.html#V3>v3_rlvect_1</a>,'Abelian',abelian). constr_name(<a href=%MML%rlvect_1.html#V4>v4_rlvect_1</a>,'add-associative',add_associative). constr_name(<a href=%MML%rlvect_1.html#V5>v5_rlvect_1</a>,right_zeroed,right_zeroed). constr_name(<a href=%MML%rlvect_1.html#V6>v6_rlvect_1</a>,right_complementable,right_complementable). constr_name(<a href=%MML%rlvect_1.html#V7>v7_rlvect_1</a>,'RealLinearSpace-like',rls_like). constr_name(<a href=%MML%rlvect_1.html#K4>k4_rlvect_1</a>,'+__30',abelian_loop_str_plus). constr_name(<a href=%MML%rlvect_1.html#K5>k5_rlvect_1</a>,'-__42',loop_str_inverse_el). constr_name(<a href=%MML%rlvect_1.html#K6>k6_rlvect_1</a>,'-__43',loop_str_minus). constr_name(<a href=%MML%rlvect_1.html#K7>k7_rlvect_1</a>,'<*..*>__10',carrier_finsequence2). constr_name(<a href=%MML%rlvect_1.html#K8>k8_rlvect_1</a>,'<*..*>__11',carrier_finsequence3). constr_name(<a href=%MML%rlvect_1.html#K9>k9_rlvect_1</a>,'Sum__7',loop_str_sum). constr_name(<a href=%MML%rlvect_1.html#V8>v8_rlvect_1</a>,'non-zero__2',zero_str_nonzero). constr_name(<a href=%MML%rlsub_1.html#V1>v1_rlsub_1</a>,'lineary-closed',_). constr_name(<a href=%MML%rlsub_1.html#M1>m1_rlsub_1</a>,'Subspace',_). constr_name(<a href=%MML%rlsub_1.html#K1>k1_rlsub_1</a>,'(0).',_). constr_name(<a href=%MML%rlsub_1.html#K2>k2_rlsub_1</a>,'(Omega).',_). constr_name(<a href=%MML%rlsub_1.html#K3>k3_rlsub_1</a>,'+__31',_). constr_name(<a href=%MML%rlsub_1.html#M2>m2_rlsub_1</a>,'Coset',_). constr_name(<a href=%MML%group_1.html#L1>l1_group_1</a>,'HGrStr',_). constr_name(<a href=%MML%group_1.html#V1>v1_group_1</a>,strict__HGrStr,_). constr_name(<a href=%MML%group_1.html#U1>u1_group_1</a>,mult,the_mult). constr_name(<a href=%MML%group_1.html#G1>g1_group_1</a>,'HGrStr_constr',_). constr_name(<a href=%MML%group_1.html#K1>k1_group_1</a>,'*__42',_). constr_name(<a href=%MML%group_1.html#V2>v2_group_1</a>,unital,_). constr_name(<a href=%MML%group_1.html#V3>v3_group_1</a>,'Group-like',_). constr_name(<a href=%MML%group_1.html#V4>v4_group_1</a>,associative__2,_). constr_name(<a href=%MML%group_1.html#K2>k2_group_1</a>,'1.__2',_). constr_name(<a href=%MML%group_1.html#K3>k3_group_1</a>,'"__19',_). constr_name(<a href=%MML%group_1.html#K4>k4_group_1</a>,inverse_op,_). constr_name(<a href=%MML%group_1.html#K5>k5_group_1</a>,power,_). constr_name(<a href=%MML%group_1.html#K6>k6_group_1</a>,'|^__5',_). constr_name(<a href=%MML%group_1.html#V5>v5_group_1</a>,being_of_order_0,_). constr_name(<a href=%MML%group_1.html#K7>k7_group_1</a>,ord,_). constr_name(<a href=%MML%group_1.html#K8>k8_group_1</a>,'Ord',_). constr_name(<a href=%MML%group_1.html#V6>v6_group_1</a>,finite__3,_). constr_name(<a href=%MML%group_1.html#K9>k9_group_1</a>,ord__2,_). constr_name(<a href=%MML%group_1.html#V7>v7_group_1</a>,commutative__2,_). constr_name(<a href=%MML%group_1.html#K10>k10_group_1</a>,'*__43',_). constr_name(<a href=%MML%vectsp_1.html#K1>k1_vectsp_1</a>,'G_Real',_). constr_name(<a href=%MML%vectsp_1.html#L1>l1_vectsp_1</a>,multLoopStr,_). constr_name(<a href=%MML%vectsp_1.html#V1>v1_vectsp_1</a>,strict__multLoopStr,_). constr_name(<a href=%MML%vectsp_1.html#U1>u1_vectsp_1</a>,unity,the_unity). constr_name(<a href=%MML%vectsp_1.html#G1>g1_vectsp_1</a>,multLoopStr_constr,_). constr_name(<a href=%MML%vectsp_1.html#K2>k2_vectsp_1</a>,'1_',_). constr_name(<a href=%MML%vectsp_1.html#L2>l2_vectsp_1</a>,multLoopStr_0,_). constr_name(<a href=%MML%vectsp_1.html#V2>v2_vectsp_1</a>,strict__multLoopStr_0,_). constr_name(<a href=%MML%vectsp_1.html#G2>g2_vectsp_1</a>,multLoopStr_0_constr,_). constr_name(<a href=%MML%vectsp_1.html#L3>l3_vectsp_1</a>,doubleLoopStr,_). constr_name(<a href=%MML%vectsp_1.html#V3>v3_vectsp_1</a>,strict__doubleLoopStr,_). constr_name(<a href=%MML%vectsp_1.html#G3>g3_vectsp_1</a>,doubleLoopStr_constr,_). constr_name(<a href=%MML%vectsp_1.html#V4>v4_vectsp_1</a>,'right-distributive',_). constr_name(<a href=%MML%vectsp_1.html#V5>v5_vectsp_1</a>,'left-distributive',_). constr_name(<a href=%MML%vectsp_1.html#V6>v6_vectsp_1</a>,right_unital,_). constr_name(<a href=%MML%vectsp_1.html#K3>k3_vectsp_1</a>,'F_Real',_). constr_name(<a href=%MML%vectsp_1.html#V7>v7_vectsp_1</a>,distributive__2,_). constr_name(<a href=%MML%vectsp_1.html#V8>v8_vectsp_1</a>,left_unital,_). constr_name(<a href=%MML%vectsp_1.html#V9>v9_vectsp_1</a>,'Field-like',_). constr_name(<a href=%MML%vectsp_1.html#V10>v10_vectsp_1</a>,degenerated,_). constr_name(<a href=%MML%vectsp_1.html#K4>k4_vectsp_1</a>,'"__20',_). constr_name(<a href=%MML%vectsp_1.html#K5>k5_vectsp_1</a>,'/__18',_). constr_name(<a href=%MML%vectsp_1.html#L4>l4_vectsp_1</a>,'VectSpStr',_). constr_name(<a href=%MML%vectsp_1.html#V11>v11_vectsp_1</a>,strict__VectSpStr,_). constr_name(<a href=%MML%vectsp_1.html#U2>u2_vectsp_1</a>,lmult,the_lmult). constr_name(<a href=%MML%vectsp_1.html#G4>g4_vectsp_1</a>,'VectSpStr_constr',_). constr_name(<a href=%MML%vectsp_1.html#K6>k6_vectsp_1</a>,'*__44',_). constr_name(<a href=%MML%vectsp_1.html#K7>k7_vectsp_1</a>,comp,_). constr_name(<a href=%MML%vectsp_1.html#V12>v12_vectsp_1</a>,'VectSp-like',_). constr_name(<a href=%MML%vectsp_1.html#V13>v13_vectsp_1</a>,'Fanoian',_). constr_name(<a href=%MML%parsp_1.html#K1>k1_parsp_1</a>,c3add,_). constr_name(<a href=%MML%parsp_1.html#K2>k2_parsp_1</a>,'+__32',_). constr_name(<a href=%MML%parsp_1.html#K3>k3_parsp_1</a>,c3compl,_). constr_name(<a href=%MML%parsp_1.html#K4>k4_parsp_1</a>,'-__44',_). constr_name(<a href=%MML%parsp_1.html#M1>m1_parsp_1</a>,'Relation4',_). constr_name(<a href=%MML%parsp_1.html#L1>l1_parsp_1</a>,'ParStr',_). constr_name(<a href=%MML%parsp_1.html#V1>v1_parsp_1</a>,strict__ParStr,_). constr_name(<a href=%MML%parsp_1.html#U1>u1_parsp_1</a>,'4_arg_relation',the_4_arg_relation). constr_name(<a href=%MML%parsp_1.html#G1>g1_parsp_1</a>,'ParStr_constr',_). constr_name(<a href=%MML%parsp_1.html#R1>r1_parsp_1</a>,''||'',_). constr_name(<a href=%MML%parsp_1.html#K5>k5_parsp_1</a>,'C3',_). constr_name(<a href=%MML%parsp_1.html#K6>k6_parsp_1</a>,'4C3',_). constr_name(<a href=%MML%parsp_1.html#K7>k7_parsp_1</a>,'PRs',_). constr_name(<a href=%MML%parsp_1.html#K8>k8_parsp_1</a>,'PR',_). constr_name(<a href=%MML%parsp_1.html#K9>k9_parsp_1</a>,'MPS',_). constr_name(<a href=%MML%parsp_1.html#V2>v2_parsp_1</a>,'ParSp-like',_). constr_name(<a href=%MML%symsp_1.html#L1>l1_symsp_1</a>,'SymStr',_). constr_name(<a href=%MML%symsp_1.html#V1>v1_symsp_1</a>,strict__SymStr,_). constr_name(<a href=%MML%symsp_1.html#U1>u1_symsp_1</a>,'2_arg_relation',the_2_arg_relation). constr_name(<a href=%MML%symsp_1.html#G1>g1_symsp_1</a>,'SymStr_constr',_). constr_name(<a href=%MML%symsp_1.html#R1>r1_symsp_1</a>,'_|_',_). constr_name(<a href=%MML%symsp_1.html#V2>v2_symsp_1</a>,'SymSp-like',_). constr_name(<a href=%MML%symsp_1.html#K1>k1_symsp_1</a>,'ProJ',_). constr_name(<a href=%MML%symsp_1.html#K2>k2_symsp_1</a>,'PProJ',_). constr_name(<a href=%MML%ortsp_1.html#V1>v1_ortsp_1</a>,'OrtSp-like',_). constr_name(<a href=%MML%ortsp_1.html#K1>k1_ortsp_1</a>,'ProJ__2',_). constr_name(<a href=%MML%ortsp_1.html#K2>k2_ortsp_1</a>,'PProJ__2',_). constr_name(<a href=%MML%compts_1.html#R1>r1_compts_1</a>,is_a_cover_of__2,is_a_cover_of_set). constr_name(<a href=%MML%compts_1.html#V1>v1_compts_1</a>,centered,centered). constr_name(<a href=%MML%compts_1.html#V2>v2_compts_1</a>,compact__3,compact_top_space). constr_name(<a href=%MML%compts_1.html#V3>v3_compts_1</a>,being_T2,top_space_T2). constr_name(<a href=%MML%compts_1.html#V4>v4_compts_1</a>,being_T3,top_space_T3). constr_name(<a href=%MML%compts_1.html#V5>v5_compts_1</a>,being_T4,top_space_T4). constr_name(<a href=%MML%compts_1.html#V6>v6_compts_1</a>,compact__4,compact). constr_name(<a href=%MML%orders_2.html#L1>l1_orders_2</a>,'RelStr',rel_str). constr_name(<a href=%MML%orders_2.html#V1>v1_orders_2</a>,strict__RelStr,strict_rel_str). constr_name(<a href=%MML%orders_2.html#U1>u1_orders_2</a>,'InternalRel',the_InternalRel). constr_name(<a href=%MML%orders_2.html#G1>g1_orders_2</a>,'RelStr_constr',rel_str_of). constr_name(<a href=%MML%orders_2.html#V2>v2_orders_2</a>,reflexive__2,reflexive_relstr). constr_name(<a href=%MML%orders_2.html#V3>v3_orders_2</a>,transitive__2,transitive_relstr). constr_name(<a href=%MML%orders_2.html#V4>v4_orders_2</a>,antisymmetric__2,antisymmetric_relstr). constr_name(<a href=%MML%orders_2.html#R1>r1_orders_2</a>,'<=__2',related). constr_name(<a href=%MML%orders_2.html#R2>r2_orders_2</a>,'<',related_nonequal). constr_name(<a href=%MML%orders_2.html#R3>r3_orders_2</a>,'<=__3',related_reflexive). constr_name(<a href=%MML%orders_2.html#V5>v5_orders_2</a>,strongly_connected__2,strongly_connected_rel_subset). constr_name(<a href=%MML%orders_2.html#K1>k1_orders_2</a>,'UpperCone',upper_cone). constr_name(<a href=%MML%orders_2.html#K2>k2_orders_2</a>,'LowerCone',lower_cone). constr_name(<a href=%MML%orders_2.html#K3>k3_orders_2</a>,'InitSegm',_). constr_name(<a href=%MML%orders_2.html#M1>m1_orders_2</a>,'Initial_Segm',_). constr_name(<a href=%MML%orders_2.html#M2>m2_orders_2</a>,'Chain__4',_). constr_name(<a href=%MML%orders_2.html#K4>k4_orders_2</a>,'Chains',_). constr_name(<a href=%MML%rlsub_2.html#K1>k1_rlsub_2</a>,'+__33',_). constr_name(<a href=%MML%rlsub_2.html#K2>k2_rlsub_2</a>,'/\\__12',_). constr_name(<a href=%MML%rlsub_2.html#K3>k3_rlsub_2</a>,'Subspaces',_). constr_name(<a href=%MML%rlsub_2.html#R1>r1_rlsub_2</a>,is_the_direct_sum_of,_). constr_name(<a href=%MML%rlsub_2.html#M1>m1_rlsub_2</a>,'Linear_Compl',_). constr_name(<a href=%MML%rlsub_2.html#K4>k4_rlsub_2</a>,'|--__2',_). constr_name(<a href=%MML%rlsub_2.html#K5>k5_rlsub_2</a>,'SubJoin',_). constr_name(<a href=%MML%rlsub_2.html#K6>k6_rlsub_2</a>,'SubMeet',_). constr_name(<a href=%MML%midsp_1.html#L1>l1_midsp_1</a>,'MidStr',_). constr_name(<a href=%MML%midsp_1.html#V1>v1_midsp_1</a>,strict__MidStr,_). constr_name(<a href=%MML%midsp_1.html#U1>u1_midsp_1</a>,'MIDPOINT',the_MIDPOINT). constr_name(<a href=%MML%midsp_1.html#G1>g1_midsp_1</a>,'MidStr_constr',_). constr_name(<a href=%MML%midsp_1.html#K1>k1_midsp_1</a>,'@__4',_). constr_name(<a href=%MML%midsp_1.html#K2>k2_midsp_1</a>,op2,_). constr_name(<a href=%MML%midsp_1.html#K3>k3_midsp_1</a>,'Example',_). constr_name(<a href=%MML%midsp_1.html#V2>v2_midsp_1</a>,'MidSp-like',_). constr_name(<a href=%MML%midsp_1.html#K4>k4_midsp_1</a>,'@__5',_). constr_name(<a href=%MML%midsp_1.html#R1>r1_midsp_1</a>,'@@',_). constr_name(<a href=%MML%midsp_1.html#K5>k5_midsp_1</a>,'`1__12',_). constr_name(<a href=%MML%midsp_1.html#K6>k6_midsp_1</a>,'`2__12',_). constr_name(<a href=%MML%midsp_1.html#R2>r2_midsp_1</a>,'##',_). constr_name(<a href=%MML%midsp_1.html#K7>k7_midsp_1</a>,'[..]__13',_). constr_name(<a href=%MML%midsp_1.html#K8>k8_midsp_1</a>,'~__6',_). constr_name(<a href=%MML%midsp_1.html#M1>m1_midsp_1</a>,'Vector',_). constr_name(<a href=%MML%midsp_1.html#K9>k9_midsp_1</a>,'~__7',_). constr_name(<a href=%MML%midsp_1.html#K10>k10_midsp_1</a>,'ID',_). constr_name(<a href=%MML%midsp_1.html#K11>k11_midsp_1</a>,'+__34',_). constr_name(<a href=%MML%midsp_1.html#K12>k12_midsp_1</a>,vect,_). constr_name(<a href=%MML%midsp_1.html#K13>k13_midsp_1</a>,'-__45',_). constr_name(<a href=%MML%midsp_1.html#K14>k14_midsp_1</a>,setvect,_). constr_name(<a href=%MML%midsp_1.html#K15>k15_midsp_1</a>,'+__35',_). constr_name(<a href=%MML%midsp_1.html#K16>k16_midsp_1</a>,addvect,_). constr_name(<a href=%MML%midsp_1.html#K17>k17_midsp_1</a>,complvect,_). constr_name(<a href=%MML%midsp_1.html#K18>k18_midsp_1</a>,zerovect,_). constr_name(<a href=%MML%midsp_1.html#K19>k19_midsp_1</a>,vectgroup,_). constr_name(<a href=%MML%qmax_1.html#K1>k1_qmax_1</a>,'Probabilities',_). constr_name(<a href=%MML%qmax_1.html#L1>l1_qmax_1</a>,'QM_Str',_). constr_name(<a href=%MML%qmax_1.html#V1>v1_qmax_1</a>,strict__QM_Str,_). constr_name(<a href=%MML%qmax_1.html#U1>u1_qmax_1</a>,'Observables',the_Observables). constr_name(<a href=%MML%qmax_1.html#U2>u2_qmax_1</a>,'States',the_States). constr_name(<a href=%MML%qmax_1.html#U3>u3_qmax_1</a>,'Quantum_Probability',the_Quantum_Probability). constr_name(<a href=%MML%qmax_1.html#G1>g1_qmax_1</a>,'QM_Str_constr',_). constr_name(<a href=%MML%qmax_1.html#K2>k2_qmax_1</a>,'Obs',_). constr_name(<a href=%MML%qmax_1.html#K3>k3_qmax_1</a>,'Sts',_). constr_name(<a href=%MML%qmax_1.html#K4>k4_qmax_1</a>,'Meas',_). constr_name(<a href=%MML%qmax_1.html#V2>v2_qmax_1</a>,'Quantum_Mechanics-like',_). constr_name(<a href=%MML%qmax_1.html#L2>l2_qmax_1</a>,'POI_Str',_). constr_name(<a href=%MML%qmax_1.html#V3>v3_qmax_1</a>,strict__POI_Str,_). constr_name(<a href=%MML%qmax_1.html#U4>u4_qmax_1</a>,'Ordering',the_Ordering). constr_name(<a href=%MML%qmax_1.html#U5>u5_qmax_1</a>,'Involution',the_Involution). constr_name(<a href=%MML%qmax_1.html#G2>g2_qmax_1</a>,'POI_Str_constr',_). constr_name(<a href=%MML%qmax_1.html#R1>r1_qmax_1</a>,is_an_involution_in,_). constr_name(<a href=%MML%qmax_1.html#R2>r2_qmax_1</a>,is_a_Quantuum_Logic_on,_). constr_name(<a href=%MML%qmax_1.html#K5>k5_qmax_1</a>,'Prop',_). constr_name(<a href=%MML%qmax_1.html#K6>k6_qmax_1</a>,'`1__13',_). constr_name(<a href=%MML%qmax_1.html#K7>k7_qmax_1</a>,'`2__13',_). constr_name(<a href=%MML%qmax_1.html#K8>k8_qmax_1</a>,''not'__10',_). constr_name(<a href=%MML%qmax_1.html#R3>r3_qmax_1</a>,'|-__5',_). constr_name(<a href=%MML%qmax_1.html#R4>r4_qmax_1</a>,'<==>__3',_). constr_name(<a href=%MML%qmax_1.html#K9>k9_qmax_1</a>,'PropRel',_). constr_name(<a href=%MML%qmax_1.html#K10>k10_qmax_1</a>,'OrdRel',_). constr_name(<a href=%MML%qmax_1.html#K11>k11_qmax_1</a>,'InvRel',_). constr_name(<a href=%MML%parsp_2.html#V1>v1_parsp_2</a>,'FanodesSp-like',_). constr_name(<a href=%MML%parsp_2.html#R1>r1_parsp_2</a>,is_collinear,_). constr_name(<a href=%MML%parsp_2.html#R2>r2_parsp_2</a>,parallelogram,_). constr_name(<a href=%MML%parsp_2.html#R3>r3_parsp_2</a>,congr,_). constr_name(<a href=%MML%funcsdom.html#K1>k1_funcsdom</a>,'.__37',_). constr_name(<a href=%MML%funcsdom.html#K2>k2_funcsdom</a>,'.__38',_). constr_name(<a href=%MML%funcsdom.html#K3>k3_funcsdom</a>,'@__6',_). constr_name(<a href=%MML%funcsdom.html#K4>k4_funcsdom</a>,'.:__11',_). constr_name(<a href=%MML%funcsdom.html#K5>k5_funcsdom</a>,'[;]__4',_). constr_name(<a href=%MML%funcsdom.html#K6>k6_funcsdom</a>,'RealFuncAdd',_). constr_name(<a href=%MML%funcsdom.html#K7>k7_funcsdom</a>,'RealFuncMult',_). constr_name(<a href=%MML%funcsdom.html#K8>k8_funcsdom</a>,'RealFuncExtMult',_). constr_name(<a href=%MML%funcsdom.html#K9>k9_funcsdom</a>,'RealFuncZero',_). constr_name(<a href=%MML%funcsdom.html#K10>k10_funcsdom</a>,'RealFuncUnit',_). constr_name(<a href=%MML%funcsdom.html#K11>k11_funcsdom</a>,'RealVectSpace',_). constr_name(<a href=%MML%funcsdom.html#K12>k12_funcsdom</a>,'RRing',_). constr_name(<a href=%MML%funcsdom.html#L1>l1_funcsdom</a>,'AlgebraStr',_). constr_name(<a href=%MML%funcsdom.html#V1>v1_funcsdom</a>,strict__AlgebraStr,_). constr_name(<a href=%MML%funcsdom.html#G1>g1_funcsdom</a>,'AlgebraStr_constr',_). constr_name(<a href=%MML%funcsdom.html#K13>k13_funcsdom</a>,'RAlgebra',_). constr_name(<a href=%MML%funcsdom.html#V2>v2_funcsdom</a>,'Algebra-like',_). constr_name(<a href=%MML%rlvect_2.html#K1>k1_rlvect_2</a>,vector,_). constr_name(<a href=%MML%rlvect_2.html#K2>k2_rlvect_2</a>,'\\/__13',_). constr_name(<a href=%MML%rlvect_2.html#K3>k3_rlvect_2</a>,'/\\__13',_). constr_name(<a href=%MML%rlvect_2.html#K4>k4_rlvect_2</a>,'\\__12',_). constr_name(<a href=%MML%rlvect_2.html#K5>k5_rlvect_2</a>,'\\+\\__6',_). constr_name(<a href=%MML%rlvect_2.html#K6>k6_rlvect_2</a>,'Sum__8',_). constr_name(<a href=%MML%rlvect_2.html#K7>k7_rlvect_2</a>,'{..}__36',_). constr_name(<a href=%MML%rlvect_2.html#K8>k8_rlvect_2</a>,'{..}__37',_). constr_name(<a href=%MML%rlvect_2.html#K9>k9_rlvect_2</a>,'{..}__38',_). constr_name(<a href=%MML%rlvect_2.html#M1>m1_rlvect_2</a>,'Linear_Combination',_). constr_name(<a href=%MML%rlvect_2.html#K10>k10_rlvect_2</a>,'Carrier',_). constr_name(<a href=%MML%rlvect_2.html#K11>k11_rlvect_2</a>,'ZeroLC',_). constr_name(<a href=%MML%rlvect_2.html#M2>m2_rlvect_2</a>,'Linear_Combination__2',_). constr_name(<a href=%MML%rlvect_2.html#K12>k12_rlvect_2</a>,'(#)__21',_). constr_name(<a href=%MML%rlvect_2.html#K13>k13_rlvect_2</a>,'Sum__9',_). constr_name(<a href=%MML%rlvect_2.html#R1>r1_rlvect_2</a>,'=__3',_). constr_name(<a href=%MML%rlvect_2.html#K14>k14_rlvect_2</a>,'+__36',_). constr_name(<a href=%MML%rlvect_2.html#K15>k15_rlvect_2</a>,'*__45',_). constr_name(<a href=%MML%rlvect_2.html#K16>k16_rlvect_2</a>,'-__46',_). constr_name(<a href=%MML%rlvect_2.html#K17>k17_rlvect_2</a>,'-__47',_). constr_name(<a href=%MML%rlvect_2.html#K18>k18_rlvect_2</a>,'LinComb',_). constr_name(<a href=%MML%rlvect_2.html#K19>k19_rlvect_2</a>,'@__7',_). constr_name(<a href=%MML%rlvect_2.html#K20>k20_rlvect_2</a>,'@__8',_). constr_name(<a href=%MML%rlvect_2.html#K21>k21_rlvect_2</a>,'LCAdd',_). constr_name(<a href=%MML%rlvect_2.html#K22>k22_rlvect_2</a>,'LCMult',_). constr_name(<a href=%MML%rlvect_2.html#K23>k23_rlvect_2</a>,'LC_RLSpace',_). constr_name(<a href=%MML%rlvect_2.html#K24>k24_rlvect_2</a>,'LC_RLSpace__2',_). constr_name(<a href=%MML%realset2.html#V1>v1_realset2</a>,zeroed,_). constr_name(<a href=%MML%realset2.html#V2>v2_realset2</a>,complementable,_). constr_name(<a href=%MML%realset2.html#V3>v3_realset2</a>,trivial__2,_). constr_name(<a href=%MML%realset2.html#K1>k1_realset2</a>,field__3,_). constr_name(<a href=%MML%realset2.html#V4>v4_realset2</a>,'Field-like__2',_). constr_name(<a href=%MML%realset2.html#K2>k2_realset2</a>,suppf,_). constr_name(<a href=%MML%realset2.html#K3>k3_realset2</a>,odf,_). constr_name(<a href=%MML%realset2.html#K4>k4_realset2</a>,ndf,_). constr_name(<a href=%MML%realset2.html#K5>k5_realset2</a>,omf,_). constr_name(<a href=%MML%realset2.html#K6>k6_realset2</a>,nmf,_). constr_name(<a href=%MML%realset2.html#K7>k7_realset2</a>,compf,_). constr_name(<a href=%MML%realset2.html#K8>k8_realset2</a>,revf,_). constr_name(<a href=%MML%analoaf.html#R1>r1_analoaf</a>,'//',rls_parallel). constr_name(<a href=%MML%analoaf.html#L1>l1_analoaf</a>,'AffinStruct',affine_str). constr_name(<a href=%MML%analoaf.html#V1>v1_analoaf</a>,strict__AffinStruct,strict_affine_str). constr_name(<a href=%MML%analoaf.html#U1>u1_analoaf</a>,'CONGR',the_congruence). constr_name(<a href=%MML%analoaf.html#G1>g1_analoaf</a>,'AffinStruct_constr',affine_str_of). constr_name(<a href=%MML%analoaf.html#R2>r2_analoaf</a>,'//__2',affine_str_parallel). constr_name(<a href=%MML%analoaf.html#K1>k1_analoaf</a>,'DirPar',directed_parallelity). constr_name(<a href=%MML%analoaf.html#K2>k2_analoaf</a>,'OASpace',ordered_affine_space). constr_name(<a href=%MML%analoaf.html#V2>v2_analoaf</a>,'OAffinSpace-like',oas_like). constr_name(<a href=%MML%analoaf.html#V3>v3_analoaf</a>,'2-dimensional',oaf_two_dimensional). constr_name(<a href=%MML%metric_1.html#L1>l1_metric_1</a>,'MetrStruct',_). constr_name(<a href=%MML%metric_1.html#V1>v1_metric_1</a>,strict__MetrStruct,_). constr_name(<a href=%MML%metric_1.html#U1>u1_metric_1</a>,distance,the_distance). constr_name(<a href=%MML%metric_1.html#G1>g1_metric_1</a>,'MetrStruct_constr',_). constr_name(<a href=%MML%metric_1.html#K1>k1_metric_1</a>,'.__39',_). constr_name(<a href=%MML%metric_1.html#K2>k2_metric_1</a>,dist,_). constr_name(<a href=%MML%metric_1.html#K3>k3_metric_1</a>,'Empty^2-to-zero',_). constr_name(<a href=%MML%metric_1.html#V2>v2_metric_1</a>,'Reflexive',_). constr_name(<a href=%MML%metric_1.html#V3>v3_metric_1</a>,discerning,_). constr_name(<a href=%MML%metric_1.html#V4>v4_metric_1</a>,symmetric__2,_). constr_name(<a href=%MML%metric_1.html#V5>v5_metric_1</a>,triangle,_). constr_name(<a href=%MML%metric_1.html#V6>v6_metric_1</a>,'Reflexive__2',_). constr_name(<a href=%MML%metric_1.html#V7>v7_metric_1</a>,discerning__2,_). constr_name(<a href=%MML%metric_1.html#V8>v8_metric_1</a>,symmetric__3,_). constr_name(<a href=%MML%metric_1.html#V9>v9_metric_1</a>,triangle__2,_). constr_name(<a href=%MML%metric_1.html#K4>k4_metric_1</a>,dist__2,_). constr_name(<a href=%MML%metric_1.html#K5>k5_metric_1</a>,discrete_dist,_). constr_name(<a href=%MML%metric_1.html#K6>k6_metric_1</a>,'DiscreteSpace',_). constr_name(<a href=%MML%metric_1.html#K7>k7_metric_1</a>,real_dist,_). constr_name(<a href=%MML%metric_1.html#K8>k8_metric_1</a>,'RealSpace',_). constr_name(<a href=%MML%metric_1.html#K9>k9_metric_1</a>,'Ball',_). constr_name(<a href=%MML%metric_1.html#K10>k10_metric_1</a>,cl_Ball,_). constr_name(<a href=%MML%metric_1.html#K11>k11_metric_1</a>,'Sphere',_). constr_name(<a href=%MML%diraf.html#K1>k1_diraf</a>,lambda,relation_lambda). constr_name(<a href=%MML%diraf.html#K2>k2_diraf</a>,'Lambda',affine_str_lambda). constr_name(<a href=%MML%diraf.html#R1>r1_diraf</a>,'Mid',affine_str_mid). constr_name(<a href=%MML%diraf.html#R2>r2_diraf</a>,''||'__2',_). constr_name(<a href=%MML%diraf.html#R3>r3_diraf</a>,'LIN',_). constr_name(<a href=%MML%diraf.html#V1>v1_diraf</a>,'AffinSpace-like',_). constr_name(<a href=%MML%diraf.html#V2>v2_diraf</a>,'2-dimensional__2',_). constr_name(<a href=%MML%aff_1.html#R1>r1_aff_1</a>,'LIN__2',_). constr_name(<a href=%MML%aff_1.html#K1>k1_aff_1</a>,'Line__2',_). constr_name(<a href=%MML%aff_1.html#K2>k2_aff_1</a>,'Line__3',_). constr_name(<a href=%MML%aff_1.html#V1>v1_aff_1</a>,being_line,_). constr_name(<a href=%MML%aff_1.html#R2>r2_aff_1</a>,'//__3',_). constr_name(<a href=%MML%aff_1.html#R3>r3_aff_1</a>,'//__4',_). constr_name(<a href=%MML%aff_1.html#R4>r4_aff_1</a>,'//__5',_). constr_name(<a href=%MML%aff_2.html#V1>v1_aff_2</a>,satisfying_PPAP,_). constr_name(<a href=%MML%aff_2.html#V2>v2_aff_2</a>,'Pappian',_). constr_name(<a href=%MML%aff_2.html#V3>v3_aff_2</a>,satisfying_PAP_1,_). constr_name(<a href=%MML%aff_2.html#V4>v4_aff_2</a>,'Desarguesian',_). constr_name(<a href=%MML%aff_2.html#V5>v5_aff_2</a>,satisfying_DES_1,_). constr_name(<a href=%MML%aff_2.html#V6>v6_aff_2</a>,satisfying_DES_2,_). constr_name(<a href=%MML%aff_2.html#V7>v7_aff_2</a>,'Moufangian',_). constr_name(<a href=%MML%aff_2.html#V8>v8_aff_2</a>,satisfying_TDES_1,_). constr_name(<a href=%MML%aff_2.html#V9>v9_aff_2</a>,satisfying_TDES_2,_). constr_name(<a href=%MML%aff_2.html#V10>v10_aff_2</a>,satisfying_TDES_3,_). constr_name(<a href=%MML%aff_2.html#V11>v11_aff_2</a>,translational,_). constr_name(<a href=%MML%aff_2.html#V12>v12_aff_2</a>,satisfying_des_1,_). constr_name(<a href=%MML%aff_2.html#V13>v13_aff_2</a>,satisfying_pap,_). constr_name(<a href=%MML%aff_2.html#V14>v14_aff_2</a>,satisfying_pap_1,_). constr_name(<a href=%MML%aff_3.html#V1>v1_aff_3</a>,satisfying_DES1,_). constr_name(<a href=%MML%aff_3.html#V2>v2_aff_3</a>,satisfying_DES1_1,_). constr_name(<a href=%MML%aff_3.html#V3>v3_aff_3</a>,satisfying_DES1_2,_). constr_name(<a href=%MML%aff_3.html#V4>v4_aff_3</a>,satisfying_DES1_3,_). constr_name(<a href=%MML%aff_3.html#V5>v5_aff_3</a>,satisfying_DES2,_). constr_name(<a href=%MML%aff_3.html#V6>v6_aff_3</a>,satisfying_DES2_1,_). constr_name(<a href=%MML%aff_3.html#V7>v7_aff_3</a>,satisfying_DES2_2,_). constr_name(<a href=%MML%aff_3.html#V8>v8_aff_3</a>,satisfying_DES2_3,_). constr_name(<a href=%MML%collsp.html#M1>m1_collsp</a>,'Relation3',_). constr_name(<a href=%MML%collsp.html#L1>l1_collsp</a>,'CollStr',_). constr_name(<a href=%MML%collsp.html#V1>v1_collsp</a>,strict__CollStr,_). constr_name(<a href=%MML%collsp.html#U1>u1_collsp</a>,'Collinearity',the_Collinearity). constr_name(<a href=%MML%collsp.html#G1>g1_collsp</a>,'CollStr_constr',_). constr_name(<a href=%MML%collsp.html#R1>r1_collsp</a>,is_collinear__2,_). constr_name(<a href=%MML%collsp.html#V2>v2_collsp</a>,reflexive__3,_). constr_name(<a href=%MML%collsp.html#V3>v3_collsp</a>,transitive__3,_). constr_name(<a href=%MML%collsp.html#K1>k1_collsp</a>,'Line__4',_). constr_name(<a href=%MML%collsp.html#V4>v4_collsp</a>,proper,_). constr_name(<a href=%MML%collsp.html#M2>m2_collsp</a>,'LINE',_). constr_name(<a href=%MML%pasch.html#V1>v1_pasch</a>,satisfying_Int_Par_Pasch,_). constr_name(<a href=%MML%pasch.html#V2>v2_pasch</a>,satisfying_Ext_Par_Pasch,_). constr_name(<a href=%MML%pasch.html#V3>v3_pasch</a>,satisfying_Gen_Par_Pasch,_). constr_name(<a href=%MML%pasch.html#V4>v4_pasch</a>,satisfying_Ext_Bet_Pasch,_). constr_name(<a href=%MML%pasch.html#V5>v5_pasch</a>,satisfying_Int_Bet_Pasch,_). constr_name(<a href=%MML%pasch.html#V6>v6_pasch</a>,'Fanoian__2',_). constr_name(<a href=%MML%real_lat.html#K1>k1_real_lat</a>,minreal,_). constr_name(<a href=%MML%real_lat.html#K2>k2_real_lat</a>,maxreal,_). constr_name(<a href=%MML%real_lat.html#K3>k3_real_lat</a>,'Real_Lattice',_). constr_name(<a href=%MML%real_lat.html#K4>k4_real_lat</a>,maxfuncreal,_). constr_name(<a href=%MML%real_lat.html#K5>k5_real_lat</a>,minfuncreal,_). constr_name(<a href=%MML%real_lat.html#K6>k6_real_lat</a>,'@__9',_). constr_name(<a href=%MML%real_lat.html#K7>k7_real_lat</a>,'RealFunc_Lattice',_). constr_name(<a href=%MML%tdgroup.html#V1>v1_tdgroup</a>,'Two_Divisible',_). constr_name(<a href=%MML%tdgroup.html#K1>k1_tdgroup</a>,'CONGRD',_). constr_name(<a href=%MML%tdgroup.html#K2>k2_tdgroup</a>,'AV',_). constr_name(<a href=%MML%tdgroup.html#R1>r1_tdgroup</a>,'==>',_). constr_name(<a href=%MML%tdgroup.html#V2>v2_tdgroup</a>,'AffVect-like',_). constr_name(<a href=%MML%transgeo.html#K1>k1_transgeo</a>,'*__46',_). constr_name(<a href=%MML%transgeo.html#K2>k2_transgeo</a>,'\\__13',_). constr_name(<a href=%MML%transgeo.html#R1>r1_transgeo</a>,is_FormalIz_of,_). constr_name(<a href=%MML%transgeo.html#R2>r2_transgeo</a>,is_automorphism_of,_). constr_name(<a href=%MML%transgeo.html#R3>r3_transgeo</a>,is_DIL_of,_). constr_name(<a href=%MML%transgeo.html#V1>v1_transgeo</a>,'CongrSpace-like',_). constr_name(<a href=%MML%transgeo.html#V2>v2_transgeo</a>,positive_dilatation,_). constr_name(<a href=%MML%transgeo.html#V3>v3_transgeo</a>,negative_dilatation,_). constr_name(<a href=%MML%transgeo.html#V4>v4_transgeo</a>,dilatation,_). constr_name(<a href=%MML%transgeo.html#V5>v5_transgeo</a>,translation,_). constr_name(<a href=%MML%transgeo.html#V6>v6_transgeo</a>,dilatation__2,_). constr_name(<a href=%MML%transgeo.html#V7>v7_transgeo</a>,translation__2,_). constr_name(<a href=%MML%transgeo.html#V8>v8_transgeo</a>,collineation,_). constr_name(<a href=%MML%cat_2.html#K1>k1_cat_2</a>,'.__40',_). constr_name(<a href=%MML%cat_2.html#K2>k2_cat_2</a>,curry__2,_). constr_name(<a href=%MML%cat_2.html#K3>k3_cat_2</a>,'curry'__2',_). constr_name(<a href=%MML%cat_2.html#K4>k4_cat_2</a>,'-->__11',_). constr_name(<a href=%MML%cat_2.html#K5>k5_cat_2</a>,'Funct',_). constr_name(<a href=%MML%cat_2.html#M1>m1_cat_2</a>,'FUNCTOR-DOMAIN',_). constr_name(<a href=%MML%cat_2.html#M2>m2_cat_2</a>,'Element__17',_). constr_name(<a href=%MML%cat_2.html#K6>k6_cat_2</a>,'.__41',_). constr_name(<a href=%MML%cat_2.html#K7>k7_cat_2</a>,'Funct__2',_). constr_name(<a href=%MML%cat_2.html#M3>m3_cat_2</a>,'Subcategory',_). constr_name(<a href=%MML%cat_2.html#K8>k8_cat_2</a>,incl__2,_). constr_name(<a href=%MML%cat_2.html#R1>r1_cat_2</a>,is_full_subcategory_of,_). constr_name(<a href=%MML%cat_2.html#K9>k9_cat_2</a>,'[:..:]__16',_). constr_name(<a href=%MML%cat_2.html#K10>k10_cat_2</a>,'|:..:|__2',_). constr_name(<a href=%MML%cat_2.html#K11>k11_cat_2</a>,'[:..:]__17',_). constr_name(<a href=%MML%cat_2.html#K12>k12_cat_2</a>,'[..]__14',_). constr_name(<a href=%MML%cat_2.html#K13>k13_cat_2</a>,'[..]__15',_). constr_name(<a href=%MML%cat_2.html#K14>k14_cat_2</a>,'?-',_). constr_name(<a href=%MML%cat_2.html#K15>k15_cat_2</a>,'-?',_). constr_name(<a href=%MML%cat_2.html#K16>k16_cat_2</a>,pr1__6,_). constr_name(<a href=%MML%cat_2.html#K17>k17_cat_2</a>,pr2__6,_). constr_name(<a href=%MML%cat_2.html#K18>k18_cat_2</a>,'<:..:>__6',_). constr_name(<a href=%MML%cat_2.html#K19>k19_cat_2</a>,'[:..:]__18',_). constr_name(<a href=%MML%translac.html#V1>v1_translac</a>,'Fanoian__3',_). constr_name(<a href=%MML%anproj_1.html#R1>r1_anproj_1</a>,are_Prop,_). constr_name(<a href=%MML%anproj_1.html#R2>r2_anproj_1</a>,are_LinDep,_). constr_name(<a href=%MML%anproj_1.html#K1>k1_anproj_1</a>,'Proper_Vectors_of',_). constr_name(<a href=%MML%anproj_1.html#K2>k2_anproj_1</a>,'Proportionality_as_EqRel_of',_). constr_name(<a href=%MML%anproj_1.html#K3>k3_anproj_1</a>,'Dir',_). constr_name(<a href=%MML%anproj_1.html#K4>k4_anproj_1</a>,'ProjectivePoints',_). constr_name(<a href=%MML%anproj_1.html#K5>k5_anproj_1</a>,'ProjectiveCollinearity',_). constr_name(<a href=%MML%anproj_1.html#K6>k6_anproj_1</a>,'ProjectiveSpace',_). constr_name(<a href=%MML%anproj_2.html#R1>r1_anproj_2</a>,are_Prop_Vect,_). constr_name(<a href=%MML%anproj_2.html#R2>r2_anproj_2</a>,lie_on_a_triangle,_). constr_name(<a href=%MML%anproj_2.html#R3>r3_anproj_2</a>,are_perspective,_). constr_name(<a href=%MML%anproj_2.html#R4>r4_anproj_2</a>,lie_on_an_angle,_). constr_name(<a href=%MML%anproj_2.html#R5>r5_anproj_2</a>,are_half_mutually_not_Prop,_). constr_name(<a href=%MML%anproj_2.html#V1>v1_anproj_2</a>,'up-3-dimensional',_). constr_name(<a href=%MML%anproj_2.html#V2>v2_anproj_2</a>,'Vebleian',_). constr_name(<a href=%MML%anproj_2.html#V3>v3_anproj_2</a>,at_least_3rank,_). constr_name(<a href=%MML%anproj_2.html#V4>v4_anproj_2</a>,'Fanoian__4',_). constr_name(<a href=%MML%anproj_2.html#V5>v5_anproj_2</a>,'Desarguesian__2',_). constr_name(<a href=%MML%anproj_2.html#V6>v6_anproj_2</a>,'Pappian__2',_). constr_name(<a href=%MML%anproj_2.html#V7>v7_anproj_2</a>,'2-dimensional__3',_). constr_name(<a href=%MML%anproj_2.html#V8>v8_anproj_2</a>,'at_most-3-dimensional',_). constr_name(<a href=%MML%vectsp_2.html#V1>v1_vectsp_2</a>,'well-unital',_). constr_name(<a href=%MML%vectsp_2.html#V2>v2_vectsp_2</a>,'domRing-like',_). constr_name(<a href=%MML%vectsp_2.html#K1>k1_vectsp_2</a>,'"__21',_). constr_name(<a href=%MML%vectsp_2.html#K2>k2_vectsp_2</a>,'/__19',_). constr_name(<a href=%MML%vectsp_2.html#L1>l1_vectsp_2</a>,'RightModStr',_). constr_name(<a href=%MML%vectsp_2.html#V3>v3_vectsp_2</a>,strict__RightModStr,_). constr_name(<a href=%MML%vectsp_2.html#U1>u1_vectsp_2</a>,rmult,the_rmult). constr_name(<a href=%MML%vectsp_2.html#G1>g1_vectsp_2</a>,'RightModStr_constr',_). constr_name(<a href=%MML%vectsp_2.html#L2>l2_vectsp_2</a>,'BiModStr',_). constr_name(<a href=%MML%vectsp_2.html#V4>v4_vectsp_2</a>,strict__BiModStr,_). constr_name(<a href=%MML%vectsp_2.html#G2>g2_vectsp_2</a>,'BiModStr_constr',_). constr_name(<a href=%MML%vectsp_2.html#K3>k3_vectsp_2</a>,'AbGr',_). constr_name(<a href=%MML%vectsp_2.html#K4>k4_vectsp_2</a>,'LeftModule',_). constr_name(<a href=%MML%vectsp_2.html#K5>k5_vectsp_2</a>,'RightModule',_). constr_name(<a href=%MML%vectsp_2.html#K6>k6_vectsp_2</a>,'*__47',_). constr_name(<a href=%MML%vectsp_2.html#K7>k7_vectsp_2</a>,op1,_). constr_name(<a href=%MML%vectsp_2.html#K8>k8_vectsp_2</a>,op0,_). constr_name(<a href=%MML%vectsp_2.html#K9>k9_vectsp_2</a>,'BiModule',_). constr_name(<a href=%MML%vectsp_2.html#V5>v5_vectsp_2</a>,'RightMod-like',_). constr_name(<a href=%MML%vectsp_2.html#V6>v6_vectsp_2</a>,'BiMod-like',_). constr_name(<a href=%MML%filter_0.html#M1>m1_filter_0</a>,'Filter__2',_). constr_name(<a href=%MML%filter_0.html#K1>k1_filter_0</a>,'<....)',_). constr_name(<a href=%MML%filter_0.html#K2>k2_filter_0</a>,'<....)__2',_). constr_name(<a href=%MML%filter_0.html#V1>v1_filter_0</a>,being_ultrafilter__2,_). constr_name(<a href=%MML%filter_0.html#K3>k3_filter_0</a>,'<....)__3',_). constr_name(<a href=%MML%filter_0.html#V2>v2_filter_0</a>,prime__2,_). constr_name(<a href=%MML%filter_0.html#V3>v3_filter_0</a>,implicative,_). constr_name(<a href=%MML%filter_0.html#K4>k4_filter_0</a>,'=>__7',_). constr_name(<a href=%MML%filter_0.html#K5>k5_filter_0</a>,'"/\\"__3',_). constr_name(<a href=%MML%filter_0.html#K6>k6_filter_0</a>,'"/\\"__4',_). constr_name(<a href=%MML%filter_0.html#K7>k7_filter_0</a>,'"/\\"__5',_). constr_name(<a href=%MML%filter_0.html#K8>k8_filter_0</a>,latt,_). constr_name(<a href=%MML%filter_0.html#K9>k9_filter_0</a>,'<=>__4',_). constr_name(<a href=%MML%filter_0.html#K10>k10_filter_0</a>,equivalence_wrt,_). constr_name(<a href=%MML%filter_0.html#K11>k11_filter_0</a>,equivalence_wrt__2,_). constr_name(<a href=%MML%filter_0.html#K12>k12_filter_0</a>,equivalence_wrt__3,_). constr_name(<a href=%MML%filter_0.html#R1>r1_filter_0</a>,are_equivalence_wrt,_). constr_name(<a href=%MML%algstr_1.html#K1>k1_algstr_1</a>,'Extract',_). constr_name(<a href=%MML%algstr_1.html#K2>k2_algstr_1</a>,'L_Trivial',_). constr_name(<a href=%MML%algstr_1.html#V1>v1_algstr_1</a>,left_zeroed,_). constr_name(<a href=%MML%algstr_1.html#V2>v2_algstr_1</a>,'add-left-cancelable',_). constr_name(<a href=%MML%algstr_1.html#V3>v3_algstr_1</a>,'add-right-cancelable',_). constr_name(<a href=%MML%algstr_1.html#V4>v4_algstr_1</a>,'add-left-invertible',_). constr_name(<a href=%MML%algstr_1.html#V5>v5_algstr_1</a>,'add-right-invertible',_). constr_name(<a href=%MML%algstr_1.html#V6>v6_algstr_1</a>,'Loop-like',_). constr_name(<a href=%MML%algstr_1.html#K3>k3_algstr_1</a>,multL_Trivial,_). constr_name(<a href=%MML%algstr_1.html#V7>v7_algstr_1</a>,invertible__2,_). constr_name(<a href=%MML%algstr_1.html#V8>v8_algstr_1</a>,cancelable,_). constr_name(<a href=%MML%algstr_1.html#K4>k4_algstr_1</a>,'"__22',_). constr_name(<a href=%MML%algstr_1.html#K5>k5_algstr_1</a>,'/__20',_). constr_name(<a href=%MML%algstr_1.html#K6>k6_algstr_1</a>,multEX_0,_). constr_name(<a href=%MML%algstr_1.html#V9>v9_algstr_1</a>,almost_invertible,_). constr_name(<a href=%MML%algstr_1.html#V10>v10_algstr_1</a>,almost_cancelable,_). constr_name(<a href=%MML%algstr_1.html#V11>v11_algstr_1</a>,'multLoop_0-like',_). constr_name(<a href=%MML%algstr_1.html#K7>k7_algstr_1</a>,'"__23',_). constr_name(<a href=%MML%algstr_1.html#K8>k8_algstr_1</a>,'/__21',_). constr_name(<a href=%MML%rlvect_3.html#V1>v1_rlvect_3</a>,'linearly-independent',_). constr_name(<a href=%MML%rlvect_3.html#K1>k1_rlvect_3</a>,'Lin',_). constr_name(<a href=%MML%rlvect_3.html#M1>m1_rlvect_3</a>,'Basis',_). constr_name(<a href=%MML%group_2.html#K1>k1_group_2</a>,'"__24',_). constr_name(<a href=%MML%group_2.html#K2>k2_group_2</a>,'*__48',_). constr_name(<a href=%MML%group_2.html#K3>k3_group_2</a>,'*__49',_). constr_name(<a href=%MML%group_2.html#K4>k4_group_2</a>,'*__50',_). constr_name(<a href=%MML%group_2.html#M1>m1_group_2</a>,'Subgroup',_). constr_name(<a href=%MML%group_2.html#R1>r1_group_2</a>,'=__4',_). constr_name(<a href=%MML%group_2.html#K5>k5_group_2</a>,'(1).',_). constr_name(<a href=%MML%group_2.html#K6>k6_group_2</a>,'(Omega).__2',_). constr_name(<a href=%MML%group_2.html#K7>k7_group_2</a>,carr,_). constr_name(<a href=%MML%group_2.html#K8>k8_group_2</a>,'/\\__14',_). constr_name(<a href=%MML%group_2.html#K9>k9_group_2</a>,'/\\__15',_). constr_name(<a href=%MML%group_2.html#K10>k10_group_2</a>,'*__51',_). constr_name(<a href=%MML%group_2.html#K11>k11_group_2</a>,'*__52',_). constr_name(<a href=%MML%group_2.html#K12>k12_group_2</a>,'*__53',_). constr_name(<a href=%MML%group_2.html#K13>k13_group_2</a>,'*__54',_). constr_name(<a href=%MML%group_2.html#K14>k14_group_2</a>,'Left_Cosets',_). constr_name(<a href=%MML%group_2.html#K15>k15_group_2</a>,'Right_Cosets',_). constr_name(<a href=%MML%group_2.html#K16>k16_group_2</a>,'Index',_). constr_name(<a href=%MML%group_2.html#K17>k17_group_2</a>,index__2,_). constr_name(<a href=%MML%group_2.html#K18>k18_group_2</a>,'{..}__39',_). constr_name(<a href=%MML%vectsp_4.html#V1>v1_vectsp_4</a>,'lineary-closed__2',_). constr_name(<a href=%MML%vectsp_4.html#M1>m1_vectsp_4</a>,'Subspace__2',_). constr_name(<a href=%MML%vectsp_4.html#K1>k1_vectsp_4</a>,'(0).__2',_). constr_name(<a href=%MML%vectsp_4.html#K2>k2_vectsp_4</a>,'(Omega).__3',_). constr_name(<a href=%MML%vectsp_4.html#K3>k3_vectsp_4</a>,'+__37',_). constr_name(<a href=%MML%vectsp_4.html#M2>m2_vectsp_4</a>,'Coset__2',_). constr_name(<a href=%MML%vectsp_5.html#K1>k1_vectsp_5</a>,'+__38',_). constr_name(<a href=%MML%vectsp_5.html#K2>k2_vectsp_5</a>,'/\\__16',_). constr_name(<a href=%MML%vectsp_5.html#K3>k3_vectsp_5</a>,'Subspaces__2',_). constr_name(<a href=%MML%vectsp_5.html#R1>r1_vectsp_5</a>,is_the_direct_sum_of__2,_). constr_name(<a href=%MML%vectsp_5.html#M1>m1_vectsp_5</a>,'Linear_Compl__2',_). constr_name(<a href=%MML%vectsp_5.html#K4>k4_vectsp_5</a>,'|--__3',_). constr_name(<a href=%MML%vectsp_5.html#K5>k5_vectsp_5</a>,'SubJoin__2',_). constr_name(<a href=%MML%vectsp_5.html#K6>k6_vectsp_5</a>,'SubMeet__2',_). constr_name(<a href=%MML%vectsp_6.html#M1>m1_vectsp_6</a>,'Linear_Combination__3',_). constr_name(<a href=%MML%vectsp_6.html#K1>k1_vectsp_6</a>,'Carrier__2',_). constr_name(<a href=%MML%vectsp_6.html#K2>k2_vectsp_6</a>,'ZeroLC__2',_). constr_name(<a href=%MML%vectsp_6.html#M2>m2_vectsp_6</a>,'Linear_Combination__4',_). constr_name(<a href=%MML%vectsp_6.html#K3>k3_vectsp_6</a>,'(#)__22',_). constr_name(<a href=%MML%vectsp_6.html#K4>k4_vectsp_6</a>,'Sum__10',_). constr_name(<a href=%MML%vectsp_6.html#R1>r1_vectsp_6</a>,'=__5',_). constr_name(<a href=%MML%vectsp_6.html#K5>k5_vectsp_6</a>,'+__39',_). constr_name(<a href=%MML%vectsp_6.html#K6>k6_vectsp_6</a>,'*__55',_). constr_name(<a href=%MML%vectsp_6.html#K7>k7_vectsp_6</a>,'-__48',_). constr_name(<a href=%MML%vectsp_6.html#K8>k8_vectsp_6</a>,'-__49',_). constr_name(<a href=%MML%vectsp_7.html#V1>v1_vectsp_7</a>,'linearly-independent__2',_). constr_name(<a href=%MML%vectsp_7.html#K1>k1_vectsp_7</a>,'Lin__2',_). constr_name(<a href=%MML%vectsp_7.html#M1>m1_vectsp_7</a>,'Basis__2',_). constr_name(<a href=%MML%analmetr.html#R1>r1_analmetr</a>,'Gen',_). constr_name(<a href=%MML%analmetr.html#R2>r2_analmetr</a>,are_Ort_wrt,_). constr_name(<a href=%MML%analmetr.html#R3>r3_analmetr</a>,are_Ort_wrt__2,_). constr_name(<a href=%MML%analmetr.html#K1>k1_analmetr</a>,'Orthogonality',_). constr_name(<a href=%MML%analmetr.html#L1>l1_analmetr</a>,'ParOrtStr',_). constr_name(<a href=%MML%analmetr.html#V1>v1_analmetr</a>,strict__ParOrtStr,_). constr_name(<a href=%MML%analmetr.html#U1>u1_analmetr</a>,orthogonality,the_orthogonality). constr_name(<a href=%MML%analmetr.html#G1>g1_analmetr</a>,'ParOrtStr_constr',_). constr_name(<a href=%MML%analmetr.html#R4>r4_analmetr</a>,'//__6',_). constr_name(<a href=%MML%analmetr.html#R5>r5_analmetr</a>,'_|___2',_). constr_name(<a href=%MML%analmetr.html#K2>k2_analmetr</a>,'AMSpace',_). constr_name(<a href=%MML%analmetr.html#K3>k3_analmetr</a>,'Af',_). constr_name(<a href=%MML%analmetr.html#V2>v2_analmetr</a>,'OrtAfSp-like',_). constr_name(<a href=%MML%analmetr.html#V3>v3_analmetr</a>,'OrtAfPl-like',_). constr_name(<a href=%MML%analmetr.html#R6>r6_analmetr</a>,'LIN__3',_). constr_name(<a href=%MML%analmetr.html#K4>k4_analmetr</a>,'Line__5',_). constr_name(<a href=%MML%analmetr.html#V4>v4_analmetr</a>,being_line__2,_). constr_name(<a href=%MML%analmetr.html#R7>r7_analmetr</a>,'_|___3',_). constr_name(<a href=%MML%analmetr.html#R8>r8_analmetr</a>,'_|___4',_). constr_name(<a href=%MML%analmetr.html#R9>r9_analmetr</a>,'//__7',_). constr_name(<a href=%MML%analmetr.html#R10>r10_analmetr</a>,'//__8',_). constr_name(<a href=%MML%analmetr.html#R11>r11_analmetr</a>,'_|___5',_). constr_name(<a href=%MML%group_3.html#K1>k1_group_3</a>,'Subgroups',_). constr_name(<a href=%MML%group_3.html#K2>k2_group_3</a>,'|^__6',_). constr_name(<a href=%MML%group_3.html#K3>k3_group_3</a>,'|^__7',_). constr_name(<a href=%MML%group_3.html#K4>k4_group_3</a>,'|^__8',_). constr_name(<a href=%MML%group_3.html#K5>k5_group_3</a>,'|^__9',_). constr_name(<a href=%MML%group_3.html#K6>k6_group_3</a>,'|^__10',_). constr_name(<a href=%MML%group_3.html#R1>r1_group_3</a>,are_conjugated,_). constr_name(<a href=%MML%group_3.html#R2>r2_group_3</a>,are_conjugated__2,_). constr_name(<a href=%MML%group_3.html#K7>k7_group_3</a>,con_class,_). constr_name(<a href=%MML%group_3.html#R3>r3_group_3</a>,are_conjugated__3,_). constr_name(<a href=%MML%group_3.html#R4>r4_group_3</a>,are_conjugated__4,_). constr_name(<a href=%MML%group_3.html#K8>k8_group_3</a>,con_class__2,_). constr_name(<a href=%MML%group_3.html#R5>r5_group_3</a>,are_conjugated__5,_). constr_name(<a href=%MML%group_3.html#R6>r6_group_3</a>,are_conjugated__6,_). constr_name(<a href=%MML%group_3.html#K9>k9_group_3</a>,con_class__3,_). constr_name(<a href=%MML%group_3.html#V1>v1_group_3</a>,normal,_). constr_name(<a href=%MML%group_3.html#K10>k10_group_3</a>,'Normalizator',_). constr_name(<a href=%MML%group_3.html#K11>k11_group_3</a>,'Normalizator__2',_). constr_name(<a href=%MML%lattice2.html#R1>r1_lattice2</a>,absorbs,_). constr_name(<a href=%MML%lattice2.html#K1>k1_lattice2</a>,'.:__12',_). constr_name(<a href=%MML%lattice2.html#K2>k2_lattice2</a>,'FinJoin',_). constr_name(<a href=%MML%lattice2.html#K3>k3_lattice2</a>,'FinMeet',_). constr_name(<a href=%MML%lattice2.html#V1>v1_lattice2</a>,'Heyting',_). constr_name(<a href=%MML%projdes1.html#R1>r1_projdes1</a>,are_coplanar,_). constr_name(<a href=%MML%projdes1.html#R2>r2_projdes1</a>,constitute_a_quadrangle,_). constr_name(<a href=%MML%group_4.html#K1>k1_group_4</a>,'-__50',_). constr_name(<a href=%MML%group_4.html#K2>k2_group_4</a>,'@__10',_). constr_name(<a href=%MML%group_4.html#K3>k3_group_4</a>,'Product__3',_). constr_name(<a href=%MML%group_4.html#K4>k4_group_4</a>,'|^__11',_). constr_name(<a href=%MML%group_4.html#K5>k5_group_4</a>,gr,_). constr_name(<a href=%MML%group_4.html#V1>v1_group_4</a>,generating,_). constr_name(<a href=%MML%group_4.html#V2>v2_group_4</a>,maximal,_). constr_name(<a href=%MML%group_4.html#K6>k6_group_4</a>,'Phi',_). constr_name(<a href=%MML%group_4.html#K7>k7_group_4</a>,'*__56',_). constr_name(<a href=%MML%group_4.html#K8>k8_group_4</a>,'"\\/"__4',_). constr_name(<a href=%MML%group_4.html#K9>k9_group_4</a>,'SubJoin__3',_). constr_name(<a href=%MML%group_4.html#K10>k10_group_4</a>,'SubMeet__3',_). constr_name(<a href=%MML%group_4.html#K11>k11_group_4</a>,lattice,_). constr_name(<a href=%MML%connsp_2.html#M1>m1_connsp_2</a>,a_neighborhood,_). constr_name(<a href=%MML%connsp_2.html#M2>m2_connsp_2</a>,a_neighborhood__2,_). constr_name(<a href=%MML%connsp_2.html#R1>r1_connsp_2</a>,is_locally_connected_in,_). constr_name(<a href=%MML%connsp_2.html#V1>v1_connsp_2</a>,locally_connected,_). constr_name(<a href=%MML%connsp_2.html#R2>r2_connsp_2</a>,is_locally_connected_in__2,_). constr_name(<a href=%MML%connsp_2.html#V2>v2_connsp_2</a>,locally_connected__2,_). constr_name(<a href=%MML%connsp_2.html#K1>k1_connsp_2</a>,qskl,_). constr_name(<a href=%MML%normsp_1.html#L1>l1_normsp_1</a>,'NORMSTR',_). constr_name(<a href=%MML%normsp_1.html#V1>v1_normsp_1</a>,strict__NORMSTR,_). constr_name(<a href=%MML%normsp_1.html#U1>u1_normsp_1</a>,norm,the_norm). constr_name(<a href=%MML%normsp_1.html#G1>g1_normsp_1</a>,'NORMSTR_constr',_). constr_name(<a href=%MML%normsp_1.html#K1>k1_normsp_1</a>,'||....||',_). constr_name(<a href=%MML%normsp_1.html#V2>v2_normsp_1</a>,'RealNormSpace-like',_). constr_name(<a href=%MML%normsp_1.html#V3>v3_normsp_1</a>,constant__2,_). constr_name(<a href=%MML%normsp_1.html#K2>k2_normsp_1</a>,'.__42',_). constr_name(<a href=%MML%normsp_1.html#K3>k3_normsp_1</a>,'+__40',_). constr_name(<a href=%MML%normsp_1.html#K4>k4_normsp_1</a>,'-__51',_). constr_name(<a href=%MML%normsp_1.html#K5>k5_normsp_1</a>,'-__52',_). constr_name(<a href=%MML%normsp_1.html#K6>k6_normsp_1</a>,'*__57',_). constr_name(<a href=%MML%normsp_1.html#V4>v4_normsp_1</a>,convergent__3,_). constr_name(<a href=%MML%normsp_1.html#K7>k7_normsp_1</a>,'||....||__2',_). constr_name(<a href=%MML%normsp_1.html#K8>k8_normsp_1</a>,lim__8,_). constr_name(<a href=%MML%algseq_1.html#K1>k1_algseq_1</a>,'PSeg',_). constr_name(<a href=%MML%algseq_1.html#K2>k2_algseq_1</a>,'PSeg__2',_). constr_name(<a href=%MML%algseq_1.html#V1>v1_algseq_1</a>,'finite-Support',_). constr_name(<a href=%MML%algseq_1.html#R1>r1_algseq_1</a>,is_at_least_length_of,_). constr_name(<a href=%MML%algseq_1.html#K3>k3_algseq_1</a>,len__4,_). constr_name(<a href=%MML%algseq_1.html#K4>k4_algseq_1</a>,support,_). constr_name(<a href=%MML%algseq_1.html#K5>k5_algseq_1</a>,'<%..%>__6',_). constr_name(<a href=%MML%homothet.html#R1>r1_homothet</a>,is_Sc,_). constr_name(<a href=%MML%afvect0.html#V1>v1_afvect0</a>,'WeakAffVect-like',_). constr_name(<a href=%MML%afvect0.html#R1>r1_afvect0</a>,'MDist',_). constr_name(<a href=%MML%afvect0.html#R2>r2_afvect0</a>,'Mid__2',_). constr_name(<a href=%MML%afvect0.html#K1>k1_afvect0</a>,'PSym',_). constr_name(<a href=%MML%afvect0.html#K2>k2_afvect0</a>,'Padd',_). constr_name(<a href=%MML%afvect0.html#K3>k3_afvect0</a>,'Padd__2',_). constr_name(<a href=%MML%afvect0.html#K4>k4_afvect0</a>,'Pcom',_). constr_name(<a href=%MML%afvect0.html#K5>k5_afvect0</a>,'GroupVect',_). constr_name(<a href=%MML%afvect0.html#R3>r3_afvect0</a>,is_Iso_of,_). constr_name(<a href=%MML%afvect0.html#R4>r4_afvect0</a>,are_Iso,_). constr_name(<a href=%MML%complsp1.html#K1>k1_complsp1</a>,multcomplex__2,_). constr_name(<a href=%MML%complsp1.html#K2>k2_complsp1</a>,abscomplex,_). constr_name(<a href=%MML%complsp1.html#K3>k3_complsp1</a>,'+__41',_). constr_name(<a href=%MML%complsp1.html#K4>k4_complsp1</a>,'-__53',_). constr_name(<a href=%MML%complsp1.html#K5>k5_complsp1</a>,'-__54',_). constr_name(<a href=%MML%complsp1.html#K6>k6_complsp1</a>,'*__58',_). constr_name(<a href=%MML%complsp1.html#K7>k7_complsp1</a>,abs__9,_). constr_name(<a href=%MML%complsp1.html#K8>k8_complsp1</a>,'COMPLEX__3',_). constr_name(<a href=%MML%complsp1.html#K9>k9_complsp1</a>,'+__42',_). constr_name(<a href=%MML%complsp1.html#K10>k10_complsp1</a>,'0c__2',_). constr_name(<a href=%MML%complsp1.html#K11>k11_complsp1</a>,'0c__3',_). constr_name(<a href=%MML%complsp1.html#K12>k12_complsp1</a>,'-__55',_). constr_name(<a href=%MML%complsp1.html#K13>k13_complsp1</a>,'-__56',_). constr_name(<a href=%MML%complsp1.html#K14>k14_complsp1</a>,'*__59',_). constr_name(<a href=%MML%complsp1.html#K15>k15_complsp1</a>,abs__10,_). constr_name(<a href=%MML%complsp1.html#K16>k16_complsp1</a>,'|....|__6',_). constr_name(<a href=%MML%complsp1.html#V1>v1_complsp1</a>,open__4,_). constr_name(<a href=%MML%complsp1.html#V2>v2_complsp1</a>,closed__6,_). constr_name(<a href=%MML%complsp1.html#K17>k17_complsp1</a>,'Ball__2',_). constr_name(<a href=%MML%complsp1.html#K18>k18_complsp1</a>,dist__3,_). constr_name(<a href=%MML%complsp1.html#K19>k19_complsp1</a>,'Ball__3',_). constr_name(<a href=%MML%complsp1.html#K20>k20_complsp1</a>,dist__4,_). constr_name(<a href=%MML%complsp1.html#K21>k21_complsp1</a>,'+__43',_). constr_name(<a href=%MML%complsp1.html#K22>k22_complsp1</a>,'ComplexOpenSets',_). constr_name(<a href=%MML%complsp1.html#K23>k23_complsp1</a>,the_Complex_Space,_). constr_name(<a href=%MML%realset3.html#K1>k1_realset3</a>,osf,_). constr_name(<a href=%MML%realset3.html#K2>k2_realset3</a>,ovf,_). constr_name(<a href=%MML%algstr_2.html#K1>k1_algstr_2</a>,'-__57',_). constr_name(<a href=%MML%algstr_2.html#K2>k2_algstr_2</a>,'-__58',_). constr_name(<a href=%MML%metric_3.html#K1>k1_metric_3</a>,dist_cart2,_). constr_name(<a href=%MML%metric_3.html#K2>k2_metric_3</a>,dist2,_). constr_name(<a href=%MML%metric_3.html#K3>k3_metric_3</a>,'MetrSpaceCart2',_). constr_name(<a href=%MML%metric_3.html#K4>k4_metric_3</a>,dist_cart3,_). constr_name(<a href=%MML%metric_3.html#K5>k5_metric_3</a>,'MetrSpaceCart3',_). constr_name(<a href=%MML%metric_3.html#K6>k6_metric_3</a>,dist3,_). constr_name(<a href=%MML%metric_3.html#K7>k7_metric_3</a>,dist_cart4,_). constr_name(<a href=%MML%metric_3.html#K8>k8_metric_3</a>,'MetrSpaceCart4',_). constr_name(<a href=%MML%metric_3.html#K9>k9_metric_3</a>,dist4,_). constr_name(<a href=%MML%sub_metr.html#V1>v1_sub_metr</a>,'Discerning',_). constr_name(<a href=%MML%sub_metr.html#V2>v2_sub_metr</a>,'Discerning__2',_). constr_name(<a href=%MML%sub_metr.html#V3>v3_sub_metr</a>,ultra,_). constr_name(<a href=%MML%sub_metr.html#K1>k1_sub_metr</a>,'Set_to_zero',_). constr_name(<a href=%MML%sub_metr.html#K2>k2_sub_metr</a>,'ZeroSpace',_). constr_name(<a href=%MML%sub_metr.html#R1>r1_sub_metr</a>,is_between,_). constr_name(<a href=%MML%sub_metr.html#K3>k3_sub_metr</a>,open_dist_Segment,_). constr_name(<a href=%MML%sub_metr.html#K4>k4_sub_metr</a>,close_dist_Segment,_). constr_name(<a href=%MML%metric_2.html#R1>r1_metric_2</a>,tolerates__2,_). constr_name(<a href=%MML%metric_2.html#R2>r2_metric_2</a>,tolerates__3,_). constr_name(<a href=%MML%metric_2.html#R3>r3_metric_2</a>,tolerates__4,_). constr_name(<a href=%MML%metric_2.html#K1>k1_metric_2</a>,'-neighbour',_). constr_name(<a href=%MML%metric_2.html#M1>m1_metric_2</a>,equivalence_class,_). constr_name(<a href=%MML%metric_2.html#K2>k2_metric_2</a>,'-neighbour__2',_). constr_name(<a href=%MML%metric_2.html#R4>r4_metric_2</a>,is_dst,_). constr_name(<a href=%MML%metric_2.html#K3>k3_metric_2</a>,ev_eq_1,_). constr_name(<a href=%MML%metric_2.html#K4>k4_metric_2</a>,ev_eq_2,_). constr_name(<a href=%MML%metric_2.html#K5>k5_metric_2</a>,real_in_rel,_). constr_name(<a href=%MML%metric_2.html#K6>k6_metric_2</a>,elem_in_rel_1,_). constr_name(<a href=%MML%metric_2.html#K7>k7_metric_2</a>,elem_in_rel_2,_). constr_name(<a href=%MML%metric_2.html#K8>k8_metric_2</a>,elem_in_rel,_). constr_name(<a href=%MML%metric_2.html#K9>k9_metric_2</a>,set_in_rel,_). constr_name(<a href=%MML%metric_2.html#K10>k10_metric_2</a>,nbourdist,_). constr_name(<a href=%MML%metric_2.html#K11>k11_metric_2</a>,'Eq_classMetricSpace',_). constr_name(<a href=%MML%incproj.html#M1>m1_incproj</a>,'LINE__2',_). constr_name(<a href=%MML%incproj.html#K1>k1_incproj</a>,'ProjectiveLines',_). constr_name(<a href=%MML%incproj.html#K2>k2_incproj</a>,'Proj_Inc',_). constr_name(<a href=%MML%incproj.html#K3>k3_incproj</a>,'IncProjSp_of',_). constr_name(<a href=%MML%incproj.html#R1>r1_incproj</a>,are_mutually_different,_). constr_name(<a href=%MML%incproj.html#R2>r2_incproj</a>,are_mutually_different__2,_). constr_name(<a href=%MML%incproj.html#R3>r3_incproj</a>,on__6,_). constr_name(<a href=%MML%incproj.html#R4>r4_incproj</a>,on__7,_). constr_name(<a href=%MML%incproj.html#V1>v1_incproj</a>,partial,_). constr_name(<a href=%MML%incproj.html#V2>v2_incproj</a>,linear__3,_). constr_name(<a href=%MML%incproj.html#V3>v3_incproj</a>,'up-2-dimensional',_). constr_name(<a href=%MML%incproj.html#V4>v4_incproj</a>,'up-3-rank',_). constr_name(<a href=%MML%incproj.html#V5>v5_incproj</a>,'Vebleian__2',_). constr_name(<a href=%MML%incproj.html#V6>v6_incproj</a>,'2-dimensional__4',_). constr_name(<a href=%MML%incproj.html#V7>v7_incproj</a>,'at_most-3-dimensional__2',_). constr_name(<a href=%MML%incproj.html#V8>v8_incproj</a>,'3-dimensional',_). constr_name(<a href=%MML%incproj.html#V9>v9_incproj</a>,'Fanoian__5',_). constr_name(<a href=%MML%incproj.html#V10>v10_incproj</a>,'Desarguesian__3',_). constr_name(<a href=%MML%incproj.html#V11>v11_incproj</a>,'Pappian__3',_). constr_name(<a href=%MML%afvect01.html#V1>v1_afvect01</a>,'WeakAffSegm-like',_). constr_name(<a href=%MML%afvect01.html#R1>r1_afvect01</a>,'MDist__2',_). constr_name(<a href=%MML%afvect01.html#R2>r2_afvect01</a>,'Mid__3',_). constr_name(<a href=%MML%normform.html#R1>r1_normform</a>,'c=__5',_). constr_name(<a href=%MML%normform.html#K1>k1_normform</a>,'\\/__14',_). constr_name(<a href=%MML%normform.html#K2>k2_normform</a>,'/\\__17',_). constr_name(<a href=%MML%normform.html#K3>k3_normform</a>,'\\__14',_). constr_name(<a href=%MML%normform.html#K4>k4_normform</a>,'\\+\\__7',_). constr_name(<a href=%MML%normform.html#K5>k5_normform</a>,'FinPairUnion',_). constr_name(<a href=%MML%normform.html#K6>k6_normform</a>,'FinPairUnion__2',_). constr_name(<a href=%MML%normform.html#K7>k7_normform</a>,'DISJOINT_PAIRS',_). constr_name(<a href=%MML%normform.html#K8>k8_normform</a>,'Normal_forms_on',_). constr_name(<a href=%MML%normform.html#K9>k9_normform</a>,mi,_). constr_name(<a href=%MML%normform.html#K10>k10_normform</a>,'^__11',_). constr_name(<a href=%MML%normform.html#K11>k11_normform</a>,'.__43',_). constr_name(<a href=%MML%normform.html#K12>k12_normform</a>,'NormForm',_). constr_name(<a href=%MML%o_ring_1.html#K1>k1_o_ring_1</a>,'.:__13',_). constr_name(<a href=%MML%o_ring_1.html#K2>k2_o_ring_1</a>,'^2__4',_). constr_name(<a href=%MML%o_ring_1.html#V1>v1_o_ring_1</a>,being_a_square,_). constr_name(<a href=%MML%o_ring_1.html#V2>v2_o_ring_1</a>,being_a_Sum_of_squares,_). constr_name(<a href=%MML%o_ring_1.html#V3>v3_o_ring_1</a>,being_a_sum_of_squares,_). constr_name(<a href=%MML%o_ring_1.html#V4>v4_o_ring_1</a>,being_a_Product_of_squares,_). constr_name(<a href=%MML%o_ring_1.html#V5>v5_o_ring_1</a>,being_a_product_of_squares,_). constr_name(<a href=%MML%o_ring_1.html#V6>v6_o_ring_1</a>,being_a_Sum_of_products_of_squares,_). constr_name(<a href=%MML%o_ring_1.html#V7>v7_o_ring_1</a>,being_a_sum_of_products_of_squares,_). constr_name(<a href=%MML%o_ring_1.html#V8>v8_o_ring_1</a>,being_an_Amalgam_of_squares,_). constr_name(<a href=%MML%o_ring_1.html#V9>v9_o_ring_1</a>,being_an_amalgam_of_squares,_). constr_name(<a href=%MML%o_ring_1.html#V10>v10_o_ring_1</a>,being_a_Sum_of_amalgams_of_squares,_). constr_name(<a href=%MML%o_ring_1.html#V11>v11_o_ring_1</a>,being_a_sum_of_amalgams_of_squares,_). constr_name(<a href=%MML%o_ring_1.html#V12>v12_o_ring_1</a>,being_a_generation_from_squares,_). constr_name(<a href=%MML%o_ring_1.html#V13>v13_o_ring_1</a>,generated_from_squares,_). constr_name(<a href=%MML%algstr_3.html#L1>l1_algstr_3</a>,'TernaryFieldStr',_). constr_name(<a href=%MML%algstr_3.html#V1>v1_algstr_3</a>,strict__TernaryFieldStr,_). constr_name(<a href=%MML%algstr_3.html#U1>u1_algstr_3</a>,unity__2,the_unity__2). constr_name(<a href=%MML%algstr_3.html#U2>u2_algstr_3</a>,ternary,the_ternary). constr_name(<a href=%MML%algstr_3.html#G1>g1_algstr_3</a>,'TernaryFieldStr_constr',_). constr_name(<a href=%MML%algstr_3.html#K1>k1_algstr_3</a>,'Tern',_). constr_name(<a href=%MML%algstr_3.html#K2>k2_algstr_3</a>,'1___2',_). constr_name(<a href=%MML%algstr_3.html#K3>k3_algstr_3</a>,ternaryreal,_). constr_name(<a href=%MML%algstr_3.html#K4>k4_algstr_3</a>,'TernaryFieldEx',_). constr_name(<a href=%MML%algstr_3.html#K5>k5_algstr_3</a>,tern,_). constr_name(<a href=%MML%algstr_3.html#V2>v2_algstr_3</a>,'Ternary-Field-like',_). constr_name(<a href=%MML%projred1.html#K1>k1_projred1</a>,'IncProj',_). constr_name(<a href=%MML%lmod_5.html#V1>v1_lmod_5</a>,'linearly-independent__3',_). constr_name(<a href=%MML%lmod_5.html#K1>k1_lmod_5</a>,'Lin__3',_). constr_name(<a href=%MML%rmod_2.html#V1>v1_rmod_2</a>,'lineary-closed__3',_). constr_name(<a href=%MML%rmod_2.html#M1>m1_rmod_2</a>,'Submodule',_). constr_name(<a href=%MML%rmod_2.html#K1>k1_rmod_2</a>,'(0).__3',_). constr_name(<a href=%MML%rmod_2.html#K2>k2_rmod_2</a>,'(Omega).__4',_). constr_name(<a href=%MML%rmod_2.html#K3>k3_rmod_2</a>,'+__44',_). constr_name(<a href=%MML%rmod_2.html#M2>m2_rmod_2</a>,'Coset__3',_). constr_name(<a href=%MML%rmod_3.html#K1>k1_rmod_3</a>,'+__45',_). constr_name(<a href=%MML%rmod_3.html#K2>k2_rmod_3</a>,'/\\__18',_). constr_name(<a href=%MML%rmod_3.html#K3>k3_rmod_3</a>,'Submodules',_). constr_name(<a href=%MML%rmod_3.html#R1>r1_rmod_3</a>,is_the_direct_sum_of__3,_). constr_name(<a href=%MML%rmod_3.html#K4>k4_rmod_3</a>,'|--__4',_). constr_name(<a href=%MML%rmod_3.html#K5>k5_rmod_3</a>,'SubJoin__4',_). constr_name(<a href=%MML%rmod_3.html#K6>k6_rmod_3</a>,'SubMeet__4',_). constr_name(<a href=%MML%rmod_4.html#K1>k1_rmod_4</a>,'Sum__11',_). constr_name(<a href=%MML%rmod_4.html#M1>m1_rmod_4</a>,'Linear_Combination__5',_). constr_name(<a href=%MML%rmod_4.html#K2>k2_rmod_4</a>,'Carrier__3',_). constr_name(<a href=%MML%rmod_4.html#K3>k3_rmod_4</a>,'ZeroLC__3',_). constr_name(<a href=%MML%rmod_4.html#M2>m2_rmod_4</a>,'Linear_Combination__6',_). constr_name(<a href=%MML%rmod_4.html#K4>k4_rmod_4</a>,'(#)__23',_). constr_name(<a href=%MML%rmod_4.html#K5>k5_rmod_4</a>,'Sum__12',_). constr_name(<a href=%MML%rmod_4.html#R1>r1_rmod_4</a>,'=__6',_). constr_name(<a href=%MML%rmod_4.html#K6>k6_rmod_4</a>,'+__46',_). constr_name(<a href=%MML%rmod_4.html#K7>k7_rmod_4</a>,'*__60',_). constr_name(<a href=%MML%rmod_4.html#K8>k8_rmod_4</a>,'-__59',_). constr_name(<a href=%MML%rmod_4.html#K9>k9_rmod_4</a>,'-__60',_). constr_name(<a href=%MML%rmod_5.html#V1>v1_rmod_5</a>,'linearly-independent__4',_). constr_name(<a href=%MML%rmod_5.html#K1>k1_rmod_5</a>,'Lin__4',_). constr_name(<a href=%MML%geomtrap.html#R1>r1_geomtrap</a>,''||'__3',_). constr_name(<a href=%MML%geomtrap.html#K1>k1_geomtrap</a>,'#__4',_). constr_name(<a href=%MML%geomtrap.html#R2>r2_geomtrap</a>,are_DTr_wrt,_). constr_name(<a href=%MML%geomtrap.html#K2>k2_geomtrap</a>,pr1__7,_). constr_name(<a href=%MML%geomtrap.html#K3>k3_geomtrap</a>,pr2__7,_). constr_name(<a href=%MML%geomtrap.html#K4>k4_geomtrap</a>,'PProJ__3',_). constr_name(<a href=%MML%geomtrap.html#K5>k5_geomtrap</a>,'DTrapezium',_). constr_name(<a href=%MML%geomtrap.html#K6>k6_geomtrap</a>,'MidPoint',_). constr_name(<a href=%MML%geomtrap.html#L1>l1_geomtrap</a>,'AfMidStruct',_). constr_name(<a href=%MML%geomtrap.html#V1>v1_geomtrap</a>,strict__AfMidStruct,_). constr_name(<a href=%MML%geomtrap.html#G1>g1_geomtrap</a>,'AfMidStruct_constr',_). constr_name(<a href=%MML%geomtrap.html#K7>k7_geomtrap</a>,'DTrSpace',_). constr_name(<a href=%MML%geomtrap.html#K8>k8_geomtrap</a>,'Af__2',_). constr_name(<a href=%MML%geomtrap.html#K9>k9_geomtrap</a>,'#__5',_). constr_name(<a href=%MML%geomtrap.html#V2>v2_geomtrap</a>,'MidOrdTrapSpace-like',_). constr_name(<a href=%MML%geomtrap.html#V3>v3_geomtrap</a>,'OrdTrapSpace-like',_). constr_name(<a href=%MML%geomtrap.html#V4>v4_geomtrap</a>,'TrapSpace-like',_). constr_name(<a href=%MML%geomtrap.html#V5>v5_geomtrap</a>,'Regular',_). constr_name(<a href=%MML%projred2.html#R1>r1_projred2</a>,are_concurrent,_). constr_name(<a href=%MML%projred2.html#K1>k1_projred2</a>,'CHAIN',_). constr_name(<a href=%MML%projred2.html#M1>m1_projred2</a>,'Projection',_). constr_name(<a href=%MML%conaffm.html#V1>v1_conaffm</a>,satisfying_DES,_). constr_name(<a href=%MML%conaffm.html#V2>v2_conaffm</a>,satisfying_AH,_). constr_name(<a href=%MML%conaffm.html#V3>v3_conaffm</a>,satisfying_3H,_). constr_name(<a href=%MML%conaffm.html#V4>v4_conaffm</a>,satisfying_ODES,_). constr_name(<a href=%MML%conaffm.html#V5>v5_conaffm</a>,satisfying_LIN,_). constr_name(<a href=%MML%conaffm.html#V6>v6_conaffm</a>,satisfying_LIN1,_). constr_name(<a href=%MML%conaffm.html#V7>v7_conaffm</a>,satisfying_LIN2,_). constr_name(<a href=%MML%conmetr.html#V1>v1_conmetr</a>,satisfying_OPAP,_). constr_name(<a href=%MML%conmetr.html#V2>v2_conmetr</a>,satisfying_PAP,_). constr_name(<a href=%MML%conmetr.html#V3>v3_conmetr</a>,satisfying_MH1,_). constr_name(<a href=%MML%conmetr.html#V4>v4_conmetr</a>,satisfying_MH2,_). constr_name(<a href=%MML%conmetr.html#V5>v5_conmetr</a>,satisfying_TDES,_). constr_name(<a href=%MML%conmetr.html#V6>v6_conmetr</a>,satisfying_SCH,_). constr_name(<a href=%MML%conmetr.html#V7>v7_conmetr</a>,satisfying_OSCH,_). constr_name(<a href=%MML%conmetr.html#V8>v8_conmetr</a>,satisfying_des,_). constr_name(<a href=%MML%papdesaf.html#V1>v1_papdesaf</a>,'Pappian__4',_). constr_name(<a href=%MML%papdesaf.html#V2>v2_papdesaf</a>,'Desarguesian__4',_). constr_name(<a href=%MML%papdesaf.html#V3>v3_papdesaf</a>,'Moufangian__2',_). constr_name(<a href=%MML%papdesaf.html#V4>v4_papdesaf</a>,translation__3,_). constr_name(<a href=%MML%papdesaf.html#V5>v5_papdesaf</a>,satisfying_DES__2,_). constr_name(<a href=%MML%papdesaf.html#V6>v6_papdesaf</a>,satisfying_DES_1__2,_). constr_name(<a href=%MML%semi_af1.html#V1>v1_semi_af1</a>,'Semi_Affine_Space-like',_). constr_name(<a href=%MML%semi_af1.html#R1>r1_semi_af1</a>,is_collinear__3,_). constr_name(<a href=%MML%semi_af1.html#R2>r2_semi_af1</a>,parallelogram__2,_). constr_name(<a href=%MML%semi_af1.html#R3>r3_semi_af1</a>,congr__2,_). constr_name(<a href=%MML%semi_af1.html#K1>k1_semi_af1</a>,sum,_). constr_name(<a href=%MML%semi_af1.html#K2>k2_semi_af1</a>,opposite,_). constr_name(<a href=%MML%semi_af1.html#K3>k3_semi_af1</a>,diff__2,_). constr_name(<a href=%MML%semi_af1.html#R4>r4_semi_af1</a>,trap,_). constr_name(<a href=%MML%semi_af1.html#R5>r5_semi_af1</a>,qtrap,_). constr_name(<a href=%MML%aff_4.html#K1>k1_aff_4</a>,'Plane__4',_). constr_name(<a href=%MML%aff_4.html#V1>v1_aff_4</a>,being_plane,_). constr_name(<a href=%MML%aff_4.html#K2>k2_aff_4</a>,'*__61',_). constr_name(<a href=%MML%aff_4.html#R1>r1_aff_4</a>,''||'__4',_). constr_name(<a href=%MML%aff_4.html#R2>r2_aff_4</a>,is_coplanar,_). constr_name(<a href=%MML%aff_4.html#K3>k3_aff_4</a>,'+__47',_). constr_name(<a href=%MML%afproj.html#K1>k1_afproj</a>,'AfLines',_). constr_name(<a href=%MML%afproj.html#K2>k2_afproj</a>,'AfPlanes',_). constr_name(<a href=%MML%afproj.html#K3>k3_afproj</a>,'LinesParallelity',_). constr_name(<a href=%MML%afproj.html#K4>k4_afproj</a>,'PlanesParallelity',_). constr_name(<a href=%MML%afproj.html#K5>k5_afproj</a>,'LDir',_). constr_name(<a href=%MML%afproj.html#K6>k6_afproj</a>,'PDir',_). constr_name(<a href=%MML%afproj.html#K7>k7_afproj</a>,'Dir_of_Lines',_). constr_name(<a href=%MML%afproj.html#K8>k8_afproj</a>,'Dir_of_Planes',_). constr_name(<a href=%MML%afproj.html#K9>k9_afproj</a>,'ProjectivePoints__2',_). constr_name(<a href=%MML%afproj.html#K10>k10_afproj</a>,'ProjectiveLines__2',_). constr_name(<a href=%MML%afproj.html#K11>k11_afproj</a>,'Proj_Inc__2',_). constr_name(<a href=%MML%afproj.html#K12>k12_afproj</a>,'Inc_of_Dir',_). constr_name(<a href=%MML%afproj.html#K13>k13_afproj</a>,'IncProjSp_of__2',_). constr_name(<a href=%MML%afproj.html#K14>k14_afproj</a>,'ProjHorizon',_). constr_name(<a href=%MML%heyting1.html#R1>r1_heyting1</a>,'c=__6',_). constr_name(<a href=%MML%heyting1.html#K1>k1_heyting1</a>,'[..]__16',_). constr_name(<a href=%MML%heyting1.html#K2>k2_heyting1</a>,'{..}__40',_). constr_name(<a href=%MML%heyting1.html#K3>k3_heyting1</a>,'@__11',_). constr_name(<a href=%MML%heyting1.html#K4>k4_heyting1</a>,'Atom',_). constr_name(<a href=%MML%heyting1.html#K5>k5_heyting1</a>,pair_diff,_). constr_name(<a href=%MML%heyting1.html#K6>k6_heyting1</a>,'-__61',_). constr_name(<a href=%MML%heyting1.html#K7>k7_heyting1</a>,'=>>',_). constr_name(<a href=%MML%heyting1.html#K8>k8_heyting1</a>,pseudo_compl,_). constr_name(<a href=%MML%heyting1.html#K9>k9_heyting1</a>,'StrongImpl',_). constr_name(<a href=%MML%heyting1.html#K10>k10_heyting1</a>,'SUB',_). constr_name(<a href=%MML%heyting1.html#K11>k11_heyting1</a>,diff__3,_). constr_name(<a href=%MML%prelamb.html#L1>l1_prelamb</a>,typealg,_). constr_name(<a href=%MML%prelamb.html#V1>v1_prelamb</a>,strict__typealg,_). constr_name(<a href=%MML%prelamb.html#U1>u1_prelamb</a>,left_quotient,the_left_quotient). constr_name(<a href=%MML%prelamb.html#U2>u2_prelamb</a>,right_quotient,the_right_quotient). constr_name(<a href=%MML%prelamb.html#U3>u3_prelamb</a>,inner_product,the_inner_product). constr_name(<a href=%MML%prelamb.html#G1>g1_prelamb</a>,typealg_constr,_). constr_name(<a href=%MML%prelamb.html#K1>k1_prelamb</a>,'\\__15',_). constr_name(<a href=%MML%prelamb.html#K2>k2_prelamb</a>,'/"__4',_). constr_name(<a href=%MML%prelamb.html#K3>k3_prelamb</a>,'*__62',_). constr_name(<a href=%MML%prelamb.html#V2>v2_prelamb</a>,correct,_). constr_name(<a href=%MML%prelamb.html#V3>v3_prelamb</a>,left,_). constr_name(<a href=%MML%prelamb.html#V4>v4_prelamb</a>,right,_). constr_name(<a href=%MML%prelamb.html#V5>v5_prelamb</a>,middle,_). constr_name(<a href=%MML%prelamb.html#V6>v6_prelamb</a>,primitive,_). constr_name(<a href=%MML%prelamb.html#K4>k4_prelamb</a>,'.__44',_). constr_name(<a href=%MML%prelamb.html#R1>r1_prelamb</a>,represents,_). constr_name(<a href=%MML%prelamb.html#V7>v7_prelamb</a>,free,_). constr_name(<a href=%MML%prelamb.html#K5>k5_prelamb</a>,repr_of,_). constr_name(<a href=%MML%prelamb.html#K6>k6_prelamb</a>,'[..]__17',_). constr_name(<a href=%MML%prelamb.html#M1>m1_prelamb</a>,'Proof',_). constr_name(<a href=%MML%prelamb.html#V8>v8_prelamb</a>,'cut-free',_). constr_name(<a href=%MML%prelamb.html#K7>k7_prelamb</a>,'size_w.r.t.',_). constr_name(<a href=%MML%prelamb.html#K8>k8_prelamb</a>,'*__63',_). constr_name(<a href=%MML%prelamb.html#K9>k9_prelamb</a>,cutdeg,_). constr_name(<a href=%MML%prelamb.html#M2>m2_prelamb</a>,'Model',_). constr_name(<a href=%MML%prelamb.html#L2>l2_prelamb</a>,typestr,_). constr_name(<a href=%MML%prelamb.html#V9>v9_prelamb</a>,strict__typestr,_). constr_name(<a href=%MML%prelamb.html#U4>u4_prelamb</a>,derivability,the_derivability). constr_name(<a href=%MML%prelamb.html#G2>g2_prelamb</a>,typestr_constr,_). constr_name(<a href=%MML%prelamb.html#R2>r2_prelamb</a>,'==>.',_). constr_name(<a href=%MML%prelamb.html#V10>v10_prelamb</a>,'SynTypes_Calculus-like',_). constr_name(<a href=%MML%prelamb.html#R3>r3_prelamb</a>,'<==>.',_). constr_name(<a href=%MML%oppcat_1.html#K1>k1_oppcat_1</a>,'~__8',_). constr_name(<a href=%MML%oppcat_1.html#K2>k2_oppcat_1</a>,opp__2,_). constr_name(<a href=%MML%oppcat_1.html#K3>k3_oppcat_1</a>,opp__3,_). constr_name(<a href=%MML%oppcat_1.html#K4>k4_oppcat_1</a>,opp__4,_). constr_name(<a href=%MML%oppcat_1.html#K5>k5_oppcat_1</a>,opp__5,_). constr_name(<a href=%MML%oppcat_1.html#K6>k6_oppcat_1</a>,opp__6,_). constr_name(<a href=%MML%oppcat_1.html#K7>k7_oppcat_1</a>,'/*',_). constr_name(<a href=%MML%oppcat_1.html#M1>m1_oppcat_1</a>,'Contravariant_Functor',_). constr_name(<a href=%MML%oppcat_1.html#K8>k8_oppcat_1</a>,'*'__8',_). constr_name(<a href=%MML%oppcat_1.html#K9>k9_oppcat_1</a>,'*'__9',_). constr_name(<a href=%MML%oppcat_1.html#K10>k10_oppcat_1</a>,'id*',_). constr_name(<a href=%MML%oppcat_1.html#K11>k11_oppcat_1</a>,'*id',_). constr_name(<a href=%MML%euclmetr.html#V1>v1_euclmetr</a>,'Euclidean',_). constr_name(<a href=%MML%euclmetr.html#V2>v2_euclmetr</a>,'Pappian__5',_). constr_name(<a href=%MML%euclmetr.html#V3>v3_euclmetr</a>,'Desarguesian__5',_). constr_name(<a href=%MML%euclmetr.html#V4>v4_euclmetr</a>,'Fanoian__6',_). constr_name(<a href=%MML%euclmetr.html#V5>v5_euclmetr</a>,'Moufangian__3',_). constr_name(<a href=%MML%euclmetr.html#V6>v6_euclmetr</a>,translation__4,_). constr_name(<a href=%MML%euclmetr.html#V7>v7_euclmetr</a>,'Homogeneous',_). constr_name(<a href=%MML%filter_1.html#K1>k1_filter_1</a>,'/\\__19',_). constr_name(<a href=%MML%filter_1.html#M1>m1_filter_1</a>,'UnOp',_). constr_name(<a href=%MML%filter_1.html#M2>m2_filter_1</a>,'BinOp',_). constr_name(<a href=%MML%filter_1.html#K2>k2_filter_1</a>,'Class__4',_). constr_name(<a href=%MML%filter_1.html#K3>k3_filter_1</a>,'/\\/',_). constr_name(<a href=%MML%filter_1.html#K4>k4_filter_1</a>,'/\\/__2',_). constr_name(<a href=%MML%filter_1.html#K5>k5_filter_1</a>,'/\\/__3',_). constr_name(<a href=%MML%filter_1.html#K6>k6_filter_1</a>,'/\\/__4',_). constr_name(<a href=%MML%filter_1.html#K7>k7_filter_1</a>,'|:..:|__3',_). constr_name(<a href=%MML%filter_1.html#K8>k8_filter_1</a>,'[:..:]__19',_). constr_name(<a href=%MML%filter_1.html#K9>k9_filter_1</a>,'LattRel',_). constr_name(<a href=%MML%filter_1.html#R1>r1_filter_1</a>,are_isomorphic__3,_). constr_name(<a href=%MML%filter_1.html#K10>k10_filter_1</a>,'[..]__18',_). constr_name(<a href=%MML%conmetr1.html#V1>v1_conmetr1</a>,satisfying_minor_Scherungssatz,_). constr_name(<a href=%MML%conmetr1.html#V2>v2_conmetr1</a>,satisfying_major_Scherungssatz,_). constr_name(<a href=%MML%conmetr1.html#V3>v3_conmetr1</a>,satisfying_Scherungssatz,_). constr_name(<a href=%MML%conmetr1.html#V4>v4_conmetr1</a>,satisfying_indirect_Scherungssatz,_). constr_name(<a href=%MML%conmetr1.html#V5>v5_conmetr1</a>,satisfying_minor_indirect_Scherungssatz,_). constr_name(<a href=%MML%conmetr1.html#V6>v6_conmetr1</a>,satisfying_major_indirect_Scherungssatz,_). constr_name(<a href=%MML%nat_lat.html#K1>k1_nat_lat</a>,hcflat,_). constr_name(<a href=%MML%nat_lat.html#K2>k2_nat_lat</a>,lcmlat,_). constr_name(<a href=%MML%nat_lat.html#K3>k3_nat_lat</a>,'@__12',_). constr_name(<a href=%MML%nat_lat.html#K4>k4_nat_lat</a>,'0_NN',_). constr_name(<a href=%MML%nat_lat.html#K5>k5_nat_lat</a>,'1_NN',_). constr_name(<a href=%MML%nat_lat.html#K6>k6_nat_lat</a>,'Nat_Lattice',_). constr_name(<a href=%MML%nat_lat.html#K7>k7_nat_lat</a>,'NATPLUS',_). constr_name(<a href=%MML%nat_lat.html#M1>m1_nat_lat</a>,'Element__18',_). constr_name(<a href=%MML%nat_lat.html#K8>k8_nat_lat</a>,'@__13',_). constr_name(<a href=%MML%nat_lat.html#K9>k9_nat_lat</a>,'@__14',_). constr_name(<a href=%MML%nat_lat.html#K10>k10_nat_lat</a>,hcflatplus,_). constr_name(<a href=%MML%nat_lat.html#K11>k11_nat_lat</a>,lcmlatplus,_). constr_name(<a href=%MML%nat_lat.html#K12>k12_nat_lat</a>,'@__15',_). constr_name(<a href=%MML%nat_lat.html#K13>k13_nat_lat</a>,'NatPlus_Lattice',_). constr_name(<a href=%MML%nat_lat.html#M2>m2_nat_lat</a>,'SubLattice',_). constr_name(<a href=%MML%group_5.html#K1>k1_group_5</a>,'|^__12',_). constr_name(<a href=%MML%group_5.html#K2>k2_group_5</a>,'[....]__3',_). constr_name(<a href=%MML%group_5.html#K3>k3_group_5</a>,'[....]__4',_). constr_name(<a href=%MML%group_5.html#K4>k4_group_5</a>,commutators,_). constr_name(<a href=%MML%group_5.html#K5>k5_group_5</a>,commutators__2,_). constr_name(<a href=%MML%group_5.html#K6>k6_group_5</a>,commutators__3,_). constr_name(<a href=%MML%group_5.html#K7>k7_group_5</a>,'[....]__5',_). constr_name(<a href=%MML%group_5.html#K8>k8_group_5</a>,'[....]__6',_). constr_name(<a href=%MML%group_5.html#K9>k9_group_5</a>,'`__3',_). constr_name(<a href=%MML%group_5.html#K10>k10_group_5</a>,center,_). constr_name(<a href=%MML%nattra_1.html#K1>k1_nattra_1</a>,'|__17',_). constr_name(<a href=%MML%nattra_1.html#K2>k2_nattra_1</a>,'|:..:|__4',_). constr_name(<a href=%MML%nattra_1.html#K3>k3_nattra_1</a>,'.__45',_). constr_name(<a href=%MML%nattra_1.html#R1>r1_nattra_1</a>,is_transformable_to__2,_). constr_name(<a href=%MML%nattra_1.html#M1>m1_nattra_1</a>,transformation,_). constr_name(<a href=%MML%nattra_1.html#K4>k4_nattra_1</a>,id__8,_). constr_name(<a href=%MML%nattra_1.html#K5>k5_nattra_1</a>,'.__46',_). constr_name(<a href=%MML%nattra_1.html#K6>k6_nattra_1</a>,'`*`',_). constr_name(<a href=%MML%nattra_1.html#R2>r2_nattra_1</a>,is_naturally_transformable_to,is_naturally_transformable_to). constr_name(<a href=%MML%nattra_1.html#M2>m2_nattra_1</a>,natural_transformation,natural_transformation). constr_name(<a href=%MML%nattra_1.html#K7>k7_nattra_1</a>,id__9,_). constr_name(<a href=%MML%nattra_1.html#K8>k8_nattra_1</a>,'`*`__2',_). constr_name(<a href=%MML%nattra_1.html#V1>v1_nattra_1</a>,invertible__3,_). constr_name(<a href=%MML%nattra_1.html#R3>r3_nattra_1</a>,are_naturally_equivalent,are_naturally_equivalent). constr_name(<a href=%MML%nattra_1.html#K9>k9_nattra_1</a>,'"__25',_). constr_name(<a href=%MML%nattra_1.html#K10>k10_nattra_1</a>,'"__26',_). constr_name(<a href=%MML%nattra_1.html#M3>m3_nattra_1</a>,natural_equivalence,natural_equivalence). constr_name(<a href=%MML%nattra_1.html#M4>m4_nattra_1</a>,'NatTrans-DOMAIN',_). constr_name(<a href=%MML%nattra_1.html#K11>k11_nattra_1</a>,'NatTrans',_). constr_name(<a href=%MML%nattra_1.html#R4>r4_nattra_1</a>,'=__7',functions_equal). constr_name(<a href=%MML%nattra_1.html#K12>k12_nattra_1</a>,'Functors',_). constr_name(<a href=%MML%nattra_1.html#V2>v2_nattra_1</a>,discrete,_). constr_name(<a href=%MML%nattra_1.html#K13>k13_nattra_1</a>,'IdCat',_). constr_name(<a href=%MML%matrix_1.html#V1>v1_matrix_1</a>,tabular,_). constr_name(<a href=%MML%matrix_1.html#M1>m1_matrix_1</a>,'Matrix',_). constr_name(<a href=%MML%matrix_1.html#K1>k1_matrix_1</a>,width__2,_). constr_name(<a href=%MML%matrix_1.html#K2>k2_matrix_1</a>,'Indices',_). constr_name(<a href=%MML%matrix_1.html#K3>k3_matrix_1</a>,'*__64',_). constr_name(<a href=%MML%matrix_1.html#K4>k4_matrix_1</a>,'@__16',_). constr_name(<a href=%MML%matrix_1.html#K5>k5_matrix_1</a>,'Line__6',_). constr_name(<a href=%MML%matrix_1.html#K6>k6_matrix_1</a>,'Col',_). constr_name(<a href=%MML%matrix_1.html#K7>k7_matrix_1</a>,'Line__7',_). constr_name(<a href=%MML%matrix_1.html#K8>k8_matrix_1</a>,'Col__2',_). constr_name(<a href=%MML%matrix_1.html#K9>k9_matrix_1</a>,'-Matrices_over',_). constr_name(<a href=%MML%matrix_1.html#K10>k10_matrix_1</a>,'0.__3',_). constr_name(<a href=%MML%matrix_1.html#K11>k11_matrix_1</a>,'1.__3',_). constr_name(<a href=%MML%matrix_1.html#K12>k12_matrix_1</a>,'-__62',_). constr_name(<a href=%MML%matrix_1.html#K13>k13_matrix_1</a>,'+__48',_). constr_name(<a href=%MML%matrix_1.html#M2>m2_matrix_1</a>,'Diagonal',_). constr_name(<a href=%MML%matrix_1.html#K14>k14_matrix_1</a>,'-G_Matrix_over',_). constr_name(<a href=%MML%pcomps_1.html#K1>k1_pcomps_1</a>,bool__7,_). constr_name(<a href=%MML%pcomps_1.html#K2>k2_pcomps_1</a>,'1TopSp',_). constr_name(<a href=%MML%pcomps_1.html#V1>v1_pcomps_1</a>,locally_finite,_). constr_name(<a href=%MML%pcomps_1.html#K3>k3_pcomps_1</a>,clf,_). constr_name(<a href=%MML%pcomps_1.html#V2>v2_pcomps_1</a>,paracompact,_). constr_name(<a href=%MML%pcomps_1.html#K4>k4_pcomps_1</a>,'Family_open_set',_). constr_name(<a href=%MML%pcomps_1.html#K5>k5_pcomps_1</a>,'TopSpaceMetr',_). constr_name(<a href=%MML%pcomps_1.html#R1>r1_pcomps_1</a>,is_metric_of,_). constr_name(<a href=%MML%pcomps_1.html#K6>k6_pcomps_1</a>,'SpaceMetr',_). constr_name(<a href=%MML%pcomps_1.html#V3>v3_pcomps_1</a>,metrizable,_). constr_name(<a href=%MML%midsp_2.html#K1>k1_midsp_2</a>,'Double',_). constr_name(<a href=%MML%midsp_2.html#R1>r1_midsp_2</a>,are_associated_wrp,_). constr_name(<a href=%MML%midsp_2.html#R2>r2_midsp_2</a>,is_atlas_of,_). constr_name(<a href=%MML%midsp_2.html#K2>k2_midsp_2</a>,'.__47',_). constr_name(<a href=%MML%midsp_2.html#V1>v1_midsp_2</a>,midpoint_operator,_). constr_name(<a href=%MML%midsp_2.html#K3>k3_midsp_2</a>,'Half',_). constr_name(<a href=%MML%midsp_2.html#K4>k4_midsp_2</a>,vector__2,_). constr_name(<a href=%MML%midsp_2.html#K5>k5_midsp_2</a>,vect__2,_). constr_name(<a href=%MML%midsp_2.html#K6>k6_midsp_2</a>,'@__17',_). constr_name(<a href=%MML%midsp_2.html#K7>k7_midsp_2</a>,'Atlas',_). constr_name(<a href=%MML%midsp_2.html#K8>k8_midsp_2</a>,'MidSp.',_). constr_name(<a href=%MML%midsp_2.html#L1>l1_midsp_2</a>,'AtlasStr',_). constr_name(<a href=%MML%midsp_2.html#V2>v2_midsp_2</a>,strict__AtlasStr,_). constr_name(<a href=%MML%midsp_2.html#U1>u1_midsp_2</a>,algebra,the_algebra). constr_name(<a href=%MML%midsp_2.html#U2>u2_midsp_2</a>,function,the_function). constr_name(<a href=%MML%midsp_2.html#G1>g1_midsp_2</a>,'AtlasStr_constr',_). constr_name(<a href=%MML%midsp_2.html#V3>v3_midsp_2</a>,'ATLAS-like',_). constr_name(<a href=%MML%midsp_2.html#K9>k9_midsp_2</a>,'.__48',_). constr_name(<a href=%MML%midsp_2.html#K10>k10_midsp_2</a>,'.__49',_). constr_name(<a href=%MML%midsp_2.html#K11>k11_midsp_2</a>,'0.__4',_). constr_name(<a href=%MML%metric_4.html#K1>k1_metric_4</a>,dist_cart2S,_). constr_name(<a href=%MML%metric_4.html#K2>k2_metric_4</a>,dist2S,_). constr_name(<a href=%MML%metric_4.html#K3>k3_metric_4</a>,'MetrSpaceCart2S',_). constr_name(<a href=%MML%metric_4.html#K4>k4_metric_4</a>,dist_cart3S,_). constr_name(<a href=%MML%metric_4.html#K5>k5_metric_4</a>,dist3S,_). constr_name(<a href=%MML%metric_4.html#K6>k6_metric_4</a>,'MetrSpaceCart3S',_). constr_name(<a href=%MML%metric_4.html#K7>k7_metric_4</a>,taxi_dist2,_). constr_name(<a href=%MML%metric_4.html#K8>k8_metric_4</a>,'RealSpaceCart2',_). constr_name(<a href=%MML%metric_4.html#K9>k9_metric_4</a>,'Eukl_dist2',_). constr_name(<a href=%MML%metric_4.html#K10>k10_metric_4</a>,'EuklSpace2',_). constr_name(<a href=%MML%metric_4.html#K11>k11_metric_4</a>,taxi_dist3,_). constr_name(<a href=%MML%metric_4.html#K12>k12_metric_4</a>,'RealSpaceCart3',_). constr_name(<a href=%MML%metric_4.html#K13>k13_metric_4</a>,'Eukl_dist3',_). constr_name(<a href=%MML%metric_4.html#K14>k14_metric_4</a>,'EuklSpace3',_). constr_name(<a href=%MML%ali2.html#M1>m1_ali2</a>,contraction,_). constr_name(<a href=%MML%bhsp_1.html#L1>l1_bhsp_1</a>,'UNITSTR',_). constr_name(<a href=%MML%bhsp_1.html#V1>v1_bhsp_1</a>,strict__UNITSTR,_). constr_name(<a href=%MML%bhsp_1.html#U1>u1_bhsp_1</a>,scalar,the_scalar). constr_name(<a href=%MML%bhsp_1.html#G1>g1_bhsp_1</a>,'UNITSTR_constr',_). constr_name(<a href=%MML%bhsp_1.html#K1>k1_bhsp_1</a>,'.|.__2',_). constr_name(<a href=%MML%bhsp_1.html#V2>v2_bhsp_1</a>,'RealUnitarySpace-like',_). constr_name(<a href=%MML%bhsp_1.html#K2>k2_bhsp_1</a>,'.|.__3',_). constr_name(<a href=%MML%bhsp_1.html#R1>r1_bhsp_1</a>,are_orthogonal,_). constr_name(<a href=%MML%bhsp_1.html#K3>k3_bhsp_1</a>,'||....||__3',_). constr_name(<a href=%MML%bhsp_1.html#K4>k4_bhsp_1</a>,dist__5,_). constr_name(<a href=%MML%bhsp_1.html#K5>k5_bhsp_1</a>,dist__6,_). constr_name(<a href=%MML%bhsp_1.html#K6>k6_bhsp_1</a>,'-__63',_). constr_name(<a href=%MML%bhsp_1.html#K7>k7_bhsp_1</a>,'+__49',_). constr_name(<a href=%MML%bhsp_1.html#K8>k8_bhsp_1</a>,'+__50',_). constr_name(<a href=%MML%bhsp_2.html#V1>v1_bhsp_2</a>,convergent__4,_). constr_name(<a href=%MML%bhsp_2.html#K1>k1_bhsp_2</a>,lim__9,_). constr_name(<a href=%MML%bhsp_2.html#K2>k2_bhsp_2</a>,'||....||__4',_). constr_name(<a href=%MML%bhsp_2.html#K3>k3_bhsp_2</a>,dist__7,_). constr_name(<a href=%MML%bhsp_2.html#K4>k4_bhsp_2</a>,'Ball__4',_). constr_name(<a href=%MML%bhsp_2.html#K5>k5_bhsp_2</a>,cl_Ball__2,_). constr_name(<a href=%MML%bhsp_2.html#K6>k6_bhsp_2</a>,'Sphere__2',_). constr_name(<a href=%MML%bhsp_3.html#V1>v1_bhsp_3</a>,'Cauchy',_). constr_name(<a href=%MML%bhsp_3.html#R1>r1_bhsp_3</a>,is_compared_to,_). constr_name(<a href=%MML%bhsp_3.html#R2>r2_bhsp_3</a>,is_compared_to__2,_). constr_name(<a href=%MML%bhsp_3.html#V2>v2_bhsp_3</a>,bounded__7,_). constr_name(<a href=%MML%bhsp_3.html#K1>k1_bhsp_3</a>,'*__65',_). constr_name(<a href=%MML%bhsp_3.html#M1>m1_bhsp_3</a>,subsequence__3,_). constr_name(<a href=%MML%bhsp_3.html#K2>k2_bhsp_3</a>,'^\\__3',_). constr_name(<a href=%MML%bhsp_3.html#V3>v3_bhsp_3</a>,complete__2,_). constr_name(<a href=%MML%bhsp_3.html#V4>v4_bhsp_3</a>,'Hilbert',_). constr_name(<a href=%MML%ens_1.html#K1>k1_ens_1</a>,'Funcs__7',_). constr_name(<a href=%MML%ens_1.html#K2>k2_ens_1</a>,'Maps',_). constr_name(<a href=%MML%ens_1.html#K3>k3_ens_1</a>,dom__8,_). constr_name(<a href=%MML%ens_1.html#K4>k4_ens_1</a>,cod__2,_). constr_name(<a href=%MML%ens_1.html#K5>k5_ens_1</a>,'id$',_). constr_name(<a href=%MML%ens_1.html#K6>k6_ens_1</a>,'*__66',_). constr_name(<a href=%MML%ens_1.html#K7>k7_ens_1</a>,'Maps__2',_). constr_name(<a href=%MML%ens_1.html#V1>v1_ens_1</a>,surjective,_). constr_name(<a href=%MML%ens_1.html#K8>k8_ens_1</a>,fDom,_). constr_name(<a href=%MML%ens_1.html#K9>k9_ens_1</a>,fCod,_). constr_name(<a href=%MML%ens_1.html#K10>k10_ens_1</a>,fComp,_). constr_name(<a href=%MML%ens_1.html#K11>k11_ens_1</a>,fId,_). constr_name(<a href=%MML%ens_1.html#K12>k12_ens_1</a>,'Ens',_). constr_name(<a href=%MML%ens_1.html#K13>k13_ens_1</a>,'@__18',_). constr_name(<a href=%MML%ens_1.html#K14>k14_ens_1</a>,'@__19',_). constr_name(<a href=%MML%ens_1.html#K15>k15_ens_1</a>,'@__20',_). constr_name(<a href=%MML%ens_1.html#K16>k16_ens_1</a>,'@__21',_). constr_name(<a href=%MML%ens_1.html#K17>k17_ens_1</a>,'Hom__2',_). constr_name(<a href=%MML%ens_1.html#K18>k18_ens_1</a>,hom__2,_). constr_name(<a href=%MML%ens_1.html#K19>k19_ens_1</a>,hom__3,_). constr_name(<a href=%MML%ens_1.html#K20>k20_ens_1</a>,'hom?-',_). constr_name(<a href=%MML%ens_1.html#K21>k21_ens_1</a>,'hom-?',_). constr_name(<a href=%MML%ens_1.html#K22>k22_ens_1</a>,hom__4,_). constr_name(<a href=%MML%ens_1.html#K23>k23_ens_1</a>,'hom??',_). constr_name(<a href=%MML%ens_1.html#K24>k24_ens_1</a>,'hom?-__2',_). constr_name(<a href=%MML%ens_1.html#K25>k25_ens_1</a>,'hom-?__2',_). constr_name(<a href=%MML%ens_1.html#K26>k26_ens_1</a>,'hom??__2',_). constr_name(<a href=%MML%borsuk_1.html#K1>k1_borsuk_1</a>,'-->__12',_). constr_name(<a href=%MML%borsuk_1.html#K2>k2_borsuk_1</a>,proj,_). constr_name(<a href=%MML%borsuk_1.html#K3>k3_borsuk_1</a>,'-->__13',_). constr_name(<a href=%MML%borsuk_1.html#K4>k4_borsuk_1</a>,'*__67',_). constr_name(<a href=%MML%borsuk_1.html#K5>k5_borsuk_1</a>,'"__27',_). constr_name(<a href=%MML%borsuk_1.html#K6>k6_borsuk_1</a>,'[:..:]__20',_). constr_name(<a href=%MML%borsuk_1.html#K7>k7_borsuk_1</a>,'[:..:]__21',_). constr_name(<a href=%MML%borsuk_1.html#K8>k8_borsuk_1</a>,'[..]__19',_). constr_name(<a href=%MML%borsuk_1.html#K9>k9_borsuk_1</a>,'[:..:]__22',_). constr_name(<a href=%MML%borsuk_1.html#K10>k10_borsuk_1</a>,'[:..:]__23',_). constr_name(<a href=%MML%borsuk_1.html#K11>k11_borsuk_1</a>,'Base-Appr',_). constr_name(<a href=%MML%borsuk_1.html#K12>k12_borsuk_1</a>,'Pr1',_). constr_name(<a href=%MML%borsuk_1.html#K13>k13_borsuk_1</a>,'Pr2',_). constr_name(<a href=%MML%borsuk_1.html#K14>k14_borsuk_1</a>,'.:__14',_). constr_name(<a href=%MML%borsuk_1.html#K15>k15_borsuk_1</a>,'TrivDecomp',_). constr_name(<a href=%MML%borsuk_1.html#K16>k16_borsuk_1</a>,space,_). constr_name(<a href=%MML%borsuk_1.html#K17>k17_borsuk_1</a>,'Proj',_). constr_name(<a href=%MML%borsuk_1.html#K18>k18_borsuk_1</a>,'TrivExt',_). constr_name(<a href=%MML%borsuk_1.html#M1>m1_borsuk_1</a>,'u.s.c._decomposition',_). constr_name(<a href=%MML%borsuk_1.html#V1>v1_borsuk_1</a>,closed__7,_). constr_name(<a href=%MML%borsuk_1.html#K19>k19_borsuk_1</a>,'TrivExt__2',_). constr_name(<a href=%MML%borsuk_1.html#V2>v2_borsuk_1</a>,'DECOMPOSITION-like',_). constr_name(<a href=%MML%borsuk_1.html#K20>k20_borsuk_1</a>,'TrivExt__3',_). constr_name(<a href=%MML%borsuk_1.html#K21>k21_borsuk_1</a>,space__2,_). constr_name(<a href=%MML%borsuk_1.html#K22>k22_borsuk_1</a>,'I[01]',_). constr_name(<a href=%MML%borsuk_1.html#K23>k23_borsuk_1</a>,'0[01]',_). constr_name(<a href=%MML%borsuk_1.html#K24>k24_borsuk_1</a>,'1[01]',_). constr_name(<a href=%MML%borsuk_1.html#V3>v3_borsuk_1</a>,being_a_retraction,_). constr_name(<a href=%MML%borsuk_1.html#R1>r1_borsuk_1</a>,is_a_retract_of,_). constr_name(<a href=%MML%borsuk_1.html#R2>r2_borsuk_1</a>,is_an_SDR_of,_). constr_name(<a href=%MML%tbsp_1.html#V1>v1_tbsp_1</a>,totally_bounded,_). constr_name(<a href=%MML%tbsp_1.html#V2>v2_tbsp_1</a>,convergent__5,_). constr_name(<a href=%MML%tbsp_1.html#K1>k1_tbsp_1</a>,lim__10,_). constr_name(<a href=%MML%tbsp_1.html#V3>v3_tbsp_1</a>,'Cauchy__2',_). constr_name(<a href=%MML%tbsp_1.html#V4>v4_tbsp_1</a>,complete__3,_). constr_name(<a href=%MML%tbsp_1.html#V5>v5_tbsp_1</a>,bounded__8,_). constr_name(<a href=%MML%tbsp_1.html#V6>v6_tbsp_1</a>,bounded__9,_). constr_name(<a href=%MML%tbsp_1.html#K2>k2_tbsp_1</a>,diameter,_). constr_name(<a href=%MML%tbsp_1.html#K3>k3_tbsp_1</a>,rng__11,_). constr_name(<a href=%MML%grcat_1.html#K1>k1_grcat_1</a>,'Morphs',_). constr_name(<a href=%MML%grcat_1.html#K2>k2_grcat_1</a>,dom__9,_). constr_name(<a href=%MML%grcat_1.html#K3>k3_grcat_1</a>,cod__3,_). constr_name(<a href=%MML%grcat_1.html#K4>k4_grcat_1</a>,comp__2,_). constr_name(<a href=%MML%grcat_1.html#K5>k5_grcat_1</a>,'ID__2',_). constr_name(<a href=%MML%grcat_1.html#K6>k6_grcat_1</a>,cat,_). constr_name(<a href=%MML%grcat_1.html#K7>k7_grcat_1</a>,id__10,_). constr_name(<a href=%MML%grcat_1.html#K8>k8_grcat_1</a>,'ZeroMap',_). constr_name(<a href=%MML%grcat_1.html#V1>v1_grcat_1</a>,additive__2,_). constr_name(<a href=%MML%grcat_1.html#L1>l1_grcat_1</a>,'GroupMorphismStr',_). constr_name(<a href=%MML%grcat_1.html#V2>v2_grcat_1</a>,strict__GroupMorphismStr,_). constr_name(<a href=%MML%grcat_1.html#U1>u1_grcat_1</a>,'Dom__2',the_Dom__2). constr_name(<a href=%MML%grcat_1.html#U2>u2_grcat_1</a>,'Cod__2',the_Cod__2). constr_name(<a href=%MML%grcat_1.html#U3>u3_grcat_1</a>,'Fun',the_Fun). constr_name(<a href=%MML%grcat_1.html#G1>g1_grcat_1</a>,'GroupMorphismStr_constr',_). constr_name(<a href=%MML%grcat_1.html#K9>k9_grcat_1</a>,dom__10,_). constr_name(<a href=%MML%grcat_1.html#K10>k10_grcat_1</a>,cod__4,_). constr_name(<a href=%MML%grcat_1.html#K11>k11_grcat_1</a>,fun,_). constr_name(<a href=%MML%grcat_1.html#K12>k12_grcat_1</a>,'ZERO',_). constr_name(<a href=%MML%grcat_1.html#V3>v3_grcat_1</a>,'GroupMorphism-like',_). constr_name(<a href=%MML%grcat_1.html#M1>m1_grcat_1</a>,'Morphism__2',_). constr_name(<a href=%MML%grcat_1.html#K13>k13_grcat_1</a>,'ID__3',_). constr_name(<a href=%MML%grcat_1.html#K14>k14_grcat_1</a>,'ZERO__2',_). constr_name(<a href=%MML%grcat_1.html#K15>k15_grcat_1</a>,'*__68',_). constr_name(<a href=%MML%grcat_1.html#K16>k16_grcat_1</a>,'*__69',_). constr_name(<a href=%MML%grcat_1.html#V4>v4_grcat_1</a>,'Group_DOMAIN-like',_). constr_name(<a href=%MML%grcat_1.html#M2>m2_grcat_1</a>,'Element__19',_). constr_name(<a href=%MML%grcat_1.html#V5>v5_grcat_1</a>,'GroupMorphism_DOMAIN-like',_). constr_name(<a href=%MML%grcat_1.html#M3>m3_grcat_1</a>,'Element__20',_). constr_name(<a href=%MML%grcat_1.html#M4>m4_grcat_1</a>,'GroupMorphism_DOMAIN',_). constr_name(<a href=%MML%grcat_1.html#M5>m5_grcat_1</a>,'MapsSet',_). constr_name(<a href=%MML%grcat_1.html#K17>k17_grcat_1</a>,'Maps__3',_). constr_name(<a href=%MML%grcat_1.html#M6>m6_grcat_1</a>,'Element__21',_). constr_name(<a href=%MML%grcat_1.html#K18>k18_grcat_1</a>,'Morphs__2',_). constr_name(<a href=%MML%grcat_1.html#M7>m7_grcat_1</a>,'Element__22',_). constr_name(<a href=%MML%grcat_1.html#R1>r1_grcat_1</a>,'GO',_). constr_name(<a href=%MML%grcat_1.html#K19>k19_grcat_1</a>,'GroupObjects',_). constr_name(<a href=%MML%grcat_1.html#K20>k20_grcat_1</a>,'Morphs__3',_). constr_name(<a href=%MML%grcat_1.html#K21>k21_grcat_1</a>,dom__11,_). constr_name(<a href=%MML%grcat_1.html#K22>k22_grcat_1</a>,cod__5,_). constr_name(<a href=%MML%grcat_1.html#K23>k23_grcat_1</a>,'ID__4',_). constr_name(<a href=%MML%grcat_1.html#K24>k24_grcat_1</a>,dom__12,_). constr_name(<a href=%MML%grcat_1.html#K25>k25_grcat_1</a>,cod__6,_). constr_name(<a href=%MML%grcat_1.html#K26>k26_grcat_1</a>,'ID__5',_). constr_name(<a href=%MML%grcat_1.html#K27>k27_grcat_1</a>,comp__3,_). constr_name(<a href=%MML%grcat_1.html#K28>k28_grcat_1</a>,'GroupCat',_). constr_name(<a href=%MML%grcat_1.html#K29>k29_grcat_1</a>,'AbGroupObjects',_). constr_name(<a href=%MML%grcat_1.html#K30>k30_grcat_1</a>,'AbGroupCat',_). constr_name(<a href=%MML%grcat_1.html#K31>k31_grcat_1</a>,'MidOpGroupObjects',_). constr_name(<a href=%MML%grcat_1.html#K32>k32_grcat_1</a>,'MidOpGroupCat',_). constr_name(<a href=%MML%group_6.html#M1>m1_group_6</a>,'Subgroup__2',_). constr_name(<a href=%MML%group_6.html#K1>k1_group_6</a>,'`*`__3',_). constr_name(<a href=%MML%group_6.html#K2>k2_group_6</a>,'/\\__20',_). constr_name(<a href=%MML%group_6.html#K3>k3_group_6</a>,'/\\__21',_). constr_name(<a href=%MML%group_6.html#K4>k4_group_6</a>,'Cosets',_). constr_name(<a href=%MML%group_6.html#K5>k5_group_6</a>,'CosOp',_). constr_name(<a href=%MML%group_6.html#K6>k6_group_6</a>,'./.',_). constr_name(<a href=%MML%group_6.html#K7>k7_group_6</a>,'@__22',_). constr_name(<a href=%MML%group_6.html#V1>v1_group_6</a>,multiplicative__2,_). constr_name(<a href=%MML%group_6.html#K8>k8_group_6</a>,'*__70',_). constr_name(<a href=%MML%group_6.html#K9>k9_group_6</a>,rng__12,_). constr_name(<a href=%MML%group_6.html#K10>k10_group_6</a>,'1:',_). constr_name(<a href=%MML%group_6.html#K11>k11_group_6</a>,nat_hom,_). constr_name(<a href=%MML%group_6.html#K12>k12_group_6</a>,'Ker',_). constr_name(<a href=%MML%group_6.html#K13>k13_group_6</a>,'Image',_). constr_name(<a href=%MML%group_6.html#V2>v2_group_6</a>,being_monomorphism,_). constr_name(<a href=%MML%group_6.html#V3>v3_group_6</a>,being_epimorphism,_). constr_name(<a href=%MML%group_6.html#V4>v4_group_6</a>,being_isomorphism,_). constr_name(<a href=%MML%group_6.html#R1>r1_group_6</a>,are_isomorphic__4,_). constr_name(<a href=%MML%group_6.html#R2>r2_group_6</a>,are_isomorphic__5,_). constr_name(<a href=%MML%mod_2.html#K1>k1_mod_2</a>,'TrivialLMod',_). constr_name(<a href=%MML%mod_2.html#V1>v1_mod_2</a>,linear__4,_). constr_name(<a href=%MML%mod_2.html#L1>l1_mod_2</a>,'LModMorphismStr',_). constr_name(<a href=%MML%mod_2.html#V2>v2_mod_2</a>,strict__LModMorphismStr,_). constr_name(<a href=%MML%mod_2.html#U1>u1_mod_2</a>,'Dom__3',the_Dom__3). constr_name(<a href=%MML%mod_2.html#U2>u2_mod_2</a>,'Cod__3',the_Cod__3). constr_name(<a href=%MML%mod_2.html#U3>u3_mod_2</a>,'Fun__2',the_Fun__2). constr_name(<a href=%MML%mod_2.html#G1>g1_mod_2</a>,'LModMorphismStr_constr',_). constr_name(<a href=%MML%mod_2.html#K2>k2_mod_2</a>,dom__13,_). constr_name(<a href=%MML%mod_2.html#K3>k3_mod_2</a>,cod__7,_). constr_name(<a href=%MML%mod_2.html#K4>k4_mod_2</a>,fun__2,_). constr_name(<a href=%MML%mod_2.html#K5>k5_mod_2</a>,'ZERO__3',_). constr_name(<a href=%MML%mod_2.html#V3>v3_mod_2</a>,'LModMorphism-like',_). constr_name(<a href=%MML%mod_2.html#M1>m1_mod_2</a>,'Morphism__3',_). constr_name(<a href=%MML%mod_2.html#K6>k6_mod_2</a>,'ID__6',_). constr_name(<a href=%MML%mod_2.html#K7>k7_mod_2</a>,'ZERO__4',_). constr_name(<a href=%MML%mod_2.html#K8>k8_mod_2</a>,'*__71',_). constr_name(<a href=%MML%mod_2.html#K9>k9_mod_2</a>,'*'__10',_). constr_name(<a href=%MML%mod_2.html#K10>k10_mod_2</a>,'-__64',_). constr_name(<a href=%MML%mod_2.html#K11>k11_mod_2</a>,'+__51',_). constr_name(<a href=%MML%mod_2.html#K12>k12_mod_2</a>,'*__72',_). constr_name(<a href=%MML%mod_2.html#K13>k13_mod_2</a>,add3,_). constr_name(<a href=%MML%mod_2.html#K14>k14_mod_2</a>,mult3,_). constr_name(<a href=%MML%mod_2.html#K15>k15_mod_2</a>,compl3,_). constr_name(<a href=%MML%mod_2.html#K16>k16_mod_2</a>,unit3,_). constr_name(<a href=%MML%mod_2.html#K17>k17_mod_2</a>,zero3,_). constr_name(<a href=%MML%mod_2.html#K18>k18_mod_2</a>,'Z3',_). constr_name(<a href=%MML%mod_3.html#K1>k1_mod_3</a>,'Lin__5',_). constr_name(<a href=%MML%mod_3.html#V1>v1_mod_3</a>,base,_). constr_name(<a href=%MML%mod_3.html#V2>v2_mod_3</a>,free__2,_). constr_name(<a href=%MML%mod_3.html#M1>m1_mod_3</a>,'Basis__3',_). constr_name(<a href=%MML%analort.html#K1>k1_analort</a>,'+__52',_). constr_name(<a href=%MML%analort.html#K2>k2_analort</a>,'Ortm',_). constr_name(<a href=%MML%analort.html#K3>k3_analort</a>,'Orte',_). constr_name(<a href=%MML%analort.html#R1>r1_analort</a>,are_COrte_wrt,_). constr_name(<a href=%MML%analort.html#R2>r2_analort</a>,are_COrtm_wrt,_). constr_name(<a href=%MML%analort.html#K4>k4_analort</a>,'CORTE',_). constr_name(<a href=%MML%analort.html#K5>k5_analort</a>,'CORTM',_). constr_name(<a href=%MML%analort.html#K6>k6_analort</a>,'CESpace',_). constr_name(<a href=%MML%analort.html#K7>k7_analort</a>,'CMSpace',_). constr_name(<a href=%MML%euclid.html#K1>k1_euclid</a>,'REAL__3',_). constr_name(<a href=%MML%euclid.html#K2>k2_euclid</a>,absreal,_). constr_name(<a href=%MML%euclid.html#K3>k3_euclid</a>,abs__11,_). constr_name(<a href=%MML%euclid.html#K4>k4_euclid</a>,'0*',_). constr_name(<a href=%MML%euclid.html#K5>k5_euclid</a>,'0*__2',_). constr_name(<a href=%MML%euclid.html#K6>k6_euclid</a>,'-__65',_). constr_name(<a href=%MML%euclid.html#K7>k7_euclid</a>,'+__53',_). constr_name(<a href=%MML%euclid.html#K8>k8_euclid</a>,'-__66',_). constr_name(<a href=%MML%euclid.html#K9>k9_euclid</a>,'*__73',_). constr_name(<a href=%MML%euclid.html#K10>k10_euclid</a>,abs__12,_). constr_name(<a href=%MML%euclid.html#K11>k11_euclid</a>,sqr__3,_). constr_name(<a href=%MML%euclid.html#K12>k12_euclid</a>,'|....|__7',_). constr_name(<a href=%MML%euclid.html#K13>k13_euclid</a>,'Pitag_dist',_). constr_name(<a href=%MML%euclid.html#K14>k14_euclid</a>,'Euclid',_). constr_name(<a href=%MML%euclid.html#K15>k15_euclid</a>,'TOP-REAL',_). constr_name(<a href=%MML%euclid.html#K16>k16_euclid</a>,'0.REAL',_). constr_name(<a href=%MML%euclid.html#K17>k17_euclid</a>,'+__54',_). constr_name(<a href=%MML%euclid.html#K18>k18_euclid</a>,'*__74',_). constr_name(<a href=%MML%euclid.html#K19>k19_euclid</a>,'-__67',_). constr_name(<a href=%MML%euclid.html#K20>k20_euclid</a>,'-__68',_). constr_name(<a href=%MML%euclid.html#K21>k21_euclid</a>,'`1__14',_). constr_name(<a href=%MML%euclid.html#K22>k22_euclid</a>,'`2__14',_). constr_name(<a href=%MML%euclid.html#K23>k23_euclid</a>,'|[..]|',_). constr_name(<a href=%MML%topmetr.html#M1>m1_topmetr</a>,'SubSpace__2',_). constr_name(<a href=%MML%topmetr.html#K1>k1_topmetr</a>,'|__18',_). constr_name(<a href=%MML%topmetr.html#K2>k2_topmetr</a>,'Closed-Interval-MSpace',_). constr_name(<a href=%MML%topmetr.html#V1>v1_topmetr</a>,'being_ball-family',_). constr_name(<a href=%MML%topmetr.html#R1>r1_topmetr</a>,is_a_cover_of__3,_). constr_name(<a href=%MML%topmetr.html#V2>v2_topmetr</a>,compact__5,_). constr_name(<a href=%MML%topmetr.html#K3>k3_topmetr</a>,'R^1',_). constr_name(<a href=%MML%topmetr.html#K4>k4_topmetr</a>,'Closed-Interval-TSpace',_). constr_name(<a href=%MML%topmetr.html#K5>k5_topmetr</a>,'I[01]__2',_). constr_name(<a href=%MML%heine.html#K1>k1_heine</a>,to_power__4,_). constr_name(<a href=%MML%topreal1.html#R1>r1_topreal1</a>,is_an_arc_of,_). constr_name(<a href=%MML%topreal1.html#K1>k1_topreal1</a>,'LSeg',_). constr_name(<a href=%MML%topreal1.html#K2>k2_topreal1</a>,'R^2-unit_square',_). constr_name(<a href=%MML%topreal1.html#K3>k3_topreal1</a>,'LSeg__2',_). constr_name(<a href=%MML%topreal1.html#K4>k4_topreal1</a>,'LSeg__3',_). constr_name(<a href=%MML%topreal1.html#K5>k5_topreal1</a>,'L~',_). constr_name(<a href=%MML%topreal1.html#V1>v1_topreal1</a>,special,_). constr_name(<a href=%MML%topreal1.html#V2>v2_topreal1</a>,unfolded,_). constr_name(<a href=%MML%topreal1.html#V3>v3_topreal1</a>,'s.n.c.',_). constr_name(<a href=%MML%topreal1.html#V4>v4_topreal1</a>,'being_S-Seq',_). constr_name(<a href=%MML%topreal1.html#V5>v5_topreal1</a>,'being_S-P_arc',_). constr_name(<a href=%MML%gr_cy_1.html#K1>k1_gr_cy_1</a>,'Segm',_). constr_name(<a href=%MML%gr_cy_1.html#K2>k2_gr_cy_1</a>,'Sum__13',_). constr_name(<a href=%MML%gr_cy_1.html#K3>k3_gr_cy_1</a>,'INT.Group',_). constr_name(<a href=%MML%gr_cy_1.html#K4>k4_gr_cy_1</a>,addint__2,_). constr_name(<a href=%MML%gr_cy_1.html#K5>k5_gr_cy_1</a>,'INT.Group__2',_). constr_name(<a href=%MML%gr_cy_1.html#K6>k6_gr_cy_1</a>,'@'',_). constr_name(<a href=%MML%gr_cy_1.html#K7>k7_gr_cy_1</a>,'@'__2',_). constr_name(<a href=%MML%gr_cy_1.html#V1>v1_gr_cy_1</a>,cyclic__2,_). constr_name(<a href=%MML%isocat_1.html#K1>k1_isocat_1</a>,id__11,isocat__id). constr_name(<a href=%MML%isocat_1.html#K2>k2_isocat_1</a>,'*__75',_). constr_name(<a href=%MML%isocat_1.html#K3>k3_isocat_1</a>,'"__28',_). constr_name(<a href=%MML%isocat_1.html#R1>r1_isocat_1</a>,are_isomorphic__6,_). constr_name(<a href=%MML%isocat_1.html#K4>k4_isocat_1</a>,'*__76',_). constr_name(<a href=%MML%isocat_1.html#K5>k5_isocat_1</a>,'*__77',_). constr_name(<a href=%MML%isocat_1.html#K6>k6_isocat_1</a>,'*__78',_). constr_name(<a href=%MML%isocat_1.html#K7>k7_isocat_1</a>,'*__79',_). constr_name(<a href=%MML%isocat_1.html#K8>k8_isocat_1</a>,'(#)__24',_). constr_name(<a href=%MML%isocat_1.html#R2>r2_isocat_1</a>,is_equivalent_with,is_equivalent_with). constr_name(<a href=%MML%isocat_1.html#M1>m1_isocat_1</a>,'Equivalence',category_equivalence). constr_name(<a href=%MML%ringcat1.html#V1>v1_ringcat1</a>,linear__5,_). constr_name(<a href=%MML%ringcat1.html#L1>l1_ringcat1</a>,'RingMorphismStr',_). constr_name(<a href=%MML%ringcat1.html#V2>v2_ringcat1</a>,strict__RingMorphismStr,_). constr_name(<a href=%MML%ringcat1.html#U1>u1_ringcat1</a>,'Dom__4',the_Dom__4). constr_name(<a href=%MML%ringcat1.html#U2>u2_ringcat1</a>,'Cod__4',the_Cod__4). constr_name(<a href=%MML%ringcat1.html#U3>u3_ringcat1</a>,'Fun__3',the_Fun__3). constr_name(<a href=%MML%ringcat1.html#G1>g1_ringcat1</a>,'RingMorphismStr_constr',_). constr_name(<a href=%MML%ringcat1.html#K1>k1_ringcat1</a>,dom__14,_). constr_name(<a href=%MML%ringcat1.html#K2>k2_ringcat1</a>,cod__8,_). constr_name(<a href=%MML%ringcat1.html#K3>k3_ringcat1</a>,fun__3,_). constr_name(<a href=%MML%ringcat1.html#V3>v3_ringcat1</a>,'RingMorphism-like',_). constr_name(<a href=%MML%ringcat1.html#K4>k4_ringcat1</a>,'ID__7',_). constr_name(<a href=%MML%ringcat1.html#R1>r1_ringcat1</a>,'<=__4',_). constr_name(<a href=%MML%ringcat1.html#M1>m1_ringcat1</a>,'Morphism__4',_). constr_name(<a href=%MML%ringcat1.html#K5>k5_ringcat1</a>,'ID__8',_). constr_name(<a href=%MML%ringcat1.html#K6>k6_ringcat1</a>,'*__80',_). constr_name(<a href=%MML%ringcat1.html#K7>k7_ringcat1</a>,'*'__11',_). constr_name(<a href=%MML%ringcat1.html#V4>v4_ringcat1</a>,'Ring_DOMAIN-like',_). constr_name(<a href=%MML%ringcat1.html#M2>m2_ringcat1</a>,'Element__23',_). constr_name(<a href=%MML%ringcat1.html#V5>v5_ringcat1</a>,'RingMorphism_DOMAIN-like',_). constr_name(<a href=%MML%ringcat1.html#M3>m3_ringcat1</a>,'Element__24',_). constr_name(<a href=%MML%ringcat1.html#M4>m4_ringcat1</a>,'RingMorphism_DOMAIN',_). constr_name(<a href=%MML%ringcat1.html#K8>k8_ringcat1</a>,'Morphs__4',_). constr_name(<a href=%MML%ringcat1.html#M5>m5_ringcat1</a>,'Element__25',_). constr_name(<a href=%MML%ringcat1.html#R2>r2_ringcat1</a>,'GO__2',_). constr_name(<a href=%MML%ringcat1.html#K9>k9_ringcat1</a>,'RingObjects',_). constr_name(<a href=%MML%ringcat1.html#K10>k10_ringcat1</a>,'Morphs__5',_). constr_name(<a href=%MML%ringcat1.html#K11>k11_ringcat1</a>,dom__15,_). constr_name(<a href=%MML%ringcat1.html#K12>k12_ringcat1</a>,cod__9,_). constr_name(<a href=%MML%ringcat1.html#K13>k13_ringcat1</a>,'ID__9',_). constr_name(<a href=%MML%ringcat1.html#K14>k14_ringcat1</a>,dom__16,_). constr_name(<a href=%MML%ringcat1.html#K15>k15_ringcat1</a>,cod__10,_). constr_name(<a href=%MML%ringcat1.html#K16>k16_ringcat1</a>,'ID__10',_). constr_name(<a href=%MML%ringcat1.html#K17>k17_ringcat1</a>,comp__4,_). constr_name(<a href=%MML%ringcat1.html#K18>k18_ringcat1</a>,'RingCat',_). constr_name(<a href=%MML%modcat_1.html#M1>m1_modcat_1</a>,'LeftMod_DOMAIN',_). constr_name(<a href=%MML%modcat_1.html#M2>m2_modcat_1</a>,'Element__26',_). constr_name(<a href=%MML%modcat_1.html#M3>m3_modcat_1</a>,'LModMorphism_DOMAIN',_). constr_name(<a href=%MML%modcat_1.html#M4>m4_modcat_1</a>,'Element__27',_). constr_name(<a href=%MML%modcat_1.html#M5>m5_modcat_1</a>,'LModMorphism_DOMAIN__2',_). constr_name(<a href=%MML%modcat_1.html#K1>k1_modcat_1</a>,'Morphs__6',_). constr_name(<a href=%MML%modcat_1.html#M6>m6_modcat_1</a>,'Element__28',_). constr_name(<a href=%MML%modcat_1.html#R1>r1_modcat_1</a>,'GO__3',_). constr_name(<a href=%MML%modcat_1.html#K2>k2_modcat_1</a>,'LModObjects',_). constr_name(<a href=%MML%modcat_1.html#K3>k3_modcat_1</a>,'LModObjects__2',_). constr_name(<a href=%MML%modcat_1.html#K4>k4_modcat_1</a>,'Morphs__7',_). constr_name(<a href=%MML%modcat_1.html#K5>k5_modcat_1</a>,'dom'',_). constr_name(<a href=%MML%modcat_1.html#K6>k6_modcat_1</a>,'cod'',_). constr_name(<a href=%MML%modcat_1.html#K7>k7_modcat_1</a>,'ID__11',_). constr_name(<a href=%MML%modcat_1.html#K8>k8_modcat_1</a>,dom__17,_). constr_name(<a href=%MML%modcat_1.html#K9>k9_modcat_1</a>,cod__11,_). constr_name(<a href=%MML%modcat_1.html#K10>k10_modcat_1</a>,'ID__12',_). constr_name(<a href=%MML%modcat_1.html#K11>k11_modcat_1</a>,comp__5,_). constr_name(<a href=%MML%modcat_1.html#K12>k12_modcat_1</a>,'LModCat',_). constr_name(<a href=%MML%metric_6.html#K1>k1_metric_6</a>,bounded_metric,_). constr_name(<a href=%MML%metric_6.html#R1>r1_metric_6</a>,is_convergent_in_metrspace_to,_). constr_name(<a href=%MML%metric_6.html#V1>v1_metric_6</a>,bounded__10,_). constr_name(<a href=%MML%metric_6.html#R2>r2_metric_6</a>,contains_almost_all_sequence,_). constr_name(<a href=%MML%metric_6.html#K2>k2_metric_6</a>,dist_to_point,_). constr_name(<a href=%MML%metric_6.html#K3>k3_metric_6</a>,sequence_of_dist,_). constr_name(<a href=%MML%topreal2.html#V1>v1_topreal2</a>,being_simple_closed_curve,_). constr_name(<a href=%MML%tsep_1.html#V1>v1_tsep_1</a>,open__5,_). constr_name(<a href=%MML%tsep_1.html#K1>k1_tsep_1</a>,union__9,_). constr_name(<a href=%MML%tsep_1.html#R1>r1_tsep_1</a>,misses__4,_). constr_name(<a href=%MML%tsep_1.html#K2>k2_tsep_1</a>,meet__8,_). constr_name(<a href=%MML%tsep_1.html#R2>r2_tsep_1</a>,are_weakly_separated,_). constr_name(<a href=%MML%tsep_1.html#R3>r3_tsep_1</a>,are_separated__2,_). constr_name(<a href=%MML%tsep_1.html#R4>r4_tsep_1</a>,are_weakly_separated__2,_). constr_name(<a href=%MML%ff_siec.html#K1>k1_ff_siec</a>,chaos,_). constr_name(<a href=%MML%ff_siec.html#K2>k2_ff_siec</a>,'PTempty_f_net',_). constr_name(<a href=%MML%ff_siec.html#K3>k3_ff_siec</a>,'Tempty_f_net',_). constr_name(<a href=%MML%ff_siec.html#K4>k4_ff_siec</a>,'Pempty_f_net',_). constr_name(<a href=%MML%ff_siec.html#K5>k5_ff_siec</a>,'Tsingle_f_net',_). constr_name(<a href=%MML%ff_siec.html#K6>k6_ff_siec</a>,'Psingle_f_net',_). constr_name(<a href=%MML%ff_siec.html#K7>k7_ff_siec</a>,empty_f_net,_). constr_name(<a href=%MML%ff_siec.html#K8>k8_ff_siec</a>,f_enter,_). constr_name(<a href=%MML%ff_siec.html#K9>k9_ff_siec</a>,f_exit,_). constr_name(<a href=%MML%ff_siec.html#K10>k10_ff_siec</a>,f_prox,_). constr_name(<a href=%MML%ff_siec.html#K11>k11_ff_siec</a>,f_flow,_). constr_name(<a href=%MML%ff_siec.html#K12>k12_ff_siec</a>,f_places,_). constr_name(<a href=%MML%ff_siec.html#K13>k13_ff_siec</a>,f_transitions,_). constr_name(<a href=%MML%ff_siec.html#K14>k14_ff_siec</a>,f_pre,_). constr_name(<a href=%MML%ff_siec.html#K15>k15_ff_siec</a>,f_post,_). constr_name(<a href=%MML%ff_siec.html#K16>k16_ff_siec</a>,f_entrance,_). constr_name(<a href=%MML%ff_siec.html#K17>k17_ff_siec</a>,f_escape,_). constr_name(<a href=%MML%ff_siec.html#K18>k18_ff_siec</a>,f_adjac,_). constr_name(<a href=%MML%e_siec.html#L1>l1_e_siec</a>,'G_Net',_). constr_name(<a href=%MML%e_siec.html#V1>v1_e_siec</a>,strict__G_Net,_). constr_name(<a href=%MML%e_siec.html#U1>u1_e_siec</a>,entrance,the_entrance). constr_name(<a href=%MML%e_siec.html#U2>u2_e_siec</a>,escape,the_escape). constr_name(<a href=%MML%e_siec.html#G1>g1_e_siec</a>,'G_Net_constr',_). constr_name(<a href=%MML%e_siec.html#K1>k1_e_siec</a>,echaos,_). constr_name(<a href=%MML%e_siec.html#V2>v2_e_siec</a>,'GG',_). constr_name(<a href=%MML%e_siec.html#V3>v3_e_siec</a>,'EE',_). constr_name(<a href=%MML%e_siec.html#K2>k2_e_siec</a>,empty_e_net,_). constr_name(<a href=%MML%e_siec.html#K3>k3_e_siec</a>,'Tempty_e_net',_). constr_name(<a href=%MML%e_siec.html#K4>k4_e_siec</a>,'Pempty_e_net',_). constr_name(<a href=%MML%e_siec.html#K5>k5_e_siec</a>,'Psingle_e_net',_). constr_name(<a href=%MML%e_siec.html#K6>k6_e_siec</a>,'Tsingle_e_net',_). constr_name(<a href=%MML%e_siec.html#K7>k7_e_siec</a>,'PTempty_e_net',_). constr_name(<a href=%MML%e_siec.html#K8>k8_e_siec</a>,e_Places,_). constr_name(<a href=%MML%e_siec.html#K9>k9_e_siec</a>,e_Transitions,_). constr_name(<a href=%MML%e_siec.html#K10>k10_e_siec</a>,e_Flow,_). constr_name(<a href=%MML%e_siec.html#K11>k11_e_siec</a>,e_pre,_). constr_name(<a href=%MML%e_siec.html#K12>k12_e_siec</a>,e_post,_). constr_name(<a href=%MML%e_siec.html#K13>k13_e_siec</a>,e_shore,_). constr_name(<a href=%MML%e_siec.html#K14>k14_e_siec</a>,e_prox,_). constr_name(<a href=%MML%e_siec.html#K15>k15_e_siec</a>,e_flow,_). constr_name(<a href=%MML%e_siec.html#K16>k16_e_siec</a>,e_entrance,_). constr_name(<a href=%MML%e_siec.html#K17>k17_e_siec</a>,e_escape,_). constr_name(<a href=%MML%e_siec.html#K18>k18_e_siec</a>,e_adjac,_). constr_name(<a href=%MML%e_siec.html#K19>k19_e_siec</a>,s_pre,_). constr_name(<a href=%MML%e_siec.html#K20>k20_e_siec</a>,s_post,_). constr_name(<a href=%MML%commacat.html#K1>k1_commacat</a>,commaObjs,_). constr_name(<a href=%MML%commacat.html#K2>k2_commacat</a>,commaMorphs,_). constr_name(<a href=%MML%commacat.html#K3>k3_commacat</a>,'`11__3',_). constr_name(<a href=%MML%commacat.html#K4>k4_commacat</a>,'`12__3',_). constr_name(<a href=%MML%commacat.html#K5>k5_commacat</a>,'*__81',_). constr_name(<a href=%MML%commacat.html#K6>k6_commacat</a>,commaComp,_). constr_name(<a href=%MML%commacat.html#K7>k7_commacat</a>,comma,_). constr_name(<a href=%MML%commacat.html#K8>k8_commacat</a>,'1Cat__2',_). constr_name(<a href=%MML%commacat.html#K9>k9_commacat</a>,comma__2,_). constr_name(<a href=%MML%commacat.html#K10>k10_commacat</a>,comma__3,_). constr_name(<a href=%MML%lang1.html#L1>l1_lang1</a>,'DTConstrStr',_). constr_name(<a href=%MML%lang1.html#V1>v1_lang1</a>,strict__DTConstrStr,_). constr_name(<a href=%MML%lang1.html#U1>u1_lang1</a>,'Rules',the_Rules). constr_name(<a href=%MML%lang1.html#G1>g1_lang1</a>,'DTConstrStr_constr',_). constr_name(<a href=%MML%lang1.html#L2>l2_lang1</a>,'GrammarStr',_). constr_name(<a href=%MML%lang1.html#V2>v2_lang1</a>,strict__GrammarStr,_). constr_name(<a href=%MML%lang1.html#U2>u2_lang1</a>,'InitialSym',the_InitialSym). constr_name(<a href=%MML%lang1.html#G2>g2_lang1</a>,'GrammarStr_constr',_). constr_name(<a href=%MML%lang1.html#K1>k1_lang1</a>,'^__12',_). constr_name(<a href=%MML%lang1.html#K2>k2_lang1</a>,'<*>__2',_). constr_name(<a href=%MML%lang1.html#K3>k3_lang1</a>,'<*..*>__12',_). constr_name(<a href=%MML%lang1.html#K4>k4_lang1</a>,'<*..*>__13',_). constr_name(<a href=%MML%lang1.html#R1>r1_lang1</a>,'==>__2',_). constr_name(<a href=%MML%lang1.html#K5>k5_lang1</a>,'Terminals',_). constr_name(<a href=%MML%lang1.html#K6>k6_lang1</a>,'NonTerminals',_). constr_name(<a href=%MML%lang1.html#R2>r2_lang1</a>,'==>__3',_). constr_name(<a href=%MML%lang1.html#R3>r3_lang1</a>,is_derivable_from,_). constr_name(<a href=%MML%lang1.html#K7>k7_lang1</a>,'Lang',_). constr_name(<a href=%MML%lang1.html#K8>k8_lang1</a>,'{..}__41',_). constr_name(<a href=%MML%lang1.html#K9>k9_lang1</a>,'{..}__42',_). constr_name(<a href=%MML%lang1.html#K10>k10_lang1</a>,'EmptyGrammar',_). constr_name(<a href=%MML%lang1.html#K11>k11_lang1</a>,'SingleGrammar',_). constr_name(<a href=%MML%lang1.html#K12>k12_lang1</a>,'IterGrammar',_). constr_name(<a href=%MML%lang1.html#K13>k13_lang1</a>,'TotalGrammar',_). constr_name(<a href=%MML%lang1.html#V3>v3_lang1</a>,efective,_). constr_name(<a href=%MML%lang1.html#V4>v4_lang1</a>,finite__4,_). constr_name(<a href=%MML%lang1.html#K14>k14_lang1</a>,'NonTerminals__2',_). constr_name(<a href=%MML%lang1.html#K15>k15_lang1</a>,'*__82',_). constr_name(<a href=%MML%lang1.html#K16>k16_lang1</a>,'*__83',_). constr_name(<a href=%MML%lang1.html#K17>k17_lang1</a>,'[*]__2',_). constr_name(<a href=%MML%lang1.html#K18>k18_lang1</a>,'.__50',_). constr_name(<a href=%MML%bhsp_4.html#K1>k1_bhsp_4</a>,'Partial_Sums__3',_). constr_name(<a href=%MML%bhsp_4.html#V1>v1_bhsp_4</a>,summable__4,_). constr_name(<a href=%MML%bhsp_4.html#K2>k2_bhsp_4</a>,'Sum__14',_). constr_name(<a href=%MML%bhsp_4.html#K3>k3_bhsp_4</a>,'Sum__15',_). constr_name(<a href=%MML%bhsp_4.html#K4>k4_bhsp_4</a>,'Sum__16',_). constr_name(<a href=%MML%bhsp_4.html#K5>k5_bhsp_4</a>,'Sum__17',_). constr_name(<a href=%MML%bhsp_4.html#K6>k6_bhsp_4</a>,'Sum__18',_). constr_name(<a href=%MML%bhsp_4.html#V2>v2_bhsp_4</a>,absolutely_summable__3,_). constr_name(<a href=%MML%bhsp_4.html#K7>k7_bhsp_4</a>,'*__84',_). constr_name(<a href=%MML%bhsp_4.html#V3>v3_bhsp_4</a>,'Cauchy__3',_). constr_name(<a href=%MML%cat_3.html#K1>k1_cat_3</a>,'-->__14',_). constr_name(<a href=%MML%cat_3.html#K2>k2_cat_3</a>,doms__4,_). constr_name(<a href=%MML%cat_3.html#K3>k3_cat_3</a>,cods,_). constr_name(<a href=%MML%cat_3.html#K4>k4_cat_3</a>,opp__7,_). constr_name(<a href=%MML%cat_3.html#K5>k5_cat_3</a>,opp__8,_). constr_name(<a href=%MML%cat_3.html#K6>k6_cat_3</a>,'*__85',_). constr_name(<a href=%MML%cat_3.html#K7>k7_cat_3</a>,'*__86',_). constr_name(<a href=%MML%cat_3.html#K8>k8_cat_3</a>,'"*"',_). constr_name(<a href=%MML%cat_3.html#V1>v1_cat_3</a>,retraction,_). constr_name(<a href=%MML%cat_3.html#V2>v2_cat_3</a>,coretraction,_). constr_name(<a href=%MML%cat_3.html#K9>k9_cat_3</a>,term,_). constr_name(<a href=%MML%cat_3.html#K10>k10_cat_3</a>,init,_). constr_name(<a href=%MML%cat_3.html#M1>m1_cat_3</a>,'Projections_family',_). constr_name(<a href=%MML%cat_3.html#R1>r1_cat_3</a>,is_a_product_wrt,_). constr_name(<a href=%MML%cat_3.html#R2>r2_cat_3</a>,is_a_product_wrt__2,_). constr_name(<a href=%MML%cat_3.html#M2>m2_cat_3</a>,'Injections_family',_). constr_name(<a href=%MML%cat_3.html#R3>r3_cat_3</a>,is_a_coproduct_wrt,_). constr_name(<a href=%MML%cat_3.html#R4>r4_cat_3</a>,is_a_coproduct_wrt__2,_). constr_name(<a href=%MML%matrix_2.html#K1>k1_matrix_2</a>,'-->__15',_). constr_name(<a href=%MML%matrix_2.html#K2>k2_matrix_2</a>,'-->__16',_). constr_name(<a href=%MML%matrix_2.html#K3>k3_matrix_2</a>,'][',_). constr_name(<a href=%MML%matrix_2.html#K4>k4_matrix_2</a>,'<*..*>__14',_). constr_name(<a href=%MML%matrix_2.html#K5>k5_matrix_2</a>,'<*..*>__15',_). constr_name(<a href=%MML%matrix_2.html#K6>k6_matrix_2</a>,'][__2',_). constr_name(<a href=%MML%matrix_2.html#M1>m1_matrix_2</a>,'Upper_Triangular_Matrix',_). constr_name(<a href=%MML%matrix_2.html#M2>m2_matrix_2</a>,'Lower_Triangular_Matrix',_). constr_name(<a href=%MML%matrix_2.html#K7>k7_matrix_2</a>,'Del',_). constr_name(<a href=%MML%matrix_2.html#K8>k8_matrix_2</a>,'DelCol',_). constr_name(<a href=%MML%matrix_2.html#K9>k9_matrix_2</a>,'DelLine',_). constr_name(<a href=%MML%matrix_2.html#K10>k10_matrix_2</a>,'Deleting',_). constr_name(<a href=%MML%matrix_2.html#V1>v1_matrix_2</a>,permutational,_). constr_name(<a href=%MML%matrix_2.html#K11>k11_matrix_2</a>,len__5,_). constr_name(<a href=%MML%matrix_2.html#M3>m3_matrix_2</a>,'Element__29',_). constr_name(<a href=%MML%matrix_2.html#K12>k12_matrix_2</a>,'Permutations',_). constr_name(<a href=%MML%matrix_2.html#K13>k13_matrix_2</a>,len__6,_). constr_name(<a href=%MML%matrix_2.html#K14>k14_matrix_2</a>,'Group_of_Perm',_). constr_name(<a href=%MML%matrix_2.html#V2>v2_matrix_2</a>,being_transposition,_). constr_name(<a href=%MML%matrix_2.html#V3>v3_matrix_2</a>,even__2,_). constr_name(<a href=%MML%matrix_2.html#K15>k15_matrix_2</a>,'-__69',_). constr_name(<a href=%MML%matrix_2.html#K16>k16_matrix_2</a>,'FinOmega',_). constr_name(<a href=%MML%lattice3.html#K1>k1_lattice3</a>,'BooleLatt',boole_lattice). constr_name(<a href=%MML%lattice3.html#K2>k2_lattice3</a>,'LattRel__2',_). constr_name(<a href=%MML%lattice3.html#K3>k3_lattice3</a>,'LattPOSet',poset_of_lattice). constr_name(<a href=%MML%lattice3.html#K4>k4_lattice3</a>,'%',_). constr_name(<a href=%MML%lattice3.html#K5>k5_lattice3</a>,'%__2',_). constr_name(<a href=%MML%lattice3.html#K6>k6_lattice3</a>,'~__9',_). constr_name(<a href=%MML%lattice3.html#K7>k7_lattice3</a>,'~__10',_). constr_name(<a href=%MML%lattice3.html#K8>k8_lattice3</a>,'~__11',_). constr_name(<a href=%MML%lattice3.html#K9>k9_lattice3</a>,'~__12',_). constr_name(<a href=%MML%lattice3.html#R1>r1_lattice3</a>,'is_<=_than',relstr_element_smaller). constr_name(<a href=%MML%lattice3.html#R2>r2_lattice3</a>,'is_<=_than__2',relstr_set_smaller). constr_name(<a href=%MML%lattice3.html#V1>v1_lattice3</a>,with_suprema,with_suprema_relstr). constr_name(<a href=%MML%lattice3.html#V2>v2_lattice3</a>,with_infima,with_infima_relstr). constr_name(<a href=%MML%lattice3.html#V3>v3_lattice3</a>,complete__4,complete_relstr). constr_name(<a href=%MML%lattice3.html#K10>k10_lattice3</a>,'"\\/"__5',bin_join_on_relstr). constr_name(<a href=%MML%lattice3.html#K11>k11_lattice3</a>,'"/\\"__6',bin_meet_on_relstr). constr_name(<a href=%MML%lattice3.html#K12>k12_lattice3</a>,'"/\\"__7',bin_meet_on_relstr_commut). constr_name(<a href=%MML%lattice3.html#K13>k13_lattice3</a>,'"\\/"__6',bin_join_on_relstr_commut). constr_name(<a href=%MML%lattice3.html#K14>k14_lattice3</a>,latt__2,lattice_of_poset). constr_name(<a href=%MML%lattice3.html#R3>r3_lattice3</a>,is_less_than,latt_set_smaller). constr_name(<a href=%MML%lattice3.html#R4>r4_lattice3</a>,is_less_than__2,latt_element_smaller). constr_name(<a href=%MML%lattice3.html#V4>v4_lattice3</a>,complete__5,complete_latt_str). constr_name(<a href=%MML%lattice3.html#V5>v5_lattice3</a>,'\\/-distributive',join_distributive). constr_name(<a href=%MML%lattice3.html#V6>v6_lattice3</a>,'/\\-distributive',meet_distributive). constr_name(<a href=%MML%lattice3.html#K15>k15_lattice3</a>,'"\\/"__7',join_of_latt_set). constr_name(<a href=%MML%lattice3.html#K16>k16_lattice3</a>,'"/\\"__8',meet_of_latt_set). constr_name(<a href=%MML%tmap_1.html#K1>k1_tmap_1</a>,union__10,_). constr_name(<a href=%MML%tmap_1.html#R1>r1_tmap_1</a>,is_continuous_at,_). constr_name(<a href=%MML%tmap_1.html#K2>k2_tmap_1</a>,'|__19',_). constr_name(<a href=%MML%tmap_1.html#K3>k3_tmap_1</a>,'|__20',_). constr_name(<a href=%MML%tmap_1.html#K4>k4_tmap_1</a>,incl__3,_). constr_name(<a href=%MML%tmap_1.html#K5>k5_tmap_1</a>,'-extension_of_the_topology_of',_). constr_name(<a href=%MML%tmap_1.html#K6>k6_tmap_1</a>,modified_with_respect_to,_). constr_name(<a href=%MML%tmap_1.html#K7>k7_tmap_1</a>,modid,_). constr_name(<a href=%MML%tmap_1.html#K8>k8_tmap_1</a>,modified_with_respect_to__2,_). constr_name(<a href=%MML%tmap_1.html#K9>k9_tmap_1</a>,modid__2,_). constr_name(<a href=%MML%tmap_1.html#K10>k10_tmap_1</a>,union__11,_). constr_name(<a href=%MML%midsp_3.html#K1>k1_midsp_3</a>,sub,_). constr_name(<a href=%MML%midsp_3.html#L1>l1_midsp_3</a>,'ReperAlgebraStr',_). constr_name(<a href=%MML%midsp_3.html#V1>v1_midsp_3</a>,strict__ReperAlgebraStr,_). constr_name(<a href=%MML%midsp_3.html#U1>u1_midsp_3</a>,reper,the_reper). constr_name(<a href=%MML%midsp_3.html#G1>g1_midsp_3</a>,'ReperAlgebraStr_constr',_). constr_name(<a href=%MML%midsp_3.html#K2>k2_midsp_3</a>,'<*..*>__16',_). constr_name(<a href=%MML%midsp_3.html#K3>k3_midsp_3</a>,'^__13',_). constr_name(<a href=%MML%midsp_3.html#K4>k4_midsp_3</a>,'*'__12',_). constr_name(<a href=%MML%midsp_3.html#K5>k5_midsp_3</a>,'<:..:>__7',_). constr_name(<a href=%MML%midsp_3.html#M1>m1_midsp_3</a>,'Nat',_). constr_name(<a href=%MML%midsp_3.html#K6>k6_midsp_3</a>,'.__51',_). constr_name(<a href=%MML%midsp_3.html#V2>v2_midsp_3</a>,being_invariance,_). constr_name(<a href=%MML%midsp_3.html#R1>r1_midsp_3</a>,has_property_of_zero_in,_). constr_name(<a href=%MML%midsp_3.html#R2>r2_midsp_3</a>,is_semi_additive_in,_). constr_name(<a href=%MML%midsp_3.html#R3>r3_midsp_3</a>,is_additive_in,_). constr_name(<a href=%MML%midsp_3.html#R4>r4_midsp_3</a>,is_alternative_in,_). constr_name(<a href=%MML%midsp_3.html#K7>k7_midsp_3</a>,'<:..:>__8',_). constr_name(<a href=%MML%midsp_3.html#K8>k8_midsp_3</a>,'.__52',_). constr_name(<a href=%MML%midsp_3.html#K9>k9_midsp_3</a>,'.__53',_). constr_name(<a href=%MML%midsp_3.html#K10>k10_midsp_3</a>,'Phi__2',_). constr_name(<a href=%MML%midsp_3.html#M2>m2_midsp_3</a>,'ReperAlgebra',_). constr_name(<a href=%MML%midsp_3.html#K11>k11_midsp_3</a>,'Phi__3',_). constr_name(<a href=%MML%gr_cy_2.html#K1>k1_gr_cy_2</a>,'@__23',_). constr_name(<a href=%MML%isocat_2.html#K1>k1_isocat_2</a>,uncurry__2,_). constr_name(<a href=%MML%isocat_2.html#K2>k2_isocat_2</a>,'|->__5',_). constr_name(<a href=%MML%isocat_2.html#K3>k3_isocat_2</a>,curry__3,_). constr_name(<a href=%MML%isocat_2.html#K4>k4_isocat_2</a>,'?-__2',_). constr_name(<a href=%MML%isocat_2.html#K5>k5_isocat_2</a>,export,_). constr_name(<a href=%MML%isocat_2.html#K6>k6_isocat_2</a>,export__2,_). constr_name(<a href=%MML%isocat_2.html#K7>k7_isocat_2</a>,export__3,_). constr_name(<a href=%MML%isocat_2.html#K8>k8_isocat_2</a>,pr1__8,_). constr_name(<a href=%MML%isocat_2.html#K9>k9_isocat_2</a>,pr2__8,_). constr_name(<a href=%MML%isocat_2.html#K10>k10_isocat_2</a>,'<:..:>__9',_). constr_name(<a href=%MML%isocat_2.html#K11>k11_isocat_2</a>,'Pr1__2',_). constr_name(<a href=%MML%isocat_2.html#K12>k12_isocat_2</a>,'Pr2__2',_). constr_name(<a href=%MML%isocat_2.html#K13>k13_isocat_2</a>,'Pr1__3',_). constr_name(<a href=%MML%isocat_2.html#K14>k14_isocat_2</a>,'Pr2__3',_). constr_name(<a href=%MML%isocat_2.html#K15>k15_isocat_2</a>,'<:..:>__10',_). constr_name(<a href=%MML%isocat_2.html#K16>k16_isocat_2</a>,'<:..:>__11',_). constr_name(<a href=%MML%isocat_2.html#K17>k17_isocat_2</a>,distribute,_). constr_name(<a href=%MML%tdlat_1.html#K1>k1_tdlat_1</a>,'Domains_of',_). constr_name(<a href=%MML%tdlat_1.html#K2>k2_tdlat_1</a>,'Domains_Union',_). constr_name(<a href=%MML%tdlat_1.html#K3>k3_tdlat_1</a>,'Domains_Meet',_). constr_name(<a href=%MML%tdlat_1.html#K4>k4_tdlat_1</a>,'Domains_Lattice',_). constr_name(<a href=%MML%tdlat_1.html#K5>k5_tdlat_1</a>,'Closed_Domains_of',_). constr_name(<a href=%MML%tdlat_1.html#K6>k6_tdlat_1</a>,'Closed_Domains_Union',_). constr_name(<a href=%MML%tdlat_1.html#K7>k7_tdlat_1</a>,'Closed_Domains_Meet',_). constr_name(<a href=%MML%tdlat_1.html#K8>k8_tdlat_1</a>,'Closed_Domains_Lattice',_). constr_name(<a href=%MML%tdlat_1.html#K9>k9_tdlat_1</a>,'Open_Domains_of',_). constr_name(<a href=%MML%tdlat_1.html#K10>k10_tdlat_1</a>,'Open_Domains_Union',_). constr_name(<a href=%MML%tdlat_1.html#K11>k11_tdlat_1</a>,'Open_Domains_Meet',_). constr_name(<a href=%MML%tdlat_1.html#K12>k12_tdlat_1</a>,'Open_Domains_Lattice',_). constr_name(<a href=%MML%lmod_6.html#K1>k1_lmod_6</a>,'@__24',_). constr_name(<a href=%MML%lmod_6.html#K2>k2_lmod_6</a>,'@__25',_). constr_name(<a href=%MML%lmod_6.html#K3>k3_lmod_6</a>,'{..}__43',_). constr_name(<a href=%MML%lmod_6.html#K4>k4_lmod_6</a>,'<:..:>__12',_). constr_name(<a href=%MML%lmod_6.html#R1>r1_lmod_6</a>,'c=__7',_). constr_name(<a href=%MML%dirort.html#V1>v1_dirort</a>,'Oriented_Orthogonality_Space-like',_). constr_name(<a href=%MML%dirort.html#R1>r1_dirort</a>,'_|___6',_). constr_name(<a href=%MML%dirort.html#R2>r2_dirort</a>,'//__9',_). constr_name(<a href=%MML%dirort.html#V2>v2_dirort</a>,bach_transitive,_). constr_name(<a href=%MML%dirort.html#V3>v3_dirort</a>,right_transitive,_). constr_name(<a href=%MML%dirort.html#V4>v4_dirort</a>,left_transitive,_). constr_name(<a href=%MML%dirort.html#V5>v5_dirort</a>,'Euclidean_like',euclidean_like). constr_name(<a href=%MML%dirort.html#V6>v6_dirort</a>,'Minkowskian_like',minkowskian_like). constr_name(<a href=%MML%mod_4.html#K1>k1_mod_4</a>,'~__13',_). constr_name(<a href=%MML%mod_4.html#K2>k2_mod_4</a>,opp__9,_). constr_name(<a href=%MML%mod_4.html#K3>k3_mod_4</a>,opp__10,_). constr_name(<a href=%MML%mod_4.html#K4>k4_mod_4</a>,opp__11,_). constr_name(<a href=%MML%mod_4.html#K5>k5_mod_4</a>,opp__12,_). constr_name(<a href=%MML%mod_4.html#K6>k6_mod_4</a>,opp__13,_). constr_name(<a href=%MML%mod_4.html#V1>v1_mod_4</a>,antilinear,_). constr_name(<a href=%MML%mod_4.html#V2>v2_mod_4</a>,monomorphism,_). constr_name(<a href=%MML%mod_4.html#V3>v3_mod_4</a>,antimonomorphism,_). constr_name(<a href=%MML%mod_4.html#V4>v4_mod_4</a>,epimorphism,_). constr_name(<a href=%MML%mod_4.html#V5>v5_mod_4</a>,antiepimorphism,_). constr_name(<a href=%MML%mod_4.html#V6>v6_mod_4</a>,isomorphism,_). constr_name(<a href=%MML%mod_4.html#V7>v7_mod_4</a>,antiisomorphism,_). constr_name(<a href=%MML%mod_4.html#V8>v8_mod_4</a>,endomorphism,_). constr_name(<a href=%MML%mod_4.html#V9>v9_mod_4</a>,antiendomorphism,_). constr_name(<a href=%MML%mod_4.html#V10>v10_mod_4</a>,automorphism,_). constr_name(<a href=%MML%mod_4.html#V11>v11_mod_4</a>,antiautomorphism,_). constr_name(<a href=%MML%mod_4.html#K7>k7_mod_4</a>,opp__14,_). constr_name(<a href=%MML%mod_4.html#M1>m1_mod_4</a>,'Homomorphism',_). constr_name(<a href=%MML%mod_4.html#K8>k8_mod_4</a>,'ZeroMap__2',_). constr_name(<a href=%MML%mod_4.html#V12>v12_mod_4</a>,monomorphism__2,_). constr_name(<a href=%MML%mod_4.html#V13>v13_mod_4</a>,epimorphism__2,_). constr_name(<a href=%MML%mod_4.html#V14>v14_mod_4</a>,isomorphism__2,_). constr_name(<a href=%MML%mod_4.html#K9>k9_mod_4</a>,id__12,_). constr_name(<a href=%MML%mod_4.html#M2>m2_mod_4</a>,'Homomorphism__2',_). constr_name(<a href=%MML%mod_4.html#R1>r1_mod_4</a>,is_monomorphism_wrp,_). constr_name(<a href=%MML%mod_4.html#R2>r2_mod_4</a>,is_epimorphism_wrp,_). constr_name(<a href=%MML%mod_4.html#R3>r3_mod_4</a>,is_isomorphism_wrp,_). constr_name(<a href=%MML%mod_4.html#R4>r4_mod_4</a>,is_automorphism_wrp,_). constr_name(<a href=%MML%mod_4.html#V15>v15_mod_4</a>,monomorphism__3,_). constr_name(<a href=%MML%mod_4.html#V16>v16_mod_4</a>,epimorphism__3,_). constr_name(<a href=%MML%mod_4.html#V17>v17_mod_4</a>,isomorphism__3,_). constr_name(<a href=%MML%mod_4.html#V18>v18_mod_4</a>,automorphism__2,_). constr_name(<a href=%MML%tdlat_2.html#K1>k1_tdlat_2</a>,'Int__2',_). constr_name(<a href=%MML%tdlat_2.html#V1>v1_tdlat_2</a>,'domains-family',_). constr_name(<a href=%MML%tdlat_2.html#V2>v2_tdlat_2</a>,'closed-domains-family',_). constr_name(<a href=%MML%tdlat_2.html#V3>v3_tdlat_2</a>,'open-domains-family',_). constr_name(<a href=%MML%pcomps_2.html#K1>k1_pcomps_2</a>,'PartUnion',_). constr_name(<a href=%MML%pcomps_2.html#K2>k2_pcomps_2</a>,'DisjointFam',_). constr_name(<a href=%MML%pcomps_2.html#K3>k3_pcomps_2</a>,'PartUnionNat',_). constr_name(<a href=%MML%pcomps_2.html#K4>k4_pcomps_2</a>,'.__54',_). constr_name(<a href=%MML%treal_1.html#K1>k1_treal_1</a>,'(#)__25',_). constr_name(<a href=%MML%treal_1.html#K2>k2_treal_1</a>,'(#)__26',_). constr_name(<a href=%MML%treal_1.html#K3>k3_treal_1</a>,'L[01]',_). constr_name(<a href=%MML%treal_1.html#K4>k4_treal_1</a>,'P[01]',_). constr_name(<a href=%MML%topreal4.html#R1>r1_topreal4</a>,'is_S-P_arc_joining',_). constr_name(<a href=%MML%topreal4.html#V1>v1_topreal4</a>,being_special_polygon,_). constr_name(<a href=%MML%topreal4.html#V2>v2_topreal4</a>,being_Region,_). constr_name(<a href=%MML%goboard1.html#K1>k1_goboard1</a>,'.__55',_). constr_name(<a href=%MML%goboard1.html#V1>v1_goboard1</a>,increasing__3,_). constr_name(<a href=%MML%goboard1.html#K2>k2_goboard1</a>,'X_axis',_). constr_name(<a href=%MML%goboard1.html#K3>k3_goboard1</a>,'Y_axis',_). constr_name(<a href=%MML%goboard1.html#V2>v2_goboard1</a>,'empty-yielding__3',_). constr_name(<a href=%MML%goboard1.html#V3>v3_goboard1</a>,'X_equal-in-line',_). constr_name(<a href=%MML%goboard1.html#V4>v4_goboard1</a>,'Y_equal-in-column',_). constr_name(<a href=%MML%goboard1.html#V5>v5_goboard1</a>,'Y_increasing-in-line',_). constr_name(<a href=%MML%goboard1.html#V6>v6_goboard1</a>,'X_increasing-in-column',_). constr_name(<a href=%MML%goboard1.html#K4>k4_goboard1</a>,'DelCol__2',_). constr_name(<a href=%MML%goboard1.html#R1>r1_goboard1</a>,is_sequence_on,_). constr_name(<a href=%MML%goboard2.html#K1>k1_goboard2</a>,'GoB',_). constr_name(<a href=%MML%goboard2.html#K2>k2_goboard2</a>,'Incr',_). constr_name(<a href=%MML%goboard2.html#K3>k3_goboard2</a>,'GoB__2',_). constr_name(<a href=%MML%goboard4.html#R1>r1_goboard4</a>,lies_between,_). constr_name(<a href=%MML%jordan1.html#V1>v1_jordan1</a>,convex,_). constr_name(<a href=%MML%jordan1.html#V2>v2_jordan1</a>,'Jordan',_). constr_name(<a href=%MML%tdlat_3.html#V1>v1_tdlat_3</a>,discrete__2,_). constr_name(<a href=%MML%tdlat_3.html#V2>v2_tdlat_3</a>,'anti-discrete',_). constr_name(<a href=%MML%tdlat_3.html#V3>v3_tdlat_3</a>,almost_discrete,_). constr_name(<a href=%MML%tdlat_3.html#V4>v4_tdlat_3</a>,extremally_disconnected,_). constr_name(<a href=%MML%tdlat_3.html#V5>v5_tdlat_3</a>,hereditarily_extremally_disconnected,_). constr_name(<a href=%MML%ami_1.html#L1>l1_ami_1</a>,'AMI-Struct',_). constr_name(<a href=%MML%ami_1.html#V1>v1_ami_1</a>,'strict__AMI-Struct',_). constr_name(<a href=%MML%ami_1.html#U1>u1_ami_1</a>,'Instruction-Counter',the_Instruction_Counter). constr_name(<a href=%MML%ami_1.html#U2>u2_ami_1</a>,'Instruction-Locations',the_Instruction_Locations). constr_name(<a href=%MML%ami_1.html#U3>u3_ami_1</a>,'Instruction-Codes',the_Instruction_Codes). constr_name(<a href=%MML%ami_1.html#U4>u4_ami_1</a>,'Instructions',the_Instructions). constr_name(<a href=%MML%ami_1.html#U5>u5_ami_1</a>,'Object-Kind',the_Object_Kind). constr_name(<a href=%MML%ami_1.html#U6>u6_ami_1</a>,'Execution',the_Execution). constr_name(<a href=%MML%ami_1.html#G1>g1_ami_1</a>,'AMI-Struct_constr',_). constr_name(<a href=%MML%ami_1.html#K1>k1_ami_1</a>,'Trivial-AMI',_). constr_name(<a href=%MML%ami_1.html#V2>v2_ami_1</a>,void,_). constr_name(<a href=%MML%ami_1.html#K2>k2_ami_1</a>,'IC',_). constr_name(<a href=%MML%ami_1.html#K3>k3_ami_1</a>,'ObjectKind',_). constr_name(<a href=%MML%ami_1.html#K4>k4_ami_1</a>,'Exec',_). constr_name(<a href=%MML%ami_1.html#V3>v3_ami_1</a>,halting,_). constr_name(<a href=%MML%ami_1.html#V4>v4_ami_1</a>,halting__2,_). constr_name(<a href=%MML%ami_1.html#K5>k5_ami_1</a>,halt,_). constr_name(<a href=%MML%ami_1.html#V5>v5_ami_1</a>,'IC-Ins-separated',_). constr_name(<a href=%MML%ami_1.html#V6>v6_ami_1</a>,'data-oriented',_). constr_name(<a href=%MML%ami_1.html#V7>v7_ami_1</a>,'steady-programmed',_). constr_name(<a href=%MML%ami_1.html#V8>v8_ami_1</a>,definite,_). constr_name(<a href=%MML%ami_1.html#K6>k6_ami_1</a>,'IC__2',_). constr_name(<a href=%MML%ami_1.html#K7>k7_ami_1</a>,sproduct,_). constr_name(<a href=%MML%ami_1.html#K8>k8_ami_1</a>,'CurInstr',_). constr_name(<a href=%MML%ami_1.html#K9>k9_ami_1</a>,'Following',_). constr_name(<a href=%MML%ami_1.html#K10>k10_ami_1</a>,'Computation',_). constr_name(<a href=%MML%ami_1.html#K11>k11_ami_1</a>,'.__56',_). constr_name(<a href=%MML%ami_1.html#V9>v9_ami_1</a>,halting__3,_). constr_name(<a href=%MML%ami_1.html#V10>v10_ami_1</a>,realistic,_). constr_name(<a href=%MML%ami_1.html#K12>k12_ami_1</a>,'Result',_). constr_name(<a href=%MML%ami_1.html#K13>k13_ami_1</a>,'.__57',_). constr_name(<a href=%MML%ami_1.html#K14>k14_ami_1</a>,'FinPartSt',_). constr_name(<a href=%MML%ami_1.html#M1>m1_ami_1</a>,'FinPartState',_). constr_name(<a href=%MML%ami_1.html#V11>v11_ami_1</a>,autonomic,_). constr_name(<a href=%MML%ami_1.html#V12>v12_ami_1</a>,halting__4,_). constr_name(<a href=%MML%ami_1.html#V13>v13_ami_1</a>,programmable,_). constr_name(<a href=%MML%ami_1.html#K15>k15_ami_1</a>,'.-->__4',_). constr_name(<a href=%MML%ami_1.html#K16>k16_ami_1</a>,'-->__17',_). constr_name(<a href=%MML%ami_1.html#K17>k17_ami_1</a>,'+*__5',_). constr_name(<a href=%MML%ami_1.html#K18>k18_ami_1</a>,'Result__2',_). constr_name(<a href=%MML%ami_1.html#R1>r1_ami_1</a>,computes,_). constr_name(<a href=%MML%ami_1.html#V14>v14_ami_1</a>,computable,_). constr_name(<a href=%MML%ami_1.html#M2>m2_ami_1</a>,'Program',_). constr_name(<a href=%MML%cat_4.html#V1>v1_cat_4</a>,with_finite_product,_). constr_name(<a href=%MML%cat_4.html#L1>l1_cat_4</a>,'ProdCatStr',_). constr_name(<a href=%MML%cat_4.html#V2>v2_cat_4</a>,strict__ProdCatStr,_). constr_name(<a href=%MML%cat_4.html#U1>u1_cat_4</a>,'TerminalObj',the_TerminalObj). constr_name(<a href=%MML%cat_4.html#U2>u2_cat_4</a>,'CatProd',the_CatProd). constr_name(<a href=%MML%cat_4.html#U3>u3_cat_4</a>,'Proj1',the_Proj1). constr_name(<a href=%MML%cat_4.html#U4>u4_cat_4</a>,'Proj2',the_Proj2). constr_name(<a href=%MML%cat_4.html#G1>g1_cat_4</a>,'ProdCatStr_constr',_). constr_name(<a href=%MML%cat_4.html#K1>k1_cat_4</a>,'[1]',_). constr_name(<a href=%MML%cat_4.html#K2>k2_cat_4</a>,'[x]',_). constr_name(<a href=%MML%cat_4.html#K3>k3_cat_4</a>,pr1__9,_). constr_name(<a href=%MML%cat_4.html#K4>k4_cat_4</a>,pr2__9,_). constr_name(<a href=%MML%cat_4.html#K5>k5_cat_4</a>,c1Cat,_). constr_name(<a href=%MML%cat_4.html#V3>v3_cat_4</a>,'Cartesian',_). constr_name(<a href=%MML%cat_4.html#K6>k6_cat_4</a>,term__2,_). constr_name(<a href=%MML%cat_4.html#K7>k7_cat_4</a>,pr1__10,_). constr_name(<a href=%MML%cat_4.html#K8>k8_cat_4</a>,pr2__10,_). constr_name(<a href=%MML%cat_4.html#K9>k9_cat_4</a>,'<:..:>__13',_). constr_name(<a href=%MML%cat_4.html#K10>k10_cat_4</a>,lambda__2,_). constr_name(<a href=%MML%cat_4.html#K11>k11_cat_4</a>,'lambda'',_). constr_name(<a href=%MML%cat_4.html#K12>k12_cat_4</a>,rho,_). constr_name(<a href=%MML%cat_4.html#K13>k13_cat_4</a>,'rho'',_). constr_name(<a href=%MML%cat_4.html#K14>k14_cat_4</a>,'Switch',_). constr_name(<a href=%MML%cat_4.html#K15>k15_cat_4</a>,'Delta',_). constr_name(<a href=%MML%cat_4.html#K16>k16_cat_4</a>,'Alpha',_). constr_name(<a href=%MML%cat_4.html#K17>k17_cat_4</a>,'Alpha'',_). constr_name(<a href=%MML%cat_4.html#K18>k18_cat_4</a>,'[x]__2',_). constr_name(<a href=%MML%cat_4.html#V4>v4_cat_4</a>,with_finite_coproduct,_). constr_name(<a href=%MML%cat_4.html#L2>l2_cat_4</a>,'CoprodCatStr',_). constr_name(<a href=%MML%cat_4.html#V5>v5_cat_4</a>,strict__CoprodCatStr,_). constr_name(<a href=%MML%cat_4.html#U5>u5_cat_4</a>,'Initial',the_Initial). constr_name(<a href=%MML%cat_4.html#U6>u6_cat_4</a>,'Coproduct',the_Coproduct). constr_name(<a href=%MML%cat_4.html#U7>u7_cat_4</a>,'Incl1',the_Incl1). constr_name(<a href=%MML%cat_4.html#U8>u8_cat_4</a>,'Incl2',the_Incl2). constr_name(<a href=%MML%cat_4.html#G2>g2_cat_4</a>,'CoprodCatStr_constr',_). constr_name(<a href=%MML%cat_4.html#K19>k19_cat_4</a>,'[0]__2',_). constr_name(<a href=%MML%cat_4.html#K20>k20_cat_4</a>,'+__55',_). constr_name(<a href=%MML%cat_4.html#K21>k21_cat_4</a>,in1,_). constr_name(<a href=%MML%cat_4.html#K22>k22_cat_4</a>,in2,_). constr_name(<a href=%MML%cat_4.html#K23>k23_cat_4</a>,'c1Cat*',_). constr_name(<a href=%MML%cat_4.html#V6>v6_cat_4</a>,'Cocartesian',_). constr_name(<a href=%MML%cat_4.html#K24>k24_cat_4</a>,init__2,_). constr_name(<a href=%MML%cat_4.html#K25>k25_cat_4</a>,in1__2,_). constr_name(<a href=%MML%cat_4.html#K26>k26_cat_4</a>,in2__2,_). constr_name(<a href=%MML%cat_4.html#K27>k27_cat_4</a>,'[$..$]',_). constr_name(<a href=%MML%cat_4.html#K28>k28_cat_4</a>,nabla__2,_). constr_name(<a href=%MML%cat_4.html#K29>k29_cat_4</a>,'+__56',_). constr_name(<a href=%MML%vfunct_1.html#K1>k1_vfunct_1</a>,'+__57',_). constr_name(<a href=%MML%vfunct_1.html#K2>k2_vfunct_1</a>,'-__70',_). constr_name(<a href=%MML%vfunct_1.html#K3>k3_vfunct_1</a>,'(#)__27',_). constr_name(<a href=%MML%vfunct_1.html#K4>k4_vfunct_1</a>,'(#)__28',_). constr_name(<a href=%MML%vfunct_1.html#K5>k5_vfunct_1</a>,'||....||__5',_). constr_name(<a href=%MML%vfunct_1.html#K6>k6_vfunct_1</a>,'-__71',_). constr_name(<a href=%MML%vfunct_1.html#R1>r1_vfunct_1</a>,is_bounded_on__3,_). constr_name(<a href=%MML%tsep_2.html#R1>r1_tsep_2</a>,constitute_a_decomposition,_). constr_name(<a href=%MML%tsep_2.html#R2>r2_tsep_2</a>,constitute_a_decomposition__2,_). constr_name(<a href=%MML%tsep_2.html#R3>r3_tsep_2</a>,constitute_a_decomposition__3,_). constr_name(<a href=%MML%tsep_2.html#R4>r4_tsep_2</a>,constitute_a_decomposition__4,_). constr_name(<a href=%MML%petri.html#M1>m1_petri</a>,'Element__30',_). constr_name(<a href=%MML%petri.html#L1>l1_petri</a>,'PT_net_Str',_). constr_name(<a href=%MML%petri.html#V1>v1_petri</a>,strict__PT_net_Str,_). constr_name(<a href=%MML%petri.html#U1>u1_petri</a>,'Places__2',the_Places__2). constr_name(<a href=%MML%petri.html#U2>u2_petri</a>,'Transitions__2',the_Transitions__2). constr_name(<a href=%MML%petri.html#U3>u3_petri</a>,'S-T_Arcs',the_S_T_Arcs). constr_name(<a href=%MML%petri.html#U4>u4_petri</a>,'T-S_Arcs',the_T_S_Arcs). constr_name(<a href=%MML%petri.html#G1>g1_petri</a>,'PT_net_Str_constr',_). constr_name(<a href=%MML%petri.html#K1>k1_petri</a>,'`1__15',_). constr_name(<a href=%MML%petri.html#K2>k2_petri</a>,'`2__15',_). constr_name(<a href=%MML%petri.html#K3>k3_petri</a>,'`1__16',_). constr_name(<a href=%MML%petri.html#K4>k4_petri</a>,'`2__16',_). constr_name(<a href=%MML%petri.html#K5>k5_petri</a>,'*'__13',_). constr_name(<a href=%MML%petri.html#K6>k6_petri</a>,'*'__14',_). constr_name(<a href=%MML%petri.html#K7>k7_petri</a>,'*'__15',_). constr_name(<a href=%MML%petri.html#K8>k8_petri</a>,'*'__16',_). constr_name(<a href=%MML%petri.html#V2>v2_petri</a>,'Deadlock-like',_). constr_name(<a href=%MML%petri.html#V3>v3_petri</a>,'With_Deadlocks',_). constr_name(<a href=%MML%petri.html#V4>v4_petri</a>,'Trap-like',_). constr_name(<a href=%MML%petri.html#V5>v5_petri</a>,'With_Traps',_). constr_name(<a href=%MML%petri.html#K9>k9_petri</a>,'~__14',_). constr_name(<a href=%MML%petri.html#K10>k10_petri</a>,'.:__15',_). constr_name(<a href=%MML%petri.html#K11>k11_petri</a>,'.:__16',_). constr_name(<a href=%MML%petri.html#K12>k12_petri</a>,'.:__17',_). constr_name(<a href=%MML%petri.html#K13>k13_petri</a>,'.:__18',_). constr_name(<a href=%MML%petri.html#K14>k14_petri</a>,'.:__19',_). constr_name(<a href=%MML%petri.html#K15>k15_petri</a>,'.:__20',_). constr_name(<a href=%MML%petri.html#K16>k16_petri</a>,'.:__21',_). constr_name(<a href=%MML%petri.html#K17>k17_petri</a>,'.:__22',_). constr_name(<a href=%MML%petri.html#K18>k18_petri</a>,'.:__23',_). constr_name(<a href=%MML%fin_topo.html#L1>l1_fin_topo</a>,'FT_Space_Str',_). constr_name(<a href=%MML%fin_topo.html#V1>v1_fin_topo</a>,strict__FT_Space_Str,_). constr_name(<a href=%MML%fin_topo.html#U1>u1_fin_topo</a>,'Nbd',the_Nbd). constr_name(<a href=%MML%fin_topo.html#G1>g1_fin_topo</a>,'FT_Space_Str_constr',_). constr_name(<a href=%MML%fin_topo.html#K1>k1_fin_topo</a>,'U_FT',_). constr_name(<a href=%MML%fin_topo.html#K2>k2_fin_topo</a>,'.-->__5',_). constr_name(<a href=%MML%fin_topo.html#K3>k3_fin_topo</a>,'FT{0}',_). constr_name(<a href=%MML%fin_topo.html#V2>v2_fin_topo</a>,filled,_). constr_name(<a href=%MML%fin_topo.html#R1>r1_fin_topo</a>,is_a_cover_of__4,_). constr_name(<a href=%MML%fin_topo.html#K4>k4_fin_topo</a>,'^delta',_). constr_name(<a href=%MML%fin_topo.html#K5>k5_fin_topo</a>,'^deltai',_). constr_name(<a href=%MML%fin_topo.html#K6>k6_fin_topo</a>,'^deltao',_). constr_name(<a href=%MML%fin_topo.html#K7>k7_fin_topo</a>,'^i',_). constr_name(<a href=%MML%fin_topo.html#K8>k8_fin_topo</a>,'^b',_). constr_name(<a href=%MML%fin_topo.html#K9>k9_fin_topo</a>,'^s',_). constr_name(<a href=%MML%fin_topo.html#K10>k10_fin_topo</a>,'^n',_). constr_name(<a href=%MML%fin_topo.html#K11>k11_fin_topo</a>,'^f',_). constr_name(<a href=%MML%fin_topo.html#V3>v3_fin_topo</a>,symmetric__4,_). constr_name(<a href=%MML%fin_topo.html#V4>v4_fin_topo</a>,open__6,_). constr_name(<a href=%MML%fin_topo.html#V5>v5_fin_topo</a>,closed__8,_). constr_name(<a href=%MML%fin_topo.html#V6>v6_fin_topo</a>,connected__5,_). constr_name(<a href=%MML%fin_topo.html#K12>k12_fin_topo</a>,'^fb',_). constr_name(<a href=%MML%fin_topo.html#K13>k13_fin_topo</a>,'^fi',_). constr_name(<a href=%MML%fvsum_1.html#K1>k1_fvsum_1</a>,multfield,_). constr_name(<a href=%MML%fvsum_1.html#K2>k2_fvsum_1</a>,diffield,_). constr_name(<a href=%MML%fvsum_1.html#K3>k3_fvsum_1</a>,'+__58',_). constr_name(<a href=%MML%fvsum_1.html#K4>k4_fvsum_1</a>,'+__59',_). constr_name(<a href=%MML%fvsum_1.html#K5>k5_fvsum_1</a>,'-__72',_). constr_name(<a href=%MML%fvsum_1.html#K6>k6_fvsum_1</a>,'-__73',_). constr_name(<a href=%MML%fvsum_1.html#K7>k7_fvsum_1</a>,'-__74',_). constr_name(<a href=%MML%fvsum_1.html#K8>k8_fvsum_1</a>,'-__75',_). constr_name(<a href=%MML%fvsum_1.html#K9>k9_fvsum_1</a>,'*__87',_). constr_name(<a href=%MML%fvsum_1.html#K10>k10_fvsum_1</a>,'*__88',_). constr_name(<a href=%MML%fvsum_1.html#K11>k11_fvsum_1</a>,mlt__3,_). constr_name(<a href=%MML%fvsum_1.html#K12>k12_fvsum_1</a>,mlt__4,_). constr_name(<a href=%MML%fvsum_1.html#K13>k13_fvsum_1</a>,'Product__4',_). constr_name(<a href=%MML%fvsum_1.html#K14>k14_fvsum_1</a>,'"*"__2',_). constr_name(<a href=%MML%ami_2.html#K1>k1_ami_2</a>,'SCM-Halt',_). constr_name(<a href=%MML%ami_2.html#K2>k2_ami_2</a>,'SCM-Data-Loc',_). constr_name(<a href=%MML%ami_2.html#K3>k3_ami_2</a>,'SCM-Instr-Loc',_). constr_name(<a href=%MML%ami_2.html#K4>k4_ami_2</a>,'SCM-Instr',_). constr_name(<a href=%MML%ami_2.html#K5>k5_ami_2</a>,'SCM-OK',_). constr_name(<a href=%MML%ami_2.html#K6>k6_ami_2</a>,'IC__3',_). constr_name(<a href=%MML%ami_2.html#K7>k7_ami_2</a>,'SCM-Chg',_). constr_name(<a href=%MML%ami_2.html#K8>k8_ami_2</a>,'SCM-Chg__2',_). constr_name(<a href=%MML%ami_2.html#K9>k9_ami_2</a>,address_1,_). constr_name(<a href=%MML%ami_2.html#K10>k10_ami_2</a>,address_2,_). constr_name(<a href=%MML%ami_2.html#K11>k11_ami_2</a>,jump_address,_). constr_name(<a href=%MML%ami_2.html#K12>k12_ami_2</a>,cjump_address,_). constr_name(<a href=%MML%ami_2.html#K13>k13_ami_2</a>,cond_address,_). constr_name(<a href=%MML%ami_2.html#K14>k14_ami_2</a>,'IFGT',_). constr_name(<a href=%MML%ami_2.html#K15>k15_ami_2</a>,'Next',_). constr_name(<a href=%MML%ami_2.html#K16>k16_ami_2</a>,'SCM-Exec-Res',_). constr_name(<a href=%MML%ami_2.html#K17>k17_ami_2</a>,'SCM-Exec',_). constr_name(<a href=%MML%unialg_1.html#V1>v1_unialg_1</a>,homogeneous,_). constr_name(<a href=%MML%unialg_1.html#V2>v2_unialg_1</a>,quasi_total__2,_). constr_name(<a href=%MML%unialg_1.html#L1>l1_unialg_1</a>,'UAStr',_). constr_name(<a href=%MML%unialg_1.html#V3>v3_unialg_1</a>,strict__UAStr,_). constr_name(<a href=%MML%unialg_1.html#U1>u1_unialg_1</a>,charact,the_charact). constr_name(<a href=%MML%unialg_1.html#G1>g1_unialg_1</a>,'UAStr_constr',_). constr_name(<a href=%MML%unialg_1.html#V4>v4_unialg_1</a>,homogeneous__2,_). constr_name(<a href=%MML%unialg_1.html#V5>v5_unialg_1</a>,quasi_total__3,_). constr_name(<a href=%MML%unialg_1.html#K1>k1_unialg_1</a>,'<*..*>__17',_). constr_name(<a href=%MML%unialg_1.html#V6>v6_unialg_1</a>,partial__2,_). constr_name(<a href=%MML%unialg_1.html#V7>v7_unialg_1</a>,quasi_total__4,_). constr_name(<a href=%MML%unialg_1.html#V8>v8_unialg_1</a>,'non-empty__3',_). constr_name(<a href=%MML%unialg_1.html#K2>k2_unialg_1</a>,arity,_). constr_name(<a href=%MML%unialg_1.html#K3>k3_unialg_1</a>,signature,_). constr_name(<a href=%MML%coh_sp.html#V1>v1_coh_sp</a>,binary_complete,_). constr_name(<a href=%MML%coh_sp.html#K1>k1_coh_sp</a>,'Web',_). constr_name(<a href=%MML%coh_sp.html#K2>k2_coh_sp</a>,'CohSp',_). constr_name(<a href=%MML%coh_sp.html#K3>k3_coh_sp</a>,'CSp',_). constr_name(<a href=%MML%coh_sp.html#K4>k4_coh_sp</a>,'FuncsC',_). constr_name(<a href=%MML%coh_sp.html#K5>k5_coh_sp</a>,'MapsC',_). constr_name(<a href=%MML%coh_sp.html#K6>k6_coh_sp</a>,dom__18,_). constr_name(<a href=%MML%coh_sp.html#K7>k7_coh_sp</a>,cod__12,_). constr_name(<a href=%MML%coh_sp.html#K8>k8_coh_sp</a>,'id$__2',_). constr_name(<a href=%MML%coh_sp.html#K9>k9_coh_sp</a>,'*__89',_). constr_name(<a href=%MML%coh_sp.html#K10>k10_coh_sp</a>,'CDom',_). constr_name(<a href=%MML%coh_sp.html#K11>k11_coh_sp</a>,'CCod',_). constr_name(<a href=%MML%coh_sp.html#K12>k12_coh_sp</a>,'CComp',_). constr_name(<a href=%MML%coh_sp.html#K13>k13_coh_sp</a>,'CId',_). constr_name(<a href=%MML%coh_sp.html#K14>k14_coh_sp</a>,'CohCat',_). constr_name(<a href=%MML%coh_sp.html#K15>k15_coh_sp</a>,'Toler',_). constr_name(<a href=%MML%coh_sp.html#K16>k16_coh_sp</a>,'Toler_on_subsets',_). constr_name(<a href=%MML%coh_sp.html#K17>k17_coh_sp</a>,'TOL',_). constr_name(<a href=%MML%coh_sp.html#K18>k18_coh_sp</a>,'`2__17',_). constr_name(<a href=%MML%coh_sp.html#K19>k19_coh_sp</a>,'`1__17',_). constr_name(<a href=%MML%coh_sp.html#K20>k20_coh_sp</a>,'FuncsT',_). constr_name(<a href=%MML%coh_sp.html#K21>k21_coh_sp</a>,'MapsT',_). constr_name(<a href=%MML%coh_sp.html#K22>k22_coh_sp</a>,dom__19,_). constr_name(<a href=%MML%coh_sp.html#K23>k23_coh_sp</a>,cod__13,_). constr_name(<a href=%MML%coh_sp.html#K24>k24_coh_sp</a>,'id$__3',_). constr_name(<a href=%MML%coh_sp.html#K25>k25_coh_sp</a>,'*__90',_). constr_name(<a href=%MML%coh_sp.html#K26>k26_coh_sp</a>,fDom__2,_). constr_name(<a href=%MML%coh_sp.html#K27>k27_coh_sp</a>,fCod__2,_). constr_name(<a href=%MML%coh_sp.html#K28>k28_coh_sp</a>,fComp__2,_). constr_name(<a href=%MML%coh_sp.html#K29>k29_coh_sp</a>,fId__2,_). constr_name(<a href=%MML%coh_sp.html#K30>k30_coh_sp</a>,'TolCat',_). constr_name(<a href=%MML%monoid_0.html#V1>v1_monoid_0</a>,'constituted-Functions',_). constr_name(<a href=%MML%monoid_0.html#V2>v2_monoid_0</a>,'constituted-FinSeqs',_). constr_name(<a href=%MML%monoid_0.html#K1>k1_monoid_0</a>,'^__14',_). constr_name(<a href=%MML%monoid_0.html#K2>k2_monoid_0</a>,'*__91',_). constr_name(<a href=%MML%monoid_0.html#K3>k3_monoid_0</a>,'*__92',_). constr_name(<a href=%MML%monoid_0.html#V3>v3_monoid_0</a>,'left-invertible',_). constr_name(<a href=%MML%monoid_0.html#V4>v4_monoid_0</a>,'right-invertible',_). constr_name(<a href=%MML%monoid_0.html#V5>v5_monoid_0</a>,invertible__4,_). constr_name(<a href=%MML%monoid_0.html#V6>v6_monoid_0</a>,'left-cancelable',_). constr_name(<a href=%MML%monoid_0.html#V7>v7_monoid_0</a>,'right-cancelable',_). constr_name(<a href=%MML%monoid_0.html#V8>v8_monoid_0</a>,cancelable__2,_). constr_name(<a href=%MML%monoid_0.html#V9>v9_monoid_0</a>,'uniquely-decomposable',_). constr_name(<a href=%MML%monoid_0.html#V10>v10_monoid_0</a>,idempotent__2,_). constr_name(<a href=%MML%monoid_0.html#V11>v11_monoid_0</a>,'left-invertible__2',_). constr_name(<a href=%MML%monoid_0.html#V12>v12_monoid_0</a>,'right-invertible__2',_). constr_name(<a href=%MML%monoid_0.html#V13>v13_monoid_0</a>,invertible__5,_). constr_name(<a href=%MML%monoid_0.html#V14>v14_monoid_0</a>,'left-cancelable__2',_). constr_name(<a href=%MML%monoid_0.html#V15>v15_monoid_0</a>,'right-cancelable__2',_). constr_name(<a href=%MML%monoid_0.html#V16>v16_monoid_0</a>,cancelable__3,_). constr_name(<a href=%MML%monoid_0.html#V17>v17_monoid_0</a>,'uniquely-decomposable__2',_). constr_name(<a href=%MML%monoid_0.html#M1>m1_monoid_0</a>,'MonoidalExtension',_). constr_name(<a href=%MML%monoid_0.html#M2>m2_monoid_0</a>,'SubStr',_). constr_name(<a href=%MML%monoid_0.html#M3>m3_monoid_0</a>,'MonoidalSubStr',_). constr_name(<a href=%MML%monoid_0.html#M4>m4_monoid_0</a>,'SubStr__2',_). constr_name(<a href=%MML%monoid_0.html#M5>m5_monoid_0</a>,'SubStr__3',_). constr_name(<a href=%MML%monoid_0.html#M6>m6_monoid_0</a>,'SubStr__4',_). constr_name(<a href=%MML%monoid_0.html#M7>m7_monoid_0</a>,'MonoidalSubStr__2',_). constr_name(<a href=%MML%monoid_0.html#K4>k4_monoid_0</a>,'[*]__3',_). constr_name(<a href=%MML%monoid_0.html#K5>k5_monoid_0</a>,'<REAL,+>',_). constr_name(<a href=%MML%monoid_0.html#K6>k6_monoid_0</a>,'INT.Group__3',_). constr_name(<a href=%MML%monoid_0.html#K7>k7_monoid_0</a>,'<NAT,+>',_). constr_name(<a href=%MML%monoid_0.html#K8>k8_monoid_0</a>,'<NAT,+,0>',_). constr_name(<a href=%MML%monoid_0.html#K9>k9_monoid_0</a>,'<REAL,*>',_). constr_name(<a href=%MML%monoid_0.html#K10>k10_monoid_0</a>,'<NAT,*>',_). constr_name(<a href=%MML%monoid_0.html#K11>k11_monoid_0</a>,'<NAT,*,1>',_). constr_name(<a href=%MML%monoid_0.html#K12>k12_monoid_0</a>,'*+^',_). constr_name(<a href=%MML%monoid_0.html#K13>k13_monoid_0</a>,'*+^+<0>',_). constr_name(<a href=%MML%monoid_0.html#K14>k14_monoid_0</a>,'-concatenation',_). constr_name(<a href=%MML%monoid_0.html#K15>k15_monoid_0</a>,'GPFuncs',_). constr_name(<a href=%MML%monoid_0.html#K16>k16_monoid_0</a>,'MPFuncs',_). constr_name(<a href=%MML%monoid_0.html#K17>k17_monoid_0</a>,'-composition',_). constr_name(<a href=%MML%monoid_0.html#K18>k18_monoid_0</a>,'GFuncs',_). constr_name(<a href=%MML%monoid_0.html#K19>k19_monoid_0</a>,'MFuncs',_). constr_name(<a href=%MML%monoid_0.html#K20>k20_monoid_0</a>,'GPerms',_). constr_name(<a href=%MML%monoid_1.html#K1>k1_monoid_1</a>,'..__3',_). constr_name(<a href=%MML%monoid_1.html#K2>k2_monoid_1</a>,'..__4',_). constr_name(<a href=%MML%monoid_1.html#K3>k3_monoid_1</a>,'.:__24',_). constr_name(<a href=%MML%monoid_1.html#K4>k4_monoid_1</a>,'.-->__6',_). constr_name(<a href=%MML%monoid_1.html#K5>k5_monoid_1</a>,'-->__18',_). constr_name(<a href=%MML%monoid_1.html#K6>k6_monoid_1</a>,'[;]__5',_). constr_name(<a href=%MML%monoid_1.html#K7>k7_monoid_1</a>,'[:]__4',_). constr_name(<a href=%MML%monoid_1.html#K8>k8_monoid_1</a>,'.:__25',_). constr_name(<a href=%MML%monoid_1.html#K9>k9_monoid_1</a>,'.:__26',_). constr_name(<a href=%MML%monoid_1.html#K10>k10_monoid_1</a>,'.__58',_). constr_name(<a href=%MML%monoid_1.html#K11>k11_monoid_1</a>,'.:__27',_). constr_name(<a href=%MML%monoid_1.html#K12>k12_monoid_1</a>,'.:__28',_). constr_name(<a href=%MML%monoid_1.html#K13>k13_monoid_1</a>,'MultiSet_over',_). constr_name(<a href=%MML%monoid_1.html#K14>k14_monoid_1</a>,rng__13,_). constr_name(<a href=%MML%monoid_1.html#K15>k15_monoid_1</a>,'.__59',_). constr_name(<a href=%MML%monoid_1.html#K16>k16_monoid_1</a>,chi__5,_). constr_name(<a href=%MML%monoid_1.html#K17>k17_monoid_1</a>,'-->__19',_). constr_name(<a href=%MML%monoid_1.html#K18>k18_monoid_1</a>,chi__6,_). constr_name(<a href=%MML%monoid_1.html#K19>k19_monoid_1</a>,'finite-MultiSet_over',_). constr_name(<a href=%MML%monoid_1.html#K20>k20_monoid_1</a>,'|....|__8',_). constr_name(<a href=%MML%monoid_1.html#K21>k21_monoid_1</a>,'.:^2',_). constr_name(<a href=%MML%monoid_1.html#K22>k22_monoid_1</a>,bool__8,_). constr_name(<a href=%MML%monoid_1.html#K23>k23_monoid_1</a>,bool__9,_). constr_name(<a href=%MML%prvect_1.html#K1>k1_prvect_1</a>,'.:__29',_). constr_name(<a href=%MML%prvect_1.html#K2>k2_prvect_1</a>,product__2,_). constr_name(<a href=%MML%prvect_1.html#K3>k3_prvect_1</a>,product__3,_). constr_name(<a href=%MML%prvect_1.html#K4>k4_prvect_1</a>,'.-->__7',_). constr_name(<a href=%MML%prvect_1.html#K5>k5_prvect_1</a>,'-Group_over',_). constr_name(<a href=%MML%prvect_1.html#K6>k6_prvect_1</a>,'-Mult_over',_). constr_name(<a href=%MML%prvect_1.html#K7>k7_prvect_1</a>,'-VectSp_over',_). constr_name(<a href=%MML%prvect_1.html#K8>k8_prvect_1</a>,'[;]__6',_). constr_name(<a href=%MML%prvect_1.html#K9>k9_prvect_1</a>,'.__60',_). constr_name(<a href=%MML%prvect_1.html#M1>m1_prvect_1</a>,'BinOps',_). constr_name(<a href=%MML%prvect_1.html#M2>m2_prvect_1</a>,'UnOps',_). constr_name(<a href=%MML%prvect_1.html#K10>k10_prvect_1</a>,'.__61',_). constr_name(<a href=%MML%prvect_1.html#K11>k11_prvect_1</a>,'.__62',_). constr_name(<a href=%MML%prvect_1.html#K12>k12_prvect_1</a>,'.__63',_). constr_name(<a href=%MML%prvect_1.html#K13>k13_prvect_1</a>,'Frege__2',_). constr_name(<a href=%MML%prvect_1.html#K14>k14_prvect_1</a>,'.__64',_). constr_name(<a href=%MML%prvect_1.html#K15>k15_prvect_1</a>,'[:..:]__24',_). constr_name(<a href=%MML%prvect_1.html#V1>v1_prvect_1</a>,'AbGroup-yielding',_). constr_name(<a href=%MML%prvect_1.html#K16>k16_prvect_1</a>,'.__65',_). constr_name(<a href=%MML%prvect_1.html#K17>k17_prvect_1</a>,carr__2,_). constr_name(<a href=%MML%prvect_1.html#K18>k18_prvect_1</a>,'.__66',_). constr_name(<a href=%MML%prvect_1.html#K19>k19_prvect_1</a>,addop,_). constr_name(<a href=%MML%prvect_1.html#K20>k20_prvect_1</a>,complop,_). constr_name(<a href=%MML%prvect_1.html#K21>k21_prvect_1</a>,zeros,_). constr_name(<a href=%MML%prvect_1.html#K22>k22_prvect_1</a>,product__4,_). constr_name(<a href=%MML%lmod_7.html#M1>m1_lmod_7</a>,'SUBMODULE_DOMAIN',_). constr_name(<a href=%MML%lmod_7.html#K1>k1_lmod_7</a>,'Submodules__2',_). constr_name(<a href=%MML%lmod_7.html#M2>m2_lmod_7</a>,'Element__31',_). constr_name(<a href=%MML%lmod_7.html#M3>m3_lmod_7</a>,'LINE__3',_). constr_name(<a href=%MML%lmod_7.html#M4>m4_lmod_7</a>,'LINE_DOMAIN',_). constr_name(<a href=%MML%lmod_7.html#K2>k2_lmod_7</a>,lines,_). constr_name(<a href=%MML%lmod_7.html#M5>m5_lmod_7</a>,'Element__32',_). constr_name(<a href=%MML%lmod_7.html#M6>m6_lmod_7</a>,'HIPERPLANE',_). constr_name(<a href=%MML%lmod_7.html#M7>m7_lmod_7</a>,'HIPERPLANE_DOMAIN',_). constr_name(<a href=%MML%lmod_7.html#K3>k3_lmod_7</a>,hiperplanes,_). constr_name(<a href=%MML%lmod_7.html#M8>m8_lmod_7</a>,'Element__33',_). constr_name(<a href=%MML%lmod_7.html#K4>k4_lmod_7</a>,'Sum__19',_). constr_name(<a href=%MML%lmod_7.html#K5>k5_lmod_7</a>,'/\\__22',_). constr_name(<a href=%MML%lmod_7.html#K6>k6_lmod_7</a>,'+__60',_). constr_name(<a href=%MML%lmod_7.html#M9>m9_lmod_7</a>,'Vector__2',_). constr_name(<a href=%MML%lmod_7.html#K7>k7_lmod_7</a>,'..__5',_). constr_name(<a href=%MML%lmod_7.html#K8>k8_lmod_7</a>,'..__6',_). constr_name(<a href=%MML%lmod_7.html#K9>k9_lmod_7</a>,'-__76',_). constr_name(<a href=%MML%lmod_7.html#K10>k10_lmod_7</a>,'+__61',_). constr_name(<a href=%MML%lmod_7.html#K11>k11_lmod_7</a>,'COMPL',_). constr_name(<a href=%MML%lmod_7.html#K12>k12_lmod_7</a>,'ADD',_). constr_name(<a href=%MML%lmod_7.html#K13>k13_lmod_7</a>,'.__67',_). constr_name(<a href=%MML%lmod_7.html#K14>k14_lmod_7</a>,'.__68',_). constr_name(<a href=%MML%lmod_7.html#K15>k15_lmod_7</a>,'*__93',_). constr_name(<a href=%MML%lmod_7.html#K16>k16_lmod_7</a>,'LMULT',_). constr_name(<a href=%MML%lmod_7.html#K17>k17_lmod_7</a>,'/__22',_). constr_name(<a href=%MML%lmod_7.html#K18>k18_lmod_7</a>,'/__23',_). constr_name(<a href=%MML%tops_3.html#V1>v1_tops_3</a>,everywhere_dense,_). constr_name(<a href=%MML%tex_1.html#K1>k1_tex_1</a>,cobool,_). constr_name(<a href=%MML%tex_1.html#K2>k2_tex_1</a>,'ADTS',_). constr_name(<a href=%MML%tex_1.html#K3>k3_tex_1</a>,'\\__16',_). constr_name(<a href=%MML%tex_1.html#K4>k4_tex_1</a>,'STS',_). constr_name(<a href=%MML%matrix_3.html#K1>k1_matrix_3</a>,'0.__5',_). constr_name(<a href=%MML%matrix_3.html#K2>k2_matrix_3</a>,'-__77',_). constr_name(<a href=%MML%matrix_3.html#K3>k3_matrix_3</a>,'+__62',_). constr_name(<a href=%MML%matrix_3.html#K4>k4_matrix_3</a>,'*__94',_). constr_name(<a href=%MML%matrix_3.html#K5>k5_matrix_3</a>,'*__95',_). constr_name(<a href=%MML%matrix_3.html#K6>k6_matrix_3</a>,'*__96',_). constr_name(<a href=%MML%matrix_3.html#K7>k7_matrix_3</a>,'*__97',_). constr_name(<a href=%MML%matrix_3.html#K8>k8_matrix_3</a>,'[:..:]__25',_). constr_name(<a href=%MML%matrix_3.html#K9>k9_matrix_3</a>,'*__98',_). constr_name(<a href=%MML%matrix_3.html#K10>k10_matrix_3</a>,'Path_matrix',_). constr_name(<a href=%MML%matrix_3.html#K11>k11_matrix_3</a>,'Path_product',_). constr_name(<a href=%MML%matrix_3.html#K12>k12_matrix_3</a>,'Det',_). constr_name(<a href=%MML%matrix_3.html#K13>k13_matrix_3</a>,diagonal_of_Matrix,_). constr_name(<a href=%MML%unialg_2.html#M1>m1_unialg_2</a>,'PFuncsDomHQN',_). constr_name(<a href=%MML%unialg_2.html#M2>m2_unialg_2</a>,'Element__34',_). constr_name(<a href=%MML%unialg_2.html#R1>r1_unialg_2</a>,are_similar__2,_). constr_name(<a href=%MML%unialg_2.html#K1>k1_unialg_2</a>,'Operations',_). constr_name(<a href=%MML%unialg_2.html#R2>r2_unialg_2</a>,is_closed_on,_). constr_name(<a href=%MML%unialg_2.html#V1>v1_unialg_2</a>,opers_closed,_). constr_name(<a href=%MML%unialg_2.html#K2>k2_unialg_2</a>,'/.__2',_). constr_name(<a href=%MML%unialg_2.html#K3>k3_unialg_2</a>,'Opers',_). constr_name(<a href=%MML%unialg_2.html#M3>m3_unialg_2</a>,'SubAlgebra',_). constr_name(<a href=%MML%unialg_2.html#K4>k4_unialg_2</a>,'UniAlgSetClosed',_). constr_name(<a href=%MML%unialg_2.html#K5>k5_unialg_2</a>,'/\\__23',_). constr_name(<a href=%MML%unialg_2.html#K6>k6_unialg_2</a>,'Constants',_). constr_name(<a href=%MML%unialg_2.html#V2>v2_unialg_2</a>,with_const_op,_). constr_name(<a href=%MML%unialg_2.html#K7>k7_unialg_2</a>,'GenUnivAlg',_). constr_name(<a href=%MML%unialg_2.html#K8>k8_unialg_2</a>,'"\\/"__8',_). constr_name(<a href=%MML%unialg_2.html#K9>k9_unialg_2</a>,'Sub',_). constr_name(<a href=%MML%unialg_2.html#K10>k10_unialg_2</a>,'UniAlg_join',_). constr_name(<a href=%MML%unialg_2.html#K11>k11_unialg_2</a>,'UniAlg_meet',_). constr_name(<a href=%MML%unialg_2.html#K12>k12_unialg_2</a>,'UnSubAlLattice',_). constr_name(<a href=%MML%hahnban.html#V1>v1_hahnban</a>,subadditive,_). constr_name(<a href=%MML%hahnban.html#V2>v2_hahnban</a>,additive__3,_). constr_name(<a href=%MML%hahnban.html#V3>v3_hahnban</a>,homogeneous__3,_). constr_name(<a href=%MML%hahnban.html#V4>v4_hahnban</a>,positively_homogeneous,_). constr_name(<a href=%MML%hahnban.html#V5>v5_hahnban</a>,'semi-homogeneous',_). constr_name(<a href=%MML%hahnban.html#V6>v6_hahnban</a>,absolutely_homogeneous,_). constr_name(<a href=%MML%hahnban.html#V7>v7_hahnban</a>,'0-preserving',_). constr_name(<a href=%MML%lattice4.html#M1>m1_lattice4</a>,'Homomorphism__3',_). constr_name(<a href=%MML%lattice4.html#V1>v1_lattice4</a>,monomorphism__4,_). constr_name(<a href=%MML%lattice4.html#V2>v2_lattice4</a>,epimorphism__4,_). constr_name(<a href=%MML%lattice4.html#V3>v3_lattice4</a>,isomorphism__4,_). constr_name(<a href=%MML%lattice4.html#R1>r1_lattice4</a>,preserves_implication,_). constr_name(<a href=%MML%lattice4.html#R2>r2_lattice4</a>,preserves_top,_). constr_name(<a href=%MML%lattice4.html#R3>r3_lattice4</a>,preserves_bottom,_). constr_name(<a href=%MML%lattice4.html#R4>r4_lattice4</a>,preserves_complement,_). constr_name(<a href=%MML%lattice4.html#M2>m2_lattice4</a>,'ClosedSubset',_). constr_name(<a href=%MML%lattice4.html#K1>k1_lattice4</a>,'FinJoin__2',_). constr_name(<a href=%MML%lattice4.html#K2>k2_lattice4</a>,'FinMeet__2',_). constr_name(<a href=%MML%lattice4.html#M3>m3_lattice4</a>,'Field',_). constr_name(<a href=%MML%lattice4.html#K3>k3_lattice4</a>,field_by,_). constr_name(<a href=%MML%lattice4.html#K4>k4_lattice4</a>,'SetImp',_). constr_name(<a href=%MML%lattice4.html#K5>k5_lattice4</a>,comp__6,_). constr_name(<a href=%MML%openlatt.html#K1>k1_openlatt</a>,'Topology_of',_). constr_name(<a href=%MML%openlatt.html#K2>k2_openlatt</a>,'\\/__15',_). constr_name(<a href=%MML%openlatt.html#K3>k3_openlatt</a>,'/\\__24',_). constr_name(<a href=%MML%openlatt.html#K4>k4_openlatt</a>,'Top_Union',_). constr_name(<a href=%MML%openlatt.html#K5>k5_openlatt</a>,'Top_Meet',_). constr_name(<a href=%MML%openlatt.html#K6>k6_openlatt</a>,'Open_setLatt',_). constr_name(<a href=%MML%openlatt.html#K7>k7_openlatt</a>,'F_primeSet',_). constr_name(<a href=%MML%openlatt.html#K8>k8_openlatt</a>,'StoneH',_). constr_name(<a href=%MML%openlatt.html#K9>k9_openlatt</a>,'StoneS',_). constr_name(<a href=%MML%openlatt.html#K10>k10_openlatt</a>,'SF_have',_). constr_name(<a href=%MML%openlatt.html#K11>k11_openlatt</a>,'\\/__16',_). constr_name(<a href=%MML%openlatt.html#K12>k12_openlatt</a>,'/\\__25',_). constr_name(<a href=%MML%openlatt.html#K13>k13_openlatt</a>,'Set_Union',_). constr_name(<a href=%MML%openlatt.html#K14>k14_openlatt</a>,'Set_Meet',_). constr_name(<a href=%MML%openlatt.html#K15>k15_openlatt</a>,'StoneLatt',_). constr_name(<a href=%MML%openlatt.html#K16>k16_openlatt</a>,'StoneH__2',_). constr_name(<a href=%MML%openlatt.html#K17>k17_openlatt</a>,'HTopSpace',_). constr_name(<a href=%MML%openlatt.html#K18>k18_openlatt</a>,'StoneH__3',_). constr_name(<a href=%MML%lopclset.html#K1>k1_lopclset</a>,'OpenClosedSet',_). constr_name(<a href=%MML%lopclset.html#K2>k2_lopclset</a>,'\\/__17',_). constr_name(<a href=%MML%lopclset.html#K3>k3_lopclset</a>,'/\\__26',_). constr_name(<a href=%MML%lopclset.html#K4>k4_lopclset</a>,'T_join',_). constr_name(<a href=%MML%lopclset.html#K5>k5_lopclset</a>,'T_meet',_). constr_name(<a href=%MML%lopclset.html#K6>k6_lopclset</a>,'OpenClosedSetLatt',_). constr_name(<a href=%MML%lopclset.html#K7>k7_lopclset</a>,ultraset,_). constr_name(<a href=%MML%lopclset.html#K8>k8_lopclset</a>,'UFilter',_). constr_name(<a href=%MML%lopclset.html#K9>k9_lopclset</a>,'UFilter__2',_). constr_name(<a href=%MML%lopclset.html#K10>k10_lopclset</a>,'StoneR',_). constr_name(<a href=%MML%lopclset.html#K11>k11_lopclset</a>,'StoneSpace',_). constr_name(<a href=%MML%lopclset.html#K12>k12_lopclset</a>,'StoneBLattice',_). constr_name(<a href=%MML%lopclset.html#K13>k13_lopclset</a>,'UFilter__3',_). constr_name(<a href=%MML%ami_3.html#K1>k1_ami_3</a>,'SCM',_). constr_name(<a href=%MML%ami_3.html#M1>m1_ami_3</a>,'Data-Location',_). constr_name(<a href=%MML%ami_3.html#K2>k2_ami_3</a>,'.__69',_). constr_name(<a href=%MML%ami_3.html#K3>k3_ami_3</a>,':=',_). constr_name(<a href=%MML%ami_3.html#K4>k4_ami_3</a>,'AddTo',_). constr_name(<a href=%MML%ami_3.html#K5>k5_ami_3</a>,'SubFrom',_). constr_name(<a href=%MML%ami_3.html#K6>k6_ami_3</a>,'MultBy',_). constr_name(<a href=%MML%ami_3.html#K7>k7_ami_3</a>,'Divide',_). constr_name(<a href=%MML%ami_3.html#K8>k8_ami_3</a>,goto,_). constr_name(<a href=%MML%ami_3.html#K9>k9_ami_3</a>,'=0_goto',_). constr_name(<a href=%MML%ami_3.html#K10>k10_ami_3</a>,'>0_goto',_). constr_name(<a href=%MML%ami_3.html#K11>k11_ami_3</a>,'Next__2',_). constr_name(<a href=%MML%ami_3.html#K12>k12_ami_3</a>,'Start-At',_). constr_name(<a href=%MML%ami_3.html#V1>v1_ami_3</a>,programmed,_). constr_name(<a href=%MML%ami_3.html#R1>r1_ami_3</a>,starts_at,_). constr_name(<a href=%MML%ami_3.html#R2>r2_ami_3</a>,halts_at,_). constr_name(<a href=%MML%ami_3.html#K13>k13_ami_3</a>,'IC__4',_). constr_name(<a href=%MML%ami_3.html#R3>r3_ami_3</a>,starts_at__2,_). constr_name(<a href=%MML%ami_3.html#R4>r4_ami_3</a>,halts_at__2,_). constr_name(<a href=%MML%ami_3.html#K14>k14_ami_3</a>,'.-->__8',_). constr_name(<a href=%MML%ami_3.html#K15>k15_ami_3</a>,'dl.',_). constr_name(<a href=%MML%ami_3.html#K16>k16_ami_3</a>,'il.',_). constr_name(<a href=%MML%ami_3.html#K17>k17_ami_3</a>,'.-->__9',_). constr_name(<a href=%MML%ami_3.html#K18>k18_ami_3</a>,'-->__20',_). constr_name(<a href=%MML%ami_4.html#K1>k1_ami_4</a>,'Euclide-Algorithm',_). constr_name(<a href=%MML%ami_4.html#K2>k2_ami_4</a>,'Euclide-Function',_). constr_name(<a href=%MML%scm_1.html#K1>k1_scm_1</a>,'<*..*>__18',_). constr_name(<a href=%MML%scm_1.html#M1>m1_scm_1</a>,'State-consisting',_). constr_name(<a href=%MML%scm_1.html#K2>k2_scm_1</a>,'Complexity',_). constr_name(<a href=%MML%fib_fusc.html#K1>k1_fib_fusc</a>,'Fib_Program',_). constr_name(<a href=%MML%fib_fusc.html#K2>k2_fib_fusc</a>,'Fusc'',_). constr_name(<a href=%MML%fib_fusc.html#K3>k3_fib_fusc</a>,'Fusc_Program',_). constr_name(<a href=%MML%boolmark.html#K1>k1_boolmark</a>,'Bool_marks_of',_). constr_name(<a href=%MML%boolmark.html#R1>r1_boolmark</a>,is_firable_on,_). constr_name(<a href=%MML%boolmark.html#K2>k2_boolmark</a>,'Firing',_). constr_name(<a href=%MML%boolmark.html#R2>r2_boolmark</a>,is_firable_on__2,_). constr_name(<a href=%MML%boolmark.html#K3>k3_boolmark</a>,'Firing__2',_). constr_name(<a href=%MML%dtconstr.html#M1>m1_dtconstr</a>,'Element__35',_). constr_name(<a href=%MML%dtconstr.html#K1>k1_dtconstr</a>,roots__2,_). constr_name(<a href=%MML%dtconstr.html#K2>k2_dtconstr</a>,pr1__11,_). constr_name(<a href=%MML%dtconstr.html#K3>k3_dtconstr</a>,pr2__11,_). constr_name(<a href=%MML%dtconstr.html#K4>k4_dtconstr</a>,'TS',_). constr_name(<a href=%MML%dtconstr.html#K5>k5_dtconstr</a>,'PeanoNat',_). constr_name(<a href=%MML%dtconstr.html#V1>v1_dtconstr</a>,with_terminals,_). constr_name(<a href=%MML%dtconstr.html#V2>v2_dtconstr</a>,with_nonterminals,_). constr_name(<a href=%MML%dtconstr.html#V3>v3_dtconstr</a>,with_useful_nonterminals,_). constr_name(<a href=%MML%dtconstr.html#K6>k6_dtconstr</a>,'Terminals__2',_). constr_name(<a href=%MML%dtconstr.html#K7>k7_dtconstr</a>,'NonTerminals__3',_). constr_name(<a href=%MML%dtconstr.html#M2>m2_dtconstr</a>,'SubtreeSeq',_). constr_name(<a href=%MML%dtconstr.html#K8>k8_dtconstr</a>,'root-tree__3',_). constr_name(<a href=%MML%dtconstr.html#K9>k9_dtconstr</a>,'-tree__8',_). constr_name(<a href=%MML%dtconstr.html#K10>k10_dtconstr</a>,'-tree__9',_). constr_name(<a href=%MML%dtconstr.html#K11>k11_dtconstr</a>,'plus-one',_). constr_name(<a href=%MML%dtconstr.html#K12>k12_dtconstr</a>,'PN-to-NAT',_). constr_name(<a href=%MML%dtconstr.html#K13>k13_dtconstr</a>,'PNsucc',_). constr_name(<a href=%MML%dtconstr.html#K14>k14_dtconstr</a>,'NAT-to-PN',_). constr_name(<a href=%MML%dtconstr.html#K15>k15_dtconstr</a>,'FlattenSeq',_). constr_name(<a href=%MML%dtconstr.html#K16>k16_dtconstr</a>,'TerminalString',_). constr_name(<a href=%MML%dtconstr.html#K17>k17_dtconstr</a>,'PreTraversal',_). constr_name(<a href=%MML%dtconstr.html#K18>k18_dtconstr</a>,'PostTraversal',_). constr_name(<a href=%MML%dtconstr.html#K19>k19_dtconstr</a>,'TerminalLanguage',_). constr_name(<a href=%MML%dtconstr.html#K20>k20_dtconstr</a>,'PreTraversalLanguage',_). constr_name(<a href=%MML%dtconstr.html#K21>k21_dtconstr</a>,'PostTraversalLanguage',_). constr_name(<a href=%MML%pralg_1.html#K1>k1_pralg_1</a>,pr1__12,_). constr_name(<a href=%MML%pralg_1.html#K2>k2_pralg_1</a>,pr2__12,_). constr_name(<a href=%MML%pralg_1.html#K3>k3_pralg_1</a>,'[[:..:]]',_). constr_name(<a href=%MML%pralg_1.html#K4>k4_pralg_1</a>,'Opers__2',_). constr_name(<a href=%MML%pralg_1.html#K5>k5_pralg_1</a>,'[:..:]__26',_). constr_name(<a href=%MML%pralg_1.html#K6>k6_pralg_1</a>,'Inv',_). constr_name(<a href=%MML%pralg_1.html#K7>k7_pralg_1</a>,'TrivialOp',_). constr_name(<a href=%MML%pralg_1.html#K8>k8_pralg_1</a>,'TrivialOps',_). constr_name(<a href=%MML%pralg_1.html#K9>k9_pralg_1</a>,'Trivial_Algebra',_). constr_name(<a href=%MML%pralg_1.html#V1>v1_pralg_1</a>,'Univ_Alg-yielding',_). constr_name(<a href=%MML%pralg_1.html#V2>v2_pralg_1</a>,'1-sorted-yielding',_). constr_name(<a href=%MML%pralg_1.html#V3>v3_pralg_1</a>,'equal-signature',_). constr_name(<a href=%MML%pralg_1.html#K10>k10_pralg_1</a>,'.__70',_). constr_name(<a href=%MML%pralg_1.html#K11>k11_pralg_1</a>,'.__71',_). constr_name(<a href=%MML%pralg_1.html#K12>k12_pralg_1</a>,'Carrier__4',_). constr_name(<a href=%MML%pralg_1.html#K13>k13_pralg_1</a>,'ComSign',_). constr_name(<a href=%MML%pralg_1.html#M1>m1_pralg_1</a>,'ManySortedOperation',_). constr_name(<a href=%MML%pralg_1.html#K14>k14_pralg_1</a>,'.__72',_). constr_name(<a href=%MML%pralg_1.html#V4>v4_pralg_1</a>,'equal-arity',_). constr_name(<a href=%MML%pralg_1.html#K15>k15_pralg_1</a>,'..__7',_). constr_name(<a href=%MML%pralg_1.html#K16>k16_pralg_1</a>,'..__8',_). constr_name(<a href=%MML%pralg_1.html#K17>k17_pralg_1</a>,uncurry__3,_). constr_name(<a href=%MML%pralg_1.html#K18>k18_pralg_1</a>,'~__15',_). constr_name(<a href=%MML%pralg_1.html#K19>k19_pralg_1</a>,curry__4,_). constr_name(<a href=%MML%pralg_1.html#K20>k20_pralg_1</a>,'ComAr',_). constr_name(<a href=%MML%pralg_1.html#K21>k21_pralg_1</a>,'EmptySeq',_). constr_name(<a href=%MML%pralg_1.html#K22>k22_pralg_1</a>,'[[:..:]]__2',_). constr_name(<a href=%MML%pralg_1.html#K23>k23_pralg_1</a>,'ProdOp',_). constr_name(<a href=%MML%pralg_1.html#K24>k24_pralg_1</a>,'ProdOpSeq',_). constr_name(<a href=%MML%pralg_1.html#K25>k25_pralg_1</a>,'ProdUnivAlg',_). constr_name(<a href=%MML%alg_1.html#R1>r1_alg_1</a>,is_homomorphism,_). constr_name(<a href=%MML%alg_1.html#R2>r2_alg_1</a>,is_monomorphism,_). constr_name(<a href=%MML%alg_1.html#R3>r3_alg_1</a>,is_epimorphism,_). constr_name(<a href=%MML%alg_1.html#R4>r4_alg_1</a>,is_isomorphism,_). constr_name(<a href=%MML%alg_1.html#R5>r5_alg_1</a>,are_isomorphic__7,_). constr_name(<a href=%MML%alg_1.html#K1>k1_alg_1</a>,'Image__2',_). constr_name(<a href=%MML%alg_1.html#K2>k2_alg_1</a>,'ExtendRel',_). constr_name(<a href=%MML%alg_1.html#M1>m1_alg_1</a>,'Congruence',_). constr_name(<a href=%MML%alg_1.html#R6>r6_alg_1</a>,is_representatives_FS,_). constr_name(<a href=%MML%alg_1.html#K3>k3_alg_1</a>,'QuotOp',_). constr_name(<a href=%MML%alg_1.html#K4>k4_alg_1</a>,'QuotOpSeq',_). constr_name(<a href=%MML%alg_1.html#K5>k5_alg_1</a>,'QuotUnivAlg',_). constr_name(<a href=%MML%alg_1.html#K6>k6_alg_1</a>,'Nat_Hom',_). constr_name(<a href=%MML%alg_1.html#K7>k7_alg_1</a>,'Cng',_). constr_name(<a href=%MML%alg_1.html#K8>k8_alg_1</a>,'HomQuot',_). constr_name(<a href=%MML%freealg.html#V1>v1_freealg</a>,missing_with_Nat,_). constr_name(<a href=%MML%freealg.html#K1>k1_freealg</a>,oper,_). constr_name(<a href=%MML%freealg.html#M1>m1_freealg</a>,'GeneratorSet',_). constr_name(<a href=%MML%freealg.html#V2>v2_freealg</a>,free__3,_). constr_name(<a href=%MML%freealg.html#V3>v3_freealg</a>,free__4,_). constr_name(<a href=%MML%freealg.html#K2>k2_freealg</a>,'REL',_). constr_name(<a href=%MML%freealg.html#K3>k3_freealg</a>,'DTConUA',_). constr_name(<a href=%MML%freealg.html#K4>k4_freealg</a>,'Sym',_). constr_name(<a href=%MML%freealg.html#K5>k5_freealg</a>,'FreeOpNSG',_). constr_name(<a href=%MML%freealg.html#K6>k6_freealg</a>,'FreeOpSeqNSG',_). constr_name(<a href=%MML%freealg.html#K7>k7_freealg</a>,'FreeUnivAlgNSG',_). constr_name(<a href=%MML%freealg.html#K8>k8_freealg</a>,'FreeGenSetNSG',_). constr_name(<a href=%MML%freealg.html#K9>k9_freealg</a>,'FreeGenSetNSG__2',_). constr_name(<a href=%MML%freealg.html#K10>k10_freealg</a>,pi__2,_). constr_name(<a href=%MML%freealg.html#K11>k11_freealg</a>,'@__26',_). constr_name(<a href=%MML%freealg.html#K12>k12_freealg</a>,'FreeGenSetNSG__3',_). constr_name(<a href=%MML%freealg.html#K13>k13_freealg</a>,'FreeOpZAO',_). constr_name(<a href=%MML%freealg.html#K14>k14_freealg</a>,'FreeOpSeqZAO',_). constr_name(<a href=%MML%freealg.html#K15>k15_freealg</a>,'FreeUnivAlgZAO',_). constr_name(<a href=%MML%freealg.html#K16>k16_freealg</a>,'FreeGenSetZAO',_). constr_name(<a href=%MML%freealg.html#K17>k17_freealg</a>,'FreeGenSetZAO__2',_). constr_name(<a href=%MML%freealg.html#K18>k18_freealg</a>,pi__3,_). constr_name(<a href=%MML%freealg.html#K19>k19_freealg</a>,'FreeGenSetZAO__3',_). constr_name(<a href=%MML%tex_2.html#V1>v1_tex_2</a>,proper__2,_). constr_name(<a href=%MML%tex_2.html#V2>v2_tex_2</a>,proper__3,_). constr_name(<a href=%MML%tex_2.html#K1>k1_tex_2</a>,'Sspace',_). constr_name(<a href=%MML%tex_2.html#V3>v3_tex_2</a>,discrete__3,_). constr_name(<a href=%MML%tex_2.html#V4>v4_tex_2</a>,maximal_discrete,_). constr_name(<a href=%MML%tex_2.html#V5>v5_tex_2</a>,maximal_discrete__2,_). constr_name(<a href=%MML%tex_3.html#V1>v1_tex_3</a>,dense__2,_). constr_name(<a href=%MML%tex_3.html#V2>v2_tex_3</a>,everywhere_dense__2,_). constr_name(<a href=%MML%tex_3.html#V3>v3_tex_3</a>,boundary__2,_). constr_name(<a href=%MML%tex_3.html#V4>v4_tex_3</a>,nowhere_dense__2,_). constr_name(<a href=%MML%ami_5.html#K1>k1_ami_5</a>,'InsCode',_). constr_name(<a href=%MML%ami_5.html#K2>k2_ami_5</a>,'@__27',_). constr_name(<a href=%MML%ami_5.html#K3>k3_ami_5</a>,'@__28',_). constr_name(<a href=%MML%ami_5.html#K4>k4_ami_5</a>,'@__29',_). constr_name(<a href=%MML%ami_5.html#K5>k5_ami_5</a>,pi__4,_). constr_name(<a href=%MML%ami_5.html#K6>k6_ami_5</a>,'ProgramPart',_). constr_name(<a href=%MML%ami_5.html#K7>k7_ami_5</a>,'DataPart',_). constr_name(<a href=%MML%ami_5.html#V1>v1_ami_5</a>,'data-only',_). constr_name(<a href=%MML%ami_5.html#V2>v2_ami_5</a>,'data-only__2',_). constr_name(<a href=%MML%ami_5.html#K8>k8_ami_5</a>,'+*__6',_). constr_name(<a href=%MML%bintree1.html#K1>k1_bintree1</a>,'root-label',_). constr_name(<a href=%MML%bintree1.html#V1>v1_bintree1</a>,binary,_). constr_name(<a href=%MML%bintree1.html#V2>v2_bintree1</a>,binary__2,_). constr_name(<a href=%MML%bintree1.html#K2>k2_bintree1</a>,'-tree__10',_). constr_name(<a href=%MML%bintree1.html#V3>v3_bintree1</a>,binary__3,_). constr_name(<a href=%MML%bintree1.html#K3>k3_bintree1</a>,'[..]__20',_). constr_name(<a href=%MML%scm_comp.html#K1>k1_scm_comp</a>,'SCM-AE',_). constr_name(<a href=%MML%scm_comp.html#K2>k2_scm_comp</a>,'-tree__11',_). constr_name(<a href=%MML%scm_comp.html#K3>k3_scm_comp</a>,'root-tree__4',_). constr_name(<a href=%MML%scm_comp.html#K4>k4_scm_comp</a>,'@__30',_). constr_name(<a href=%MML%scm_comp.html#K5>k5_scm_comp</a>,'+__63',_). constr_name(<a href=%MML%scm_comp.html#K6>k6_scm_comp</a>,'-__78',_). constr_name(<a href=%MML%scm_comp.html#K7>k7_scm_comp</a>,'*__99',_). constr_name(<a href=%MML%scm_comp.html#K8>k8_scm_comp</a>,div__3,_). constr_name(<a href=%MML%scm_comp.html#K9>k9_scm_comp</a>,mod__3,_). constr_name(<a href=%MML%scm_comp.html#K10>k10_scm_comp</a>,'-Meaning_on',_). constr_name(<a href=%MML%scm_comp.html#K11>k11_scm_comp</a>,'.__73',_). constr_name(<a href=%MML%scm_comp.html#K12>k12_scm_comp</a>,'.__74',_). constr_name(<a href=%MML%scm_comp.html#K13>k13_scm_comp</a>,'@__31',_). constr_name(<a href=%MML%scm_comp.html#K14>k14_scm_comp</a>,'Selfwork',_). constr_name(<a href=%MML%scm_comp.html#K15>k15_scm_comp</a>,'SCM-Compile',_). constr_name(<a href=%MML%scm_comp.html#K16>k16_scm_comp</a>,'d".',_). constr_name(<a href=%MML%scm_comp.html#K17>k17_scm_comp</a>,'max_Data-Loc_in',_). constr_name(<a href=%MML%boolealg.html#K1>k1_boolealg</a>,'\\__17',_). constr_name(<a href=%MML%boolealg.html#K2>k2_boolealg</a>,'\\+\\__8',_). constr_name(<a href=%MML%boolealg.html#R1>r1_boolealg</a>,'=__8',_). constr_name(<a href=%MML%boolealg.html#R2>r2_boolealg</a>,meets__2,_). constr_name(<a href=%MML%boolealg.html#R3>r3_boolealg</a>,meets__3,_). constr_name(<a href=%MML%boolealg.html#K3>k3_boolealg</a>,'\\+\\__9',_). constr_name(<a href=%MML%msualg_1.html#L1>l1_msualg_1</a>,'ManySortedSign',_). constr_name(<a href=%MML%msualg_1.html#V1>v1_msualg_1</a>,strict__ManySortedSign,_). constr_name(<a href=%MML%msualg_1.html#U1>u1_msualg_1</a>,'OperSymbols',the_OperSymbols). constr_name(<a href=%MML%msualg_1.html#U2>u2_msualg_1</a>,'Arity',the_Arity). constr_name(<a href=%MML%msualg_1.html#U3>u3_msualg_1</a>,'ResultSort',the_ResultSort). constr_name(<a href=%MML%msualg_1.html#G1>g1_msualg_1</a>,'ManySortedSign_constr',_). constr_name(<a href=%MML%msualg_1.html#V2>v2_msualg_1</a>,void__2,_). constr_name(<a href=%MML%msualg_1.html#K1>k1_msualg_1</a>,the_arity_of__5,_). constr_name(<a href=%MML%msualg_1.html#K2>k2_msualg_1</a>,the_result_sort_of,_). constr_name(<a href=%MML%msualg_1.html#L2>l2_msualg_1</a>,'many-sorted',_). constr_name(<a href=%MML%msualg_1.html#V3>v3_msualg_1</a>,'strict__many-sorted',_). constr_name(<a href=%MML%msualg_1.html#U4>u4_msualg_1</a>,'Sorts',the_Sorts). constr_name(<a href=%MML%msualg_1.html#G2>g2_msualg_1</a>,'many-sorted_constr',_). constr_name(<a href=%MML%msualg_1.html#L3>l3_msualg_1</a>,'MSAlgebra',_). constr_name(<a href=%MML%msualg_1.html#V4>v4_msualg_1</a>,strict__MSAlgebra,_). constr_name(<a href=%MML%msualg_1.html#U5>u5_msualg_1</a>,'Charact',the_Charact). constr_name(<a href=%MML%msualg_1.html#G3>g3_msualg_1</a>,'MSAlgebra_constr',_). constr_name(<a href=%MML%msualg_1.html#V5>v5_msualg_1</a>,'non-empty__4',_). constr_name(<a href=%MML%msualg_1.html#K3>k3_msualg_1</a>,'Args',_). constr_name(<a href=%MML%msualg_1.html#K4>k4_msualg_1</a>,'Result__3',_). constr_name(<a href=%MML%msualg_1.html#K5>k5_msualg_1</a>,'Den',_). constr_name(<a href=%MML%msualg_1.html#K6>k6_msualg_1</a>,signature__2,_). constr_name(<a href=%MML%msualg_1.html#V6>v6_msualg_1</a>,segmental,_). constr_name(<a href=%MML%msualg_1.html#K7>k7_msualg_1</a>,'MSSign',_). constr_name(<a href=%MML%msualg_1.html#K8>k8_msualg_1</a>,'MSSorts',_). constr_name(<a href=%MML%msualg_1.html#K9>k9_msualg_1</a>,'MSCharact',_). constr_name(<a href=%MML%msualg_1.html#K10>k10_msualg_1</a>,'MSAlg',_). constr_name(<a href=%MML%msualg_1.html#K11>k11_msualg_1</a>,the_sort_of,_). constr_name(<a href=%MML%msualg_1.html#K12>k12_msualg_1</a>,the_charact_of,_). constr_name(<a href=%MML%msualg_1.html#K13>k13_msualg_1</a>,'1-Alg',_). constr_name(<a href=%MML%autgroup.html#K1>k1_autgroup</a>,'Aut',_). constr_name(<a href=%MML%autgroup.html#K2>k2_autgroup</a>,'AutComp',_). constr_name(<a href=%MML%autgroup.html#K3>k3_autgroup</a>,'AutGroup',_). constr_name(<a href=%MML%autgroup.html#K4>k4_autgroup</a>,'InnAut',_). constr_name(<a href=%MML%autgroup.html#K5>k5_autgroup</a>,'InnAutGroup',_). constr_name(<a href=%MML%autgroup.html#K6>k6_autgroup</a>,'Conjugate',_). constr_name(<a href=%MML%msualg_2.html#V1>v1_msualg_2</a>,with_const_op__2,_). constr_name(<a href=%MML%msualg_2.html#V2>v2_msualg_2</a>,'all-with_const_op',_). constr_name(<a href=%MML%msualg_2.html#K1>k1_msualg_2</a>,'Constants__2',_). constr_name(<a href=%MML%msualg_2.html#K2>k2_msualg_2</a>,'Constants__3',_). constr_name(<a href=%MML%msualg_2.html#R1>r1_msualg_2</a>,is_closed_on__2,_). constr_name(<a href=%MML%msualg_2.html#V3>v3_msualg_2</a>,opers_closed__2,_). constr_name(<a href=%MML%msualg_2.html#K3>k3_msualg_2</a>,'/.__3',_). constr_name(<a href=%MML%msualg_2.html#K4>k4_msualg_2</a>,'Opers__3',_). constr_name(<a href=%MML%msualg_2.html#M1>m1_msualg_2</a>,'MSSubAlgebra',_). constr_name(<a href=%MML%msualg_2.html#K5>k5_msualg_2</a>,'SubSort',_). constr_name(<a href=%MML%msualg_2.html#K6>k6_msualg_2</a>,'SubSort__2',_). constr_name(<a href=%MML%msualg_2.html#K7>k7_msualg_2</a>,'@__32',_). constr_name(<a href=%MML%msualg_2.html#K8>k8_msualg_2</a>,'SubSort__3',_). constr_name(<a href=%MML%msualg_2.html#K9>k9_msualg_2</a>,'MSSubSort',_). constr_name(<a href=%MML%msualg_2.html#K10>k10_msualg_2</a>,'|__21',_). constr_name(<a href=%MML%msualg_2.html#K11>k11_msualg_2</a>,'/\\__27',_). constr_name(<a href=%MML%msualg_2.html#K12>k12_msualg_2</a>,'GenMSAlg',_). constr_name(<a href=%MML%msualg_2.html#K13>k13_msualg_2</a>,'"\\/"__9',_). constr_name(<a href=%MML%msualg_2.html#K14>k14_msualg_2</a>,'MSSub',_). constr_name(<a href=%MML%msualg_2.html#K15>k15_msualg_2</a>,'MSAlg_join',_). constr_name(<a href=%MML%msualg_2.html#K16>k16_msualg_2</a>,'MSAlg_meet',_). constr_name(<a href=%MML%msualg_2.html#K17>k17_msualg_2</a>,'MSSubAlLattice',_). constr_name(<a href=%MML%pralg_2.html#V1>v1_pralg_2</a>,with_common_domain,_). constr_name(<a href=%MML%pralg_2.html#K1>k1_pralg_2</a>,'DOM',_). constr_name(<a href=%MML%pralg_2.html#M1>m1_pralg_2</a>,'Element__36',_). constr_name(<a href=%MML%pralg_2.html#K2>k2_pralg_2</a>,'Commute',_). constr_name(<a href=%MML%pralg_2.html#K3>k3_pralg_2</a>,'Frege__3',_). constr_name(<a href=%MML%pralg_2.html#K4>k4_pralg_2</a>,'[[:..:]]__3',_). constr_name(<a href=%MML%pralg_2.html#K5>k5_pralg_2</a>,'[[:..:]]__4',_). constr_name(<a href=%MML%pralg_2.html#M2>m2_pralg_2</a>,'MSAlgebra-Family',_). constr_name(<a href=%MML%pralg_2.html#K6>k6_pralg_2</a>,'.__75',_). constr_name(<a href=%MML%pralg_2.html#K7>k7_pralg_2</a>,'|....|__9',_). constr_name(<a href=%MML%pralg_2.html#K8>k8_pralg_2</a>,'|....|__10',_). constr_name(<a href=%MML%pralg_2.html#K9>k9_pralg_2</a>,'[:..:]__27',_). constr_name(<a href=%MML%pralg_2.html#K10>k10_pralg_2</a>,'Carrier__5',_). constr_name(<a href=%MML%pralg_2.html#K11>k11_pralg_2</a>,'SORTS',_). constr_name(<a href=%MML%pralg_2.html#K12>k12_pralg_2</a>,'OPER',_). constr_name(<a href=%MML%pralg_2.html#K13>k13_pralg_2</a>,'?.',_). constr_name(<a href=%MML%pralg_2.html#K14>k14_pralg_2</a>,'OPS',_). constr_name(<a href=%MML%pralg_2.html#K15>k15_pralg_2</a>,product__5,_). constr_name(<a href=%MML%msualg_3.html#K1>k1_msualg_3</a>,'.__76',_). constr_name(<a href=%MML%msualg_3.html#K2>k2_msualg_3</a>,id__13,_). constr_name(<a href=%MML%msualg_3.html#V1>v1_msualg_3</a>,'"1-1"',_). constr_name(<a href=%MML%msualg_3.html#V2>v2_msualg_3</a>,'"onto"',_). constr_name(<a href=%MML%msualg_3.html#K3>k3_msualg_3</a>,'**__2',_). constr_name(<a href=%MML%msualg_3.html#K4>k4_msualg_3</a>,'""',_). constr_name(<a href=%MML%msualg_3.html#K5>k5_msualg_3</a>,'#__6',_). constr_name(<a href=%MML%msualg_3.html#K6>k6_msualg_3</a>,'#__7',_). constr_name(<a href=%MML%msualg_3.html#R1>r1_msualg_3</a>,is_homomorphism__2,_). constr_name(<a href=%MML%msualg_3.html#R2>r2_msualg_3</a>,is_epimorphism__2,_). constr_name(<a href=%MML%msualg_3.html#R3>r3_msualg_3</a>,is_monomorphism__2,_). constr_name(<a href=%MML%msualg_3.html#R4>r4_msualg_3</a>,is_isomorphism__2,_). constr_name(<a href=%MML%msualg_3.html#R5>r5_msualg_3</a>,are_isomorphic__8,_). constr_name(<a href=%MML%msualg_3.html#R6>r6_msualg_3</a>,are_isomorphic__9,_). constr_name(<a href=%MML%msualg_3.html#K7>k7_msualg_3</a>,'Image__3',_). constr_name(<a href=%MML%msafree.html#K1>k1_msafree</a>,'||__2',_). constr_name(<a href=%MML%msafree.html#K2>k2_msafree</a>,coprod,_). constr_name(<a href=%MML%msafree.html#K3>k3_msafree</a>,coprod__2,_). constr_name(<a href=%MML%msafree.html#M1>m1_msafree</a>,'GeneratorSet__2',_). constr_name(<a href=%MML%msafree.html#V1>v1_msafree</a>,free__5,_). constr_name(<a href=%MML%msafree.html#V2>v2_msafree</a>,free__6,_). constr_name(<a href=%MML%msafree.html#K4>k4_msafree</a>,'REL__2',_). constr_name(<a href=%MML%msafree.html#K5>k5_msafree</a>,'DTConMSA',_). constr_name(<a href=%MML%msafree.html#K6>k6_msafree</a>,'Sym__2',_). constr_name(<a href=%MML%msafree.html#K7>k7_msafree</a>,'FreeSort',_). constr_name(<a href=%MML%msafree.html#K8>k8_msafree</a>,'FreeSort__2',_). constr_name(<a href=%MML%msafree.html#K9>k9_msafree</a>,'DenOp',_). constr_name(<a href=%MML%msafree.html#K10>k10_msafree</a>,'FreeOper',_). constr_name(<a href=%MML%msafree.html#K11>k11_msafree</a>,'FreeMSA',_). constr_name(<a href=%MML%msafree.html#K12>k12_msafree</a>,'FreeGen',_). constr_name(<a href=%MML%msafree.html#K13>k13_msafree</a>,'FreeGen__2',_). constr_name(<a href=%MML%msafree.html#K14>k14_msafree</a>,'Reverse',_). constr_name(<a href=%MML%msafree.html#K15>k15_msafree</a>,'Reverse__2',_). constr_name(<a href=%MML%msafree.html#K16>k16_msafree</a>,pi__5,_). constr_name(<a href=%MML%msafree.html#K17>k17_msafree</a>,'@__33',_). constr_name(<a href=%MML%msafree.html#K18>k18_msafree</a>,pi__6,_). constr_name(<a href=%MML%t_0topsp.html#R1>r1_t_0topsp</a>,are_homeomorphic,_). constr_name(<a href=%MML%t_0topsp.html#V1>v1_t_0topsp</a>,open__7,_). constr_name(<a href=%MML%t_0topsp.html#K1>k1_t_0topsp</a>,'Indiscernibility',_). constr_name(<a href=%MML%t_0topsp.html#K2>k2_t_0topsp</a>,'Indiscernible',_). constr_name(<a href=%MML%t_0topsp.html#K3>k3_t_0topsp</a>,'T_0-reflex',_). constr_name(<a href=%MML%t_0topsp.html#K4>k4_t_0topsp</a>,'T_0-canonical_map',_). constr_name(<a href=%MML%t_0topsp.html#V2>v2_t_0topsp</a>,discerning__3,_). constr_name(<a href=%MML%msualg_4.html#V1>v1_msualg_4</a>,'Relation-yielding',_). constr_name(<a href=%MML%msualg_4.html#M1>m1_msualg_4</a>,'ManySortedRelation',_). constr_name(<a href=%MML%msualg_4.html#V2>v2_msualg_4</a>,'MSEquivalence_Relation-like',_). constr_name(<a href=%MML%msualg_4.html#K1>k1_msualg_4</a>,'.__77',_). constr_name(<a href=%MML%msualg_4.html#V3>v3_msualg_4</a>,'MSEquivalence-like',_). constr_name(<a href=%MML%msualg_4.html#V4>v4_msualg_4</a>,'MSCongruence-like',_). constr_name(<a href=%MML%msualg_4.html#K2>k2_msualg_4</a>,'.__78',_). constr_name(<a href=%MML%msualg_4.html#K3>k3_msualg_4</a>,'Class__5',_). constr_name(<a href=%MML%msualg_4.html#K4>k4_msualg_4</a>,'Class__6',_). constr_name(<a href=%MML%msualg_4.html#K5>k5_msualg_4</a>,'.__79',_). constr_name(<a href=%MML%msualg_4.html#K6>k6_msualg_4</a>,'*__100',_). constr_name(<a href=%MML%msualg_4.html#K7>k7_msualg_4</a>,'#__8',_). constr_name(<a href=%MML%msualg_4.html#K8>k8_msualg_4</a>,'QuotRes',_). constr_name(<a href=%MML%msualg_4.html#K9>k9_msualg_4</a>,'QuotArgs',_). constr_name(<a href=%MML%msualg_4.html#K10>k10_msualg_4</a>,'QuotRes__2',_). constr_name(<a href=%MML%msualg_4.html#K11>k11_msualg_4</a>,'QuotArgs__2',_). constr_name(<a href=%MML%msualg_4.html#K12>k12_msualg_4</a>,'QuotCharact',_). constr_name(<a href=%MML%msualg_4.html#K13>k13_msualg_4</a>,'QuotCharact__2',_). constr_name(<a href=%MML%msualg_4.html#K14>k14_msualg_4</a>,'QuotMSAlg',_). constr_name(<a href=%MML%msualg_4.html#K15>k15_msualg_4</a>,'MSNat_Hom',_). constr_name(<a href=%MML%msualg_4.html#K16>k16_msualg_4</a>,'MSNat_Hom__2',_). constr_name(<a href=%MML%msualg_4.html#K17>k17_msualg_4</a>,'MSCng',_). constr_name(<a href=%MML%msualg_4.html#K18>k18_msualg_4</a>,'MSCng__2',_). constr_name(<a href=%MML%msualg_4.html#K19>k19_msualg_4</a>,'MSHomQuot',_). constr_name(<a href=%MML%msualg_4.html#K20>k20_msualg_4</a>,'MSHomQuot__2',_). constr_name(<a href=%MML%quantal1.html#V1>v1_quantal1</a>,directed,_). constr_name(<a href=%MML%quantal1.html#L1>l1_quantal1</a>,'QuantaleStr',_). constr_name(<a href=%MML%quantal1.html#V2>v2_quantal1</a>,strict__QuantaleStr,_). constr_name(<a href=%MML%quantal1.html#G1>g1_quantal1</a>,'QuantaleStr_constr',_). constr_name(<a href=%MML%quantal1.html#L2>l2_quantal1</a>,'QuasiNetStr',_). constr_name(<a href=%MML%quantal1.html#V3>v3_quantal1</a>,strict__QuasiNetStr,_). constr_name(<a href=%MML%quantal1.html#G2>g2_quantal1</a>,'QuasiNetStr_constr',_). constr_name(<a href=%MML%quantal1.html#V4>v4_quantal1</a>,'with_left-zero',_). constr_name(<a href=%MML%quantal1.html#V5>v5_quantal1</a>,'with_right-zero',_). constr_name(<a href=%MML%quantal1.html#V6>v6_quantal1</a>,with_zero,_). constr_name(<a href=%MML%quantal1.html#V7>v7_quantal1</a>,'right-distributive__2',_). constr_name(<a href=%MML%quantal1.html#V8>v8_quantal1</a>,'left-distributive__2',_). constr_name(<a href=%MML%quantal1.html#V9>v9_quantal1</a>,'times-additive',_). constr_name(<a href=%MML%quantal1.html#V10>v10_quantal1</a>,'times-continuous',_). constr_name(<a href=%MML%quantal1.html#V11>v11_quantal1</a>,idempotent__3,_). constr_name(<a href=%MML%quantal1.html#V12>v12_quantal1</a>,inflationary,_). constr_name(<a href=%MML%quantal1.html#V13>v13_quantal1</a>,deflationary,_). constr_name(<a href=%MML%quantal1.html#V14>v14_quantal1</a>,monotone__2,_). constr_name(<a href=%MML%quantal1.html#V15>v15_quantal1</a>,'\\/-distributive__2',_). constr_name(<a href=%MML%quantal1.html#V16>v16_quantal1</a>,'times-monotone',_). constr_name(<a href=%MML%quantal1.html#K1>k1_quantal1</a>,'-r>',_). constr_name(<a href=%MML%quantal1.html#K2>k2_quantal1</a>,'-l>',_). constr_name(<a href=%MML%quantal1.html#V17>v17_quantal1</a>,dualizing,_). constr_name(<a href=%MML%quantal1.html#V18>v18_quantal1</a>,cyclic__3,_). constr_name(<a href=%MML%quantal1.html#L3>l3_quantal1</a>,'Girard-QuantaleStr',_). constr_name(<a href=%MML%quantal1.html#V19>v19_quantal1</a>,'strict__Girard-QuantaleStr',_). constr_name(<a href=%MML%quantal1.html#U1>u1_quantal1</a>,absurd,the_absurd). constr_name(<a href=%MML%quantal1.html#G3>g3_quantal1</a>,'Girard-QuantaleStr_constr',_). constr_name(<a href=%MML%quantal1.html#V20>v20_quantal1</a>,cyclic__4,_). constr_name(<a href=%MML%quantal1.html#V21>v21_quantal1</a>,dualized,_). constr_name(<a href=%MML%quantal1.html#K3>k3_quantal1</a>,'Bottom__2',_). constr_name(<a href=%MML%quantal1.html#K4>k4_quantal1</a>,'Top__2',_). constr_name(<a href=%MML%quantal1.html#K5>k5_quantal1</a>,'Bottom__3',_). constr_name(<a href=%MML%quantal1.html#K6>k6_quantal1</a>,'Negation',_). constr_name(<a href=%MML%quantal1.html#K7>k7_quantal1</a>,'Bottom__4',_). constr_name(<a href=%MML%quantal1.html#K8>k8_quantal1</a>,'Bottom__5',_). constr_name(<a href=%MML%quantal1.html#K9>k9_quantal1</a>,delta__5,_). constr_name(<a href=%MML%toprns_1.html#V1>v1_toprns_1</a>,'non-zero__3',_). constr_name(<a href=%MML%toprns_1.html#K1>k1_toprns_1</a>,'+__64',_). constr_name(<a href=%MML%toprns_1.html#K2>k2_toprns_1</a>,'*__101',_). constr_name(<a href=%MML%toprns_1.html#K3>k3_toprns_1</a>,'-__79',_). constr_name(<a href=%MML%toprns_1.html#K4>k4_toprns_1</a>,'-__80',_). constr_name(<a href=%MML%toprns_1.html#K5>k5_toprns_1</a>,'|....|__11',_). constr_name(<a href=%MML%toprns_1.html#K6>k6_toprns_1</a>,'|....|__12',_). constr_name(<a href=%MML%toprns_1.html#V2>v2_toprns_1</a>,bounded__11,_). constr_name(<a href=%MML%toprns_1.html#V3>v3_toprns_1</a>,convergent__6,_). constr_name(<a href=%MML%toprns_1.html#K7>k7_toprns_1</a>,lim__11,_). constr_name(<a href=%MML%sppol_1.html#R1>r1_sppol_1</a>,is_extremal_in,_). constr_name(<a href=%MML%sppol_1.html#V1>v1_sppol_1</a>,horizontal,_). constr_name(<a href=%MML%sppol_1.html#V2>v2_sppol_1</a>,vertical,_). constr_name(<a href=%MML%sppol_1.html#V3>v3_sppol_1</a>,alternating,_). constr_name(<a href=%MML%sppol_1.html#R2>r2_sppol_1</a>,are_generators_of,_). constr_name(<a href=%MML%reloc.html#K1>k1_reloc</a>,'+__65',_). constr_name(<a href=%MML%reloc.html#K2>k2_reloc</a>,'-'__3',_). constr_name(<a href=%MML%reloc.html#K3>k3_reloc</a>,'IncAddr',_). constr_name(<a href=%MML%reloc.html#K4>k4_reloc</a>,'Shift',_). constr_name(<a href=%MML%reloc.html#K5>k5_reloc</a>,'IncAddr__2',_). constr_name(<a href=%MML%reloc.html#K6>k6_reloc</a>,'Relocated',_). constr_name(<a href=%MML%tex_4.html#V1>v1_tex_4</a>,'anti-discrete__2',_). constr_name(<a href=%MML%tex_4.html#V2>v2_tex_4</a>,'anti-discrete-set-family',_). constr_name(<a href=%MML%tex_4.html#K1>k1_tex_4</a>,'MaxADSF',_). constr_name(<a href=%MML%tex_4.html#V3>v3_tex_4</a>,'maximal_anti-discrete',_). constr_name(<a href=%MML%tex_4.html#K2>k2_tex_4</a>,'MaxADSet',_). constr_name(<a href=%MML%tex_4.html#K3>k3_tex_4</a>,'MaxADSet__2',_). constr_name(<a href=%MML%tex_4.html#K4>k4_tex_4</a>,'MaxADSet__3',_). constr_name(<a href=%MML%tex_4.html#V4>v4_tex_4</a>,'maximal_anti-discrete__2',_). constr_name(<a href=%MML%tex_4.html#K5>k5_tex_4</a>,'MaxADSspace',_). constr_name(<a href=%MML%tex_4.html#K6>k6_tex_4</a>,'Sspace__2',_). constr_name(<a href=%MML%tex_4.html#K7>k7_tex_4</a>,'MaxADSspace__2',_). constr_name(<a href=%MML%tsp_1.html#M1>m1_tsp_1</a>,'SubSpace__3',_). constr_name(<a href=%MML%tsp_1.html#M2>m2_tsp_1</a>,'SubSpace__4',_). constr_name(<a href=%MML%tsp_1.html#V1>v1_tsp_1</a>,'T_0',_). constr_name(<a href=%MML%tsp_1.html#V2>v2_tsp_1</a>,'T_0__2',_). constr_name(<a href=%MML%tsp_1.html#V3>v3_tsp_1</a>,'T_0__3',_). constr_name(<a href=%MML%tsp_2.html#V1>v1_tsp_2</a>,maximal_T_0,_). constr_name(<a href=%MML%tsp_2.html#V2>v2_tsp_2</a>,maximal_T_0__2,_). constr_name(<a href=%MML%tsp_2.html#K1>k1_tsp_2</a>,'Stone-retraction',_). constr_name(<a href=%MML%tsp_2.html#K2>k2_tsp_2</a>,'Stone-retraction__2',_). constr_name(<a href=%MML%tsp_2.html#K3>k3_tsp_2</a>,'Stone-retraction__3',_). constr_name(<a href=%MML%tsp_2.html#K4>k4_tsp_2</a>,'Stone-retraction__4',_). constr_name(<a href=%MML%projpl_1.html#R1>r1_projpl_1</a>,'|'',_). constr_name(<a href=%MML%projpl_1.html#R2>r2_projpl_1</a>,on__8,_). constr_name(<a href=%MML%projpl_1.html#R3>r3_projpl_1</a>,on__9,_). constr_name(<a href=%MML%projpl_1.html#V1>v1_projpl_1</a>,configuration,_). constr_name(<a href=%MML%projpl_1.html#R4>r4_projpl_1</a>,is_collinear__4,_). constr_name(<a href=%MML%projpl_1.html#R5>r5_projpl_1</a>,is_a_quadrangle,_). constr_name(<a href=%MML%projpl_1.html#M1>m1_projpl_1</a>,'Quadrangle',_). constr_name(<a href=%MML%projpl_1.html#K1>k1_projpl_1</a>,'*__102',_). constr_name(<a href=%MML%projpl_1.html#K2>k2_projpl_1</a>,'*__103',_). constr_name(<a href=%MML%sgraph1.html#K1>k1_sgraph1</a>,nat_interval,_). constr_name(<a href=%MML%sgraph1.html#K2>k2_sgraph1</a>,'TWOELEMENTSETS',_). constr_name(<a href=%MML%sgraph1.html#L1>l1_sgraph1</a>,'SimpleGraphStruct',_). constr_name(<a href=%MML%sgraph1.html#V1>v1_sgraph1</a>,strict__SimpleGraphStruct,_). constr_name(<a href=%MML%sgraph1.html#U1>u1_sgraph1</a>,'SEdges',the_SEdges). constr_name(<a href=%MML%sgraph1.html#G1>g1_sgraph1</a>,'SimpleGraphStruct_constr',_). constr_name(<a href=%MML%sgraph1.html#K3>k3_sgraph1</a>,'SIMPLEGRAPHS',_). constr_name(<a href=%MML%sgraph1.html#M1>m1_sgraph1</a>,'SimpleGraph',_). constr_name(<a href=%MML%sgraph1.html#R1>r1_sgraph1</a>,is_isomorphic_to,_). constr_name(<a href=%MML%sgraph1.html#R2>r2_sgraph1</a>,is_SetOfSimpleGraphs_of,_). constr_name(<a href=%MML%sgraph1.html#M2>m2_sgraph1</a>,'SubGraph',_). constr_name(<a href=%MML%sgraph1.html#K4>k4_sgraph1</a>,degree,_). constr_name(<a href=%MML%sgraph1.html#R3>r3_sgraph1</a>,is_path_of,_). constr_name(<a href=%MML%sgraph1.html#K5>k5_sgraph1</a>,'PATHS',_). constr_name(<a href=%MML%sgraph1.html#R4>r4_sgraph1</a>,is_cycle_of,_). constr_name(<a href=%MML%sgraph1.html#K6>k6_sgraph1</a>,'K_',_). constr_name(<a href=%MML%sgraph1.html#K7>k7_sgraph1</a>,'K___2',_). constr_name(<a href=%MML%sgraph1.html#K8>k8_sgraph1</a>,'TriangleGraph',_). constr_name(<a href=%MML%grsolv_1.html#V1>v1_grsolv_1</a>,solvable,_). constr_name(<a href=%MML%grsolv_1.html#K1>k1_grsolv_1</a>,'|__22',_). constr_name(<a href=%MML%grsolv_1.html#K2>k2_grsolv_1</a>,'.:__30',_). constr_name(<a href=%MML%filter_2.html#R1>r1_filter_2</a>,'=__9',_). constr_name(<a href=%MML%filter_2.html#M1>m1_filter_2</a>,'Filter__3',_). constr_name(<a href=%MML%filter_2.html#K1>k1_filter_2</a>,'<....)__4',_). constr_name(<a href=%MML%filter_2.html#K2>k2_filter_2</a>,'<....)__5',_). constr_name(<a href=%MML%filter_2.html#K3>k3_filter_2</a>,'<....)__6',_). constr_name(<a href=%MML%filter_2.html#K4>k4_filter_2</a>,'"/\\"__9',_). constr_name(<a href=%MML%filter_2.html#M2>m2_filter_2</a>,'Ideal__2',_). constr_name(<a href=%MML%filter_2.html#K5>k5_filter_2</a>,'.:__31',_). constr_name(<a href=%MML%filter_2.html#K6>k6_filter_2</a>,'.:__32',_). constr_name(<a href=%MML%filter_2.html#K7>k7_filter_2</a>,'.:__33',_). constr_name(<a href=%MML%filter_2.html#K8>k8_filter_2</a>,'.:__34',_). constr_name(<a href=%MML%filter_2.html#K9>k9_filter_2</a>,'.:__35',_). constr_name(<a href=%MML%filter_2.html#K10>k10_filter_2</a>,'.:__36',_). constr_name(<a href=%MML%filter_2.html#K11>k11_filter_2</a>,'.:__37',_). constr_name(<a href=%MML%filter_2.html#K12>k12_filter_2</a>,'.:__38',_). constr_name(<a href=%MML%filter_2.html#K13>k13_filter_2</a>,'.:__39',_). constr_name(<a href=%MML%filter_2.html#K14>k14_filter_2</a>,'.:__40',_). constr_name(<a href=%MML%filter_2.html#K15>k15_filter_2</a>,'.:__41',_). constr_name(<a href=%MML%filter_2.html#K16>k16_filter_2</a>,'.:__42',_). constr_name(<a href=%MML%filter_2.html#K17>k17_filter_2</a>,'(....>',_). constr_name(<a href=%MML%filter_2.html#K18>k18_filter_2</a>,'(....>__2',_). constr_name(<a href=%MML%filter_2.html#R2>r2_filter_2</a>,'is_max-ideal',_). constr_name(<a href=%MML%filter_2.html#K19>k19_filter_2</a>,'(....>__3',_). constr_name(<a href=%MML%filter_2.html#V1>v1_filter_2</a>,prime__3,_). constr_name(<a href=%MML%filter_2.html#K20>k20_filter_2</a>,'"\\/"__10',_). constr_name(<a href=%MML%filter_2.html#K21>k21_filter_2</a>,'"\\/"__11',_). constr_name(<a href=%MML%filter_2.html#K22>k22_filter_2</a>,'[#..#]',_). constr_name(<a href=%MML%filter_2.html#K23>k23_filter_2</a>,latt__3,_). constr_name(<a href=%MML%filter_2.html#K24>k24_filter_2</a>,'.:__43',_). constr_name(<a href=%MML%cat_5.html#K1>k1_cat_5</a>,'`11__4',_). constr_name(<a href=%MML%cat_5.html#K2>k2_cat_5</a>,'`12__4',_). constr_name(<a href=%MML%cat_5.html#K3>k3_cat_5</a>,'`2__18',_). constr_name(<a href=%MML%cat_5.html#V1>v1_cat_5</a>,'with_triple-like_morphisms',_). constr_name(<a href=%MML%cat_5.html#K4>k4_cat_5</a>,'`11__5',_). constr_name(<a href=%MML%cat_5.html#K5>k5_cat_5</a>,'`12__5',_). constr_name(<a href=%MML%cat_5.html#K6>k6_cat_5</a>,'/\\__28',_). constr_name(<a href=%MML%cat_5.html#K7>k7_cat_5</a>,'Image__4',_). constr_name(<a href=%MML%cat_5.html#V2>v2_cat_5</a>,categorial,_). constr_name(<a href=%MML%cat_5.html#M1>m1_cat_5</a>,'Element__37',_). constr_name(<a href=%MML%cat_5.html#V3>v3_cat_5</a>,'Categorial',_). constr_name(<a href=%MML%cat_5.html#K8>k8_cat_5</a>,'`11__6',_). constr_name(<a href=%MML%cat_5.html#K9>k9_cat_5</a>,'`12__6',_). constr_name(<a href=%MML%cat_5.html#K10>k10_cat_5</a>,cat__2,_). constr_name(<a href=%MML%cat_5.html#K11>k11_cat_5</a>,'`2__19',_). constr_name(<a href=%MML%cat_5.html#V4>v4_cat_5</a>,full__2,_). constr_name(<a href=%MML%cat_5.html#K12>k12_cat_5</a>,'Hom__3',_). constr_name(<a href=%MML%cat_5.html#K13>k13_cat_5</a>,'Hom__4',_). constr_name(<a href=%MML%cat_5.html#K14>k14_cat_5</a>,'-SliceCat',_). constr_name(<a href=%MML%cat_5.html#K15>k15_cat_5</a>,'-SliceCat__2',_). constr_name(<a href=%MML%cat_5.html#K16>k16_cat_5</a>,'`2__20',_). constr_name(<a href=%MML%cat_5.html#K17>k17_cat_5</a>,'`11__7',_). constr_name(<a href=%MML%cat_5.html#K18>k18_cat_5</a>,'`12__7',_). constr_name(<a href=%MML%cat_5.html#K19>k19_cat_5</a>,'`2__21',_). constr_name(<a href=%MML%cat_5.html#K20>k20_cat_5</a>,'`11__8',_). constr_name(<a href=%MML%cat_5.html#K21>k21_cat_5</a>,'`12__8',_). constr_name(<a href=%MML%cat_5.html#K22>k22_cat_5</a>,'SliceFunctor',_). constr_name(<a href=%MML%cat_5.html#K23>k23_cat_5</a>,'SliceContraFunctor',_). constr_name(<a href=%MML%fsm_1.html#L1>l1_fsm_1</a>,'FSM',_). constr_name(<a href=%MML%fsm_1.html#V1>v1_fsm_1</a>,strict__FSM,_). constr_name(<a href=%MML%fsm_1.html#U1>u1_fsm_1</a>,'Tran',the_Tran). constr_name(<a href=%MML%fsm_1.html#U2>u2_fsm_1</a>,'InitS',the_InitS). constr_name(<a href=%MML%fsm_1.html#G1>g1_fsm_1</a>,'FSM_constr',_). constr_name(<a href=%MML%fsm_1.html#K1>k1_fsm_1</a>,'-succ_of',_). constr_name(<a href=%MML%fsm_1.html#K2>k2_fsm_1</a>,'-admissible',_). constr_name(<a href=%MML%fsm_1.html#R1>r1_fsm_1</a>,'-leads_to',_). constr_name(<a href=%MML%fsm_1.html#R2>r2_fsm_1</a>,is_admissible_for,_). constr_name(<a href=%MML%fsm_1.html#K3>k3_fsm_1</a>,leads_to_under,_). constr_name(<a href=%MML%fsm_1.html#L2>l2_fsm_1</a>,'Mealy-FSM',_). constr_name(<a href=%MML%fsm_1.html#L3>l3_fsm_1</a>,'Moore-FSM',_). constr_name(<a href=%MML%fsm_1.html#V2>v2_fsm_1</a>,'strict__Moore-FSM',_). constr_name(<a href=%MML%fsm_1.html#V3>v3_fsm_1</a>,strict,_). constr_name(<a href=%MML%fsm_1.html#U3>u3_fsm_1</a>,'OFun',the_OFun). constr_name(<a href=%MML%fsm_1.html#U4>u4_fsm_1</a>,'OFun__2',the_OFun__2). constr_name(<a href=%MML%fsm_1.html#G2>g2_fsm_1</a>,'Mealy-FSM_constr',_). constr_name(<a href=%MML%fsm_1.html#G3>g3_fsm_1</a>,'Moore-FSM_constr',_). constr_name(<a href=%MML%fsm_1.html#K4>k4_fsm_1</a>,'-response',_). constr_name(<a href=%MML%fsm_1.html#K5>k5_fsm_1</a>,'-response__2',_). constr_name(<a href=%MML%fsm_1.html#R3>r3_fsm_1</a>,is_similar_to,_). constr_name(<a href=%MML%fsm_1.html#R4>r4_fsm_1</a>,'-are_equivalent',_). constr_name(<a href=%MML%fsm_1.html#R5>r5_fsm_1</a>,'-are_equivalent__2',_). constr_name(<a href=%MML%fsm_1.html#R6>r6_fsm_1</a>,'-equivalent',_). constr_name(<a href=%MML%fsm_1.html#K6>k6_fsm_1</a>,'-eq_states_EqR',_). constr_name(<a href=%MML%fsm_1.html#K7>k7_fsm_1</a>,'-eq_states_partition',_). constr_name(<a href=%MML%fsm_1.html#V4>v4_fsm_1</a>,final,_). constr_name(<a href=%MML%fsm_1.html#K8>k8_fsm_1</a>,final_states_partition,_). constr_name(<a href=%MML%fsm_1.html#K9>k9_fsm_1</a>,'-succ_class',_). constr_name(<a href=%MML%fsm_1.html#K10>k10_fsm_1</a>,'-class_response',_). constr_name(<a href=%MML%fsm_1.html#K11>k11_fsm_1</a>,the_reduction_of,_). constr_name(<a href=%MML%fsm_1.html#R7>r7_fsm_1</a>,'-are_isomorphic',_). constr_name(<a href=%MML%fsm_1.html#V5>v5_fsm_1</a>,reduced,_). constr_name(<a href=%MML%fsm_1.html#V6>v6_fsm_1</a>,accessible,_). constr_name(<a href=%MML%fsm_1.html#V7>v7_fsm_1</a>,connected__6,_). constr_name(<a href=%MML%fsm_1.html#K12>k12_fsm_1</a>,accessibleStates,_). constr_name(<a href=%MML%fsm_1.html#K13>k13_fsm_1</a>,'-Mealy_union',_). constr_name(<a href=%MML%sppol_2.html#R1>r1_sppol_2</a>,split,_). constr_name(<a href=%MML%sppol_2.html#K1>k1_sppol_2</a>,'[....]__7',_). constr_name(<a href=%MML%goboard5.html#K1>k1_goboard5</a>,v_strip,_). constr_name(<a href=%MML%goboard5.html#K2>k2_goboard5</a>,h_strip,_). constr_name(<a href=%MML%goboard5.html#K3>k3_goboard5</a>,cell,_). constr_name(<a href=%MML%goboard5.html#V1>v1_goboard5</a>,'s.c.c.',_). constr_name(<a href=%MML%goboard5.html#V2>v2_goboard5</a>,standard,_). constr_name(<a href=%MML%goboard5.html#K4>k4_goboard5</a>,right_cell,_). constr_name(<a href=%MML%goboard5.html#K5>k5_goboard5</a>,left_cell,_). constr_name(<a href=%MML%pscomp_1.html#K1>k1_pscomp_1</a>,rng__14,_). constr_name(<a href=%MML%pscomp_1.html#K2>k2_pscomp_1</a>,'"__29',_). constr_name(<a href=%MML%pscomp_1.html#K3>k3_pscomp_1</a>,sup__5,_). constr_name(<a href=%MML%pscomp_1.html#K4>k4_pscomp_1</a>,inf__5,_). constr_name(<a href=%MML%pscomp_1.html#V1>v1_pscomp_1</a>,with_max,_). constr_name(<a href=%MML%pscomp_1.html#V2>v2_pscomp_1</a>,with_min,_). constr_name(<a href=%MML%pscomp_1.html#V3>v3_pscomp_1</a>,open__8,_). constr_name(<a href=%MML%pscomp_1.html#V4>v4_pscomp_1</a>,closed__9,_). constr_name(<a href=%MML%pscomp_1.html#K5>k5_pscomp_1</a>,'-__81',_). constr_name(<a href=%MML%pscomp_1.html#K6>k6_pscomp_1</a>,'Inv__2',_). constr_name(<a href=%MML%pscomp_1.html#K7>k7_pscomp_1</a>,'Cl__2',_). constr_name(<a href=%MML%pscomp_1.html#V5>v5_pscomp_1</a>,bounded_below__5,_). constr_name(<a href=%MML%pscomp_1.html#V6>v6_pscomp_1</a>,bounded_above__5,_). constr_name(<a href=%MML%pscomp_1.html#V7>v7_pscomp_1</a>,with_max__2,_). constr_name(<a href=%MML%pscomp_1.html#V8>v8_pscomp_1</a>,with_min__2,_). constr_name(<a href=%MML%pscomp_1.html#K8>k8_pscomp_1</a>,'-__82',_). constr_name(<a href=%MML%pscomp_1.html#K9>k9_pscomp_1</a>,'+__66',_). constr_name(<a href=%MML%pscomp_1.html#K10>k10_pscomp_1</a>,'Inv__3',_). constr_name(<a href=%MML%pscomp_1.html#K11>k11_pscomp_1</a>,'"__30',_). constr_name(<a href=%MML%pscomp_1.html#K12>k12_pscomp_1</a>,inf__6,_). constr_name(<a href=%MML%pscomp_1.html#K13>k13_pscomp_1</a>,sup__6,_). constr_name(<a href=%MML%pscomp_1.html#V9>v9_pscomp_1</a>,continuous__3,_). constr_name(<a href=%MML%pscomp_1.html#K14>k14_pscomp_1</a>,'.:__44',_). constr_name(<a href=%MML%pscomp_1.html#K15>k15_pscomp_1</a>,'||__3',_). constr_name(<a href=%MML%pscomp_1.html#V10>v10_pscomp_1</a>,pseudocompact,_). constr_name(<a href=%MML%pscomp_1.html#K16>k16_pscomp_1</a>,proj1__2,_). constr_name(<a href=%MML%pscomp_1.html#K17>k17_pscomp_1</a>,proj2__2,_). constr_name(<a href=%MML%pscomp_1.html#K18>k18_pscomp_1</a>,'W-bound',_). constr_name(<a href=%MML%pscomp_1.html#K19>k19_pscomp_1</a>,'N-bound',_). constr_name(<a href=%MML%pscomp_1.html#K20>k20_pscomp_1</a>,'E-bound',_). constr_name(<a href=%MML%pscomp_1.html#K21>k21_pscomp_1</a>,'S-bound',_). constr_name(<a href=%MML%pscomp_1.html#K22>k22_pscomp_1</a>,'SW-corner',_). constr_name(<a href=%MML%pscomp_1.html#K23>k23_pscomp_1</a>,'NW-corner',_). constr_name(<a href=%MML%pscomp_1.html#K24>k24_pscomp_1</a>,'NE-corner',_). constr_name(<a href=%MML%pscomp_1.html#K25>k25_pscomp_1</a>,'SE-corner',_). constr_name(<a href=%MML%pscomp_1.html#K26>k26_pscomp_1</a>,'W-most',_). constr_name(<a href=%MML%pscomp_1.html#K27>k27_pscomp_1</a>,'N-most',_). constr_name(<a href=%MML%pscomp_1.html#K28>k28_pscomp_1</a>,'E-most',_). constr_name(<a href=%MML%pscomp_1.html#K29>k29_pscomp_1</a>,'S-most',_). constr_name(<a href=%MML%pscomp_1.html#K30>k30_pscomp_1</a>,'W-min',_). constr_name(<a href=%MML%pscomp_1.html#K31>k31_pscomp_1</a>,'W-max',_). constr_name(<a href=%MML%pscomp_1.html#K32>k32_pscomp_1</a>,'N-min',_). constr_name(<a href=%MML%pscomp_1.html#K33>k33_pscomp_1</a>,'N-max',_). constr_name(<a href=%MML%pscomp_1.html#K34>k34_pscomp_1</a>,'E-max',_). constr_name(<a href=%MML%pscomp_1.html#K35>k35_pscomp_1</a>,'E-min',_). constr_name(<a href=%MML%pscomp_1.html#K36>k36_pscomp_1</a>,'S-max',_). constr_name(<a href=%MML%pscomp_1.html#K37>k37_pscomp_1</a>,'S-min',_). constr_name(<a href=%MML%msaterm.html#K1>k1_msaterm</a>,'-Terms',_). constr_name(<a href=%MML%msaterm.html#K2>k2_msaterm</a>,'Sym__3',_). constr_name(<a href=%MML%msaterm.html#M1>m1_msaterm</a>,'ArgumentSeq',_). constr_name(<a href=%MML%msaterm.html#K3>k3_msaterm</a>,'.__80',_). constr_name(<a href=%MML%msaterm.html#K4>k4_msaterm</a>,'-term',_). constr_name(<a href=%MML%msaterm.html#K5>k5_msaterm</a>,'-term__2',_). constr_name(<a href=%MML%msaterm.html#K6>k6_msaterm</a>,'-tree__12',_). constr_name(<a href=%MML%msaterm.html#K7>k7_msaterm</a>,the_sort_of__2,_). constr_name(<a href=%MML%msaterm.html#M2>m2_msaterm</a>,'CompoundTerm',_). constr_name(<a href=%MML%msaterm.html#M3>m3_msaterm</a>,'SetWithCompoundTerm',_). constr_name(<a href=%MML%msaterm.html#K8>k8_msaterm</a>,'|__23',_). constr_name(<a href=%MML%msaterm.html#M4>m4_msaterm</a>,'Variables',_). constr_name(<a href=%MML%msaterm.html#R1>r1_msaterm</a>,is_an_evaluation_of,_). constr_name(<a href=%MML%msaterm.html#K9>k9_msaterm</a>,'@__34',_). constr_name(<a href=%MML%decomp_1.html#M1>m1_decomp_1</a>,'alpha-set',_). constr_name(<a href=%MML%decomp_1.html#V1>v1_decomp_1</a>,'semi-open',_). constr_name(<a href=%MML%decomp_1.html#V2>v2_decomp_1</a>,'pre-open',_). constr_name(<a href=%MML%decomp_1.html#V3>v3_decomp_1</a>,'pre-semi-open',_). constr_name(<a href=%MML%decomp_1.html#V4>v4_decomp_1</a>,'semi-pre-open',_). constr_name(<a href=%MML%decomp_1.html#K1>k1_decomp_1</a>,sInt,_). constr_name(<a href=%MML%decomp_1.html#K2>k2_decomp_1</a>,pInt,_). constr_name(<a href=%MML%decomp_1.html#K3>k3_decomp_1</a>,alphaInt,_). constr_name(<a href=%MML%decomp_1.html#K4>k4_decomp_1</a>,psInt,_). constr_name(<a href=%MML%decomp_1.html#K5>k5_decomp_1</a>,spInt,_). constr_name(<a href=%MML%decomp_1.html#K6>k6_decomp_1</a>,'^alpha',_). constr_name(<a href=%MML%decomp_1.html#K7>k7_decomp_1</a>,'SO',_). constr_name(<a href=%MML%decomp_1.html#K8>k8_decomp_1</a>,'PO',_). constr_name(<a href=%MML%decomp_1.html#K9>k9_decomp_1</a>,'SPO',_). constr_name(<a href=%MML%decomp_1.html#K10>k10_decomp_1</a>,'PSO',_). constr_name(<a href=%MML%decomp_1.html#K11>k11_decomp_1</a>,'D(c,alpha)',_). constr_name(<a href=%MML%decomp_1.html#K12>k12_decomp_1</a>,'D(c,p)',_). constr_name(<a href=%MML%decomp_1.html#K13>k13_decomp_1</a>,'D(c,s)',_). constr_name(<a href=%MML%decomp_1.html#K14>k14_decomp_1</a>,'D(c,ps)',_). constr_name(<a href=%MML%decomp_1.html#K15>k15_decomp_1</a>,'D(alpha,p)',_). constr_name(<a href=%MML%decomp_1.html#K16>k16_decomp_1</a>,'D(alpha,s)',_). constr_name(<a href=%MML%decomp_1.html#K17>k17_decomp_1</a>,'D(alpha,ps)',_). constr_name(<a href=%MML%decomp_1.html#K18>k18_decomp_1</a>,'D(p,sp)',_). constr_name(<a href=%MML%decomp_1.html#K19>k19_decomp_1</a>,'D(p,ps)',_). constr_name(<a href=%MML%decomp_1.html#K20>k20_decomp_1</a>,'D(sp,ps)',_). constr_name(<a href=%MML%decomp_1.html#V5>v5_decomp_1</a>,'s-continuous',_). constr_name(<a href=%MML%decomp_1.html#V6>v6_decomp_1</a>,'p-continuous',_). constr_name(<a href=%MML%decomp_1.html#V7>v7_decomp_1</a>,'alpha-continuous',_). constr_name(<a href=%MML%decomp_1.html#V8>v8_decomp_1</a>,'ps-continuous',_). constr_name(<a href=%MML%decomp_1.html#V9>v9_decomp_1</a>,'sp-continuous',_). constr_name(<a href=%MML%decomp_1.html#V10>v10_decomp_1</a>,'(c,alpha)-continuous',_). constr_name(<a href=%MML%decomp_1.html#V11>v11_decomp_1</a>,'(c,s)-continuous',_). constr_name(<a href=%MML%decomp_1.html#V12>v12_decomp_1</a>,'(c,p)-continuous',_). constr_name(<a href=%MML%decomp_1.html#V13>v13_decomp_1</a>,'(c,ps)-continuous',_). constr_name(<a href=%MML%decomp_1.html#V14>v14_decomp_1</a>,'(alpha,p)-continuous',_). constr_name(<a href=%MML%decomp_1.html#V15>v15_decomp_1</a>,'(alpha,s)-continuous',_). constr_name(<a href=%MML%decomp_1.html#V16>v16_decomp_1</a>,'(alpha,ps)-continuous',_). constr_name(<a href=%MML%decomp_1.html#V17>v17_decomp_1</a>,'(p,ps)-continuous',_). constr_name(<a href=%MML%decomp_1.html#V18>v18_decomp_1</a>,'(p,sp)-continuous',_). constr_name(<a href=%MML%decomp_1.html#V19>v19_decomp_1</a>,'(sp,ps)-continuous',_). constr_name(<a href=%MML%msafree1.html#M1>m1_msafree1</a>,'FinSequence__4',_). constr_name(<a href=%MML%msafree1.html#K1>k1_msafree1</a>,'Flatten',_). constr_name(<a href=%MML%msafree1.html#V1>v1_msafree1</a>,disjoint_valued__3,_). constr_name(<a href=%MML%msafree1.html#K2>k2_msafree1</a>,'SingleAlg',_). constr_name(<a href=%MML%msuhom_1.html#K1>k1_msuhom_1</a>,'|->__6',_). constr_name(<a href=%MML%msuhom_1.html#R1>r1_msuhom_1</a>,'<=__5',_). constr_name(<a href=%MML%msuhom_1.html#K2>k2_msuhom_1</a>,'Over',_). constr_name(<a href=%MML%msuhom_1.html#K3>k3_msuhom_1</a>,'MSAlg__2',_). constr_name(<a href=%MML%msafree2.html#K1>k1_msafree2</a>,'SortsWithConstants',_). constr_name(<a href=%MML%msafree2.html#K2>k2_msafree2</a>,'InputVertices',_). constr_name(<a href=%MML%msafree2.html#K3>k3_msafree2</a>,'InnerVertices',_). constr_name(<a href=%MML%msafree2.html#V1>v1_msafree2</a>,with_input_V,_). constr_name(<a href=%MML%msafree2.html#K4>k4_msafree2</a>,'InnerVertices__2',_). constr_name(<a href=%MML%msafree2.html#M1>m1_msafree2</a>,'InputValues',_). constr_name(<a href=%MML%msafree2.html#V2>v2_msafree2</a>,'Circuit-like',_). constr_name(<a href=%MML%msafree2.html#K5>k5_msafree2</a>,action_at,_). constr_name(<a href=%MML%msafree2.html#K6>k6_msafree2</a>,'FreeEnv',_). constr_name(<a href=%MML%msafree2.html#K7>k7_msafree2</a>,'Eval',_). constr_name(<a href=%MML%msafree2.html#V3>v3_msafree2</a>,'finitely-generated',_). constr_name(<a href=%MML%msafree2.html#V4>v4_msafree2</a>,'locally-finite__2',_). constr_name(<a href=%MML%msafree2.html#K8>k8_msafree2</a>,'Trivial_Algebra__2',_). constr_name(<a href=%MML%msafree2.html#V5>v5_msafree2</a>,monotonic,_). constr_name(<a href=%MML%msafree2.html#K9>k9_msafree2</a>,depth,_). constr_name(<a href=%MML%autalg_1.html#K1>k1_autalg_1</a>,'UAAut',_). constr_name(<a href=%MML%autalg_1.html#K2>k2_autalg_1</a>,'UAAutComp',_). constr_name(<a href=%MML%autalg_1.html#K3>k3_autalg_1</a>,'UAAutGroup',_). constr_name(<a href=%MML%autalg_1.html#M1>m1_autalg_1</a>,'MSFunctionSet',_). constr_name(<a href=%MML%autalg_1.html#M2>m2_autalg_1</a>,'Element__38',_). constr_name(<a href=%MML%autalg_1.html#K4>k4_autalg_1</a>,'MSAAut',_). constr_name(<a href=%MML%autalg_1.html#K5>k5_autalg_1</a>,'MSAAutComp',_). constr_name(<a href=%MML%autalg_1.html#K6>k6_autalg_1</a>,'MSAAutGroup',_). constr_name(<a href=%MML%circuit1.html#K1>k1_circuit1</a>,'Set-Constants',_). constr_name(<a href=%MML%circuit1.html#K2>k2_circuit1</a>,'-th_InputValues',_). constr_name(<a href=%MML%circuit1.html#K3>k3_circuit1</a>,depends_on_in,_). constr_name(<a href=%MML%circuit1.html#K4>k4_circuit1</a>,size,_). constr_name(<a href=%MML%circuit1.html#K5>k5_circuit1</a>,depth__2,_). constr_name(<a href=%MML%circuit1.html#K6>k6_circuit1</a>,depth__3,_). constr_name(<a href=%MML%circuit1.html#K7>k7_circuit1</a>,depth__4,_). constr_name(<a href=%MML%cantor_1.html#K1>k1_cantor_1</a>,'UniCl',_). constr_name(<a href=%MML%cantor_1.html#M1>m1_cantor_1</a>,'Basis__4',_). constr_name(<a href=%MML%cantor_1.html#K2>k2_cantor_1</a>,'FinMeetCl',_). constr_name(<a href=%MML%cantor_1.html#K3>k3_cantor_1</a>,'.__81',_). constr_name(<a href=%MML%cantor_1.html#M2>m2_cantor_1</a>,prebasis,_). constr_name(<a href=%MML%cantor_1.html#K4>k4_cantor_1</a>,the_Cantor_set,_). constr_name(<a href=%MML%altcat_1.html#L1>l1_altcat_1</a>,'AltGraph',_). constr_name(<a href=%MML%altcat_1.html#V1>v1_altcat_1</a>,strict__AltGraph,_). constr_name(<a href=%MML%altcat_1.html#U1>u1_altcat_1</a>,'Arrows',the_Arrows). constr_name(<a href=%MML%altcat_1.html#G1>g1_altcat_1</a>,'AltGraph_constr',_). constr_name(<a href=%MML%altcat_1.html#K1>k1_altcat_1</a>,'<^..^>',_). constr_name(<a href=%MML%altcat_1.html#V2>v2_altcat_1</a>,transitive__4,_). constr_name(<a href=%MML%altcat_1.html#K2>k2_altcat_1</a>,'{|..|}',_). constr_name(<a href=%MML%altcat_1.html#K3>k3_altcat_1</a>,'{|..|}__2',_). constr_name(<a href=%MML%altcat_1.html#K4>k4_altcat_1</a>,'.__82',_). constr_name(<a href=%MML%altcat_1.html#V3>v3_altcat_1</a>,associative__3,_). constr_name(<a href=%MML%altcat_1.html#V4>v4_altcat_1</a>,with_right_units,_). constr_name(<a href=%MML%altcat_1.html#V5>v5_altcat_1</a>,with_left_units,_). constr_name(<a href=%MML%altcat_1.html#L2>l2_altcat_1</a>,'AltCatStr',_). constr_name(<a href=%MML%altcat_1.html#V6>v6_altcat_1</a>,strict__AltCatStr,_). constr_name(<a href=%MML%altcat_1.html#U2>u2_altcat_1</a>,'Comp__2',the_Comp__2). constr_name(<a href=%MML%altcat_1.html#G2>g2_altcat_1</a>,'AltCatStr_constr',_). constr_name(<a href=%MML%altcat_1.html#K5>k5_altcat_1</a>,'*__104',_). constr_name(<a href=%MML%altcat_1.html#V7>v7_altcat_1</a>,compositional,_). constr_name(<a href=%MML%altcat_1.html#K6>k6_altcat_1</a>,'FuncComp',_). constr_name(<a href=%MML%altcat_1.html#V8>v8_altcat_1</a>,'quasi-functional',_). constr_name(<a href=%MML%altcat_1.html#V9>v9_altcat_1</a>,'semi-functional',_). constr_name(<a href=%MML%altcat_1.html#V10>v10_altcat_1</a>,'pseudo-functional',_). constr_name(<a href=%MML%altcat_1.html#K7>k7_altcat_1</a>,'EnsCat',_). constr_name(<a href=%MML%altcat_1.html#V11>v11_altcat_1</a>,associative__4,_). constr_name(<a href=%MML%altcat_1.html#V12>v12_altcat_1</a>,with_units,_). constr_name(<a href=%MML%altcat_1.html#K8>k8_altcat_1</a>,idm,_). constr_name(<a href=%MML%altcat_1.html#V13>v13_altcat_1</a>,'quasi-discrete',_). constr_name(<a href=%MML%altcat_1.html#V14>v14_altcat_1</a>,'pseudo-discrete',_). constr_name(<a href=%MML%altcat_1.html#K9>k9_altcat_1</a>,'DiscrCat',_). constr_name(<a href=%MML%extens_1.html#K1>k1_extens_1</a>,doms__5,_). constr_name(<a href=%MML%extens_1.html#K2>k2_extens_1</a>,rngs__3,_). constr_name(<a href=%MML%circuit2.html#K1>k1_circuit2</a>,'+*__7',_). constr_name(<a href=%MML%circuit2.html#K2>k2_circuit2</a>,'Fix_inp',_). constr_name(<a href=%MML%circuit2.html#K3>k3_circuit2</a>,'Fix_inp_ext',_). constr_name(<a href=%MML%circuit2.html#K4>k4_circuit2</a>,'IGTree',_). constr_name(<a href=%MML%circuit2.html#K5>k5_circuit2</a>,'IGValue',_). constr_name(<a href=%MML%circuit2.html#K6>k6_circuit2</a>,'Following__2',_). constr_name(<a href=%MML%circuit2.html#V1>v1_circuit2</a>,stable,_). constr_name(<a href=%MML%circuit2.html#K7>k7_circuit2</a>,'Following__3',_). constr_name(<a href=%MML%circuit2.html#K8>k8_circuit2</a>,'InitialComp',_). constr_name(<a href=%MML%circuit2.html#K9>k9_circuit2</a>,'Computation__2',_). constr_name(<a href=%MML%circcomb.html#K1>k1_circcomb</a>,'+*__8',_). constr_name(<a href=%MML%circcomb.html#K2>k2_circcomb</a>,'+*__9',_). constr_name(<a href=%MML%circcomb.html#R1>r1_circcomb</a>,tolerates__5,_). constr_name(<a href=%MML%circcomb.html#K3>k3_circcomb</a>,'+*__10',_). constr_name(<a href=%MML%circcomb.html#R2>r2_circcomb</a>,tolerates__6,_). constr_name(<a href=%MML%circcomb.html#K4>k4_circcomb</a>,'+*__11',_). constr_name(<a href=%MML%circcomb.html#K5>k5_circcomb</a>,'-->__21',_). constr_name(<a href=%MML%circcomb.html#K6>k6_circcomb</a>,'1GateCircStr',_). constr_name(<a href=%MML%circcomb.html#K7>k7_circcomb</a>,'1GateCircStr__2',_). constr_name(<a href=%MML%circcomb.html#V1>v1_circcomb</a>,unsplit,_). constr_name(<a href=%MML%circcomb.html#V2>v2_circcomb</a>,'gate`1=arity',_). constr_name(<a href=%MML%circcomb.html#V3>v3_circcomb</a>,'gate`2isBoolean',_). constr_name(<a href=%MML%circcomb.html#V4>v4_circcomb</a>,'gate`2=den',_). constr_name(<a href=%MML%circcomb.html#V5>v5_circcomb</a>,'gate`2=den__2',_). constr_name(<a href=%MML%circcomb.html#M1>m1_circcomb</a>,'FinSeqLen',_). constr_name(<a href=%MML%circcomb.html#K8>k8_circcomb</a>,'1GateCircuit',_). constr_name(<a href=%MML%circcomb.html#K9>k9_circcomb</a>,'1GateCircuit__2',_). constr_name(<a href=%MML%circcomb.html#K10>k10_circcomb</a>,'BOOLEAN__2',_). constr_name(<a href=%MML%circcomb.html#V6>v6_circcomb</a>,'Boolean__2',_). constr_name(<a href=%MML%graph_2.html#K1>k1_graph_2</a>,'-cut',_). constr_name(<a href=%MML%graph_2.html#K2>k2_graph_2</a>,'-cut__2',_). constr_name(<a href=%MML%graph_2.html#K3>k3_graph_2</a>,'^'',_). constr_name(<a href=%MML%graph_2.html#K4>k4_graph_2</a>,'^'__2',_). constr_name(<a href=%MML%graph_2.html#V1>v1_graph_2</a>,'TwoValued',_). constr_name(<a href=%MML%graph_2.html#V2>v2_graph_2</a>,'Alternating',_). constr_name(<a href=%MML%graph_2.html#M1>m1_graph_2</a>,'FinSubsequence',_). constr_name(<a href=%MML%graph_2.html#K5>k5_graph_2</a>,'-VSet',_). constr_name(<a href=%MML%graph_2.html#R1>r1_graph_2</a>,is_vertex_seq_of,_). constr_name(<a href=%MML%graph_2.html#R2>r2_graph_2</a>,alternates_vertices_in,_). constr_name(<a href=%MML%graph_2.html#K6>k6_graph_2</a>,'vertex-seq',_). constr_name(<a href=%MML%graph_2.html#V3>v3_graph_2</a>,simple__2,_). constr_name(<a href=%MML%graph_2.html#K7>k7_graph_2</a>,'vertex-seq__2',_). constr_name(<a href=%MML%vectsp_8.html#K1>k1_vectsp_8</a>,lattice__2,_). constr_name(<a href=%MML%vectsp_8.html#M1>m1_vectsp_8</a>,'SubVS-Family',_). constr_name(<a href=%MML%vectsp_8.html#M2>m2_vectsp_8</a>,'Element__39',_). constr_name(<a href=%MML%vectsp_8.html#K2>k2_vectsp_8</a>,'Subspaces__3',_). constr_name(<a href=%MML%vectsp_8.html#K3>k3_vectsp_8</a>,carr__3,_). constr_name(<a href=%MML%vectsp_8.html#K4>k4_vectsp_8</a>,carr__4,_). constr_name(<a href=%MML%vectsp_8.html#K5>k5_vectsp_8</a>,meet__9,_). constr_name(<a href=%MML%vectsp_8.html#K6>k6_vectsp_8</a>,'FuncLatt',_). constr_name(<a href=%MML%vectsp_8.html#M3>m3_vectsp_8</a>,'Semilattice-Homomorphism',_). constr_name(<a href=%MML%vectsp_8.html#M4>m4_vectsp_8</a>,'sup-Semilattice-Homomorphism',_). constr_name(<a href=%MML%latsubgr.html#K1>k1_latsubgr</a>,carr__5,_). constr_name(<a href=%MML%latsubgr.html#K2>k2_latsubgr</a>,meet__10,_). constr_name(<a href=%MML%latsubgr.html#K3>k3_latsubgr</a>,'FuncLatt__2',_). constr_name(<a href=%MML%unialg_3.html#M1>m1_unialg_3</a>,'SubAlgebra-Family',_). constr_name(<a href=%MML%unialg_3.html#M2>m2_unialg_3</a>,'Element__40',_). constr_name(<a href=%MML%unialg_3.html#K1>k1_unialg_3</a>,'Sub__2',_). constr_name(<a href=%MML%unialg_3.html#K2>k2_unialg_3</a>,'UniAlg_join__2',_). constr_name(<a href=%MML%unialg_3.html#K3>k3_unialg_3</a>,'UniAlg_meet__2',_). constr_name(<a href=%MML%unialg_3.html#K4>k4_unialg_3</a>,carr__6,_). constr_name(<a href=%MML%unialg_3.html#K5>k5_unialg_3</a>,'Carr',_). constr_name(<a href=%MML%unialg_3.html#K6>k6_unialg_3</a>,'Carr__2',_). constr_name(<a href=%MML%unialg_3.html#K7>k7_unialg_3</a>,meet__11,_). constr_name(<a href=%MML%unialg_3.html#K8>k8_unialg_3</a>,'FuncLatt__3',_). constr_name(<a href=%MML%index_1.html#K1>k1_index_1</a>,'`2__22',_). constr_name(<a href=%MML%index_1.html#V1>v1_index_1</a>,'Category-yielding',_). constr_name(<a href=%MML%index_1.html#K2>k2_index_1</a>,'.__83',_). constr_name(<a href=%MML%index_1.html#K3>k3_index_1</a>,'Objs',_). constr_name(<a href=%MML%index_1.html#K4>k4_index_1</a>,'Mphs',_). constr_name(<a href=%MML%index_1.html#K5>k5_index_1</a>,'Objs__2',_). constr_name(<a href=%MML%index_1.html#K6>k6_index_1</a>,'Mphs__2',_). constr_name(<a href=%MML%index_1.html#M1>m1_index_1</a>,'ManySortedSet__2',_). constr_name(<a href=%MML%index_1.html#K7>k7_index_1</a>,'[..]__21',_). constr_name(<a href=%MML%index_1.html#K8>k8_index_1</a>,'`1__18',_). constr_name(<a href=%MML%index_1.html#K9>k9_index_1</a>,'`2__23',_). constr_name(<a href=%MML%index_1.html#V2>v2_index_1</a>,'Category-yielding_on_first',_). constr_name(<a href=%MML%index_1.html#V3>v3_index_1</a>,'Function-yielding_on_second',_). constr_name(<a href=%MML%index_1.html#K10>k10_index_1</a>,'`1__19',_). constr_name(<a href=%MML%index_1.html#K11>k11_index_1</a>,'`2__24',_). constr_name(<a href=%MML%index_1.html#K12>k12_index_1</a>,'[..]__22',_). constr_name(<a href=%MML%index_1.html#M2>m2_index_1</a>,'ManySortedFunctor',_). constr_name(<a href=%MML%index_1.html#K13>k13_index_1</a>,'.__84',_). constr_name(<a href=%MML%index_1.html#M3>m3_index_1</a>,'Indexing',_). constr_name(<a href=%MML%index_1.html#K14>k14_index_1</a>,'`2__25',_). constr_name(<a href=%MML%index_1.html#M4>m4_index_1</a>,'TargetCat',_). constr_name(<a href=%MML%index_1.html#M5>m5_index_1</a>,'Indexing__2',_). constr_name(<a href=%MML%index_1.html#K15>k15_index_1</a>,'-functor',_). constr_name(<a href=%MML%index_1.html#K16>k16_index_1</a>,rng__15,_). constr_name(<a href=%MML%index_1.html#K17>k17_index_1</a>,'.__85',_). constr_name(<a href=%MML%index_1.html#K18>k18_index_1</a>,'.__86',_). constr_name(<a href=%MML%index_1.html#K19>k19_index_1</a>,'-indexing_of',_). constr_name(<a href=%MML%index_1.html#K20>k20_index_1</a>,'*__105',_). constr_name(<a href=%MML%index_1.html#K21>k21_index_1</a>,'*__106',_). constr_name(<a href=%MML%index_1.html#K22>k22_index_1</a>,'*__107',_). constr_name(<a href=%MML%matrlin.html#K1>k1_matrlin</a>,'/.__4',_). constr_name(<a href=%MML%matrlin.html#K2>k2_matrlin</a>,'Del__2',_). constr_name(<a href=%MML%matrlin.html#K3>k3_matrlin</a>,'<*..*>__19',_). constr_name(<a href=%MML%matrlin.html#V1>v1_matrlin</a>,'FinSequence-yielding',_). constr_name(<a href=%MML%matrlin.html#K4>k4_matrlin</a>,'^^__3',_). constr_name(<a href=%MML%matrlin.html#V2>v2_matrlin</a>,'finite-dimensional',_). constr_name(<a href=%MML%matrlin.html#M1>m1_matrlin</a>,'OrdBasis',_). constr_name(<a href=%MML%matrlin.html#K5>k5_matrlin</a>,'+__67',_). constr_name(<a href=%MML%matrlin.html#K6>k6_matrlin</a>,'*__108',_). constr_name(<a href=%MML%matrlin.html#K7>k7_matrlin</a>,lmlt,_). constr_name(<a href=%MML%matrlin.html#K8>k8_matrlin</a>,'Sum__20',_). constr_name(<a href=%MML%matrlin.html#K9>k9_matrlin</a>,'^^__4',_). constr_name(<a href=%MML%matrlin.html#K10>k10_matrlin</a>,'^__15',_). constr_name(<a href=%MML%matrlin.html#K11>k11_matrlin</a>,'.:__45',_). constr_name(<a href=%MML%matrlin.html#K12>k12_matrlin</a>,'|--__5',_). constr_name(<a href=%MML%matrlin.html#K13>k13_matrlin</a>,'AutMt',_). constr_name(<a href=%MML%weierstr.html#K1>k1_weierstr</a>,'"__31',_). constr_name(<a href=%MML%weierstr.html#K2>k2_weierstr</a>,'.:__46',_). constr_name(<a href=%MML%weierstr.html#K3>k3_weierstr</a>,'[#]__5',_). constr_name(<a href=%MML%weierstr.html#K4>k4_weierstr</a>,upper_bound__3,_). constr_name(<a href=%MML%weierstr.html#K5>k5_weierstr</a>,lower_bound__3,_). constr_name(<a href=%MML%weierstr.html#K6>k6_weierstr</a>,dist__8,_). constr_name(<a href=%MML%weierstr.html#K7>k7_weierstr</a>,dist_max,_). constr_name(<a href=%MML%weierstr.html#K8>k8_weierstr</a>,dist_min,_). constr_name(<a href=%MML%weierstr.html#K9>k9_weierstr</a>,min_dist_min,_). constr_name(<a href=%MML%weierstr.html#K10>k10_weierstr</a>,max_dist_min,_). constr_name(<a href=%MML%weierstr.html#K11>k11_weierstr</a>,min_dist_max,_). constr_name(<a href=%MML%weierstr.html#K12>k12_weierstr</a>,max_dist_max,_). constr_name(<a href=%MML%urysohn1.html#K1>k1_urysohn1</a>,'R<0',_). constr_name(<a href=%MML%urysohn1.html#K2>k2_urysohn1</a>,'R>1',_). constr_name(<a href=%MML%urysohn1.html#K3>k3_urysohn1</a>,dyadic,_). constr_name(<a href=%MML%urysohn1.html#K4>k4_urysohn1</a>,'DYADIC',_). constr_name(<a href=%MML%urysohn1.html#K5>k5_urysohn1</a>,'DOM__2',_). constr_name(<a href=%MML%urysohn1.html#K6>k6_urysohn1</a>,'.__87',_). constr_name(<a href=%MML%urysohn1.html#K7>k7_urysohn1</a>,dyad,_). constr_name(<a href=%MML%urysohn1.html#K8>k8_urysohn1</a>,axis,_). constr_name(<a href=%MML%urysohn1.html#V1>v1_urysohn1</a>,being_T1,_). constr_name(<a href=%MML%urysohn1.html#K9>k9_urysohn1</a>,'.__88',_). constr_name(<a href=%MML%urysohn1.html#M1>m1_urysohn1</a>,'Between',_). constr_name(<a href=%MML%facirc_1.html#V1>v1_facirc_1</a>,pair,_). constr_name(<a href=%MML%facirc_1.html#V2>v2_facirc_1</a>,with_pair,_). constr_name(<a href=%MML%facirc_1.html#V3>v3_facirc_1</a>,'nonpair-yielding',_). constr_name(<a href=%MML%facirc_1.html#K1>k1_facirc_1</a>,''xor'__3',_). constr_name(<a href=%MML%facirc_1.html#K2>k2_facirc_1</a>,''or'__8',_). constr_name(<a href=%MML%facirc_1.html#K3>k3_facirc_1</a>,''&'__11',_). constr_name(<a href=%MML%facirc_1.html#K4>k4_facirc_1</a>,or3,_). constr_name(<a href=%MML%facirc_1.html#K5>k5_facirc_1</a>,'<*..*>__20',_). constr_name(<a href=%MML%facirc_1.html#K6>k6_facirc_1</a>,'<*..*>__21',_). constr_name(<a href=%MML%facirc_1.html#K7>k7_facirc_1</a>,'<*..*>__22',_). constr_name(<a href=%MML%facirc_1.html#K8>k8_facirc_1</a>,'^__16',_). constr_name(<a href=%MML%facirc_1.html#K9>k9_facirc_1</a>,'Following__4',_). constr_name(<a href=%MML%facirc_1.html#R1>r1_facirc_1</a>,is_stable_at,_). constr_name(<a href=%MML%facirc_1.html#K10>k10_facirc_1</a>,'1GateCircuit__3',_). constr_name(<a href=%MML%facirc_1.html#K11>k11_facirc_1</a>,'1GateCircuit__4',_). constr_name(<a href=%MML%facirc_1.html#K12>k12_facirc_1</a>,'2GatesCircStr',_). constr_name(<a href=%MML%facirc_1.html#K13>k13_facirc_1</a>,'2GatesCircOutput',_). constr_name(<a href=%MML%facirc_1.html#K14>k14_facirc_1</a>,'2GatesCircuit',_). constr_name(<a href=%MML%facirc_1.html#K15>k15_facirc_1</a>,'.__89',_). constr_name(<a href=%MML%facirc_1.html#K16>k16_facirc_1</a>,'BitAdderOutput',_). constr_name(<a href=%MML%facirc_1.html#K17>k17_facirc_1</a>,'BitAdderCirc',_). constr_name(<a href=%MML%facirc_1.html#K18>k18_facirc_1</a>,'MajorityIStr',_). constr_name(<a href=%MML%facirc_1.html#K19>k19_facirc_1</a>,'MajorityStr',_). constr_name(<a href=%MML%facirc_1.html#K20>k20_facirc_1</a>,'MajorityICirc',_). constr_name(<a href=%MML%facirc_1.html#K21>k21_facirc_1</a>,'MajorityOutput',_). constr_name(<a href=%MML%facirc_1.html#K22>k22_facirc_1</a>,'MajorityCirc',_). constr_name(<a href=%MML%facirc_1.html#K23>k23_facirc_1</a>,'BitAdderWithOverflowStr',_). constr_name(<a href=%MML%facirc_1.html#K24>k24_facirc_1</a>,'BitAdderWithOverflowCirc',_). constr_name(<a href=%MML%cohsp_1.html#K1>k1_cohsp_1</a>,'FlatCoh',_). constr_name(<a href=%MML%cohsp_1.html#K2>k2_cohsp_1</a>,'Sub_of_Fin',_). constr_name(<a href=%MML%cohsp_1.html#V1>v1_cohsp_1</a>,'c=directed',_). constr_name(<a href=%MML%cohsp_1.html#V2>v2_cohsp_1</a>,'c=filtered',_). constr_name(<a href=%MML%cohsp_1.html#K3>k3_cohsp_1</a>,'Fin__2',_). constr_name(<a href=%MML%cohsp_1.html#V3>v3_cohsp_1</a>,'d.union-closed',_). constr_name(<a href=%MML%cohsp_1.html#K4>k4_cohsp_1</a>,union__12,_). constr_name(<a href=%MML%cohsp_1.html#R1>r1_cohsp_1</a>,includes_lattice_of,_). constr_name(<a href=%MML%cohsp_1.html#R2>r2_cohsp_1</a>,includes_lattice_of__2,_). constr_name(<a href=%MML%cohsp_1.html#V4>v4_cohsp_1</a>,'union-distributive',_). constr_name(<a href=%MML%cohsp_1.html#V5>v5_cohsp_1</a>,'d.union-distributive',_). constr_name(<a href=%MML%cohsp_1.html#V6>v6_cohsp_1</a>,'c=-monotone',_). constr_name(<a href=%MML%cohsp_1.html#V7>v7_cohsp_1</a>,'cap-distributive',_). constr_name(<a href=%MML%cohsp_1.html#V8>v8_cohsp_1</a>,'U-continuous',_). constr_name(<a href=%MML%cohsp_1.html#V9>v9_cohsp_1</a>,'U-stable',_). constr_name(<a href=%MML%cohsp_1.html#V10>v10_cohsp_1</a>,'U-linear',_). constr_name(<a href=%MML%cohsp_1.html#K5>k5_cohsp_1</a>,graph,_). constr_name(<a href=%MML%cohsp_1.html#K6>k6_cohsp_1</a>,graph__2,_). constr_name(<a href=%MML%cohsp_1.html#K7>k7_cohsp_1</a>,'Trace',_). constr_name(<a href=%MML%cohsp_1.html#K8>k8_cohsp_1</a>,'Trace__2',_). constr_name(<a href=%MML%cohsp_1.html#K9>k9_cohsp_1</a>,'StabCoh',_). constr_name(<a href=%MML%cohsp_1.html#K10>k10_cohsp_1</a>,'LinTrace',_). constr_name(<a href=%MML%cohsp_1.html#K11>k11_cohsp_1</a>,'LinTrace__2',_). constr_name(<a href=%MML%cohsp_1.html#K12>k12_cohsp_1</a>,'LinCoh',_). constr_name(<a href=%MML%cohsp_1.html#K13>k13_cohsp_1</a>,''not'__11',_). constr_name(<a href=%MML%cohsp_1.html#K14>k14_cohsp_1</a>,'U+',_). constr_name(<a href=%MML%cohsp_1.html#K15>k15_cohsp_1</a>,'"/\\"__10',_). constr_name(<a href=%MML%cohsp_1.html#K16>k16_cohsp_1</a>,'"\\/"__12',_). constr_name(<a href=%MML%cohsp_1.html#K17>k17_cohsp_1</a>,'[*]__4',_). constr_name(<a href=%MML%pua2mss1.html#K1>k1_pua2mss1</a>,rng__16,_). constr_name(<a href=%MML%pua2mss1.html#M1>m1_pua2mss1</a>,'Element__41',_). constr_name(<a href=%MML%pua2mss1.html#K2>k2_pua2mss1</a>,'Den__2',_). constr_name(<a href=%MML%pua2mss1.html#K3>k3_pua2mss1</a>,'SmallestPartition',_). constr_name(<a href=%MML%pua2mss1.html#M2>m2_pua2mss1</a>,'IndexedPartition',_). constr_name(<a href=%MML%pua2mss1.html#K4>k4_pua2mss1</a>,rng__17,_). constr_name(<a href=%MML%pua2mss1.html#K5>k5_pua2mss1</a>,id__14,_). constr_name(<a href=%MML%pua2mss1.html#K6>k6_pua2mss1</a>,'-index_of',_). constr_name(<a href=%MML%pua2mss1.html#K7>k7_pua2mss1</a>,'DomRel',_). constr_name(<a href=%MML%pua2mss1.html#K8>k8_pua2mss1</a>,'|^__13',_). constr_name(<a href=%MML%pua2mss1.html#K9>k9_pua2mss1</a>,'|^__14',_). constr_name(<a href=%MML%pua2mss1.html#K10>k10_pua2mss1</a>,'LimDomRel',_). constr_name(<a href=%MML%pua2mss1.html#R1>r1_pua2mss1</a>,is_partitable_wrt,_). constr_name(<a href=%MML%pua2mss1.html#R2>r2_pua2mss1</a>,is_exactly_partitable_wrt,_). constr_name(<a href=%MML%pua2mss1.html#M3>m3_pua2mss1</a>,a_partition__2,_). constr_name(<a href=%MML%pua2mss1.html#M4>m4_pua2mss1</a>,'IndexedPartition__2',_). constr_name(<a href=%MML%pua2mss1.html#K11>k11_pua2mss1</a>,rng__18,_). constr_name(<a href=%MML%pua2mss1.html#R3>r3_pua2mss1</a>,form_morphism_between,_). constr_name(<a href=%MML%pua2mss1.html#R4>r4_pua2mss1</a>,is_rougher_than,_). constr_name(<a href=%MML%pua2mss1.html#R5>r5_pua2mss1</a>,is_rougher_than__2,_). constr_name(<a href=%MML%pua2mss1.html#K12>k12_pua2mss1</a>,'MSSign__2',_). constr_name(<a href=%MML%pua2mss1.html#K13>k13_pua2mss1</a>,'`1__20',_). constr_name(<a href=%MML%pua2mss1.html#K14>k14_pua2mss1</a>,'`2__26',_). constr_name(<a href=%MML%pua2mss1.html#R6>r6_pua2mss1</a>,can_be_characterized_by,_). constr_name(<a href=%MML%pua2mss1.html#R7>r7_pua2mss1</a>,can_be_characterized_by__2,_). constr_name(<a href=%MML%vectsp_9.html#K1>k1_vectsp_9</a>,dim,_). constr_name(<a href=%MML%vectsp_9.html#K2>k2_vectsp_9</a>,'Subspaces_of',_). constr_name(<a href=%MML%endalg.html#K1>k1_endalg</a>,'UAEnd',_). constr_name(<a href=%MML%endalg.html#K2>k2_endalg</a>,'UAEndComp',_). constr_name(<a href=%MML%endalg.html#K3>k3_endalg</a>,'UAEndMonoid',_). constr_name(<a href=%MML%endalg.html#K4>k4_endalg</a>,'MSAEnd',_). constr_name(<a href=%MML%endalg.html#K5>k5_endalg</a>,'MSAEndComp',_). constr_name(<a href=%MML%endalg.html#K6>k6_endalg</a>,'MSAEndMonoid',_). constr_name(<a href=%MML%endalg.html#V1>v1_endalg</a>,'unity-preserving',_). constr_name(<a href=%MML%endalg.html#R1>r1_endalg</a>,is_monomorphism__3,_). constr_name(<a href=%MML%endalg.html#R2>r2_endalg</a>,is_epimorphism__3,_). constr_name(<a href=%MML%endalg.html#R3>r3_endalg</a>,is_isomorphism__3,_). constr_name(<a href=%MML%endalg.html#R4>r4_endalg</a>,are_isomorphic__10,_). constr_name(<a href=%MML%triang_1.html#K1>k1_triang_1</a>,'|_2__4',_). constr_name(<a href=%MML%triang_1.html#K2>k2_triang_1</a>,'SgmX',_). constr_name(<a href=%MML%triang_1.html#K3>k3_triang_1</a>,symplexes,_). constr_name(<a href=%MML%triang_1.html#M1>m1_triang_1</a>,'Element__42',_). constr_name(<a href=%MML%triang_1.html#V1>v1_triang_1</a>,'lower_non-empty',_). constr_name(<a href=%MML%triang_1.html#K4>k4_triang_1</a>,'FuncsSeq',_). constr_name(<a href=%MML%triang_1.html#K5>k5_triang_1</a>,'@__35',_). constr_name(<a href=%MML%triang_1.html#K6>k6_triang_1</a>,'NatEmbSeq',_). constr_name(<a href=%MML%triang_1.html#L1>l1_triang_1</a>,'TriangStr',_). constr_name(<a href=%MML%triang_1.html#V2>v2_triang_1</a>,strict__TriangStr,_). constr_name(<a href=%MML%triang_1.html#U1>u1_triang_1</a>,'SkeletonSeq',the_SkeletonSeq). constr_name(<a href=%MML%triang_1.html#U2>u2_triang_1</a>,'FacesAssign',the_FacesAssign). constr_name(<a href=%MML%triang_1.html#G1>g1_triang_1</a>,'TriangStr_constr',_). constr_name(<a href=%MML%triang_1.html#V3>v3_triang_1</a>,'lower_non-empty__2',_). constr_name(<a href=%MML%triang_1.html#K7>k7_triang_1</a>,face,_). constr_name(<a href=%MML%triang_1.html#K8>k8_triang_1</a>,'Triang',_). constr_name(<a href=%MML%goboard9.html#K1>k1_goboard9</a>,'Rev__3',_). constr_name(<a href=%MML%goboard9.html#K2>k2_goboard9</a>,'LeftComp',_). constr_name(<a href=%MML%goboard9.html#K3>k3_goboard9</a>,'RightComp',_). constr_name(<a href=%MML%msualg_5.html#K1>k1_msualg_5</a>,'EqCl',_). constr_name(<a href=%MML%msualg_5.html#K2>k2_msualg_5</a>,'EqRelLatt',_). constr_name(<a href=%MML%msualg_5.html#K3>k3_msualg_5</a>,'EqCl__2',_). constr_name(<a href=%MML%msualg_5.html#K4>k4_msualg_5</a>,'"\\/"__13',_). constr_name(<a href=%MML%msualg_5.html#K5>k5_msualg_5</a>,'EqRelLatt__2',_). constr_name(<a href=%MML%msualg_5.html#K6>k6_msualg_5</a>,'CongrLatt',_). constr_name(<a href=%MML%altcat_2.html#K1>k1_altcat_2</a>,'~__16',_). constr_name(<a href=%MML%altcat_2.html#K2>k2_altcat_2</a>,'~__17',_). constr_name(<a href=%MML%altcat_2.html#K3>k3_altcat_2</a>,'**__3',_). constr_name(<a href=%MML%altcat_2.html#R1>r1_altcat_2</a>,'cc=',_). constr_name(<a href=%MML%altcat_2.html#R2>r2_altcat_2</a>,'cc=__2',_). constr_name(<a href=%MML%altcat_2.html#K4>k4_altcat_2</a>,the_hom_sets_of,_). constr_name(<a href=%MML%altcat_2.html#K5>k5_altcat_2</a>,the_comps_of,_). constr_name(<a href=%MML%altcat_2.html#K6>k6_altcat_2</a>,'Alter',_). constr_name(<a href=%MML%altcat_2.html#V1>v1_altcat_2</a>,reflexive__4,_). constr_name(<a href=%MML%altcat_2.html#K7>k7_altcat_2</a>,the_empty_category,_). constr_name(<a href=%MML%altcat_2.html#M1>m1_altcat_2</a>,'SubCatStr',_). constr_name(<a href=%MML%altcat_2.html#K8>k8_altcat_2</a>,'ObCat',_). constr_name(<a href=%MML%altcat_2.html#V2>v2_altcat_2</a>,full__3,_). constr_name(<a href=%MML%altcat_2.html#V3>v3_altcat_2</a>,'id-inheriting',_). constr_name(<a href=%MML%orders_3.html#V1>v1_orders_3</a>,discrete__4,discrete_relstr). constr_name(<a href=%MML%orders_3.html#V2>v2_orders_3</a>,disconnected,disconnected_rel_subset). constr_name(<a href=%MML%orders_3.html#V3>v3_orders_3</a>,disconnected__2,disconnected_relstr). constr_name(<a href=%MML%orders_3.html#V4>v4_orders_3</a>,'POSet_set-like',is_a_set_of_POSets). constr_name(<a href=%MML%orders_3.html#M1>m1_orders_3</a>,'Element__43',_). constr_name(<a href=%MML%orders_3.html#V5>v5_orders_3</a>,monotone__3,monotone_function). constr_name(<a href=%MML%orders_3.html#K1>k1_orders_3</a>,'MonFuncs',_). constr_name(<a href=%MML%orders_3.html#K2>k2_orders_3</a>,'Carr__3',_). constr_name(<a href=%MML%orders_3.html#K3>k3_orders_3</a>,'POSCat',_). constr_name(<a href=%MML%orders_3.html#K4>k4_orders_3</a>,'POSAltCat',_). constr_name(<a href=%MML%scmfsa_1.html#K1>k1_scmfsa_1</a>,'SCM+FSA-Data-Loc',_). constr_name(<a href=%MML%scmfsa_1.html#K2>k2_scmfsa_1</a>,'SCM+FSA-Data*-Loc',_). constr_name(<a href=%MML%scmfsa_1.html#K3>k3_scmfsa_1</a>,'SCM+FSA-Instr-Loc',_). constr_name(<a href=%MML%scmfsa_1.html#K4>k4_scmfsa_1</a>,'SCM+FSA-Instr',_). constr_name(<a href=%MML%scmfsa_1.html#K5>k5_scmfsa_1</a>,'InsCode__2',_). constr_name(<a href=%MML%scmfsa_1.html#K6>k6_scmfsa_1</a>,'SCM+FSA-OK',_). constr_name(<a href=%MML%scmfsa_1.html#K7>k7_scmfsa_1</a>,'SCM+FSA-Chg',_). constr_name(<a href=%MML%scmfsa_1.html#K8>k8_scmfsa_1</a>,'SCM+FSA-Chg__2',_). constr_name(<a href=%MML%scmfsa_1.html#K9>k9_scmfsa_1</a>,'SCM+FSA-Chg__3',_). constr_name(<a href=%MML%scmfsa_1.html#K10>k10_scmfsa_1</a>,'.__90',_). constr_name(<a href=%MML%scmfsa_1.html#K11>k11_scmfsa_1</a>,'.__91',_). constr_name(<a href=%MML%scmfsa_1.html#K12>k12_scmfsa_1</a>,int_addr1,_). constr_name(<a href=%MML%scmfsa_1.html#K13>k13_scmfsa_1</a>,int_addr2,_). constr_name(<a href=%MML%scmfsa_1.html#K14>k14_scmfsa_1</a>,coll_addr1,_). constr_name(<a href=%MML%scmfsa_1.html#K15>k15_scmfsa_1</a>,int_addr3,_). constr_name(<a href=%MML%scmfsa_1.html#K16>k16_scmfsa_1</a>,coll_addr2,_). constr_name(<a href=%MML%scmfsa_1.html#K17>k17_scmfsa_1</a>,'Next__3',_). constr_name(<a href=%MML%scmfsa_1.html#K18>k18_scmfsa_1</a>,'IC__5',_). constr_name(<a href=%MML%scmfsa_1.html#K19>k19_scmfsa_1</a>,'SCM+FSA-Exec-Res',_). constr_name(<a href=%MML%scmfsa_1.html#K20>k20_scmfsa_1</a>,'SCM+FSA-Exec',_). constr_name(<a href=%MML%connsp_3.html#K1>k1_connsp_3</a>,skl__2,_). constr_name(<a href=%MML%connsp_3.html#M1>m1_connsp_3</a>,a_union_of_components,_). constr_name(<a href=%MML%connsp_3.html#K2>k2_connsp_3</a>,'Down',_). constr_name(<a href=%MML%connsp_3.html#K3>k3_connsp_3</a>,'Up',_). constr_name(<a href=%MML%connsp_3.html#K4>k4_connsp_3</a>,'Down__2',_). constr_name(<a href=%MML%connsp_3.html#K5>k5_connsp_3</a>,'Up__2',_). constr_name(<a href=%MML%connsp_3.html#K6>k6_connsp_3</a>,skl__3,_). constr_name(<a href=%MML%scmfsa_2.html#K1>k1_scmfsa_2</a>,'SCM+FSA',_). constr_name(<a href=%MML%scmfsa_2.html#K2>k2_scmfsa_2</a>,'Int-Locations',_). constr_name(<a href=%MML%scmfsa_2.html#K3>k3_scmfsa_2</a>,'FinSeq-Locations',_). constr_name(<a href=%MML%scmfsa_2.html#M1>m1_scmfsa_2</a>,'Int-Location',_). constr_name(<a href=%MML%scmfsa_2.html#M2>m2_scmfsa_2</a>,'FinSeq-Location',_). constr_name(<a href=%MML%scmfsa_2.html#K4>k4_scmfsa_2</a>,intloc,_). constr_name(<a href=%MML%scmfsa_2.html#K5>k5_scmfsa_2</a>,insloc,_). constr_name(<a href=%MML%scmfsa_2.html#K6>k6_scmfsa_2</a>,fsloc,_). constr_name(<a href=%MML%scmfsa_2.html#K7>k7_scmfsa_2</a>,'Next__4',_). constr_name(<a href=%MML%scmfsa_2.html#K8>k8_scmfsa_2</a>,':=__2',_). constr_name(<a href=%MML%scmfsa_2.html#K9>k9_scmfsa_2</a>,'AddTo__2',_). constr_name(<a href=%MML%scmfsa_2.html#K10>k10_scmfsa_2</a>,'SubFrom__2',_). constr_name(<a href=%MML%scmfsa_2.html#K11>k11_scmfsa_2</a>,'MultBy__2',_). constr_name(<a href=%MML%scmfsa_2.html#K12>k12_scmfsa_2</a>,'Divide__2',_). constr_name(<a href=%MML%scmfsa_2.html#K13>k13_scmfsa_2</a>,goto__2,_). constr_name(<a href=%MML%scmfsa_2.html#K14>k14_scmfsa_2</a>,'=0_goto__2',_). constr_name(<a href=%MML%scmfsa_2.html#K15>k15_scmfsa_2</a>,'>0_goto__2',_). constr_name(<a href=%MML%scmfsa_2.html#K16>k16_scmfsa_2</a>,':=__3',_). constr_name(<a href=%MML%scmfsa_2.html#K17>k17_scmfsa_2</a>,':=__4',_). constr_name(<a href=%MML%scmfsa_2.html#K18>k18_scmfsa_2</a>,':=len',_). constr_name(<a href=%MML%scmfsa_2.html#K19>k19_scmfsa_2</a>,':=<0,...,0>',_). constr_name(<a href=%MML%scmfsa_2.html#K20>k20_scmfsa_2</a>,'.__92',_). constr_name(<a href=%MML%scmfsa_2.html#K21>k21_scmfsa_2</a>,'.__93',_). constr_name(<a href=%MML%closure1.html#K1>k1_closure1</a>,'..__9',_). constr_name(<a href=%MML%closure1.html#K2>k2_closure1</a>,'..__10',_). constr_name(<a href=%MML%closure1.html#K3>k3_closure1</a>,'..__11',_). constr_name(<a href=%MML%closure1.html#V1>v1_closure1</a>,reflexive__5,_). constr_name(<a href=%MML%closure1.html#V2>v2_closure1</a>,monotonic__2,_). constr_name(<a href=%MML%closure1.html#V3>v3_closure1</a>,idempotent__4,_). constr_name(<a href=%MML%closure1.html#V4>v4_closure1</a>,topological,_). constr_name(<a href=%MML%closure1.html#K4>k4_closure1</a>,'**__4',_). constr_name(<a href=%MML%closure1.html#L1>l1_closure1</a>,'MSClosureStr',_). constr_name(<a href=%MML%closure1.html#V5>v5_closure1</a>,strict__MSClosureStr,_). constr_name(<a href=%MML%closure1.html#U1>u1_closure1</a>,'Family',the_Family). constr_name(<a href=%MML%closure1.html#G1>g1_closure1</a>,'MSClosureStr_constr',_). constr_name(<a href=%MML%closure1.html#V6>v6_closure1</a>,additive__4,_). constr_name(<a href=%MML%closure1.html#V7>v7_closure1</a>,'absolutely-additive__2',_). constr_name(<a href=%MML%closure1.html#V8>v8_closure1</a>,multiplicative__3,_). constr_name(<a href=%MML%closure1.html#V9>v9_closure1</a>,'absolutely-multiplicative__2',_). constr_name(<a href=%MML%closure1.html#V10>v10_closure1</a>,'properly-upper-bound__2',_). constr_name(<a href=%MML%closure1.html#V11>v11_closure1</a>,'properly-lower-bound__2',_). constr_name(<a href=%MML%closure1.html#K5>k5_closure1</a>,'MSFull',_). constr_name(<a href=%MML%closure1.html#K6>k6_closure1</a>,'MSFixPoints',_). constr_name(<a href=%MML%closure1.html#K7>k7_closure1</a>,'ClOp->ClSys',_). constr_name(<a href=%MML%closure1.html#K8>k8_closure1</a>,'ClSys->ClOp',_). constr_name(<a href=%MML%scmfsa_3.html#K1>k1_scmfsa_3</a>,'.-->__10',_). constr_name(<a href=%MML%closure2.html#K1>k1_closure2</a>,'Bool',_). constr_name(<a href=%MML%closure2.html#K2>k2_closure2</a>,'Bool__2',_). constr_name(<a href=%MML%closure2.html#M1>m1_closure2</a>,'Element__44',_). constr_name(<a href=%MML%closure2.html#K3>k3_closure2</a>,'|....|__13',_). constr_name(<a href=%MML%closure2.html#K4>k4_closure2</a>,'|:..:|__5',_). constr_name(<a href=%MML%closure2.html#K5>k5_closure2</a>,'|:..:|__6',_). constr_name(<a href=%MML%closure2.html#V1>v1_closure2</a>,additive__5,_). constr_name(<a href=%MML%closure2.html#V2>v2_closure2</a>,'absolutely-additive__3',_). constr_name(<a href=%MML%closure2.html#V3>v3_closure2</a>,multiplicative__4,_). constr_name(<a href=%MML%closure2.html#V4>v4_closure2</a>,'absolutely-multiplicative__3',_). constr_name(<a href=%MML%closure2.html#V5>v5_closure2</a>,'properly-upper-bound__3',_). constr_name(<a href=%MML%closure2.html#V6>v6_closure2</a>,'properly-lower-bound__3',_). constr_name(<a href=%MML%closure2.html#K6>k6_closure2</a>,'Bool__3',_). constr_name(<a href=%MML%closure2.html#K7>k7_closure2</a>,'.__94',_). constr_name(<a href=%MML%closure2.html#V7>v7_closure2</a>,reflexive__6,_). constr_name(<a href=%MML%closure2.html#V8>v8_closure2</a>,monotonic__3,_). constr_name(<a href=%MML%closure2.html#V9>v9_closure2</a>,idempotent__5,_). constr_name(<a href=%MML%closure2.html#V10>v10_closure2</a>,topological__2,_). constr_name(<a href=%MML%closure2.html#K8>k8_closure2</a>,'*__109',_). constr_name(<a href=%MML%closure2.html#L1>l1_closure2</a>,'ClosureStr',_). constr_name(<a href=%MML%closure2.html#V11>v11_closure2</a>,strict__ClosureStr,_). constr_name(<a href=%MML%closure2.html#U1>u1_closure2</a>,'Family__2',the_Family__2). constr_name(<a href=%MML%closure2.html#G1>g1_closure2</a>,'ClosureStr_constr',_). constr_name(<a href=%MML%closure2.html#V12>v12_closure2</a>,additive__6,_). constr_name(<a href=%MML%closure2.html#V13>v13_closure2</a>,'absolutely-additive__4',_). constr_name(<a href=%MML%closure2.html#V14>v14_closure2</a>,multiplicative__5,_). constr_name(<a href=%MML%closure2.html#V15>v15_closure2</a>,'absolutely-multiplicative__4',_). constr_name(<a href=%MML%closure2.html#V16>v16_closure2</a>,'properly-upper-bound__4',_). constr_name(<a href=%MML%closure2.html#V17>v17_closure2</a>,'properly-lower-bound__4',_). constr_name(<a href=%MML%closure2.html#K9>k9_closure2</a>,'Full',_). constr_name(<a href=%MML%closure2.html#K10>k10_closure2</a>,'ClOp->ClSys__2',_). constr_name(<a href=%MML%closure2.html#K11>k11_closure2</a>,'Cl__3',_). constr_name(<a href=%MML%closure2.html#K12>k12_closure2</a>,'ClSys->ClOp__2',_). constr_name(<a href=%MML%msualg_6.html#K1>k1_msualg_6</a>,'**__5',_). constr_name(<a href=%MML%msualg_6.html#V1>v1_msualg_6</a>,feasible,_). constr_name(<a href=%MML%msualg_6.html#M1>m1_msualg_6</a>,'Endomorphism',_). constr_name(<a href=%MML%msualg_6.html#K2>k2_msualg_6</a>,'**__6',_). constr_name(<a href=%MML%msualg_6.html#K3>k3_msualg_6</a>,'TranslationRel',_). constr_name(<a href=%MML%msualg_6.html#K4>k4_msualg_6</a>,transl,_). constr_name(<a href=%MML%msualg_6.html#R1>r1_msualg_6</a>,'is_e.translation_of',_). constr_name(<a href=%MML%msualg_6.html#M2>m2_msualg_6</a>,'Translation',_). constr_name(<a href=%MML%msualg_6.html#V2>v2_msualg_6</a>,compatible,_). constr_name(<a href=%MML%msualg_6.html#V3>v3_msualg_6</a>,invariant,_). constr_name(<a href=%MML%msualg_6.html#V4>v4_msualg_6</a>,stable__2,_). constr_name(<a href=%MML%msualg_6.html#K5>k5_msualg_6</a>,id__15,_). constr_name(<a href=%MML%msualg_6.html#K6>k6_msualg_6</a>,'InvCl',_). constr_name(<a href=%MML%msualg_6.html#K7>k7_msualg_6</a>,'StabCl',_). constr_name(<a href=%MML%msualg_6.html#K8>k8_msualg_6</a>,'TRS',_). constr_name(<a href=%MML%msualg_6.html#K9>k9_msualg_6</a>,'EqCl__3',_). constr_name(<a href=%MML%msualg_6.html#K10>k10_msualg_6</a>,'EqTh',_). constr_name(<a href=%MML%msualg_7.html#V1>v1_msualg_7</a>,'/\\-inheriting',_). constr_name(<a href=%MML%msualg_7.html#V2>v2_msualg_7</a>,'\\/-inheriting',_). constr_name(<a href=%MML%msualg_7.html#K1>k1_msualg_7</a>,'RealSubLatt',_). constr_name(<a href=%MML%scmfsa_4.html#K1>k1_scmfsa_4</a>,'+*__12',_). constr_name(<a href=%MML%scmfsa_4.html#K2>k2_scmfsa_4</a>,'+__68',_). constr_name(<a href=%MML%scmfsa_4.html#K3>k3_scmfsa_4</a>,'-'__4',_). constr_name(<a href=%MML%scmfsa_4.html#K4>k4_scmfsa_4</a>,'IncAddr__3',_). constr_name(<a href=%MML%scmfsa_4.html#V1>v1_scmfsa_4</a>,initial__2,_). constr_name(<a href=%MML%scmfsa_4.html#K5>k5_scmfsa_4</a>,'SCM+FSA-Stop',_). constr_name(<a href=%MML%scmfsa_4.html#K6>k6_scmfsa_4</a>,'*__110',_). constr_name(<a href=%MML%scmfsa_4.html#K7>k7_scmfsa_4</a>,'IncAddr__4',_). constr_name(<a href=%MML%scmfsa_4.html#K8>k8_scmfsa_4</a>,'Shift__2',_). constr_name(<a href=%MML%msscyc_1.html#V1>v1_msscyc_1</a>,cyclic__5,_). constr_name(<a href=%MML%msscyc_1.html#V2>v2_msscyc_1</a>,empty__3,_). constr_name(<a href=%MML%msscyc_1.html#V3>v3_msscyc_1</a>,'directed_cycle-less',_). constr_name(<a href=%MML%msscyc_1.html#V4>v4_msscyc_1</a>,'well-founded',_). constr_name(<a href=%MML%msscyc_1.html#V5>v5_msscyc_1</a>,finitely_operated,_). constr_name(<a href=%MML%scmfsa_5.html#K1>k1_scmfsa_5</a>,'Relocated__2',_). constr_name(<a href=%MML%msualg_8.html#K1>k1_msualg_8</a>,'CongrCl',_). constr_name(<a href=%MML%msualg_8.html#K2>k2_msualg_8</a>,'CongrCl__2',_). constr_name(<a href=%MML%msualg_8.html#K3>k3_msualg_8</a>,'EqRelSet',_). constr_name(<a href=%MML%msscyc_2.html#K1>k1_msscyc_2</a>,'InducedEdges',_). constr_name(<a href=%MML%msscyc_2.html#K2>k2_msscyc_2</a>,'InducedSource',_). constr_name(<a href=%MML%msscyc_2.html#K3>k3_msscyc_2</a>,'InducedTarget',_). constr_name(<a href=%MML%msscyc_2.html#K4>k4_msscyc_2</a>,'InducedGraph',_). constr_name(<a href=%MML%functor0.html#K1>k1_functor0</a>,'~__18',_). constr_name(<a href=%MML%functor0.html#V1>v1_functor0</a>,'Covariant',_). constr_name(<a href=%MML%functor0.html#V2>v2_functor0</a>,'Contravariant',_). constr_name(<a href=%MML%functor0.html#M1>m1_functor0</a>,'MSUnTrans',_). constr_name(<a href=%MML%functor0.html#K2>k2_functor0</a>,'~__19',_). constr_name(<a href=%MML%functor0.html#L1>l1_functor0</a>,'BimapStr',_). constr_name(<a href=%MML%functor0.html#V3>v3_functor0</a>,strict__BimapStr,_). constr_name(<a href=%MML%functor0.html#U1>u1_functor0</a>,'ObjectMap',the_ObjectMap). constr_name(<a href=%MML%functor0.html#G1>g1_functor0</a>,'BimapStr_constr',_). constr_name(<a href=%MML%functor0.html#K3>k3_functor0</a>,'.__95',_). constr_name(<a href=%MML%functor0.html#V4>v4_functor0</a>,'one-to-one__3',_). constr_name(<a href=%MML%functor0.html#V5>v5_functor0</a>,onto__2,_). constr_name(<a href=%MML%functor0.html#V6>v6_functor0</a>,reflexive__7,_). constr_name(<a href=%MML%functor0.html#V7>v7_functor0</a>,coreflexive,_). constr_name(<a href=%MML%functor0.html#V8>v8_functor0</a>,feasible__2,_). constr_name(<a href=%MML%functor0.html#L2>l2_functor0</a>,'FunctorStr',_). constr_name(<a href=%MML%functor0.html#V9>v9_functor0</a>,strict__FunctorStr,_). constr_name(<a href=%MML%functor0.html#U2>u2_functor0</a>,'MorphMap',the_MorphMap). constr_name(<a href=%MML%functor0.html#G2>g2_functor0</a>,'FunctorStr_constr',_). constr_name(<a href=%MML%functor0.html#V10>v10_functor0</a>,'Covariant__2',_). constr_name(<a href=%MML%functor0.html#V11>v11_functor0</a>,'Contravariant__2',_). constr_name(<a href=%MML%functor0.html#K4>k4_functor0</a>,'Morph-Map',_). constr_name(<a href=%MML%functor0.html#K5>k5_functor0</a>,'Morph-Map__2',_). constr_name(<a href=%MML%functor0.html#K6>k6_functor0</a>,'.__96',_). constr_name(<a href=%MML%functor0.html#K7>k7_functor0</a>,'Morph-Map__3',_). constr_name(<a href=%MML%functor0.html#K8>k8_functor0</a>,'.__97',_). constr_name(<a href=%MML%functor0.html#K9>k9_functor0</a>,'-->__22',_). constr_name(<a href=%MML%functor0.html#V12>v12_functor0</a>,'id-preserving',_). constr_name(<a href=%MML%functor0.html#V13>v13_functor0</a>,'comp-preserving',_). constr_name(<a href=%MML%functor0.html#V14>v14_functor0</a>,'comp-reversing',_). constr_name(<a href=%MML%functor0.html#M2>m2_functor0</a>,'Functor__2',_). constr_name(<a href=%MML%functor0.html#V15>v15_functor0</a>,covariant,_). constr_name(<a href=%MML%functor0.html#V16>v16_functor0</a>,contravariant,_). constr_name(<a href=%MML%functor0.html#K10>k10_functor0</a>,incl__4,_). constr_name(<a href=%MML%functor0.html#K11>k11_functor0</a>,id__16,_). constr_name(<a href=%MML%functor0.html#V17>v17_functor0</a>,faithful__2,_). constr_name(<a href=%MML%functor0.html#V18>v18_functor0</a>,full__4,_). constr_name(<a href=%MML%functor0.html#V19>v19_functor0</a>,injective,_). constr_name(<a href=%MML%functor0.html#V20>v20_functor0</a>,surjective__2,_). constr_name(<a href=%MML%functor0.html#V21>v21_functor0</a>,bijective__2,_). constr_name(<a href=%MML%functor0.html#K12>k12_functor0</a>,id__17,_). constr_name(<a href=%MML%functor0.html#K13>k13_functor0</a>,'*__111',_). constr_name(<a href=%MML%functor0.html#K14>k14_functor0</a>,'|__24',_). constr_name(<a href=%MML%functor0.html#K15>k15_functor0</a>,'"__32',_). constr_name(<a href=%MML%functor0.html#R1>r1_functor0</a>,are_isomorphic__11,_). constr_name(<a href=%MML%functor0.html#R2>r2_functor0</a>,'are_anti-isomorphic',_). constr_name(<a href=%MML%scmfsa_7.html#K1>k1_scmfsa_7</a>,'Load',_). constr_name(<a href=%MML%scmfsa_7.html#K2>k2_scmfsa_7</a>,':=__5',_). constr_name(<a href=%MML%scmfsa_7.html#K3>k3_scmfsa_7</a>,aSeq,_). constr_name(<a href=%MML%scmfsa_7.html#K4>k4_scmfsa_7</a>,aSeq__2,_). constr_name(<a href=%MML%scmfsa_7.html#K5>k5_scmfsa_7</a>,':=__6',_). constr_name(<a href=%MML%pralg_3.html#K1>k1_pralg_3</a>,id__18,_). constr_name(<a href=%MML%pralg_3.html#K2>k2_pralg_3</a>,const,_). constr_name(<a href=%MML%pralg_3.html#K3>k3_pralg_3</a>,proj__2,_). constr_name(<a href=%MML%pralg_3.html#K4>k4_pralg_3</a>,proj__3,_). constr_name(<a href=%MML%pralg_3.html#M1>m1_pralg_3</a>,'MSAlgebra-Class',_). constr_name(<a href=%MML%pralg_3.html#K5>k5_pralg_3</a>,'/__24',_). constr_name(<a href=%MML%pralg_3.html#K6>k6_pralg_3</a>,product__6,_). constr_name(<a href=%MML%gobrd10.html#R1>r1_gobrd10</a>,are_adjacent1,_). constr_name(<a href=%MML%gobrd10.html#R2>r2_gobrd10</a>,are_adjacent2,_). constr_name(<a href=%MML%gobrd10.html#K1>k1_gobrd10</a>,'|->__7',_). constr_name(<a href=%MML%msalimit.html#M1>m1_msalimit</a>,'OrderedAlgFam',_). constr_name(<a href=%MML%msalimit.html#M2>m2_msalimit</a>,'Binding',_). constr_name(<a href=%MML%msalimit.html#K1>k1_msalimit</a>,bind,_). constr_name(<a href=%MML%msalimit.html#V1>v1_msalimit</a>,normalized,_). constr_name(<a href=%MML%msalimit.html#K2>k2_msalimit</a>,'Normalized',_). constr_name(<a href=%MML%msalimit.html#K3>k3_msalimit</a>,'InvLim',_). constr_name(<a href=%MML%msalimit.html#V2>v2_msalimit</a>,'MSS-membered',_). constr_name(<a href=%MML%msalimit.html#K4>k4_msalimit</a>,'TrivialMSSign',_). constr_name(<a href=%MML%msalimit.html#K5>k5_msalimit</a>,'MSS_set',_). constr_name(<a href=%MML%msalimit.html#M3>m3_msalimit</a>,'Element__45',_). constr_name(<a href=%MML%msalimit.html#K6>k6_msalimit</a>,'MSS_morph',_). constr_name(<a href=%MML%msualg_9.html#K1>k1_msualg_9</a>,'Mpr1',_). constr_name(<a href=%MML%msualg_9.html#K2>k2_msualg_9</a>,'Mpr2',_). constr_name(<a href=%MML%msinst_1.html#K1>k1_msinst_1</a>,'MSSCat',_). constr_name(<a href=%MML%msinst_1.html#K2>k2_msinst_1</a>,'MSAlg_set',_). constr_name(<a href=%MML%msinst_1.html#K3>k3_msinst_1</a>,'MSAlg_morph',_). constr_name(<a href=%MML%msinst_1.html#K4>k4_msinst_1</a>,'MSAlgCat',_). constr_name(<a href=%MML%scmfsa6a.html#K1>k1_scmfsa6a</a>,'Directed',_). constr_name(<a href=%MML%scmfsa6a.html#K2>k2_scmfsa6a</a>,'Macro',_). constr_name(<a href=%MML%scmfsa6a.html#K3>k3_scmfsa6a</a>,'Initialized',_). constr_name(<a href=%MML%scmfsa6a.html#K4>k4_scmfsa6a</a>,'';'',_). constr_name(<a href=%MML%scmfsa6a.html#K5>k5_scmfsa6a</a>,'';'__2',_). constr_name(<a href=%MML%scmfsa6a.html#K6>k6_scmfsa6a</a>,'';'__3',_). constr_name(<a href=%MML%scmfsa6a.html#K7>k7_scmfsa6a</a>,'';'__4',_). constr_name(<a href=%MML%sf_mastr.html#K1>k1_sf_mastr</a>,'UsedIntLoc',_). constr_name(<a href=%MML%sf_mastr.html#K2>k2_sf_mastr</a>,'UsedIntLoc__2',_). constr_name(<a href=%MML%sf_mastr.html#K3>k3_sf_mastr</a>,'UsedInt*Loc',_). constr_name(<a href=%MML%sf_mastr.html#K4>k4_sf_mastr</a>,'UsedInt*Loc__2',_). constr_name(<a href=%MML%sf_mastr.html#V1>v1_sf_mastr</a>,'read-only',_). constr_name(<a href=%MML%sf_mastr.html#K5>k5_sf_mastr</a>,'FirstNotIn',_). constr_name(<a href=%MML%sf_mastr.html#K6>k6_sf_mastr</a>,'FirstNotUsed',_). constr_name(<a href=%MML%sf_mastr.html#K7>k7_sf_mastr</a>,'First*NotIn',_). constr_name(<a href=%MML%sf_mastr.html#K8>k8_sf_mastr</a>,'First*NotUsed',_). constr_name(<a href=%MML%scmfsa6b.html#K1>k1_scmfsa6b</a>,'+*__13',_). constr_name(<a href=%MML%scmfsa6b.html#K2>k2_scmfsa6b</a>,'+*__14',_). constr_name(<a href=%MML%scmfsa6b.html#K3>k3_scmfsa6b</a>,'IExec',_). constr_name(<a href=%MML%scmfsa6b.html#V1>v1_scmfsa6b</a>,paraclosed,_). constr_name(<a href=%MML%scmfsa6b.html#V2>v2_scmfsa6b</a>,parahalting,_). constr_name(<a href=%MML%scmfsa6b.html#V3>v3_scmfsa6b</a>,keeping_0,_). constr_name(<a href=%MML%scmfsa6c.html#V1>v1_scmfsa6c</a>,parahalting__2,_). constr_name(<a href=%MML%scmfsa6c.html#V2>v2_scmfsa6c</a>,keeping_0__2,_). constr_name(<a href=%MML%scmfsa6c.html#K1>k1_scmfsa6c</a>,'Initialize',_). constr_name(<a href=%MML%scmfsa6c.html#K2>k2_scmfsa6c</a>,swap,_). constr_name(<a href=%MML%scmfsa7b.html#R1>r1_scmfsa7b</a>,does_not_refer,_). constr_name(<a href=%MML%scmfsa7b.html#R2>r2_scmfsa7b</a>,does_not_refer__2,_). constr_name(<a href=%MML%scmfsa7b.html#R3>r3_scmfsa7b</a>,does_not_destroy,_). constr_name(<a href=%MML%scmfsa7b.html#R4>r4_scmfsa7b</a>,does_not_destroy__2,_). constr_name(<a href=%MML%scmfsa7b.html#V1>v1_scmfsa7b</a>,good,_). constr_name(<a href=%MML%scmfsa7b.html#V2>v2_scmfsa7b</a>,'halt-free',_). constr_name(<a href=%MML%scmfsa7b.html#R5>r5_scmfsa7b</a>,is_closed_on__3,_). constr_name(<a href=%MML%scmfsa7b.html#R6>r6_scmfsa7b</a>,is_halting_on,_). constr_name(<a href=%MML%scmfsa8a.html#K1>k1_scmfsa8a</a>,'Directed__2',_). constr_name(<a href=%MML%scmfsa8a.html#K2>k2_scmfsa8a</a>,'Goto',_). constr_name(<a href=%MML%scmfsa8a.html#R1>r1_scmfsa8a</a>,'is_pseudo-closed_on',_). constr_name(<a href=%MML%scmfsa8a.html#V1>v1_scmfsa8a</a>,'pseudo-paraclosed',_). constr_name(<a href=%MML%scmfsa8a.html#K3>k3_scmfsa8a</a>,'pseudo-LifeSpan',_). constr_name(<a href=%MML%scmfsa8b.html#K1>k1_scmfsa8b</a>,'if=0',_). constr_name(<a href=%MML%scmfsa8b.html#K2>k2_scmfsa8b</a>,'if>0',_). constr_name(<a href=%MML%scmfsa8b.html#K3>k3_scmfsa8b</a>,'if<0',_). constr_name(<a href=%MML%scmfsa8b.html#K4>k4_scmfsa8b</a>,'if=0__2',_). constr_name(<a href=%MML%scmfsa8b.html#K5>k5_scmfsa8b</a>,'if>0__2',_). constr_name(<a href=%MML%yellow_0.html#V1>v1_yellow_0</a>,'lower-bounded__2',lower_bounded_relstr). constr_name(<a href=%MML%yellow_0.html#V2>v2_yellow_0</a>,'upper-bounded__2',upper_bounded_relstr). constr_name(<a href=%MML%yellow_0.html#V3>v3_yellow_0</a>,bounded__12,bounded_relstr). constr_name(<a href=%MML%yellow_0.html#R1>r1_yellow_0</a>,ex_sup_of,ex_sup_of_relstr_set). constr_name(<a href=%MML%yellow_0.html#R2>r2_yellow_0</a>,ex_inf_of,ex_inf_of_relstr_set). constr_name(<a href=%MML%yellow_0.html#K1>k1_yellow_0</a>,'"\\/"__14',join_on_relstr). constr_name(<a href=%MML%yellow_0.html#K2>k2_yellow_0</a>,'"/\\"__11',meet_on_relstr). constr_name(<a href=%MML%yellow_0.html#K3>k3_yellow_0</a>,'Bottom__6',bottom_of_relstr). constr_name(<a href=%MML%yellow_0.html#K4>k4_yellow_0</a>,'Top__3',top_of_relstr). constr_name(<a href=%MML%yellow_0.html#M1>m1_yellow_0</a>,'SubRelStr',subrelstr). constr_name(<a href=%MML%yellow_0.html#V4>v4_yellow_0</a>,full__5,full_subrelstr). constr_name(<a href=%MML%yellow_0.html#K5>k5_yellow_0</a>,subrelstr,subrelstr_of_subset). constr_name(<a href=%MML%yellow_0.html#V5>v5_yellow_0</a>,'meet-inheriting',meet_inheriting_subrelstr). constr_name(<a href=%MML%yellow_0.html#V6>v6_yellow_0</a>,'join-inheriting',join_inheriting_subrelstr). constr_name(<a href=%MML%yellow_0.html#V7>v7_yellow_0</a>,'infs-inheriting',infs_inheriting_subrelstr). constr_name(<a href=%MML%yellow_0.html#V8>v8_yellow_0</a>,'sups-inheriting',sups_inheriting_subrelstr). constr_name(<a href=%MML%waybel_0.html#V1>v1_waybel_0</a>,directed__2,directed_subset). constr_name(<a href=%MML%waybel_0.html#V2>v2_waybel_0</a>,filtered,filtered_subset). constr_name(<a href=%MML%waybel_0.html#V3>v3_waybel_0</a>,'filtered-infs-inheriting',filtered_infs_inheriting). constr_name(<a href=%MML%waybel_0.html#V4>v4_waybel_0</a>,'directed-sups-inheriting',directed_sups_inheriting). constr_name(<a href=%MML%waybel_0.html#K1>k1_waybel_0</a>,'.__98',apply_on_structs). constr_name(<a href=%MML%waybel_0.html#V5>v5_waybel_0</a>,antitone,antitone_function). constr_name(<a href=%MML%waybel_0.html#L1>l1_waybel_0</a>,'NetStr',net_str). constr_name(<a href=%MML%waybel_0.html#V6>v6_waybel_0</a>,strict__NetStr,strict_net_str). constr_name(<a href=%MML%waybel_0.html#U1>u1_waybel_0</a>,mapping,the_mapping). constr_name(<a href=%MML%waybel_0.html#G1>g1_waybel_0</a>,'NetStr_constr',net_str_of). constr_name(<a href=%MML%waybel_0.html#V7>v7_waybel_0</a>,directed__3,directed_relstr). constr_name(<a href=%MML%waybel_0.html#K2>k2_waybel_0</a>,netmap,netmap). constr_name(<a href=%MML%waybel_0.html#K3>k3_waybel_0</a>,'.__99',apply_netmap). constr_name(<a href=%MML%waybel_0.html#V8>v8_waybel_0</a>,monotone__4,monotone_net_str). constr_name(<a href=%MML%waybel_0.html#V9>v9_waybel_0</a>,antitone__2,antitone_net_str). constr_name(<a href=%MML%waybel_0.html#R1>r1_waybel_0</a>,is_eventually_in,is_eventually_in). constr_name(<a href=%MML%waybel_0.html#R2>r2_waybel_0</a>,is_often_in,is_often_in). constr_name(<a href=%MML%waybel_0.html#V10>v10_waybel_0</a>,'eventually-directed',eventually_directed). constr_name(<a href=%MML%waybel_0.html#V11>v11_waybel_0</a>,'eventually-filtered',eventually_filtered). constr_name(<a href=%MML%waybel_0.html#K4>k4_waybel_0</a>,downarrow,downarrow_of_subset). constr_name(<a href=%MML%waybel_0.html#K5>k5_waybel_0</a>,uparrow,uparrow_of_subset). constr_name(<a href=%MML%waybel_0.html#K6>k6_waybel_0</a>,downarrow__2,downarrow_of_element). constr_name(<a href=%MML%waybel_0.html#K7>k7_waybel_0</a>,uparrow__2,uparrow_of_element). constr_name(<a href=%MML%waybel_0.html#V12>v12_waybel_0</a>,lower,lower_relstr_subset). constr_name(<a href=%MML%waybel_0.html#V13>v13_waybel_0</a>,upper,upper_relstr_subset). constr_name(<a href=%MML%waybel_0.html#V14>v14_waybel_0</a>,principal__2,principal_relstr_ideal). constr_name(<a href=%MML%waybel_0.html#V15>v15_waybel_0</a>,principal__3,principal_relstr_filter). constr_name(<a href=%MML%waybel_0.html#K8>k8_waybel_0</a>,'Ids',ideals_of_relstr). constr_name(<a href=%MML%waybel_0.html#K9>k9_waybel_0</a>,'Filt',filters_of_relstr). constr_name(<a href=%MML%waybel_0.html#K10>k10_waybel_0</a>,'Ids_0',ideals0_of_relstr). constr_name(<a href=%MML%waybel_0.html#K11>k11_waybel_0</a>,'Filt_0',filters0_of_relstr). constr_name(<a href=%MML%waybel_0.html#K12>k12_waybel_0</a>,finsups,finsups_of_relstr_subset). constr_name(<a href=%MML%waybel_0.html#K13>k13_waybel_0</a>,fininfs,fininfs_of_relstr_subset). constr_name(<a href=%MML%waybel_0.html#V16>v16_waybel_0</a>,connected__7,connected_relstr). constr_name(<a href=%MML%waybel_0.html#R3>r3_waybel_0</a>,preserves_inf_of,preserves_inf_of). constr_name(<a href=%MML%waybel_0.html#R4>r4_waybel_0</a>,preserves_sup_of,preserves_sup_of). constr_name(<a href=%MML%waybel_0.html#V17>v17_waybel_0</a>,'infs-preserving',infs_preserving). constr_name(<a href=%MML%waybel_0.html#V18>v18_waybel_0</a>,'sups-preserving',sups_preserving). constr_name(<a href=%MML%waybel_0.html#V19>v19_waybel_0</a>,'meet-preserving',meet_preserving). constr_name(<a href=%MML%waybel_0.html#V20>v20_waybel_0</a>,'join-preserving',join_preserving). constr_name(<a href=%MML%waybel_0.html#V21>v21_waybel_0</a>,'filtered-infs-preserving',filtered_infs_preserving). constr_name(<a href=%MML%waybel_0.html#V22>v22_waybel_0</a>,'directed-sups-preserving',directed_sups_preserving). constr_name(<a href=%MML%waybel_0.html#V23>v23_waybel_0</a>,isomorphic__2,relstr_isomorphism). constr_name(<a href=%MML%waybel_0.html#V24>v24_waybel_0</a>,'up-complete',up_complete_relstr). constr_name(<a href=%MML%waybel_0.html#V25>v25_waybel_0</a>,'/\\-complete',join_complete_relstr). constr_name(<a href=%MML%knaster.html#V1>v1_knaster</a>,'c=-monotone__2',_). constr_name(<a href=%MML%knaster.html#K1>k1_knaster</a>,lfp,_). constr_name(<a href=%MML%knaster.html#K2>k2_knaster</a>,gfp,_). constr_name(<a href=%MML%knaster.html#K3>k3_knaster</a>,'.__100',_). constr_name(<a href=%MML%knaster.html#K4>k4_knaster</a>,'+.',_). constr_name(<a href=%MML%knaster.html#K5>k5_knaster</a>,'-.',_). constr_name(<a href=%MML%knaster.html#K6>k6_knaster</a>,'+.__2',_). constr_name(<a href=%MML%knaster.html#K7>k7_knaster</a>,'-.__2',_). constr_name(<a href=%MML%knaster.html#V2>v2_knaster</a>,with_suprema__2,with_suprema_subset_of_latt_str). constr_name(<a href=%MML%knaster.html#V3>v3_knaster</a>,with_infima__2,with_infima_subset_of_latt_str). constr_name(<a href=%MML%knaster.html#K8>k8_knaster</a>,latt__4,lattice_restriction). constr_name(<a href=%MML%knaster.html#K9>k9_knaster</a>,'FixPoints',fixpoints_of_lattice_unop). constr_name(<a href=%MML%knaster.html#K10>k10_knaster</a>,lfp__2,_). constr_name(<a href=%MML%knaster.html#K11>k11_knaster</a>,gfp__2,_). constr_name(<a href=%MML%yellow_1.html#K1>k1_yellow_1</a>,'RelIncl__2',_). constr_name(<a href=%MML%yellow_1.html#K2>k2_yellow_1</a>,'InclPoset',incl_POSet). constr_name(<a href=%MML%yellow_1.html#K3>k3_yellow_1</a>,'BoolePoset',boole_POSet). constr_name(<a href=%MML%yellow_1.html#V1>v1_yellow_1</a>,'RelStr-yielding',relstr_yielding). constr_name(<a href=%MML%yellow_1.html#K4>k4_yellow_1</a>,'.__101',_). constr_name(<a href=%MML%yellow_1.html#K5>k5_yellow_1</a>,product__7,_). constr_name(<a href=%MML%yellow_1.html#K6>k6_yellow_1</a>,'|^__15',_). constr_name(<a href=%MML%yellow_1.html#K7>k7_yellow_1</a>,'MonMaps',_). constr_name(<a href=%MML%yellow_2.html#K1>k1_yellow_2</a>,rng__19,_). constr_name(<a href=%MML%yellow_2.html#R1>r1_yellow_2</a>,'<=__6',_). constr_name(<a href=%MML%yellow_2.html#K2>k2_yellow_2</a>,'Image__5',_). constr_name(<a href=%MML%yellow_2.html#K3>k3_yellow_2</a>,'SupMap',_). constr_name(<a href=%MML%yellow_2.html#K4>k4_yellow_2</a>,'IdsMap',_). constr_name(<a href=%MML%yellow_2.html#K5>k5_yellow_2</a>,'\\\\/',_). constr_name(<a href=%MML%yellow_2.html#K6>k6_yellow_2</a>,'//\\',_). constr_name(<a href=%MML%yellow_2.html#K7>k7_yellow_2</a>,'.__102',_). constr_name(<a href=%MML%yellow_2.html#K8>k8_yellow_2</a>,rng__20,_). constr_name(<a href=%MML%waybel_1.html#V1>v1_waybel_1</a>,'one-to-one__4',one_to_one_on_structs). constr_name(<a href=%MML%waybel_1.html#V2>v2_waybel_1</a>,distributive__3,distributive_relstr). constr_name(<a href=%MML%waybel_1.html#R1>r1_waybel_1</a>,ex_min_of,ex_min_of_relstr_set). constr_name(<a href=%MML%waybel_1.html#R2>r2_waybel_1</a>,ex_max_of,ex_max_of_relstr_set). constr_name(<a href=%MML%waybel_1.html#R3>r3_waybel_1</a>,is_minimum_of,is_minimum_of_relstr_set). constr_name(<a href=%MML%waybel_1.html#R4>r4_waybel_1</a>,is_maximum_of,is_maximum_of_relstr_set). constr_name(<a href=%MML%waybel_1.html#R5>r5_waybel_1</a>,are_isomorphic__12,are_isomorphic_relstr). constr_name(<a href=%MML%waybel_1.html#M1>m1_waybel_1</a>,'Connection',connection). constr_name(<a href=%MML%waybel_1.html#K1>k1_waybel_1</a>,'[..]__23',ordered_pair_as_connection). constr_name(<a href=%MML%waybel_1.html#V3>v3_waybel_1</a>,'Galois',galois_connection). constr_name(<a href=%MML%waybel_1.html#V4>v4_waybel_1</a>,upper_adjoint,upper_adjoint). constr_name(<a href=%MML%waybel_1.html#V5>v5_waybel_1</a>,lower_adjoint,lower_adjoint). constr_name(<a href=%MML%waybel_1.html#V6>v6_waybel_1</a>,projection,projection_on_relstr). constr_name(<a href=%MML%waybel_1.html#V7>v7_waybel_1</a>,closure,closure_on_relstr). constr_name(<a href=%MML%waybel_1.html#V8>v8_waybel_1</a>,kernel,kernel_on_relstr). constr_name(<a href=%MML%waybel_1.html#K2>k2_waybel_1</a>,corestr,corestr_on_relstr). constr_name(<a href=%MML%waybel_1.html#K3>k3_waybel_1</a>,inclusion,inclusion_on_relstr). constr_name(<a href=%MML%waybel_1.html#K4>k4_waybel_1</a>,'"/\\"__12',meet_with_element). constr_name(<a href=%MML%waybel_1.html#V9>v9_waybel_1</a>,'Heyting__2',heyting_relstr). constr_name(<a href=%MML%waybel_1.html#K5>k5_waybel_1</a>,'=>__8',_). constr_name(<a href=%MML%waybel_1.html#K6>k6_waybel_1</a>,'=>__9',_). constr_name(<a href=%MML%waybel_1.html#K7>k7_waybel_1</a>,''not'__12',not_on_relstr). constr_name(<a href=%MML%waybel_1.html#R6>r6_waybel_1</a>,is_a_complement_of__2,is_a_complement_on_relstr). constr_name(<a href=%MML%waybel_1.html#V10>v10_waybel_1</a>,complemented__2,complemented_relstr). constr_name(<a href=%MML%waybel_1.html#V11>v11_waybel_1</a>,'Boolean__3',boolean_relstr). constr_name(<a href=%MML%yellow_3.html#K1>k1_yellow_3</a>,'[".."]',_). constr_name(<a href=%MML%yellow_3.html#K2>k2_yellow_3</a>,'[".."]__2',_). constr_name(<a href=%MML%yellow_3.html#K3>k3_yellow_3</a>,'[:..:]__28',_). constr_name(<a href=%MML%yellow_3.html#K4>k4_yellow_3</a>,proj1__3,_). constr_name(<a href=%MML%yellow_3.html#K5>k5_yellow_3</a>,proj2__3,_). constr_name(<a href=%MML%yellow_3.html#K6>k6_yellow_3</a>,'[:..:]__29',_). constr_name(<a href=%MML%yellow_3.html#K7>k7_yellow_3</a>,'[..]__24',_). constr_name(<a href=%MML%yellow_3.html#K8>k8_yellow_3</a>,'`1__21',_). constr_name(<a href=%MML%yellow_3.html#K9>k9_yellow_3</a>,'`2__27',_). constr_name(<a href=%MML%yellow_3.html#K10>k10_yellow_3</a>,'[:..:]__30',_). constr_name(<a href=%MML%yellow_3.html#K11>k11_yellow_3</a>,'[:..:]__31',_). constr_name(<a href=%MML%yellow_3.html#K12>k12_yellow_3</a>,'[:..:]__32',_). constr_name(<a href=%MML%yellow_3.html#K13>k13_yellow_3</a>,'[:..:]__33',_). constr_name(<a href=%MML%yellow_3.html#V1>v1_yellow_3</a>,void__3,_). constr_name(<a href=%MML%yellow_4.html#R1>r1_yellow_4</a>,is_finer_than__2,_). constr_name(<a href=%MML%yellow_4.html#R2>r2_yellow_4</a>,is_coarser_than__2,_). constr_name(<a href=%MML%yellow_4.html#R3>r3_yellow_4</a>,is_finer_than__3,_). constr_name(<a href=%MML%yellow_4.html#R4>r4_yellow_4</a>,is_coarser_than__3,_). constr_name(<a href=%MML%yellow_4.html#K1>k1_yellow_4</a>,'"\\/"__15',_). constr_name(<a href=%MML%yellow_4.html#K2>k2_yellow_4</a>,'"\\/"__16',_). constr_name(<a href=%MML%yellow_4.html#K3>k3_yellow_4</a>,'"/\\"__13',_). constr_name(<a href=%MML%yellow_4.html#K4>k4_yellow_4</a>,'"/\\"__14',_). constr_name(<a href=%MML%waybel_2.html#K1>k1_waybel_2</a>,sup__7,_). constr_name(<a href=%MML%waybel_2.html#K2>k2_waybel_2</a>,'FinSups',_). constr_name(<a href=%MML%waybel_2.html#K3>k3_waybel_2</a>,'"/\\"__15',_). constr_name(<a href=%MML%waybel_2.html#K4>k4_waybel_2</a>,inf_op,_). constr_name(<a href=%MML%waybel_2.html#K5>k5_waybel_2</a>,sup_op,_). constr_name(<a href=%MML%waybel_2.html#V1>v1_waybel_2</a>,satisfying_MC,_). constr_name(<a href=%MML%waybel_2.html#V2>v2_waybel_2</a>,'meet-continuous',_). constr_name(<a href=%MML%waybel_3.html#R1>r1_waybel_3</a>,is_way_below,_). constr_name(<a href=%MML%waybel_3.html#V1>v1_waybel_3</a>,compact__6,_). constr_name(<a href=%MML%waybel_3.html#K1>k1_waybel_3</a>,waybelow,_). constr_name(<a href=%MML%waybel_3.html#K2>k2_waybel_3</a>,wayabove,_). constr_name(<a href=%MML%waybel_3.html#V2>v2_waybel_3</a>,satisfying_axiom_of_approximation,_). constr_name(<a href=%MML%waybel_3.html#V3>v3_waybel_3</a>,continuous__4,_). constr_name(<a href=%MML%waybel_3.html#V4>v4_waybel_3</a>,'non-Empty',_). constr_name(<a href=%MML%waybel_3.html#V5>v5_waybel_3</a>,'reflexive-yielding',_). constr_name(<a href=%MML%waybel_3.html#K3>k3_waybel_3</a>,'.__103',_). constr_name(<a href=%MML%waybel_3.html#K4>k4_waybel_3</a>,'.__104',_). constr_name(<a href=%MML%waybel_3.html#K5>k5_waybel_3</a>,pi__7,_). constr_name(<a href=%MML%waybel_3.html#K6>k6_waybel_3</a>,'.__105',_). constr_name(<a href=%MML%waybel_3.html#K7>k7_waybel_3</a>,'.__106',_). constr_name(<a href=%MML%waybel_3.html#V6>v6_waybel_3</a>,'locally-compact',_). constr_name(<a href=%MML%waybel_4.html#K1>k1_waybel_4</a>,'-waybelow',_). constr_name(<a href=%MML%waybel_4.html#K2>k2_waybel_4</a>,'IntRel',_). constr_name(<a href=%MML%waybel_4.html#V1>v1_waybel_4</a>,'auxiliary(i)',_). constr_name(<a href=%MML%waybel_4.html#V2>v2_waybel_4</a>,'auxiliary(ii)',_). constr_name(<a href=%MML%waybel_4.html#V3>v3_waybel_4</a>,'auxiliary(iii)',_). constr_name(<a href=%MML%waybel_4.html#V4>v4_waybel_4</a>,'auxiliary(iv)',_). constr_name(<a href=%MML%waybel_4.html#V5>v5_waybel_4</a>,auxiliary,_). constr_name(<a href=%MML%waybel_4.html#K3>k3_waybel_4</a>,'Aux',_). constr_name(<a href=%MML%waybel_4.html#K4>k4_waybel_4</a>,'AuxBottom',_). constr_name(<a href=%MML%waybel_4.html#K5>k5_waybel_4</a>,'-below',_). constr_name(<a href=%MML%waybel_4.html#K6>k6_waybel_4</a>,'-above',_). constr_name(<a href=%MML%waybel_4.html#K7>k7_waybel_4</a>,'-below__2',_). constr_name(<a href=%MML%waybel_4.html#K8>k8_waybel_4</a>,'MonSet',_). constr_name(<a href=%MML%waybel_4.html#K9>k9_waybel_4</a>,'Rel2Map',_). constr_name(<a href=%MML%waybel_4.html#K10>k10_waybel_4</a>,'Map2Rel',_). constr_name(<a href=%MML%waybel_4.html#K11>k11_waybel_4</a>,'DownMap',_). constr_name(<a href=%MML%waybel_4.html#V6>v6_waybel_4</a>,approximating,_). constr_name(<a href=%MML%waybel_4.html#V7>v7_waybel_4</a>,approximating__2,_). constr_name(<a href=%MML%waybel_4.html#K12>k12_waybel_4</a>,'App',_). constr_name(<a href=%MML%waybel_4.html#V8>v8_waybel_4</a>,satisfying_SI,_). constr_name(<a href=%MML%waybel_4.html#V9>v9_waybel_4</a>,satisfying_INT,_). constr_name(<a href=%MML%waybel_4.html#R1>r1_waybel_4</a>,is_directed_wrt,_). constr_name(<a href=%MML%waybel_4.html#R2>r2_waybel_4</a>,is_maximal_wrt,_). constr_name(<a href=%MML%waybel_4.html#R3>r3_waybel_4</a>,is_maximal_in__2,_). constr_name(<a href=%MML%waybel_4.html#R4>r4_waybel_4</a>,is_minimal_wrt,_). constr_name(<a href=%MML%waybel_4.html#R5>r5_waybel_4</a>,is_minimal_in__2,_). constr_name(<a href=%MML%twoscomp.html#K1>k1_twoscomp</a>,'.__107',_). constr_name(<a href=%MML%twoscomp.html#K2>k2_twoscomp</a>,and2,_). constr_name(<a href=%MML%twoscomp.html#K3>k3_twoscomp</a>,and2a,_). constr_name(<a href=%MML%twoscomp.html#K4>k4_twoscomp</a>,and2b,_). constr_name(<a href=%MML%twoscomp.html#K5>k5_twoscomp</a>,nand2,_). constr_name(<a href=%MML%twoscomp.html#K6>k6_twoscomp</a>,nand2a,_). constr_name(<a href=%MML%twoscomp.html#K7>k7_twoscomp</a>,nand2b,_). constr_name(<a href=%MML%twoscomp.html#K8>k8_twoscomp</a>,or2,_). constr_name(<a href=%MML%twoscomp.html#K9>k9_twoscomp</a>,or2a,_). constr_name(<a href=%MML%twoscomp.html#K10>k10_twoscomp</a>,or2b,_). constr_name(<a href=%MML%twoscomp.html#K11>k11_twoscomp</a>,nor2,_). constr_name(<a href=%MML%twoscomp.html#K12>k12_twoscomp</a>,nor2a,_). constr_name(<a href=%MML%twoscomp.html#K13>k13_twoscomp</a>,nor2b,_). constr_name(<a href=%MML%twoscomp.html#K14>k14_twoscomp</a>,xor2,_). constr_name(<a href=%MML%twoscomp.html#K15>k15_twoscomp</a>,xor2a,_). constr_name(<a href=%MML%twoscomp.html#K16>k16_twoscomp</a>,xor2b,_). constr_name(<a href=%MML%twoscomp.html#K17>k17_twoscomp</a>,and3,_). constr_name(<a href=%MML%twoscomp.html#K18>k18_twoscomp</a>,and3a,_). constr_name(<a href=%MML%twoscomp.html#K19>k19_twoscomp</a>,and3b,_). constr_name(<a href=%MML%twoscomp.html#K20>k20_twoscomp</a>,and3c,_). constr_name(<a href=%MML%twoscomp.html#K21>k21_twoscomp</a>,nand3,_). constr_name(<a href=%MML%twoscomp.html#K22>k22_twoscomp</a>,nand3a,_). constr_name(<a href=%MML%twoscomp.html#K23>k23_twoscomp</a>,nand3b,_). constr_name(<a href=%MML%twoscomp.html#K24>k24_twoscomp</a>,nand3c,_). constr_name(<a href=%MML%twoscomp.html#K25>k25_twoscomp</a>,or3__2,_). constr_name(<a href=%MML%twoscomp.html#K26>k26_twoscomp</a>,or3a,_). constr_name(<a href=%MML%twoscomp.html#K27>k27_twoscomp</a>,or3b,_). constr_name(<a href=%MML%twoscomp.html#K28>k28_twoscomp</a>,or3c,_). constr_name(<a href=%MML%twoscomp.html#K29>k29_twoscomp</a>,nor3,_). constr_name(<a href=%MML%twoscomp.html#K30>k30_twoscomp</a>,nor3a,_). constr_name(<a href=%MML%twoscomp.html#K31>k31_twoscomp</a>,nor3b,_). constr_name(<a href=%MML%twoscomp.html#K32>k32_twoscomp</a>,nor3c,_). constr_name(<a href=%MML%twoscomp.html#K33>k33_twoscomp</a>,xor3,_). constr_name(<a href=%MML%twoscomp.html#K34>k34_twoscomp</a>,'CompStr',_). constr_name(<a href=%MML%twoscomp.html#K35>k35_twoscomp</a>,'CompCirc',_). constr_name(<a href=%MML%twoscomp.html#K36>k36_twoscomp</a>,'CompOutput',_). constr_name(<a href=%MML%twoscomp.html#K37>k37_twoscomp</a>,'IncrementStr',_). constr_name(<a href=%MML%twoscomp.html#K38>k38_twoscomp</a>,'IncrementCirc',_). constr_name(<a href=%MML%twoscomp.html#K39>k39_twoscomp</a>,'IncrementOutput',_). constr_name(<a href=%MML%twoscomp.html#K40>k40_twoscomp</a>,'BitCompStr',_). constr_name(<a href=%MML%twoscomp.html#K41>k41_twoscomp</a>,'BitCompCirc',_). constr_name(<a href=%MML%yellow_5.html#K1>k1_yellow_5</a>,'\\__18',_). constr_name(<a href=%MML%yellow_5.html#K2>k2_yellow_5</a>,'\\+\\__10',_). constr_name(<a href=%MML%yellow_5.html#K3>k3_yellow_5</a>,'\\+\\__11',_). constr_name(<a href=%MML%yellow_5.html#R1>r1_yellow_5</a>,meets__4,_). constr_name(<a href=%MML%yellow_5.html#R2>r2_yellow_5</a>,meets__5,_). constr_name(<a href=%MML%yellow_6.html#K1>k1_yellow_6</a>,the_value_of,the_value_of_constant_func). constr_name(<a href=%MML%yellow_6.html#K2>k2_yellow_6</a>,the_universe_of,universe_of_a_set). constr_name(<a href=%MML%yellow_6.html#K3>k3_yellow_6</a>,'.__108',_). constr_name(<a href=%MML%yellow_6.html#V1>v1_yellow_6</a>,constant__3,constant_net_str). constr_name(<a href=%MML%yellow_6.html#K4>k4_yellow_6</a>,'-->__23',_). constr_name(<a href=%MML%yellow_6.html#M1>m1_yellow_6</a>,'SubNetStr',subnetstr). constr_name(<a href=%MML%yellow_6.html#V2>v2_yellow_6</a>,full__6,full_subnetstr). constr_name(<a href=%MML%yellow_6.html#K5>k5_yellow_6</a>,the_value_of__2,the_value_of_constant_net_str). constr_name(<a href=%MML%yellow_6.html#M2>m2_yellow_6</a>,subnet,subnet). constr_name(<a href=%MML%yellow_6.html#K6>k6_yellow_6</a>,'"__33',_). constr_name(<a href=%MML%yellow_6.html#K7>k7_yellow_6</a>,'NetUniv',_). constr_name(<a href=%MML%yellow_6.html#M3>m3_yellow_6</a>,net_set,_). constr_name(<a href=%MML%yellow_6.html#K8>k8_yellow_6</a>,'.__109',_). constr_name(<a href=%MML%yellow_6.html#K9>k9_yellow_6</a>,'Iterated',_). constr_name(<a href=%MML%yellow_6.html#K10>k10_yellow_6</a>,'OpenNeighborhoods',open_neighborhoods). constr_name(<a href=%MML%yellow_6.html#K11>k11_yellow_6</a>,'Lim__2',lim_points_of_net). constr_name(<a href=%MML%yellow_6.html#V3>v3_yellow_6</a>,convergent__7,convergent_net). constr_name(<a href=%MML%yellow_6.html#K12>k12_yellow_6</a>,lim__12,lim_of_convergent_net_on_t2). constr_name(<a href=%MML%yellow_6.html#M4>m4_yellow_6</a>,'Convergence-Class',_). constr_name(<a href=%MML%yellow_6.html#K13>k13_yellow_6</a>,'Convergence',_). constr_name(<a href=%MML%yellow_6.html#V4>v4_yellow_6</a>,'(CONSTANTS)',_). constr_name(<a href=%MML%yellow_6.html#V5>v5_yellow_6</a>,'(SUBNETS)',_). constr_name(<a href=%MML%yellow_6.html#V6>v6_yellow_6</a>,'(DIVERGENCE)',_). constr_name(<a href=%MML%yellow_6.html#V7>v7_yellow_6</a>,'(ITERATED_LIMITS)',_). constr_name(<a href=%MML%yellow_6.html#K14>k14_yellow_6</a>,'ConvergenceSpace',_). constr_name(<a href=%MML%yellow_6.html#V8>v8_yellow_6</a>,topological__3,_). constr_name(<a href=%MML%waybel_5.html#K1>k1_waybel_5</a>,'.__110',_). constr_name(<a href=%MML%waybel_5.html#K2>k2_waybel_5</a>,'Frege__4',_). constr_name(<a href=%MML%waybel_5.html#K3>k3_waybel_5</a>,'.__111',_). constr_name(<a href=%MML%waybel_5.html#K4>k4_waybel_5</a>,'\\//',_). constr_name(<a href=%MML%waybel_5.html#K5>k5_waybel_5</a>,'/\\\\',_). constr_name(<a href=%MML%waybel_5.html#K6>k6_waybel_5</a>,curry__5,_). constr_name(<a href=%MML%waybel_5.html#V1>v1_waybel_5</a>,'completely-distributive',_). constr_name(<a href=%MML%waybel_5.html#K7>k7_waybel_5</a>,'=>__10',_). constr_name(<a href=%MML%waybel_5.html#K8>k8_waybel_5</a>,'=>__11',_). constr_name(<a href=%MML%yellow_7.html#K1>k1_yellow_7</a>,'ComplMap',_). constr_name(<a href=%MML%yellow_7.html#K2>k2_yellow_7</a>,'..__12',_). constr_name(<a href=%MML%waybel_6.html#K1>k1_waybel_6</a>,iter__3,_). constr_name(<a href=%MML%waybel_6.html#K2>k2_waybel_6</a>,'.__112',_). constr_name(<a href=%MML%waybel_6.html#V1>v1_waybel_6</a>,'Open',_). constr_name(<a href=%MML%waybel_6.html#V2>v2_waybel_6</a>,'meet-irreducible',_). constr_name(<a href=%MML%waybel_6.html#V3>v3_waybel_6</a>,'join-irreducible',_). constr_name(<a href=%MML%waybel_6.html#K3>k3_waybel_6</a>,'IRR',_). constr_name(<a href=%MML%waybel_6.html#V4>v4_waybel_6</a>,'order-generating',_). constr_name(<a href=%MML%waybel_6.html#V5>v5_waybel_6</a>,prime__4,_). constr_name(<a href=%MML%waybel_6.html#K4>k4_waybel_6</a>,'PRIME',_). constr_name(<a href=%MML%waybel_6.html#V6>v6_waybel_6</a>,'co-prime',_). constr_name(<a href=%MML%waybel_7.html#V1>v1_waybel_7</a>,prime__5,_). constr_name(<a href=%MML%waybel_7.html#V2>v2_waybel_7</a>,prime__6,_). constr_name(<a href=%MML%waybel_7.html#V3>v3_waybel_7</a>,ultra__2,_). constr_name(<a href=%MML%waybel_7.html#R1>r1_waybel_7</a>,is_a_cluster_point_of,_). constr_name(<a href=%MML%waybel_7.html#R2>r2_waybel_7</a>,is_a_convergence_point_of,_). constr_name(<a href=%MML%waybel_7.html#V4>v4_waybel_7</a>,pseudoprime,_). constr_name(<a href=%MML%waybel_7.html#V5>v5_waybel_7</a>,multiplicative__6,_). constr_name(<a href=%MML%waybel_8.html#K1>k1_waybel_8</a>,'CompactSublatt',_). constr_name(<a href=%MML%waybel_8.html#K2>k2_waybel_8</a>,compactbelow,_). constr_name(<a href=%MML%waybel_8.html#V1>v1_waybel_8</a>,satisfying_axiom_K,_). constr_name(<a href=%MML%waybel_8.html#V2>v2_waybel_8</a>,algebraic,_). constr_name(<a href=%MML%waybel_8.html#V3>v3_waybel_8</a>,arithmetic,_). constr_name(<a href=%MML%jordan3.html#K1>k1_jordan3</a>,mid,_). constr_name(<a href=%MML%jordan3.html#K2>k2_jordan3</a>,'Index__2',_). constr_name(<a href=%MML%jordan3.html#R1>r1_jordan3</a>,'is_S-Seq_joining',_). constr_name(<a href=%MML%jordan3.html#K3>k3_jordan3</a>,'L_Cut',_). constr_name(<a href=%MML%jordan3.html#K4>k4_jordan3</a>,'R_Cut',_). constr_name(<a href=%MML%jordan3.html#R2>r2_jordan3</a>,'LE',_). constr_name(<a href=%MML%jordan3.html#R3>r3_jordan3</a>,'LT',_). constr_name(<a href=%MML%jordan3.html#K5>k5_jordan3</a>,'B_Cut',_). constr_name(<a href=%MML%waybel_9.html#K1>k1_waybel_9</a>,'"/\\"__16',_). constr_name(<a href=%MML%waybel_9.html#K2>k2_waybel_9</a>,inf__7,_). constr_name(<a href=%MML%waybel_9.html#R1>r1_waybel_9</a>,ex_sup_of__2,_). constr_name(<a href=%MML%waybel_9.html#R2>r2_waybel_9</a>,ex_inf_of__2,_). constr_name(<a href=%MML%waybel_9.html#K3>k3_waybel_9</a>,'+id',_). constr_name(<a href=%MML%waybel_9.html#K4>k4_waybel_9</a>,'opp+id',_). constr_name(<a href=%MML%waybel_9.html#K5>k5_waybel_9</a>,'|__25',_). constr_name(<a href=%MML%waybel_9.html#K6>k6_waybel_9</a>,'|__26',_). constr_name(<a href=%MML%waybel_9.html#K7>k7_waybel_9</a>,'*__112',_). constr_name(<a href=%MML%waybel_9.html#L1>l1_waybel_9</a>,'TopRelStr',_). constr_name(<a href=%MML%waybel_9.html#V1>v1_waybel_9</a>,strict__TopRelStr,_). constr_name(<a href=%MML%waybel_9.html#G1>g1_waybel_9</a>,'TopRelStr_constr',_). constr_name(<a href=%MML%waybel_9.html#R3>r3_waybel_9</a>,is_a_cluster_point_of__2,_). constr_name(<a href=%MML%instalg1.html#V1>v1_instalg1</a>,feasible__3,_). constr_name(<a href=%MML%instalg1.html#M1>m1_instalg1</a>,'Subsignature',_). constr_name(<a href=%MML%instalg1.html#K1>k1_instalg1</a>,'|__27',_). constr_name(<a href=%MML%instalg1.html#K2>k2_instalg1</a>,'|__28',_). constr_name(<a href=%MML%instalg1.html#K3>k3_instalg1</a>,hom__5,_). constr_name(<a href=%MML%yellow_8.html#M1>m1_yellow_8</a>,'Basis__5',_). constr_name(<a href=%MML%yellow_8.html#V1>v1_yellow_8</a>,'Baire',_). constr_name(<a href=%MML%yellow_8.html#V2>v2_yellow_8</a>,irreducible,_). constr_name(<a href=%MML%yellow_8.html#R1>r1_yellow_8</a>,is_dense_point_of,_). constr_name(<a href=%MML%yellow_8.html#V3>v3_yellow_8</a>,sober,_). constr_name(<a href=%MML%yellow_8.html#K1>k1_yellow_8</a>,'CofinTop',_). constr_name(<a href=%MML%waybel10.html#K1>k1_waybel10</a>,opp__15,_). constr_name(<a href=%MML%waybel10.html#K2>k2_waybel10</a>,'|__29',_). constr_name(<a href=%MML%waybel10.html#K3>k3_waybel10</a>,'ClOpers',_). constr_name(<a href=%MML%waybel10.html#K4>k4_waybel10</a>,'Sub__3',_). constr_name(<a href=%MML%waybel10.html#K5>k5_waybel10</a>,'ClosureSystems',_). constr_name(<a href=%MML%waybel10.html#K6>k6_waybel10</a>,'ClImageMap',_). constr_name(<a href=%MML%waybel10.html#K7>k7_waybel10</a>,closure_op,_). constr_name(<a href=%MML%waybel10.html#K8>k8_waybel10</a>,'DsupClOpers',_). constr_name(<a href=%MML%waybel10.html#K9>k9_waybel10</a>,'Subalgebras',_). constr_name(<a href=%MML%catalg_1.html#K1>k1_catalg_1</a>,'-MSF',_). constr_name(<a href=%MML%catalg_1.html#V1>v1_catalg_1</a>,empty__4,_). constr_name(<a href=%MML%catalg_1.html#K2>k2_catalg_1</a>,'CatSign',_). constr_name(<a href=%MML%catalg_1.html#V2>v2_catalg_1</a>,'Categorial__2',_). constr_name(<a href=%MML%catalg_1.html#M1>m1_catalg_1</a>,'CatSignature',_). constr_name(<a href=%MML%catalg_1.html#K3>k3_catalg_1</a>,'CatSign__2',_). constr_name(<a href=%MML%catalg_1.html#K4>k4_catalg_1</a>,underlay,_). constr_name(<a href=%MML%catalg_1.html#V3>v3_catalg_1</a>,'delta-concrete',_). constr_name(<a href=%MML%catalg_1.html#K5>k5_catalg_1</a>,idsym,_). constr_name(<a href=%MML%catalg_1.html#K6>k6_catalg_1</a>,homsym,_). constr_name(<a href=%MML%catalg_1.html#K7>k7_catalg_1</a>,compsym,_). constr_name(<a href=%MML%catalg_1.html#K8>k8_catalg_1</a>,idsym__2,_). constr_name(<a href=%MML%catalg_1.html#K9>k9_catalg_1</a>,homsym__2,_). constr_name(<a href=%MML%catalg_1.html#K10>k10_catalg_1</a>,compsym__2,_). constr_name(<a href=%MML%catalg_1.html#K11>k11_catalg_1</a>,'Upsilon',_). constr_name(<a href=%MML%catalg_1.html#K12>k12_catalg_1</a>,'Psi',_). constr_name(<a href=%MML%catalg_1.html#K13>k13_catalg_1</a>,'MSAlg__3',_). constr_name(<a href=%MML%waybel11.html#V1>v1_waybel11</a>,inaccessible_by_directed_joins,_). constr_name(<a href=%MML%waybel11.html#V2>v2_waybel11</a>,closed_under_directed_sups,_). constr_name(<a href=%MML%waybel11.html#V3>v3_waybel11</a>,'property(S)',_). constr_name(<a href=%MML%waybel11.html#V4>v4_waybel11</a>,'Scott',_). constr_name(<a href=%MML%waybel11.html#K1>k1_waybel11</a>,lim_inf__2,_). constr_name(<a href=%MML%waybel11.html#R1>r1_waybel11</a>,'is_S-limit_of',_). constr_name(<a href=%MML%waybel11.html#K2>k2_waybel11</a>,'Scott-Convergence',_). constr_name(<a href=%MML%waybel11.html#K3>k3_waybel11</a>,'Net-Str',_). constr_name(<a href=%MML%waybel11.html#K4>k4_waybel11</a>,'Net-Str__2',_). constr_name(<a href=%MML%waybel11.html#K5>k5_waybel11</a>,sigma__2,_). constr_name(<a href=%MML%waybel12.html#V1>v1_waybel12</a>,dense__3,_). constr_name(<a href=%MML%waybel12.html#M1>m1_waybel12</a>,'GeneratorSet__3',_). constr_name(<a href=%MML%waybel12.html#V2>v2_waybel12</a>,dense__4,_). constr_name(<a href=%MML%waybel12.html#V3>v3_waybel12</a>,dense__5,_). constr_name(<a href=%MML%altcat_3.html#R1>r1_altcat_3</a>,is_left_inverse_of,_). constr_name(<a href=%MML%altcat_3.html#V1>v1_altcat_3</a>,retraction__2,_). constr_name(<a href=%MML%altcat_3.html#V2>v2_altcat_3</a>,coretraction__2,_). constr_name(<a href=%MML%altcat_3.html#K1>k1_altcat_3</a>,'"__34',_). constr_name(<a href=%MML%altcat_3.html#V3>v3_altcat_3</a>,iso,_). constr_name(<a href=%MML%altcat_3.html#R2>r2_altcat_3</a>,are_iso,_). constr_name(<a href=%MML%altcat_3.html#V4>v4_altcat_3</a>,mono,_). constr_name(<a href=%MML%altcat_3.html#V5>v5_altcat_3</a>,epi__2,_). constr_name(<a href=%MML%altcat_3.html#V6>v6_altcat_3</a>,initial__3,_). constr_name(<a href=%MML%altcat_3.html#V7>v7_altcat_3</a>,terminal__2,_). constr_name(<a href=%MML%altcat_3.html#V8>v8_altcat_3</a>,'_zero',_). constr_name(<a href=%MML%altcat_3.html#V9>v9_altcat_3</a>,'_zero__2',_). constr_name(<a href=%MML%wellfnd1.html#K1>k1_wellfnd1</a>,dom__20,_). constr_name(<a href=%MML%wellfnd1.html#V1>v1_wellfnd1</a>,well_founded__2,_). constr_name(<a href=%MML%wellfnd1.html#V2>v2_wellfnd1</a>,well_founded__3,_). constr_name(<a href=%MML%wellfnd1.html#K2>k2_wellfnd1</a>,'well_founded-Part',_). constr_name(<a href=%MML%wellfnd1.html#R1>r1_wellfnd1</a>,is_recursively_expressed_by,_). constr_name(<a href=%MML%wellfnd1.html#V3>v3_wellfnd1</a>,descending,_). constr_name(<a href=%MML%jordan4.html#K1>k1_jordan4</a>,'S_Drop',_). constr_name(<a href=%MML%jordan4.html#R1>r1_jordan4</a>,'is_a_part>_of',_). constr_name(<a href=%MML%jordan4.html#R2>r2_jordan4</a>,'is_a_part<_of',_). constr_name(<a href=%MML%jordan4.html#R3>r3_jordan4</a>,is_a_part_of,_). constr_name(<a href=%MML%jordan4.html#K2>k2_jordan4</a>,'Lower',_). constr_name(<a href=%MML%jordan4.html#K3>k3_jordan4</a>,'Upper',_). constr_name(<a href=%MML%substlat.html#K1>k1_substlat</a>,'SubstitutionSet',_). constr_name(<a href=%MML%substlat.html#K2>k2_substlat</a>,'\\/__18',_). constr_name(<a href=%MML%substlat.html#K3>k3_substlat</a>,mi__2,_). constr_name(<a href=%MML%substlat.html#K4>k4_substlat</a>,'^__17',_). constr_name(<a href=%MML%substlat.html#K5>k5_substlat</a>,'SubstLatt',_). constr_name(<a href=%MML%equation.html#K1>k1_equation</a>,'""__2',_). constr_name(<a href=%MML%equation.html#K2>k2_equation</a>,'SuperAlgebraSet',_). constr_name(<a href=%MML%equation.html#K3>k3_equation</a>,'TermAlg',_). constr_name(<a href=%MML%equation.html#K4>k4_equation</a>,'Equations',_). constr_name(<a href=%MML%equation.html#K5>k5_equation</a>,''='__2',_). constr_name(<a href=%MML%equation.html#R1>r1_equation</a>,'|=__6',_). constr_name(<a href=%MML%equation.html#R2>r2_equation</a>,'|=__7',_). constr_name(<a href=%MML%functor2.html#R1>r1_functor2</a>,is_transformable_to__3,_). constr_name(<a href=%MML%functor2.html#M1>m1_functor2</a>,transformation__2,_). constr_name(<a href=%MML%functor2.html#K1>k1_functor2</a>,idt,_). constr_name(<a href=%MML%functor2.html#K2>k2_functor2</a>,'!__9',_). constr_name(<a href=%MML%functor2.html#K3>k3_functor2</a>,'`*`__4',_). constr_name(<a href=%MML%functor2.html#R2>r2_functor2</a>,is_naturally_transformable_to__2,alt__is_naturally_transformable_to). constr_name(<a href=%MML%functor2.html#M2>m2_functor2</a>,natural_transformation__2,alt__natural_transformation). constr_name(<a href=%MML%functor2.html#K4>k4_functor2</a>,idt__2,_). constr_name(<a href=%MML%functor2.html#K5>k5_functor2</a>,'`*`__5',_). constr_name(<a href=%MML%functor2.html#K6>k6_functor2</a>,'Funcs__8',_). constr_name(<a href=%MML%functor2.html#K7>k7_functor2</a>,'Funct__3',_). constr_name(<a href=%MML%functor2.html#K8>k8_functor2</a>,'Functors__2',_). constr_name(<a href=%MML%yoneda_1.html#K1>k1_yoneda_1</a>,'EnsHom',_). constr_name(<a href=%MML%yoneda_1.html#K2>k2_yoneda_1</a>,'<|..,?>',_). constr_name(<a href=%MML%yoneda_1.html#K3>k3_yoneda_1</a>,'<|..,?>__2',_). constr_name(<a href=%MML%yoneda_1.html#K4>k4_yoneda_1</a>,'Yoneda',_). constr_name(<a href=%MML%yoneda_1.html#K5>k5_yoneda_1</a>,'.__113',_). constr_name(<a href=%MML%yoneda_1.html#V1>v1_yoneda_1</a>,faithful__3,_). constr_name(<a href=%MML%yoneda_1.html#V2>v2_yoneda_1</a>,full__7,_). constr_name(<a href=%MML%gcd_1.html#R1>r1_gcd_1</a>,divides__4,_). constr_name(<a href=%MML%gcd_1.html#R2>r2_gcd_1</a>,divides__5,_). constr_name(<a href=%MML%gcd_1.html#V1>v1_gcd_1</a>,unital__2,_). constr_name(<a href=%MML%gcd_1.html#R3>r3_gcd_1</a>,is_associated_to,_). constr_name(<a href=%MML%gcd_1.html#R4>r4_gcd_1</a>,is_associated_to__2,_). constr_name(<a href=%MML%gcd_1.html#K1>k1_gcd_1</a>,'/__25',_). constr_name(<a href=%MML%gcd_1.html#K2>k2_gcd_1</a>,'Class__7',_). constr_name(<a href=%MML%gcd_1.html#K3>k3_gcd_1</a>,'Classes',_). constr_name(<a href=%MML%gcd_1.html#M1>m1_gcd_1</a>,'Am',_). constr_name(<a href=%MML%gcd_1.html#M2>m2_gcd_1</a>,'AmpleSet',_). constr_name(<a href=%MML%gcd_1.html#K4>k4_gcd_1</a>,'NF',_). constr_name(<a href=%MML%gcd_1.html#V2>v2_gcd_1</a>,multiplicative__7,_). constr_name(<a href=%MML%gcd_1.html#V3>v3_gcd_1</a>,'gcd-like',_). constr_name(<a href=%MML%gcd_1.html#K5>k5_gcd_1</a>,gcd__2,_). constr_name(<a href=%MML%gcd_1.html#R5>r5_gcd_1</a>,are_canonical_wrt,_). constr_name(<a href=%MML%gcd_1.html#R6>r6_gcd_1</a>,'are_co-prime',_). constr_name(<a href=%MML%gcd_1.html#R7>r7_gcd_1</a>,'are_co-prime__2',_). constr_name(<a href=%MML%gcd_1.html#R8>r8_gcd_1</a>,are_normalized_wrt,_). constr_name(<a href=%MML%gcd_1.html#K6>k6_gcd_1</a>,add1,_). constr_name(<a href=%MML%gcd_1.html#K7>k7_gcd_1</a>,add2,_). constr_name(<a href=%MML%gcd_1.html#K8>k8_gcd_1</a>,mult1,_). constr_name(<a href=%MML%gcd_1.html#K9>k9_gcd_1</a>,mult2,_). constr_name(<a href=%MML%birkhoff.html#K1>k1_birkhoff</a>,'-hash',_). constr_name(<a href=%MML%closure3.html#R1>r1_closure3</a>,is_finer_than__4,_). constr_name(<a href=%MML%closure3.html#R2>r2_closure3</a>,is_coarser_than__4,_). constr_name(<a href=%MML%closure3.html#K1>k1_closure3</a>,supp,_). constr_name(<a href=%MML%closure3.html#K2>k2_closure3</a>,'MSUnion',_). constr_name(<a href=%MML%closure3.html#M1>m1_closure3</a>,'Element__46',_). constr_name(<a href=%MML%closure3.html#K3>k3_closure3</a>,'\\/__19',_). constr_name(<a href=%MML%closure3.html#K4>k4_closure3</a>,'/\\__29',_). constr_name(<a href=%MML%closure3.html#V1>v1_closure3</a>,algebraic__2,_). constr_name(<a href=%MML%closure3.html#V2>v2_closure3</a>,algebraic__3,_). constr_name(<a href=%MML%closure3.html#K5>k5_closure3</a>,'SubAlgCl',_). constr_name(<a href=%MML%rlvect_5.html#V1>v1_rlvect_5</a>,'finite-dimensional__2',_). constr_name(<a href=%MML%rlvect_5.html#K1>k1_rlvect_5</a>,dim__2,_). constr_name(<a href=%MML%rlvect_5.html#K2>k2_rlvect_5</a>,'Subspaces_of__2',_). constr_name(<a href=%MML%graph_3.html#M1>m1_graph_3</a>,'Element__47',_). constr_name(<a href=%MML%graph_3.html#K1>k1_graph_3</a>,'-VSet__2',_). constr_name(<a href=%MML%graph_3.html#K2>k2_graph_3</a>,'Edges_In',_). constr_name(<a href=%MML%graph_3.html#K3>k3_graph_3</a>,'Edges_Out',_). constr_name(<a href=%MML%graph_3.html#K4>k4_graph_3</a>,'Edges_At',_). constr_name(<a href=%MML%graph_3.html#K5>k5_graph_3</a>,'Edges_In__2',_). constr_name(<a href=%MML%graph_3.html#K6>k6_graph_3</a>,'Edges_Out__2',_). constr_name(<a href=%MML%graph_3.html#K7>k7_graph_3</a>,'Degree__2',_). constr_name(<a href=%MML%graph_3.html#K8>k8_graph_3</a>,'AddNewEdge',_). constr_name(<a href=%MML%graph_3.html#K9>k9_graph_3</a>,'-CycleSet',_). constr_name(<a href=%MML%graph_3.html#K10>k10_graph_3</a>,'Rotate__2',_). constr_name(<a href=%MML%graph_3.html#K11>k11_graph_3</a>,'CatCycles',_). constr_name(<a href=%MML%graph_3.html#K12>k12_graph_3</a>,'-PathSet',_). constr_name(<a href=%MML%graph_3.html#K13>k13_graph_3</a>,'-CycleSet__2',_). constr_name(<a href=%MML%graph_3.html#K14>k14_graph_3</a>,'ExtendCycle',_). constr_name(<a href=%MML%graph_3.html#V1>v1_graph_3</a>,'Eulerian',_). constr_name(<a href=%MML%waybel14.html#V1>v1_waybel14</a>,'jointly_Scott-continuous',_). constr_name(<a href=%MML%borsuk_2.html#R1>r1_borsuk_2</a>,are_connected,_). constr_name(<a href=%MML%borsuk_2.html#R2>r2_borsuk_2</a>,are_connected__2,_). constr_name(<a href=%MML%borsuk_2.html#M1>m1_borsuk_2</a>,'Path',_). constr_name(<a href=%MML%borsuk_2.html#V1>v1_borsuk_2</a>,arcwise_connected,_). constr_name(<a href=%MML%borsuk_2.html#K1>k1_borsuk_2</a>,'+__69',_). constr_name(<a href=%MML%borsuk_2.html#K2>k2_borsuk_2</a>,'-__83',_). constr_name(<a href=%MML%borsuk_2.html#K3>k3_borsuk_2</a>,'[:..:]__34',_). constr_name(<a href=%MML%borsuk_2.html#R3>r3_borsuk_2</a>,are_homotopic,_). constr_name(<a href=%MML%borsuk_2.html#R4>r4_borsuk_2</a>,are_homotopic__2,_). constr_name(<a href=%MML%jordan5c.html#K1>k1_jordan5c</a>,'First_Point',_). constr_name(<a href=%MML%jordan5c.html#K2>k2_jordan5c</a>,'Last_Point',_). constr_name(<a href=%MML%jordan5c.html#R1>r1_jordan5c</a>,'LE__2',_). constr_name(<a href=%MML%altcat_4.html#K1>k1_altcat_4</a>,'AllMono',_). constr_name(<a href=%MML%altcat_4.html#K2>k2_altcat_4</a>,'AllEpi',_). constr_name(<a href=%MML%altcat_4.html#K3>k3_altcat_4</a>,'AllRetr',_). constr_name(<a href=%MML%altcat_4.html#K4>k4_altcat_4</a>,'AllCoretr',_). constr_name(<a href=%MML%altcat_4.html#K5>k5_altcat_4</a>,'AllIso',_). constr_name(<a href=%MML%scmfsa8c.html#K1>k1_scmfsa8c</a>,loop,_). constr_name(<a href=%MML%scmfsa8c.html#K2>k2_scmfsa8c</a>,'Times',_). constr_name(<a href=%MML%waybel15.html#V1>v1_waybel15</a>,atom,_). constr_name(<a href=%MML%waybel15.html#K1>k1_waybel15</a>,'ATOM',_). constr_name(<a href=%MML%jordan2b.html#K1>k1_jordan2b</a>,'Proj__2',_). constr_name(<a href=%MML%jordan2b.html#K2>k2_jordan2b</a>,'|[..]|__2',_). constr_name(<a href=%MML%lattice5.html#K1>k1_lattice5</a>,'EqRelLATT',_). constr_name(<a href=%MML%lattice5.html#K2>k2_lattice5</a>,'Image__6',_). constr_name(<a href=%MML%lattice5.html#R1>r1_lattice5</a>,are_joint_by,_). constr_name(<a href=%MML%lattice5.html#K3>k3_lattice5</a>,type_of,_). constr_name(<a href=%MML%lattice5.html#K4>k4_lattice5</a>,'.__114',_). constr_name(<a href=%MML%lattice5.html#V1>v1_lattice5</a>,symmetric__5,_). constr_name(<a href=%MML%lattice5.html#V2>v2_lattice5</a>,zeroed__2,_). constr_name(<a href=%MML%lattice5.html#V3>v3_lattice5</a>,'u.t.i.',_). constr_name(<a href=%MML%lattice5.html#K5>k5_lattice5</a>,alpha,_). constr_name(<a href=%MML%lattice5.html#K6>k6_lattice5</a>,new_set,_). constr_name(<a href=%MML%lattice5.html#K7>k7_lattice5</a>,new_bi_fun,_). constr_name(<a href=%MML%lattice5.html#K8>k8_lattice5</a>,'DistEsti',_). constr_name(<a href=%MML%lattice5.html#K9>k9_lattice5</a>,'ConsecutiveSet',_). constr_name(<a href=%MML%lattice5.html#M1>m1_lattice5</a>,'QuadrSeq',_). constr_name(<a href=%MML%lattice5.html#K10>k10_lattice5</a>,'Quadr',_). constr_name(<a href=%MML%lattice5.html#K11>k11_lattice5</a>,'BiFun',_). constr_name(<a href=%MML%lattice5.html#K12>k12_lattice5</a>,'ConsecutiveDelta',_). constr_name(<a href=%MML%lattice5.html#K13>k13_lattice5</a>,'ConsecutiveDelta__2',_). constr_name(<a href=%MML%lattice5.html#K14>k14_lattice5</a>,'NextSet',_). constr_name(<a href=%MML%lattice5.html#K15>k15_lattice5</a>,'NextDelta',_). constr_name(<a href=%MML%lattice5.html#K16>k16_lattice5</a>,'NextDelta__2',_). constr_name(<a href=%MML%lattice5.html#R2>r2_lattice5</a>,is_extension_of,_). constr_name(<a href=%MML%lattice5.html#M2>m2_lattice5</a>,'ExtensionSeq',_). constr_name(<a href=%MML%lattice5.html#K17>k17_lattice5</a>,'BasicDF',_). constr_name(<a href=%MML%uniform1.html#V1>v1_uniform1</a>,uniformly_continuous,_). constr_name(<a href=%MML%uniform1.html#V2>v2_uniform1</a>,decreasing__2,_). constr_name(<a href=%MML%sprect_1.html#K1>k1_sprect_1</a>,'SpStSeq',_). constr_name(<a href=%MML%sprect_1.html#V1>v1_sprect_1</a>,rectangular,_). constr_name(<a href=%MML%sprect_2.html#R1>r1_sprect_2</a>,is_in_the_area_of,_). constr_name(<a href=%MML%sprect_2.html#R2>r2_sprect_2</a>,'is_a_h.c._for',_). constr_name(<a href=%MML%sprect_2.html#R3>r3_sprect_2</a>,'is_a_v.c._for',_). constr_name(<a href=%MML%sprect_2.html#V1>v1_sprect_2</a>,clockwise_oriented,_). constr_name(<a href=%MML%scmfsa_9.html#K1>k1_scmfsa_9</a>,'while=0',_). constr_name(<a href=%MML%scmfsa_9.html#K2>k2_scmfsa_9</a>,'while>0',_). constr_name(<a href=%MML%scmfsa_9.html#K3>k3_scmfsa_9</a>,'while<0',_). constr_name(<a href=%MML%scmfsa_9.html#K4>k4_scmfsa_9</a>,'StepWhile=0',_). constr_name(<a href=%MML%scmfsa_9.html#K5>k5_scmfsa_9</a>,'StepWhile>0',_). constr_name(<a href=%MML%jordan6.html#K1>k1_jordan6</a>,x_Middle,_). constr_name(<a href=%MML%jordan6.html#K2>k2_jordan6</a>,y_Middle,_). constr_name(<a href=%MML%jordan6.html#K3>k3_jordan6</a>,'L_Segment',_). constr_name(<a href=%MML%jordan6.html#K4>k4_jordan6</a>,'R_Segment',_). constr_name(<a href=%MML%jordan6.html#K5>k5_jordan6</a>,'Segment',_). constr_name(<a href=%MML%jordan6.html#K6>k6_jordan6</a>,'Vertical_Line',_). constr_name(<a href=%MML%jordan6.html#K7>k7_jordan6</a>,'Horizontal_Line',_). constr_name(<a href=%MML%jordan6.html#K8>k8_jordan6</a>,'Upper_Arc',_). constr_name(<a href=%MML%jordan6.html#K9>k9_jordan6</a>,'Lower_Arc',_). constr_name(<a href=%MML%jordan6.html#R1>r1_jordan6</a>,'LE__3',_). constr_name(<a href=%MML%wsierp_1.html#K1>k1_wsierp_1</a>,'|^__16',_). constr_name(<a href=%MML%wsierp_1.html#K2>k2_wsierp_1</a>,'.__115',_). constr_name(<a href=%MML%wsierp_1.html#K3>k3_wsierp_1</a>,'^__18',_). constr_name(<a href=%MML%wsierp_1.html#K4>k4_wsierp_1</a>,'<*>__3',_). constr_name(<a href=%MML%wsierp_1.html#K5>k5_wsierp_1</a>,'INT__3',_). constr_name(<a href=%MML%wsierp_1.html#K6>k6_wsierp_1</a>,'Sum__21',_). constr_name(<a href=%MML%wsierp_1.html#K7>k7_wsierp_1</a>,'Product__5',_). constr_name(<a href=%MML%wsierp_1.html#K8>k8_wsierp_1</a>,'Sum__22',_). constr_name(<a href=%MML%wsierp_1.html#K9>k9_wsierp_1</a>,'Product__6',_). constr_name(<a href=%MML%wsierp_1.html#K10>k10_wsierp_1</a>,'Del__3',_). constr_name(<a href=%MML%wsierp_1.html#K11>k11_wsierp_1</a>,'Del__4',_). constr_name(<a href=%MML%functor3.html#K1>k1_functor3</a>,'*__113',_). constr_name(<a href=%MML%functor3.html#K2>k2_functor3</a>,'*__114',_). constr_name(<a href=%MML%functor3.html#K3>k3_functor3</a>,'*__115',_). constr_name(<a href=%MML%functor3.html#K4>k4_functor3</a>,'*__116',_). constr_name(<a href=%MML%functor3.html#K5>k5_functor3</a>,'*__117',_). constr_name(<a href=%MML%functor3.html#K6>k6_functor3</a>,'*__118',_). constr_name(<a href=%MML%functor3.html#K7>k7_functor3</a>,'(#)__29',_). constr_name(<a href=%MML%functor3.html#R1>r1_functor3</a>,are_naturally_equivalent__2,alt__are_naturally_equivalent). constr_name(<a href=%MML%functor3.html#M1>m1_functor3</a>,natural_equivalence__2,alt__natural_equivalence). constr_name(<a href=%MML%functor3.html#K8>k8_functor3</a>,'"__35',_). constr_name(<a href=%MML%functor3.html#K9>k9_functor3</a>,idt__3,_). constr_name(<a href=%MML%waybel16.html#M1>m1_waybel16</a>,'CLHomomorphism',_). constr_name(<a href=%MML%waybel16.html#R1>r1_waybel16</a>,is_FG_set,_). constr_name(<a href=%MML%waybel16.html#V1>v1_waybel16</a>,'completely-irreducible',_). constr_name(<a href=%MML%waybel16.html#K1>k1_waybel16</a>,'Irr',_). constr_name(<a href=%MML%waybel17.html#K1>k1_waybel17</a>,',...',_). constr_name(<a href=%MML%waybel17.html#K2>k2_waybel17</a>,'SCMaps',_). constr_name(<a href=%MML%waybel17.html#K3>k3_waybel17</a>,'Net-Str__3',_). constr_name(<a href=%MML%waybel17.html#K4>k4_waybel17</a>,'Net-Str__4',_). constr_name(<a href=%MML%binari_3.html#K1>k1_binari_3</a>,'-BinarySequence',_). constr_name(<a href=%MML%bintree2.html#M1>m1_bintree2</a>,'Element__48',_). constr_name(<a href=%MML%bintree2.html#K1>k1_bintree2</a>,'NumberOnLevel',_). constr_name(<a href=%MML%bintree2.html#V1>v1_bintree2</a>,full__8,_). constr_name(<a href=%MML%bintree2.html#K2>k2_bintree2</a>,'FinSeqLevel',_). constr_name(<a href=%MML%t_1topsp.html#K1>k1_t_1topsp</a>,'EqClass',_). constr_name(<a href=%MML%t_1topsp.html#M1>m1_t_1topsp</a>,'Family-Class',_). constr_name(<a href=%MML%t_1topsp.html#V1>v1_t_1topsp</a>,'partition-membered',_). constr_name(<a href=%MML%t_1topsp.html#K2>k2_t_1topsp</a>,'Intersection__2',_). constr_name(<a href=%MML%t_1topsp.html#K3>k3_t_1topsp</a>,'Closed_Partitions',_). constr_name(<a href=%MML%t_1topsp.html#K4>k4_t_1topsp</a>,'T_1-reflex',_). constr_name(<a href=%MML%t_1topsp.html#K5>k5_t_1topsp</a>,'T_1-reflect',_). constr_name(<a href=%MML%t_1topsp.html#K6>k6_t_1topsp</a>,'T_1-reflex__2',_). constr_name(<a href=%MML%yellow_9.html#K1>k1_yellow_9</a>,incl__5,_). constr_name(<a href=%MML%yellow_9.html#K2>k2_yellow_9</a>,'+id__2',_). constr_name(<a href=%MML%yellow_9.html#K3>k3_yellow_9</a>,'opp+id__2',_). constr_name(<a href=%MML%yellow_9.html#M1>m1_yellow_9</a>,'TopAugmentation',_). constr_name(<a href=%MML%yellow_9.html#M2>m2_yellow_9</a>,'TopExtension',_). constr_name(<a href=%MML%yellow_9.html#M3>m3_yellow_9</a>,'Refinement',_). constr_name(<a href=%MML%yellow10.html#R1>r1_yellow10</a>,is_a_complement_of__3,_). constr_name(<a href=%MML%yellow11.html#K1>k1_yellow11</a>,'N_5',_). constr_name(<a href=%MML%yellow11.html#K2>k2_yellow11</a>,'M_3',_). constr_name(<a href=%MML%yellow11.html#V1>v1_yellow11</a>,modular__2,_). constr_name(<a href=%MML%yellow11.html#K3>k3_yellow11</a>,'[#..#]__2',_). constr_name(<a href=%MML%yellow11.html#V2>v2_yellow11</a>,interval__2,_). constr_name(<a href=%MML%waybel18.html#V1>v1_waybel18</a>,'TopSpace-yielding',_). constr_name(<a href=%MML%waybel18.html#K1>k1_waybel18</a>,'.__116',_). constr_name(<a href=%MML%waybel18.html#K2>k2_waybel18</a>,product_prebasis,_). constr_name(<a href=%MML%waybel18.html#K3>k3_waybel18</a>,product__8,_). constr_name(<a href=%MML%waybel18.html#K4>k4_waybel18</a>,'.__117',_). constr_name(<a href=%MML%waybel18.html#K5>k5_waybel18</a>,'.__118',_). constr_name(<a href=%MML%waybel18.html#K6>k6_waybel18</a>,proj__4,_). constr_name(<a href=%MML%waybel18.html#V2>v2_waybel18</a>,injective__2,_). constr_name(<a href=%MML%waybel18.html#K7>k7_waybel18</a>,'Image__7',_). constr_name(<a href=%MML%waybel18.html#K8>k8_waybel18</a>,corestr__2,_). constr_name(<a href=%MML%waybel18.html#R1>r1_waybel18</a>,is_Retract_of,_). constr_name(<a href=%MML%waybel18.html#K9>k9_waybel18</a>,'Sierpinski_Space',_). constr_name(<a href=%MML%quofield.html#K1>k1_quofield</a>,'Q.',_). constr_name(<a href=%MML%quofield.html#K2>k2_quofield</a>,'`1__22',_). constr_name(<a href=%MML%quofield.html#K3>k3_quofield</a>,'`2__28',_). constr_name(<a href=%MML%quofield.html#K4>k4_quofield</a>,padd,_). constr_name(<a href=%MML%quofield.html#K5>k5_quofield</a>,pmult,_). constr_name(<a href=%MML%quofield.html#K6>k6_quofield</a>,padd__2,_). constr_name(<a href=%MML%quofield.html#K7>k7_quofield</a>,pmult__2,_). constr_name(<a href=%MML%quofield.html#K8>k8_quofield</a>,'QClass.',_). constr_name(<a href=%MML%quofield.html#K9>k9_quofield</a>,'Quot.',_). constr_name(<a href=%MML%quofield.html#K10>k10_quofield</a>,qadd,_). constr_name(<a href=%MML%quofield.html#K11>k11_quofield</a>,qmult,_). constr_name(<a href=%MML%quofield.html#K12>k12_quofield</a>,'QClass.__2',_). constr_name(<a href=%MML%quofield.html#K13>k13_quofield</a>,'q0.',_). constr_name(<a href=%MML%quofield.html#K14>k14_quofield</a>,'q1.',_). constr_name(<a href=%MML%quofield.html#K15>k15_quofield</a>,qaddinv,_). constr_name(<a href=%MML%quofield.html#K16>k16_quofield</a>,qmultinv,_). constr_name(<a href=%MML%quofield.html#K17>k17_quofield</a>,quotadd,_). constr_name(<a href=%MML%quofield.html#K18>k18_quofield</a>,quotmult,_). constr_name(<a href=%MML%quofield.html#K19>k19_quofield</a>,quotaddinv,_). constr_name(<a href=%MML%quofield.html#K20>k20_quofield</a>,quotmultinv,_). constr_name(<a href=%MML%quofield.html#K21>k21_quofield</a>,the_Field_of_Quotients,_). constr_name(<a href=%MML%quofield.html#K22>k22_quofield</a>,'/__26',_). constr_name(<a href=%MML%quofield.html#V1>v1_quofield</a>,'RingHomomorphism',_). constr_name(<a href=%MML%quofield.html#V2>v2_quofield</a>,'RingEpimorphism',_). constr_name(<a href=%MML%quofield.html#V3>v3_quofield</a>,'RingMonomorphism',_). constr_name(<a href=%MML%quofield.html#V4>v4_quofield</a>,'RingIsomorphism',_). constr_name(<a href=%MML%quofield.html#R1>r1_quofield</a>,is_embedded_in,_). constr_name(<a href=%MML%quofield.html#R2>r2_quofield</a>,is_ringisomorph_to,_). constr_name(<a href=%MML%quofield.html#K23>k23_quofield</a>,quotient,_). constr_name(<a href=%MML%quofield.html#K24>k24_quofield</a>,canHom,_). constr_name(<a href=%MML%quofield.html#R3>r3_quofield</a>,has_Field_of_Quotients_Pair,_). constr_name(<a href=%MML%frechet.html#K1>k1_frechet</a>,rng__21,_). constr_name(<a href=%MML%frechet.html#V1>v1_frechet</a>,'first-countable',_). constr_name(<a href=%MML%frechet.html#R1>r1_frechet</a>,is_convergent_to,_). constr_name(<a href=%MML%frechet.html#V2>v2_frechet</a>,convergent__8,_). constr_name(<a href=%MML%frechet.html#K2>k2_frechet</a>,'Lim__3',_). constr_name(<a href=%MML%frechet.html#V3>v3_frechet</a>,'Frechet',_). constr_name(<a href=%MML%frechet.html#V4>v4_frechet</a>,sequential,_). constr_name(<a href=%MML%frechet.html#K3>k3_frechet</a>,'REAL?',_). constr_name(<a href=%MML%sfmastr1.html#V1>v1_sfmastr1</a>,good__2,_). constr_name(<a href=%MML%sfmastr1.html#K1>k1_sfmastr1</a>,'{..}__44',_). constr_name(<a href=%MML%sfmastr1.html#K2>k2_sfmastr1</a>,'{..}__45',_). constr_name(<a href=%MML%sfmastr1.html#K3>k3_sfmastr1</a>,'{..}__46',_). constr_name(<a href=%MML%sfmastr1.html#K4>k4_sfmastr1</a>,'{..}__47',_). constr_name(<a href=%MML%sfmastr1.html#K5>k5_sfmastr1</a>,'RWNotIn-seq',_). constr_name(<a href=%MML%sfmastr1.html#K6>k6_sfmastr1</a>,'-thRWNotIn',_). constr_name(<a href=%MML%sfmastr1.html#K7>k7_sfmastr1</a>,'-thNotUsed',_). constr_name(<a href=%MML%sfmastr1.html#K8>k8_sfmastr1</a>,'Fib_macro',_). constr_name(<a href=%MML%scmfsa9a.html#R1>r1_scmfsa9a</a>,'ProperBodyWhile=0',_). constr_name(<a href=%MML%scmfsa9a.html#R2>r2_scmfsa9a</a>,'WithVariantWhile=0',_). constr_name(<a href=%MML%scmfsa9a.html#K1>k1_scmfsa9a</a>,'ExitsAtWhile=0',_). constr_name(<a href=%MML%scmfsa9a.html#R3>r3_scmfsa9a</a>,'ProperBodyWhile>0',_). constr_name(<a href=%MML%scmfsa9a.html#R4>r4_scmfsa9a</a>,'WithVariantWhile>0',_). constr_name(<a href=%MML%scmfsa9a.html#K2>k2_scmfsa9a</a>,'ExitsAtWhile>0',_). constr_name(<a href=%MML%scmfsa9a.html#V1>v1_scmfsa9a</a>,on_data_only,_). constr_name(<a href=%MML%scmfsa9a.html#K3>k3_scmfsa9a</a>,'Fusc_macro',_). constr_name(<a href=%MML%sfmastr2.html#K1>k1_sfmastr2</a>,times,_). constr_name(<a href=%MML%sfmastr2.html#K2>k2_sfmastr2</a>,'StepTimes',_). constr_name(<a href=%MML%sfmastr2.html#R1>r1_sfmastr2</a>,'ProperTimesBody',_). constr_name(<a href=%MML%sfmastr2.html#K3>k3_sfmastr2</a>,'triv-times',_). constr_name(<a href=%MML%sfmastr2.html#K4>k4_sfmastr2</a>,'Fib-macro',_). constr_name(<a href=%MML%sfmastr3.html#K1>k1_sfmastr3</a>,min_at,_). constr_name(<a href=%MML%sfmastr3.html#R1>r1_sfmastr3</a>,is_non_decreasing_on__2,_). constr_name(<a href=%MML%sfmastr3.html#R2>r2_sfmastr3</a>,is_split_at,_). constr_name(<a href=%MML%sfmastr3.html#K2>k2_sfmastr3</a>,'StepForUp',_). constr_name(<a href=%MML%sfmastr3.html#R3>r3_sfmastr3</a>,'ProperForUpBody',_). constr_name(<a href=%MML%sfmastr3.html#K3>k3_sfmastr3</a>,'for-up',_). constr_name(<a href=%MML%sfmastr3.html#K4>k4_sfmastr3</a>,'FinSeqMin',_). constr_name(<a href=%MML%sfmastr3.html#K5>k5_sfmastr3</a>,swap__2,_). constr_name(<a href=%MML%sfmastr3.html#K6>k6_sfmastr3</a>,'Selection-sort',_). constr_name(<a href=%MML%jordan5d.html#K1>k1_jordan5d</a>,i_s_w,_). constr_name(<a href=%MML%jordan5d.html#K2>k2_jordan5d</a>,i_n_w,_). constr_name(<a href=%MML%jordan5d.html#K3>k3_jordan5d</a>,i_s_e,_). constr_name(<a href=%MML%jordan5d.html#K4>k4_jordan5d</a>,i_n_e,_). constr_name(<a href=%MML%jordan5d.html#K5>k5_jordan5d</a>,i_w_s,_). constr_name(<a href=%MML%jordan5d.html#K6>k6_jordan5d</a>,i_e_s,_). constr_name(<a href=%MML%jordan5d.html#K7>k7_jordan5d</a>,i_w_n,_). constr_name(<a href=%MML%jordan5d.html#K8>k8_jordan5d</a>,i_e_n,_). constr_name(<a href=%MML%jordan5d.html#K9>k9_jordan5d</a>,n_s_w,_). constr_name(<a href=%MML%jordan5d.html#K10>k10_jordan5d</a>,n_n_w,_). constr_name(<a href=%MML%jordan5d.html#K11>k11_jordan5d</a>,n_s_e,_). constr_name(<a href=%MML%jordan5d.html#K12>k12_jordan5d</a>,n_n_e,_). constr_name(<a href=%MML%jordan5d.html#K13>k13_jordan5d</a>,n_w_s,_). constr_name(<a href=%MML%jordan5d.html#K14>k14_jordan5d</a>,n_e_s,_). constr_name(<a href=%MML%jordan5d.html#K15>k15_jordan5d</a>,n_w_n,_). constr_name(<a href=%MML%jordan5d.html#K16>k16_jordan5d</a>,n_e_n,_). constr_name(<a href=%MML%euler_2.html#K1>k1_euler_2</a>,'*__119',_). constr_name(<a href=%MML%euler_2.html#K2>k2_euler_2</a>,mod__4,_). constr_name(<a href=%MML%euler_2.html#K3>k3_euler_2</a>,'|^__17',_). constr_name(<a href=%MML%group_7.html#V1>v1_group_7</a>,'HGrStr-yielding',_). constr_name(<a href=%MML%group_7.html#K1>k1_group_7</a>,'.__119',_). constr_name(<a href=%MML%group_7.html#K2>k2_group_7</a>,product__9,_). constr_name(<a href=%MML%group_7.html#V2>v2_group_7</a>,'Group-like__2',_). constr_name(<a href=%MML%group_7.html#V3>v3_group_7</a>,associative__5,_). constr_name(<a href=%MML%group_7.html#V4>v4_group_7</a>,commutative__3,_). constr_name(<a href=%MML%group_7.html#K3>k3_group_7</a>,sum__2,_). constr_name(<a href=%MML%group_7.html#K4>k4_group_7</a>,'<*..*>__23',_). constr_name(<a href=%MML%group_7.html#K5>k5_group_7</a>,'<*..*>__24',_). constr_name(<a href=%MML%group_7.html#K6>k6_group_7</a>,'<*..*>__25',_). constr_name(<a href=%MML%group_7.html#K7>k7_group_7</a>,'<*..*>__26',_). constr_name(<a href=%MML%group_7.html#K8>k8_group_7</a>,'<*..*>__27',_). constr_name(<a href=%MML%group_7.html#K9>k9_group_7</a>,'<*..*>__28',_). constr_name(<a href=%MML%group_7.html#K10>k10_group_7</a>,'<*..*>__29',_). constr_name(<a href=%MML%group_7.html#K11>k11_group_7</a>,'<*..*>__30',_). constr_name(<a href=%MML%group_7.html#K12>k12_group_7</a>,'<*..*>__31',_). constr_name(<a href=%MML%group_7.html#K13>k13_group_7</a>,'<*..*>__32',_). constr_name(<a href=%MML%group_7.html#K14>k14_group_7</a>,'<*..*>__33',_). constr_name(<a href=%MML%group_7.html#K15>k15_group_7</a>,'<*..*>__34',_). constr_name(<a href=%MML%group_7.html#K16>k16_group_7</a>,'<*..*>__35',_). constr_name(<a href=%MML%group_7.html#K17>k17_group_7</a>,'<*..*>__36',_). constr_name(<a href=%MML%group_7.html#K18>k18_group_7</a>,'<*..*>__37',_). constr_name(<a href=%MML%group_7.html#K19>k19_group_7</a>,'<*..*>__38',_). constr_name(<a href=%MML%group_7.html#K20>k20_group_7</a>,'<*..*>__39',_). constr_name(<a href=%MML%group_7.html#K21>k21_group_7</a>,'<*..*>__40',_). constr_name(<a href=%MML%group_7.html#K22>k22_group_7</a>,'<*..*>__41',_). constr_name(<a href=%MML%group_7.html#K23>k23_group_7</a>,'<*..*>__42',_). constr_name(<a href=%MML%group_7.html#K24>k24_group_7</a>,'<*..*>__43',_). constr_name(<a href=%MML%jordan7.html#K1>k1_jordan7</a>,'Segment__2',_). constr_name(<a href=%MML%scm_halt.html#V1>v1_scm_halt</a>,'InitClosed',_). constr_name(<a href=%MML%scm_halt.html#V2>v2_scm_halt</a>,'InitHalting',_). constr_name(<a href=%MML%scm_halt.html#V3>v3_scm_halt</a>,keepInt0_1,_). constr_name(<a href=%MML%scm_halt.html#R1>r1_scm_halt</a>,is_closed_onInit,_). constr_name(<a href=%MML%scm_halt.html#R2>r2_scm_halt</a>,is_halting_onInit,_). constr_name(<a href=%MML%scm_halt.html#V4>v4_scm_halt</a>,good__3,_). constr_name(<a href=%MML%scmbsort.html#K1>k1_scmbsort</a>,'.-->__11',_). constr_name(<a href=%MML%scmbsort.html#K2>k2_scmbsort</a>,'bubble-sort',_). constr_name(<a href=%MML%scmbsort.html#K3>k3_scmbsort</a>,'Bubble-Sort-Algorithm',_). constr_name(<a href=%MML%scmbsort.html#K4>k4_scmbsort</a>,'Sorting-Function',_). constr_name(<a href=%MML%waybel19.html#V1>v1_waybel19</a>,lower__2,_). constr_name(<a href=%MML%waybel19.html#K1>k1_waybel19</a>,omega__2,_). constr_name(<a href=%MML%waybel19.html#V2>v2_waybel19</a>,'Lawson',_). constr_name(<a href=%MML%waybel19.html#K2>k2_waybel19</a>,lambda__3,_). constr_name(<a href=%MML%waybel20.html#K1>k1_waybel20</a>,'[:..:]__35',_). constr_name(<a href=%MML%waybel20.html#K2>k2_waybel20</a>,'EqRel',_). constr_name(<a href=%MML%waybel20.html#V1>v1_waybel20</a>,'CLCongruence',_). constr_name(<a href=%MML%waybel20.html#K3>k3_waybel20</a>,kernel_op,_). constr_name(<a href=%MML%waybel20.html#K4>k4_waybel20</a>,kernel_congruence,_). constr_name(<a href=%MML%waybel20.html#K5>k5_waybel20</a>,'./.__2',_). constr_name(<a href=%MML%waybel21.html#M1>m1_waybel21</a>,'SemilatticeHomomorphism',_). constr_name(<a href=%MML%waybel21.html#M2>m2_waybel21</a>,'Embedding',_). constr_name(<a href=%MML%waybel21.html#V1>v1_waybel21</a>,'lim_infs-preserving',_). constr_name(<a href=%MML%waybel22.html#R1>r1_waybel22</a>,is_FreeGen_set_of,_). constr_name(<a href=%MML%waybel22.html#K1>k1_waybel22</a>,'FixedUltraFilters',_). constr_name(<a href=%MML%waybel22.html#K2>k2_waybel22</a>,'-extension_to_hom',_). constr_name(<a href=%MML%graph_4.html#R1>r1_graph_4</a>,orientedly_joins,_). constr_name(<a href=%MML%graph_4.html#R2>r2_graph_4</a>,are_orientedly_incident,_). constr_name(<a href=%MML%graph_4.html#K1>k1_graph_4</a>,'-SVSet',_). constr_name(<a href=%MML%graph_4.html#K2>k2_graph_4</a>,'-TVSet',_). constr_name(<a href=%MML%graph_4.html#R3>r3_graph_4</a>,is_oriented_vertex_seq_of,_). constr_name(<a href=%MML%graph_4.html#K3>k3_graph_4</a>,'oriented-vertex-seq',_). constr_name(<a href=%MML%graph_4.html#V1>v1_graph_4</a>,'Simple',_). constr_name(<a href=%MML%jgraph_1.html#K1>k1_jgraph_1</a>,'PGraph',_). constr_name(<a href=%MML%jgraph_1.html#K2>k2_jgraph_1</a>,'PairF',_). constr_name(<a href=%MML%jgraph_1.html#K3>k3_jgraph_1</a>,'PairF__2',_). constr_name(<a href=%MML%jgraph_1.html#K4>k4_jgraph_1</a>,'PairF__3',_). constr_name(<a href=%MML%jgraph_1.html#R1>r1_jgraph_1</a>,is_Shortcut_of,_). constr_name(<a href=%MML%jgraph_1.html#V1>v1_jgraph_1</a>,nodic,_). constr_name(<a href=%MML%idea_1.html#K1>k1_idea_1</a>,'ZERO__5',_). constr_name(<a href=%MML%idea_1.html#K2>k2_idea_1</a>,''xor'__4',_). constr_name(<a href=%MML%idea_1.html#K3>k3_idea_1</a>,''xor'__5',_). constr_name(<a href=%MML%idea_1.html#R1>r1_idea_1</a>,is_expressible_by,_). constr_name(<a href=%MML%idea_1.html#K4>k4_idea_1</a>,'ADD_MOD',_). constr_name(<a href=%MML%idea_1.html#K5>k5_idea_1</a>,'NEG_N',_). constr_name(<a href=%MML%idea_1.html#K6>k6_idea_1</a>,'NEG_MOD',_). constr_name(<a href=%MML%idea_1.html#K7>k7_idea_1</a>,'ChangeVal_1',_). constr_name(<a href=%MML%idea_1.html#K8>k8_idea_1</a>,'ChangeVal_2',_). constr_name(<a href=%MML%idea_1.html#K9>k9_idea_1</a>,'MUL_MOD',_). constr_name(<a href=%MML%idea_1.html#K10>k10_idea_1</a>,'INV_MOD',_). constr_name(<a href=%MML%idea_1.html#K11>k11_idea_1</a>,'IDEAoperationA',_). constr_name(<a href=%MML%idea_1.html#K12>k12_idea_1</a>,'IDEAoperationB',_). constr_name(<a href=%MML%idea_1.html#K13>k13_idea_1</a>,'IDEAoperationC',_). constr_name(<a href=%MML%idea_1.html#K14>k14_idea_1</a>,'MESSAGES',_). constr_name(<a href=%MML%idea_1.html#K15>k15_idea_1</a>,'IDEA_P',_). constr_name(<a href=%MML%idea_1.html#K16>k16_idea_1</a>,'IDEA_Q',_). constr_name(<a href=%MML%idea_1.html#K17>k17_idea_1</a>,'IDEA_P_F',_). constr_name(<a href=%MML%idea_1.html#K18>k18_idea_1</a>,'IDEA_Q_F',_). constr_name(<a href=%MML%idea_1.html#K19>k19_idea_1</a>,'IDEA_PS',_). constr_name(<a href=%MML%idea_1.html#K20>k20_idea_1</a>,'IDEA_QS',_). constr_name(<a href=%MML%idea_1.html#K21>k21_idea_1</a>,'IDEA_PE',_). constr_name(<a href=%MML%idea_1.html#K22>k22_idea_1</a>,'IDEA_QE',_). constr_name(<a href=%MML%topgrp_1.html#K1>k1_topgrp_1</a>,'*__120',_). constr_name(<a href=%MML%topgrp_1.html#K2>k2_topgrp_1</a>,'*__121',_). constr_name(<a href=%MML%topgrp_1.html#M1>m1_topgrp_1</a>,'Homeomorphism',_). constr_name(<a href=%MML%topgrp_1.html#K3>k3_topgrp_1</a>,id__19,_). constr_name(<a href=%MML%topgrp_1.html#K4>k4_topgrp_1</a>,'HomeoGroup',_). constr_name(<a href=%MML%topgrp_1.html#V1>v1_topgrp_1</a>,homogeneous__4,_). constr_name(<a href=%MML%topgrp_1.html#L1>l1_topgrp_1</a>,'TopGrStr',_). constr_name(<a href=%MML%topgrp_1.html#V2>v2_topgrp_1</a>,strict__TopGrStr,_). constr_name(<a href=%MML%topgrp_1.html#G1>g1_topgrp_1</a>,'TopGrStr_constr',_). constr_name(<a href=%MML%topgrp_1.html#K5>k5_topgrp_1</a>,inverse_op__2,_). constr_name(<a href=%MML%topgrp_1.html#V3>v3_topgrp_1</a>,'UnContinuous',_). constr_name(<a href=%MML%topgrp_1.html#V4>v4_topgrp_1</a>,'BinContinuous',_). constr_name(<a href=%MML%topgrp_1.html#K6>k6_topgrp_1</a>,'*__122',_). constr_name(<a href=%MML%topgrp_1.html#K7>k7_topgrp_1</a>,'*__123',_). constr_name(<a href=%MML%topgrp_1.html#K8>k8_topgrp_1</a>,inverse_op__3,_). constr_name(<a href=%MML%conlat_1.html#L1>l1_conlat_1</a>,'2-sorted',_). constr_name(<a href=%MML%conlat_1.html#V1>v1_conlat_1</a>,'strict__2-sorted',_). constr_name(<a href=%MML%conlat_1.html#U1>u1_conlat_1</a>,'Objects__2',the_Objects__2). constr_name(<a href=%MML%conlat_1.html#U2>u2_conlat_1</a>,'Attributes',the_Attributes). constr_name(<a href=%MML%conlat_1.html#G1>g1_conlat_1</a>,'2-sorted_constr',_). constr_name(<a href=%MML%conlat_1.html#V2>v2_conlat_1</a>,empty__5,_). constr_name(<a href=%MML%conlat_1.html#V3>v3_conlat_1</a>,'quasi-empty',_). constr_name(<a href=%MML%conlat_1.html#L2>l2_conlat_1</a>,'ContextStr',_). constr_name(<a href=%MML%conlat_1.html#V4>v4_conlat_1</a>,strict__ContextStr,_). constr_name(<a href=%MML%conlat_1.html#U3>u3_conlat_1</a>,'Information',the_Information). constr_name(<a href=%MML%conlat_1.html#G2>g2_conlat_1</a>,'ContextStr_constr',_). constr_name(<a href=%MML%conlat_1.html#R1>r1_conlat_1</a>,'is-connected-with',_). constr_name(<a href=%MML%conlat_1.html#K1>k1_conlat_1</a>,'ObjectDerivation',_). constr_name(<a href=%MML%conlat_1.html#K2>k2_conlat_1</a>,'AttributeDerivation',_). constr_name(<a href=%MML%conlat_1.html#K3>k3_conlat_1</a>,phi,_). constr_name(<a href=%MML%conlat_1.html#K4>k4_conlat_1</a>,psi,_). constr_name(<a href=%MML%conlat_1.html#V5>v5_conlat_1</a>,'co-Galois',_). constr_name(<a href=%MML%conlat_1.html#L3>l3_conlat_1</a>,'ConceptStr',_). constr_name(<a href=%MML%conlat_1.html#V6>v6_conlat_1</a>,strict__ConceptStr,_). constr_name(<a href=%MML%conlat_1.html#U4>u4_conlat_1</a>,'Extent',the_Extent). constr_name(<a href=%MML%conlat_1.html#U5>u5_conlat_1</a>,'Intent',the_Intent). constr_name(<a href=%MML%conlat_1.html#G3>g3_conlat_1</a>,'ConceptStr_constr',_). constr_name(<a href=%MML%conlat_1.html#V7>v7_conlat_1</a>,empty__6,_). constr_name(<a href=%MML%conlat_1.html#V8>v8_conlat_1</a>,'quasi-empty__2',_). constr_name(<a href=%MML%conlat_1.html#V9>v9_conlat_1</a>,'concept-like',_). constr_name(<a href=%MML%conlat_1.html#V10>v10_conlat_1</a>,universal__4,_). constr_name(<a href=%MML%conlat_1.html#V11>v11_conlat_1</a>,'co-universal',_). constr_name(<a href=%MML%conlat_1.html#K5>k5_conlat_1</a>,'Concept-with-all-Objects',_). constr_name(<a href=%MML%conlat_1.html#K6>k6_conlat_1</a>,'Concept-with-all-Attributes',_). constr_name(<a href=%MML%conlat_1.html#M1>m1_conlat_1</a>,'Set-of-FormalConcepts',_). constr_name(<a href=%MML%conlat_1.html#M2>m2_conlat_1</a>,'Element__49',_). constr_name(<a href=%MML%conlat_1.html#R2>r2_conlat_1</a>,'is-SubConcept-of',_). constr_name(<a href=%MML%conlat_1.html#K7>k7_conlat_1</a>,'B-carrier',_). constr_name(<a href=%MML%conlat_1.html#K8>k8_conlat_1</a>,'B-carrier__2',_). constr_name(<a href=%MML%conlat_1.html#K9>k9_conlat_1</a>,'B-meet',_). constr_name(<a href=%MML%conlat_1.html#K10>k10_conlat_1</a>,'B-join',_). constr_name(<a href=%MML%conlat_1.html#K11>k11_conlat_1</a>,'ConceptLattice',_). constr_name(<a href=%MML%conlat_1.html#M3>m3_conlat_1</a>,'Element__50',_). constr_name(<a href=%MML%conlat_1.html#K12>k12_conlat_1</a>,'@__36',_). constr_name(<a href=%MML%partit1.html#R1>r1_partit1</a>,is_a_dependent_set_of,_). constr_name(<a href=%MML%partit1.html#R2>r2_partit1</a>,is_min_depend,_). constr_name(<a href=%MML%partit1.html#K1>k1_partit1</a>,'PARTITIONS',_). constr_name(<a href=%MML%partit1.html#K2>k2_partit1</a>,''/\\'',_). constr_name(<a href=%MML%partit1.html#K3>k3_partit1</a>,''\\/'',_). constr_name(<a href=%MML%partit1.html#K4>k4_partit1</a>,'ERl',_). constr_name(<a href=%MML%partit1.html#K5>k5_partit1</a>,'Rel',_). constr_name(<a href=%MML%partit1.html#K6>k6_partit1</a>,'%O',_). constr_name(<a href=%MML%bvfunc_1.html#K1>k1_bvfunc_1</a>,''imp'',_). constr_name(<a href=%MML%bvfunc_1.html#K2>k2_bvfunc_1</a>,''eqv'',_). constr_name(<a href=%MML%bvfunc_1.html#K3>k3_bvfunc_1</a>,'BVF',_). constr_name(<a href=%MML%bvfunc_1.html#K4>k4_bvfunc_1</a>,''not'__13',_). constr_name(<a href=%MML%bvfunc_1.html#K5>k5_bvfunc_1</a>,''&'__12',_). constr_name(<a href=%MML%bvfunc_1.html#K6>k6_bvfunc_1</a>,''or'__9',_). constr_name(<a href=%MML%bvfunc_1.html#K7>k7_bvfunc_1</a>,''xor'__6',_). constr_name(<a href=%MML%bvfunc_1.html#K8>k8_bvfunc_1</a>,''or'__10',_). constr_name(<a href=%MML%bvfunc_1.html#K9>k9_bvfunc_1</a>,''xor'__7',_). constr_name(<a href=%MML%bvfunc_1.html#K10>k10_bvfunc_1</a>,''or'__11',_). constr_name(<a href=%MML%bvfunc_1.html#K11>k11_bvfunc_1</a>,''xor'__8',_). constr_name(<a href=%MML%bvfunc_1.html#K12>k12_bvfunc_1</a>,''imp'__2',_). constr_name(<a href=%MML%bvfunc_1.html#K13>k13_bvfunc_1</a>,''eqv'__2',_). constr_name(<a href=%MML%bvfunc_1.html#K14>k14_bvfunc_1</a>,''imp'__3',_). constr_name(<a href=%MML%bvfunc_1.html#K15>k15_bvfunc_1</a>,''eqv'__3',_). constr_name(<a href=%MML%bvfunc_1.html#K16>k16_bvfunc_1</a>,''imp'__4',_). constr_name(<a href=%MML%bvfunc_1.html#K17>k17_bvfunc_1</a>,''eqv'__4',_). constr_name(<a href=%MML%bvfunc_1.html#K18>k18_bvfunc_1</a>,'O_el',_). constr_name(<a href=%MML%bvfunc_1.html#K19>k19_bvfunc_1</a>,'I_el',_). constr_name(<a href=%MML%bvfunc_1.html#R1>r1_bvfunc_1</a>,''<'',_). constr_name(<a href=%MML%bvfunc_1.html#K20>k20_bvfunc_1</a>,'B_INF',_). constr_name(<a href=%MML%bvfunc_1.html#K21>k21_bvfunc_1</a>,'B_SUP',_). constr_name(<a href=%MML%bvfunc_1.html#R2>r2_bvfunc_1</a>,is_dependent_of,_). constr_name(<a href=%MML%bvfunc_1.html#M1>m1_bvfunc_1</a>,'Element__51',_). constr_name(<a href=%MML%bvfunc_1.html#K22>k22_bvfunc_1</a>,'EqClass__2',_). constr_name(<a href=%MML%bvfunc_1.html#K23>k23_bvfunc_1</a>,'B_INF__2',_). constr_name(<a href=%MML%bvfunc_1.html#K24>k24_bvfunc_1</a>,'B_SUP__2',_). constr_name(<a href=%MML%bvfunc_1.html#K25>k25_bvfunc_1</a>,'GPart',_). constr_name(<a href=%MML%vectmetr.html#V1>v1_vectmetr</a>,convex__2,_). constr_name(<a href=%MML%vectmetr.html#V2>v2_vectmetr</a>,internal,_). constr_name(<a href=%MML%vectmetr.html#V3>v3_vectmetr</a>,isometric,_). constr_name(<a href=%MML%vectmetr.html#K1>k1_vectmetr</a>,'ISOM',_). constr_name(<a href=%MML%vectmetr.html#K2>k2_vectmetr</a>,'ISOM__2',_). constr_name(<a href=%MML%vectmetr.html#L1>l1_vectmetr</a>,'RLSMetrStruct',_). constr_name(<a href=%MML%vectmetr.html#V4>v4_vectmetr</a>,strict__RLSMetrStruct,_). constr_name(<a href=%MML%vectmetr.html#G1>g1_vectmetr</a>,'RLSMetrStruct_constr',_). constr_name(<a href=%MML%vectmetr.html#V5>v5_vectmetr</a>,homogeneous__5,_). constr_name(<a href=%MML%vectmetr.html#V6>v6_vectmetr</a>,translatible,_). constr_name(<a href=%MML%vectmetr.html#K3>k3_vectmetr</a>,'Norm',_). constr_name(<a href=%MML%vectmetr.html#K4>k4_vectmetr</a>,'RLMSpace',_). constr_name(<a href=%MML%vectmetr.html#K5>k5_vectmetr</a>,'IsomGroup',_). constr_name(<a href=%MML%vectmetr.html#K6>k6_vectmetr</a>,'SubIsomGroupRel',_). constr_name(<a href=%MML%yellow13.html#M1>m1_yellow13</a>,basis,_). constr_name(<a href=%MML%yellow13.html#V1>v1_yellow13</a>,correct__2,_). constr_name(<a href=%MML%yellow13.html#M2>m2_yellow13</a>,basis__2,_). constr_name(<a href=%MML%yellow13.html#V2>v2_yellow13</a>,topological_semilattice,_). constr_name(<a href=%MML%waybel23.html#K1>k1_waybel23</a>,union__13,_). constr_name(<a href=%MML%waybel23.html#V1>v1_waybel23</a>,'meet-closed',_). constr_name(<a href=%MML%waybel23.html#V2>v2_waybel23</a>,'join-closed',_). constr_name(<a href=%MML%waybel23.html#V3>v3_waybel23</a>,'infs-closed',_). constr_name(<a href=%MML%waybel23.html#V4>v4_waybel23</a>,'sups-closed',_). constr_name(<a href=%MML%waybel23.html#K2>k2_waybel23</a>,weight,_). constr_name(<a href=%MML%waybel23.html#V5>v5_waybel23</a>,'second-countable',_). constr_name(<a href=%MML%waybel23.html#M1>m1_waybel23</a>,'CLbasis',_). constr_name(<a href=%MML%waybel23.html#V6>v6_waybel23</a>,with_bottom,_). constr_name(<a href=%MML%waybel23.html#V7>v7_waybel23</a>,with_top,_). constr_name(<a href=%MML%waybel23.html#K3>k3_waybel23</a>,supMap,_). constr_name(<a href=%MML%waybel23.html#K4>k4_waybel23</a>,idsMap,_). constr_name(<a href=%MML%waybel23.html#K5>k5_waybel23</a>,baseMap,_). constr_name(<a href=%MML%scmring1.html#K1>k1_scmring1</a>,'SCM-Instr__2',_). constr_name(<a href=%MML%scmring1.html#V1>v1_scmring1</a>,good__4,_). constr_name(<a href=%MML%scmring1.html#K2>k2_scmring1</a>,'SCM-OK__2',_). constr_name(<a href=%MML%scmring1.html#K3>k3_scmring1</a>,'IC__6',_). constr_name(<a href=%MML%scmring1.html#K4>k4_scmring1</a>,'SCM-Chg__3',_). constr_name(<a href=%MML%scmring1.html#K5>k5_scmring1</a>,'SCM-Chg__4',_). constr_name(<a href=%MML%scmring1.html#K6>k6_scmring1</a>,'.__120',_). constr_name(<a href=%MML%scmring1.html#K7>k7_scmring1</a>,address_1__2,_). constr_name(<a href=%MML%scmring1.html#K8>k8_scmring1</a>,address_2__2,_). constr_name(<a href=%MML%scmring1.html#K9>k9_scmring1</a>,jump_address__2,_). constr_name(<a href=%MML%scmring1.html#K10>k10_scmring1</a>,cjump_address__2,_). constr_name(<a href=%MML%scmring1.html#K11>k11_scmring1</a>,cond_address__2,_). constr_name(<a href=%MML%scmring1.html#K12>k12_scmring1</a>,'<*..*>__44',_). constr_name(<a href=%MML%scmring1.html#K13>k13_scmring1</a>,const_address,_). constr_name(<a href=%MML%scmring1.html#K14>k14_scmring1</a>,const_value,_). constr_name(<a href=%MML%scmring1.html#K15>k15_scmring1</a>,'SCM-Exec-Res__2',_). constr_name(<a href=%MML%scmring1.html#K16>k16_scmring1</a>,'SCM-Exec__2',_). constr_name(<a href=%MML%scmring2.html#K1>k1_scmring2</a>,'SCM__2',_). constr_name(<a href=%MML%scmring2.html#K2>k2_scmring2</a>,'.__121',_). constr_name(<a href=%MML%scmring2.html#M1>m1_scmring2</a>,'Data-Location__2',_). constr_name(<a href=%MML%scmring2.html#K3>k3_scmring2</a>,'.__122',_). constr_name(<a href=%MML%scmring2.html#K4>k4_scmring2</a>,':=__7',_). constr_name(<a href=%MML%scmring2.html#K5>k5_scmring2</a>,'AddTo__3',_). constr_name(<a href=%MML%scmring2.html#K6>k6_scmring2</a>,'SubFrom__3',_). constr_name(<a href=%MML%scmring2.html#K7>k7_scmring2</a>,'MultBy__3',_). constr_name(<a href=%MML%scmring2.html#K8>k8_scmring2</a>,':=__8',_). constr_name(<a href=%MML%scmring2.html#K9>k9_scmring2</a>,goto__3,_). constr_name(<a href=%MML%scmring2.html#K10>k10_scmring2</a>,'=0_goto__3',_). constr_name(<a href=%MML%scmring2.html#K11>k11_scmring2</a>,'Next__5',_). constr_name(<a href=%MML%bvfunc_2.html#K1>k1_bvfunc_2</a>,'PARTITIONS__2',_). constr_name(<a href=%MML%bvfunc_2.html#M1>m1_bvfunc_2</a>,'Element__52',_). constr_name(<a href=%MML%bvfunc_2.html#K2>k2_bvfunc_2</a>,''/\\'__2',_). constr_name(<a href=%MML%bvfunc_2.html#R1>r1_bvfunc_2</a>,is_upper_min_depend_of,_). constr_name(<a href=%MML%bvfunc_2.html#K3>k3_bvfunc_2</a>,''\\/'__2',_). constr_name(<a href=%MML%bvfunc_2.html#V1>v1_bvfunc_2</a>,generating__2,_). constr_name(<a href=%MML%bvfunc_2.html#V2>v2_bvfunc_2</a>,independent,_). constr_name(<a href=%MML%bvfunc_2.html#R2>r2_bvfunc_2</a>,is_a_coordinate,_). constr_name(<a href=%MML%bvfunc_2.html#K4>k4_bvfunc_2</a>,'{..}__48',_). constr_name(<a href=%MML%bvfunc_2.html#K5>k5_bvfunc_2</a>,'CompF',_). constr_name(<a href=%MML%bvfunc_2.html#R3>r3_bvfunc_2</a>,is_independent_of,_). constr_name(<a href=%MML%bvfunc_2.html#K6>k6_bvfunc_2</a>,'All__8',_). constr_name(<a href=%MML%bvfunc_2.html#K7>k7_bvfunc_2</a>,'Ex__8',_). constr_name(<a href=%MML%partit_2.html#R1>r1_partit_2</a>,'c=__8',_). constr_name(<a href=%MML%partit_2.html#M1>m1_partit_2</a>,'Element__53',_). constr_name(<a href=%MML%pepin.html#K1>k1_pepin</a>,'^2__5',_). constr_name(<a href=%MML%pepin.html#K2>k2_pepin</a>,'^2__6',_). constr_name(<a href=%MML%pepin.html#K3>k3_pepin</a>,'Crypto',_). constr_name(<a href=%MML%pepin.html#K4>k4_pepin</a>,order,_). constr_name(<a href=%MML%pepin.html#K5>k5_pepin</a>,'Fermat',_). constr_name(<a href=%MML%heyting2.html#K1>k1_heyting2</a>,'Involved',_). constr_name(<a href=%MML%heyting2.html#K2>k2_heyting2</a>,'-__84',_). constr_name(<a href=%MML%heyting2.html#K3>k3_heyting2</a>,'=>>__2',_). constr_name(<a href=%MML%heyting2.html#K4>k4_heyting2</a>,pseudo_compl__2,_). constr_name(<a href=%MML%heyting2.html#K5>k5_heyting2</a>,'StrongImpl__2',_). constr_name(<a href=%MML%heyting2.html#K6>k6_heyting2</a>,'SUB__2',_). constr_name(<a href=%MML%heyting2.html#K7>k7_heyting2</a>,diff__4,_). constr_name(<a href=%MML%heyting2.html#K8>k8_heyting2</a>,'Atom__2',_). constr_name(<a href=%MML%jordan2c.html#V1>v1_jordan2c</a>,'Bounded',_). constr_name(<a href=%MML%jordan2c.html#R1>r1_jordan2c</a>,is_inside_component_of,_). constr_name(<a href=%MML%jordan2c.html#R2>r2_jordan2c</a>,is_outside_component_of,_). constr_name(<a href=%MML%jordan2c.html#K1>k1_jordan2c</a>,'BDD',_). constr_name(<a href=%MML%jordan2c.html#K2>k2_jordan2c</a>,'UBD',_). constr_name(<a href=%MML%jordan2c.html#K3>k3_jordan2c</a>,'1*',_). constr_name(<a href=%MML%jordan2c.html#K4>k4_jordan2c</a>,'1*__2',_). constr_name(<a href=%MML%jordan2c.html#K5>k5_jordan2c</a>,'1.REAL',_). constr_name(<a href=%MML%jordan2c.html#K6>k6_jordan2c</a>,pi__8,_). constr_name(<a href=%MML%revrot_1.html#V1>v1_revrot_1</a>,constant__4,_). constr_name(<a href=%MML%revrot_1.html#R1>r1_revrot_1</a>,just_once_values__2,_). constr_name(<a href=%MML%jordan8.html#K1>k1_jordan8</a>,'Gauge',_). constr_name(<a href=%MML%int_3.html#K1>k1_int_3</a>,'INT.Ring',_). constr_name(<a href=%MML%int_3.html#R1>r1_int_3</a>,'<=__7',_). constr_name(<a href=%MML%int_3.html#K2>k2_int_3</a>,abs__13,_). constr_name(<a href=%MML%int_3.html#K3>k3_int_3</a>,absint,_). constr_name(<a href=%MML%int_3.html#K4>k4_int_3</a>,div__4,_). constr_name(<a href=%MML%int_3.html#K5>k5_int_3</a>,mod__5,_). constr_name(<a href=%MML%int_3.html#V1>v1_int_3</a>,'Euclidian',_). constr_name(<a href=%MML%int_3.html#M1>m1_int_3</a>,'DegreeFunction',_). constr_name(<a href=%MML%int_3.html#K6>k6_int_3</a>,absint__2,_). constr_name(<a href=%MML%int_3.html#K7>k7_int_3</a>,multint__2,_). constr_name(<a href=%MML%int_3.html#K8>k8_int_3</a>,compint__2,_). constr_name(<a href=%MML%int_3.html#K9>k9_int_3</a>,'INT.Ring__2',_). constr_name(<a href=%MML%frechet2.html#K1>k1_frechet2</a>,'*__124',_). constr_name(<a href=%MML%frechet2.html#K2>k2_frechet2</a>,'*__125',_). constr_name(<a href=%MML%frechet2.html#K3>k3_frechet2</a>,'Cl_Seq',_). constr_name(<a href=%MML%frechet2.html#K4>k4_frechet2</a>,lim__13,_). constr_name(<a href=%MML%frechet2.html#R1>r1_frechet2</a>,is_a_cluster_point_of__3,_). constr_name(<a href=%MML%borsuk_3.html#R1>r1_borsuk_3</a>,are_homeomorphic__2,_). constr_name(<a href=%MML%topreal7.html#K1>k1_topreal7</a>,'max-Prod2',_). constr_name(<a href=%MML%topreal7.html#K2>k2_topreal7</a>,'[..]__25',_). constr_name(<a href=%MML%topreal7.html#K3>k3_topreal7</a>,'`1__23',_). constr_name(<a href=%MML%topreal7.html#K4>k4_topreal7</a>,'`2__29',_). constr_name(<a href=%MML%fscirc_1.html#K1>k1_fscirc_1</a>,'BitSubtracterOutput',_). constr_name(<a href=%MML%fscirc_1.html#K2>k2_fscirc_1</a>,'BitSubtracterCirc',_). constr_name(<a href=%MML%fscirc_1.html#K3>k3_fscirc_1</a>,'BorrowIStr',_). constr_name(<a href=%MML%fscirc_1.html#K4>k4_fscirc_1</a>,'BorrowStr',_). constr_name(<a href=%MML%fscirc_1.html#K5>k5_fscirc_1</a>,'BorrowICirc',_). constr_name(<a href=%MML%fscirc_1.html#K6>k6_fscirc_1</a>,'BorrowOutput',_). constr_name(<a href=%MML%fscirc_1.html#K7>k7_fscirc_1</a>,'BorrowCirc',_). constr_name(<a href=%MML%fscirc_1.html#K8>k8_fscirc_1</a>,'BitSubtracterWithBorrowStr',_). constr_name(<a href=%MML%fscirc_1.html#K9>k9_fscirc_1</a>,'BitSubtracterWithBorrowCirc',_). constr_name(<a href=%MML%integra1.html#V1>v1_integra1</a>,'closed-interval',_). constr_name(<a href=%MML%integra1.html#M1>m1_integra1</a>,'DivisionPoint',_). constr_name(<a href=%MML%integra1.html#K1>k1_integra1</a>,divs,_). constr_name(<a href=%MML%integra1.html#M2>m2_integra1</a>,'Division',_). constr_name(<a href=%MML%integra1.html#M3>m3_integra1</a>,'Element__54',_). constr_name(<a href=%MML%integra1.html#K2>k2_integra1</a>,divset,_). constr_name(<a href=%MML%integra1.html#K3>k3_integra1</a>,vol__6,_). constr_name(<a href=%MML%integra1.html#K4>k4_integra1</a>,upper_volume,_). constr_name(<a href=%MML%integra1.html#K5>k5_integra1</a>,lower_volume,_). constr_name(<a href=%MML%integra1.html#K6>k6_integra1</a>,upper_sum,_). constr_name(<a href=%MML%integra1.html#K7>k7_integra1</a>,lower_sum,_). constr_name(<a href=%MML%integra1.html#K8>k8_integra1</a>,divs__2,_). constr_name(<a href=%MML%integra1.html#K9>k9_integra1</a>,upper_sum_set,_). constr_name(<a href=%MML%integra1.html#K10>k10_integra1</a>,lower_sum_set,_). constr_name(<a href=%MML%integra1.html#R1>r1_integra1</a>,is_upper_integrable_on,_). constr_name(<a href=%MML%integra1.html#R2>r2_integra1</a>,is_lower_integrable_on,_). constr_name(<a href=%MML%integra1.html#K11>k11_integra1</a>,upper_integral,_). constr_name(<a href=%MML%integra1.html#K12>k12_integra1</a>,lower_integral,_). constr_name(<a href=%MML%integra1.html#R3>r3_integra1</a>,is_integrable_on,_). constr_name(<a href=%MML%integra1.html#K13>k13_integra1</a>,integral,_). constr_name(<a href=%MML%integra1.html#K14>k14_integra1</a>,upper_volume__2,_). constr_name(<a href=%MML%integra1.html#K15>k15_integra1</a>,lower_volume__2,_). constr_name(<a href=%MML%integra1.html#K16>k16_integra1</a>,rng__22,_). constr_name(<a href=%MML%integra1.html#K17>k17_integra1</a>,delta__6,_). constr_name(<a href=%MML%integra1.html#R4>r4_integra1</a>,'<=__8',_). constr_name(<a href=%MML%integra1.html#K18>k18_integra1</a>,indx,_). constr_name(<a href=%MML%integra1.html#K19>k19_integra1</a>,'PartSums',_). constr_name(<a href=%MML%scmisort.html#K1>k1_scmisort</a>,'StepWhile>0__2',_). constr_name(<a href=%MML%scmisort.html#K2>k2_scmisort</a>,'.__123',_). constr_name(<a href=%MML%scmisort.html#K3>k3_scmisort</a>,'insert-sort',_). constr_name(<a href=%MML%scmisort.html#K4>k4_scmisort</a>,'Insert-Sort-Algorithm',_). constr_name(<a href=%MML%hilbert2.html#K1>k1_hilbert2</a>,prop,_). constr_name(<a href=%MML%hilbert2.html#V1>v1_hilbert2</a>,conjunctive__4,_). constr_name(<a href=%MML%hilbert2.html#V2>v2_hilbert2</a>,conditional__3,_). constr_name(<a href=%MML%hilbert2.html#V3>v3_hilbert2</a>,simple__3,_). constr_name(<a href=%MML%hilbert2.html#K2>k2_hilbert2</a>,'HP-Subformulae',_). constr_name(<a href=%MML%hilbert2.html#K3>k3_hilbert2</a>,'Subformulae__3',_). constr_name(<a href=%MML%gobrd13.html#K1>k1_gobrd13</a>,'.__124',_). constr_name(<a href=%MML%gobrd13.html#K2>k2_gobrd13</a>,'Values',_). constr_name(<a href=%MML%gobrd13.html#K3>k3_gobrd13</a>,right_cell__2,_). constr_name(<a href=%MML%gobrd13.html#K4>k4_gobrd13</a>,left_cell__2,_). constr_name(<a href=%MML%gobrd13.html#K5>k5_gobrd13</a>,front_right_cell,_). constr_name(<a href=%MML%gobrd13.html#K6>k6_gobrd13</a>,front_left_cell,_). constr_name(<a href=%MML%gobrd13.html#R1>r1_gobrd13</a>,turns_right,_). constr_name(<a href=%MML%gobrd13.html#R2>r2_gobrd13</a>,turns_left,_). constr_name(<a href=%MML%gobrd13.html#R3>r3_gobrd13</a>,goes_straight,_). constr_name(<a href=%MML%genealg1.html#M1>m1_genealg1</a>,'Individual',_). constr_name(<a href=%MML%genealg1.html#K1>k1_genealg1</a>,crossover,_). constr_name(<a href=%MML%genealg1.html#K2>k2_genealg1</a>,crossover__2,_). constr_name(<a href=%MML%genealg1.html#K3>k3_genealg1</a>,crossover__3,_). constr_name(<a href=%MML%genealg1.html#K4>k4_genealg1</a>,crossover__4,_). constr_name(<a href=%MML%genealg1.html#K5>k5_genealg1</a>,crossover__5,_). constr_name(<a href=%MML%genealg1.html#K6>k6_genealg1</a>,crossover__6,_). constr_name(<a href=%MML%genealg1.html#K7>k7_genealg1</a>,crossover__7,_). constr_name(<a href=%MML%genealg1.html#K8>k8_genealg1</a>,crossover__8,_). constr_name(<a href=%MML%genealg1.html#K9>k9_genealg1</a>,crossover__9,_). constr_name(<a href=%MML%genealg1.html#K10>k10_genealg1</a>,crossover__10,_). constr_name(<a href=%MML%genealg1.html#K11>k11_genealg1</a>,crossover__11,_). constr_name(<a href=%MML%genealg1.html#K12>k12_genealg1</a>,crossover__12,_). constr_name(<a href=%MML%gobrd14.html#K1>k1_gobrd14</a>,dist__9,_). constr_name(<a href=%MML%lattice6.html#K1>k1_lattice6</a>,'%__3',_). constr_name(<a href=%MML%lattice6.html#K2>k2_lattice6</a>,'%__4',_). constr_name(<a href=%MML%lattice6.html#V1>v1_lattice6</a>,noetherian,_). constr_name(<a href=%MML%lattice6.html#V2>v2_lattice6</a>,'co-noetherian',_). constr_name(<a href=%MML%lattice6.html#R1>r1_lattice6</a>,'is-upper-neighbour-of',_). constr_name(<a href=%MML%lattice6.html#K3>k3_lattice6</a>,'*'__17',_). constr_name(<a href=%MML%lattice6.html#K4>k4_lattice6</a>,'*'__18',_). constr_name(<a href=%MML%lattice6.html#V3>v3_lattice6</a>,'completely-meet-irreducible',_). constr_name(<a href=%MML%lattice6.html#V4>v4_lattice6</a>,'completely-join-irreducible',_). constr_name(<a href=%MML%lattice6.html#V5>v5_lattice6</a>,atomic__4,_). constr_name(<a href=%MML%lattice6.html#V6>v6_lattice6</a>,'co-atomic',_). constr_name(<a href=%MML%lattice6.html#V7>v7_lattice6</a>,atomic__5,_). constr_name(<a href=%MML%lattice6.html#V8>v8_lattice6</a>,'supremum-dense',_). constr_name(<a href=%MML%lattice6.html#V9>v9_lattice6</a>,'infimum-dense',_). constr_name(<a href=%MML%lattice6.html#K5>k5_lattice6</a>,'MIRRS',_). constr_name(<a href=%MML%lattice6.html#K6>k6_lattice6</a>,'JIRRS',_). constr_name(<a href=%MML%scmpds_1.html#K1>k1_scmpds_1</a>,'<*..*>__45',_). constr_name(<a href=%MML%scmpds_1.html#K2>k2_scmpds_1</a>,'<*..*>__46',_). constr_name(<a href=%MML%scmpds_1.html#K3>k3_scmpds_1</a>,'<*..*>__47',_). constr_name(<a href=%MML%scmpds_1.html#K4>k4_scmpds_1</a>,'<*..*>__48',_). constr_name(<a href=%MML%scmpds_1.html#K5>k5_scmpds_1</a>,'SCMPDS-Instr',_). constr_name(<a href=%MML%scmpds_1.html#K6>k6_scmpds_1</a>,'SCMPDS-OK',_). constr_name(<a href=%MML%scmpds_1.html#K7>k7_scmpds_1</a>,'IC__7',_). constr_name(<a href=%MML%scmpds_1.html#K8>k8_scmpds_1</a>,'SCM-Chg__5',_). constr_name(<a href=%MML%scmpds_1.html#K9>k9_scmpds_1</a>,'SCM-Chg__6',_). constr_name(<a href=%MML%scmpds_1.html#K10>k10_scmpds_1</a>,'.__125',_). constr_name(<a href=%MML%scmpds_1.html#K11>k11_scmpds_1</a>,'Address_Add',_). constr_name(<a href=%MML%scmpds_1.html#K12>k12_scmpds_1</a>,jump_address__3,_). constr_name(<a href=%MML%scmpds_1.html#K13>k13_scmpds_1</a>,'<*..*>__49',_). constr_name(<a href=%MML%scmpds_1.html#K14>k14_scmpds_1</a>,address_1__3,_). constr_name(<a href=%MML%scmpds_1.html#K15>k15_scmpds_1</a>,const_INT,_). constr_name(<a href=%MML%scmpds_1.html#K16>k16_scmpds_1</a>,'P21address',_). constr_name(<a href=%MML%scmpds_1.html#K17>k17_scmpds_1</a>,'P22const',_). constr_name(<a href=%MML%scmpds_1.html#K18>k18_scmpds_1</a>,'P31address',_). constr_name(<a href=%MML%scmpds_1.html#K19>k19_scmpds_1</a>,'P32const',_). constr_name(<a href=%MML%scmpds_1.html#K20>k20_scmpds_1</a>,'P33const',_). constr_name(<a href=%MML%scmpds_1.html#K21>k21_scmpds_1</a>,'P41address',_). constr_name(<a href=%MML%scmpds_1.html#K22>k22_scmpds_1</a>,'P42address',_). constr_name(<a href=%MML%scmpds_1.html#K23>k23_scmpds_1</a>,'P43const',_). constr_name(<a href=%MML%scmpds_1.html#K24>k24_scmpds_1</a>,'P44const',_). constr_name(<a href=%MML%scmpds_1.html#K25>k25_scmpds_1</a>,'PopInstrLoc',_). constr_name(<a href=%MML%scmpds_1.html#K26>k26_scmpds_1</a>,'RetSP',_). constr_name(<a href=%MML%scmpds_1.html#K27>k27_scmpds_1</a>,'RetIC',_). constr_name(<a href=%MML%scmpds_1.html#K28>k28_scmpds_1</a>,'SCM-Exec-Res__3',_). constr_name(<a href=%MML%scmpds_1.html#K29>k29_scmpds_1</a>,'SCMPDS-Exec',_). constr_name(<a href=%MML%scmpds_2.html#K1>k1_scmpds_2</a>,'SCMPDS',_). constr_name(<a href=%MML%scmpds_2.html#M1>m1_scmpds_2</a>,'Int_position',_). constr_name(<a href=%MML%scmpds_2.html#K2>k2_scmpds_2</a>,'.__126',_). constr_name(<a href=%MML%scmpds_2.html#K3>k3_scmpds_2</a>,'DataLoc',_). constr_name(<a href=%MML%scmpds_2.html#K4>k4_scmpds_2</a>,goto__4,_). constr_name(<a href=%MML%scmpds_2.html#K5>k5_scmpds_2</a>,return,_). constr_name(<a href=%MML%scmpds_2.html#K6>k6_scmpds_2</a>,':=__9',_). constr_name(<a href=%MML%scmpds_2.html#K7>k7_scmpds_2</a>,saveIC,_). constr_name(<a href=%MML%scmpds_2.html#K8>k8_scmpds_2</a>,'<>0_goto',_). constr_name(<a href=%MML%scmpds_2.html#K9>k9_scmpds_2</a>,'<=0_goto',_). constr_name(<a href=%MML%scmpds_2.html#K10>k10_scmpds_2</a>,'>=0_goto',_). constr_name(<a href=%MML%scmpds_2.html#K11>k11_scmpds_2</a>,':=__10',_). constr_name(<a href=%MML%scmpds_2.html#K12>k12_scmpds_2</a>,'AddTo__4',_). constr_name(<a href=%MML%scmpds_2.html#K13>k13_scmpds_2</a>,'AddTo__5',_). constr_name(<a href=%MML%scmpds_2.html#K14>k14_scmpds_2</a>,'SubFrom__4',_). constr_name(<a href=%MML%scmpds_2.html#K15>k15_scmpds_2</a>,'MultBy__4',_). constr_name(<a href=%MML%scmpds_2.html#K16>k16_scmpds_2</a>,'Divide__3',_). constr_name(<a href=%MML%scmpds_2.html#K17>k17_scmpds_2</a>,':=__11',_). constr_name(<a href=%MML%scmpds_2.html#K18>k18_scmpds_2</a>,'Next__6',_). constr_name(<a href=%MML%scmpds_2.html#K19>k19_scmpds_2</a>,'ICplusConst',_). constr_name(<a href=%MML%scmpds_3.html#K1>k1_scmpds_3</a>,'.-->__12',_). constr_name(<a href=%MML%scmpds_3.html#K2>k2_scmpds_3</a>,inspos,_). constr_name(<a href=%MML%scmpds_3.html#K3>k3_scmpds_3</a>,'+__70',_). constr_name(<a href=%MML%scmpds_3.html#K4>k4_scmpds_3</a>,'-'__5',_). constr_name(<a href=%MML%scmpds_3.html#V1>v1_scmpds_3</a>,initial__4,_). constr_name(<a href=%MML%scmpds_3.html#K5>k5_scmpds_3</a>,'SCMPDS-Stop',_). constr_name(<a href=%MML%scmpds_3.html#K6>k6_scmpds_3</a>,'Shift__3',_). constr_name(<a href=%MML%scmpds_4.html#K1>k1_scmpds_4</a>,'Load__2',_). constr_name(<a href=%MML%scmpds_4.html#K2>k2_scmpds_4</a>,'Initialized__2',_). constr_name(<a href=%MML%scmpds_4.html#K3>k3_scmpds_4</a>,'';'__5',_). constr_name(<a href=%MML%scmpds_4.html#K4>k4_scmpds_4</a>,'';'__6',_). constr_name(<a href=%MML%scmpds_4.html#K5>k5_scmpds_4</a>,'';'__7',_). constr_name(<a href=%MML%scmpds_4.html#K6>k6_scmpds_4</a>,'';'__8',_). constr_name(<a href=%MML%scmpds_4.html#K7>k7_scmpds_4</a>,'+*__15',_). constr_name(<a href=%MML%scmpds_4.html#K8>k8_scmpds_4</a>,stop,_). constr_name(<a href=%MML%scmpds_4.html#K9>k9_scmpds_4</a>,'IExec__2',_). constr_name(<a href=%MML%scmpds_4.html#V1>v1_scmpds_4</a>,paraclosed__2,_). constr_name(<a href=%MML%scmpds_4.html#V2>v2_scmpds_4</a>,parahalting__3,_). constr_name(<a href=%MML%scmpds_4.html#K10>k10_scmpds_4</a>,'-->__24',_). constr_name(<a href=%MML%scmpds_4.html#R1>r1_scmpds_4</a>,valid_at,_). constr_name(<a href=%MML%scmpds_4.html#V3>v3_scmpds_4</a>,shiftable,_). constr_name(<a href=%MML%scmpds_4.html#V4>v4_scmpds_4</a>,shiftable__2,_). constr_name(<a href=%MML%scmpds_5.html#V1>v1_scmpds_5</a>,'No-StopCode',_). constr_name(<a href=%MML%scmpds_5.html#V2>v2_scmpds_5</a>,parahalting__4,_). constr_name(<a href=%MML%scmpds_5.html#V3>v3_scmpds_5</a>,'No-StopCode__2',_). constr_name(<a href=%MML%scmpds_5.html#K1>k1_scmpds_5</a>,'Initialized__3',_). constr_name(<a href=%MML%scmpds_6.html#K1>k1_scmpds_6</a>,'Goto__2',_). constr_name(<a href=%MML%scmpds_6.html#R1>r1_scmpds_6</a>,is_closed_on__4,_). constr_name(<a href=%MML%scmpds_6.html#R2>r2_scmpds_6</a>,is_halting_on__2,_). constr_name(<a href=%MML%scmpds_6.html#K2>k2_scmpds_6</a>,'if=0__3',_). constr_name(<a href=%MML%scmpds_6.html#K3>k3_scmpds_6</a>,'if>0__3',_). constr_name(<a href=%MML%scmpds_6.html#K4>k4_scmpds_6</a>,'if<0__2',_). constr_name(<a href=%MML%scmpds_6.html#K5>k5_scmpds_6</a>,'if=0__4',_). constr_name(<a href=%MML%scmpds_6.html#K6>k6_scmpds_6</a>,'if<>0',_). constr_name(<a href=%MML%scmpds_6.html#K7>k7_scmpds_6</a>,'if>0__4',_). constr_name(<a href=%MML%scmpds_6.html#K8>k8_scmpds_6</a>,'if<=0',_). constr_name(<a href=%MML%scmpds_6.html#K9>k9_scmpds_6</a>,'if<0__3',_). constr_name(<a href=%MML%scmpds_6.html#K10>k10_scmpds_6</a>,'if>=0',_). constr_name(<a href=%MML%scmp_gcd.html#K1>k1_scmp_gcd</a>,intpos,_). constr_name(<a href=%MML%scmp_gcd.html#K2>k2_scmp_gcd</a>,'GBP',_). constr_name(<a href=%MML%scmp_gcd.html#K3>k3_scmp_gcd</a>,'SBP',_). constr_name(<a href=%MML%scmp_gcd.html#K4>k4_scmp_gcd</a>,'GCD-Algorithm',_). constr_name(<a href=%MML%waybel24.html#K1>k1_waybel24</a>,'Proj__3',_). constr_name(<a href=%MML%waybel24.html#K2>k2_waybel24</a>,'Proj__4',_). constr_name(<a href=%MML%waybel24.html#K3>k3_waybel24</a>,'ContMaps',_). constr_name(<a href=%MML%yellow14.html#V1>v1_yellow14</a>,'Function-yielding__2',_). constr_name(<a href=%MML%yellow14.html#K1>k1_yellow14</a>,'.__127',_). constr_name(<a href=%MML%yellow14.html#K2>k2_yellow14</a>,'.__128',_). constr_name(<a href=%MML%jordan9.html#K1>k1_jordan9</a>,'Cage',_). constr_name(<a href=%MML%yellow15.html#K1>k1_yellow15</a>,rng__23,_). constr_name(<a href=%MML%yellow15.html#K2>k2_yellow15</a>,'MergeSequence',_). constr_name(<a href=%MML%yellow15.html#K3>k3_yellow15</a>,'Components',_). constr_name(<a href=%MML%yellow15.html#V1>v1_yellow15</a>,in_general_position,_). constr_name(<a href=%MML%jordan10.html#K1>k1_jordan10</a>,'UBD-Family',_). constr_name(<a href=%MML%jordan10.html#K2>k2_jordan10</a>,'BDD-Family',_). constr_name(<a href=%MML%jordan10.html#K3>k3_jordan10</a>,'UBD-Family__2',_). constr_name(<a href=%MML%jordan10.html#K4>k4_jordan10</a>,'BDD-Family__2',_). constr_name(<a href=%MML%irrat_1.html#K1>k1_irrat_1</a>,aseq,_). constr_name(<a href=%MML%irrat_1.html#K2>k2_irrat_1</a>,bseq,_). constr_name(<a href=%MML%irrat_1.html#K3>k3_irrat_1</a>,cseq,_). constr_name(<a href=%MML%irrat_1.html#K4>k4_irrat_1</a>,dseq,_). constr_name(<a href=%MML%irrat_1.html#K5>k5_irrat_1</a>,eseq,_). constr_name(<a href=%MML%waybel25.html#K1>k1_waybel25</a>,'Omega',_). constr_name(<a href=%MML%waybel25.html#K2>k2_waybel25</a>,commute__2,_). constr_name(<a href=%MML%waybel25.html#V1>v1_waybel25</a>,'monotone-convergence',_). constr_name(<a href=%MML%conlat_2.html#K1>k1_conlat_2</a>,'@__37',_). constr_name(<a href=%MML%conlat_2.html#K2>k2_conlat_2</a>,'"/\\"__17',_). constr_name(<a href=%MML%conlat_2.html#K3>k3_conlat_2</a>,'"\\/"__17',_). constr_name(<a href=%MML%conlat_2.html#K4>k4_conlat_2</a>,gamma,_). constr_name(<a href=%MML%conlat_2.html#K5>k5_conlat_2</a>,delta__7,_). constr_name(<a href=%MML%conlat_2.html#K6>k6_conlat_2</a>,'Context',_). constr_name(<a href=%MML%conlat_2.html#K7>k7_conlat_2</a>,'.:__47',_). constr_name(<a href=%MML%conlat_2.html#K8>k8_conlat_2</a>,'.:__48',_). constr_name(<a href=%MML%conlat_2.html#K9>k9_conlat_2</a>,'.:__49',_). constr_name(<a href=%MML%conlat_2.html#K10>k10_conlat_2</a>,'DualHomomorphism',_). constr_name(<a href=%MML%radix_1.html#K1>k1_radix_1</a>,'Radix',_). constr_name(<a href=%MML%radix_1.html#K2>k2_radix_1</a>,'-SD',_). constr_name(<a href=%MML%radix_1.html#K3>k3_radix_1</a>,'-SD__2',_). constr_name(<a href=%MML%radix_1.html#K4>k4_radix_1</a>,'DigA',_). constr_name(<a href=%MML%radix_1.html#K5>k5_radix_1</a>,'DigB',_). constr_name(<a href=%MML%radix_1.html#K6>k6_radix_1</a>,'SubDigit',_). constr_name(<a href=%MML%radix_1.html#K7>k7_radix_1</a>,'DigitSD',_). constr_name(<a href=%MML%radix_1.html#K8>k8_radix_1</a>,'SDDec',_). constr_name(<a href=%MML%radix_1.html#K9>k9_radix_1</a>,'DigitDC',_). constr_name(<a href=%MML%radix_1.html#K10>k10_radix_1</a>,'DecSD',_). constr_name(<a href=%MML%radix_1.html#K11>k11_radix_1</a>,'SD_Add_Carry',_). constr_name(<a href=%MML%radix_1.html#K12>k12_radix_1</a>,'SD_Add_Data',_). constr_name(<a href=%MML%radix_1.html#R1>r1_radix_1</a>,is_represented_by,_). constr_name(<a href=%MML%radix_1.html#K13>k13_radix_1</a>,'Add',_). constr_name(<a href=%MML%radix_1.html#K14>k14_radix_1</a>,''+'',_). constr_name(<a href=%MML%yellow16.html#R1>r1_yellow16</a>,is_a_retraction_of,_). constr_name(<a href=%MML%yellow16.html#R2>r2_yellow16</a>,is_an_UPS_retraction_of,_). constr_name(<a href=%MML%yellow16.html#R3>r3_yellow16</a>,is_a_retract_of__2,_). constr_name(<a href=%MML%yellow16.html#R4>r4_yellow16</a>,is_an_UPS_retract_of,_). constr_name(<a href=%MML%yellow16.html#V1>v1_yellow16</a>,'Poset-yielding',_). constr_name(<a href=%MML%yellow16.html#K1>k1_yellow16</a>,pi__9,_). constr_name(<a href=%MML%yellow16.html#K2>k2_yellow16</a>,'.__129',_). constr_name(<a href=%MML%yellow16.html#R5>r5_yellow16</a>,inherits_sup_of,_). constr_name(<a href=%MML%yellow16.html#R6>r6_yellow16</a>,inherits_inf_of,_). constr_name(<a href=%MML%algspec1.html#K1>k1_algspec1</a>,'-indexing',_). constr_name(<a href=%MML%algspec1.html#M1>m1_algspec1</a>,'rng-retract',_). constr_name(<a href=%MML%algspec1.html#R1>r1_algspec1</a>,form_a_replacement_in,_). constr_name(<a href=%MML%algspec1.html#K2>k2_algspec1</a>,'with-replacement__4',_). constr_name(<a href=%MML%algspec1.html#M2>m2_algspec1</a>,'Extension',_). constr_name(<a href=%MML%algspec1.html#M3>m3_algspec1</a>,'Algebra',_). constr_name(<a href=%MML%algspec1.html#M4>m4_algspec1</a>,'Algebra__2',_). constr_name(<a href=%MML%polynom1.html#K1>k1_polynom1</a>,'+*__16',_). constr_name(<a href=%MML%polynom1.html#K2>k2_polynom1</a>,'+*__17',_). constr_name(<a href=%MML%polynom1.html#K3>k3_polynom1</a>,'/.__5',_). constr_name(<a href=%MML%polynom1.html#K4>k4_polynom1</a>,'^^__5',_). constr_name(<a href=%MML%polynom1.html#K5>k5_polynom1</a>,'Card__3',_). constr_name(<a href=%MML%polynom1.html#K6>k6_polynom1</a>,'*__126',_). constr_name(<a href=%MML%polynom1.html#K7>k7_polynom1</a>,'*__127',_). constr_name(<a href=%MML%polynom1.html#K8>k8_polynom1</a>,'.__130',_). constr_name(<a href=%MML%polynom1.html#K9>k9_polynom1</a>,'+__71',_). constr_name(<a href=%MML%polynom1.html#K10>k10_polynom1</a>,'-'__6',_). constr_name(<a href=%MML%polynom1.html#K11>k11_polynom1</a>,support__2,_). constr_name(<a href=%MML%polynom1.html#V1>v1_polynom1</a>,'finite-support',_). constr_name(<a href=%MML%polynom1.html#K12>k12_polynom1</a>,'Support',_). constr_name(<a href=%MML%polynom1.html#V2>v2_polynom1</a>,'finite-Support__2',_). constr_name(<a href=%MML%polynom1.html#R1>r1_polynom1</a>,'<__2',_). constr_name(<a href=%MML%polynom1.html#R2>r2_polynom1</a>,'<='__4',_). constr_name(<a href=%MML%polynom1.html#R3>r3_polynom1</a>,divides__6,_). constr_name(<a href=%MML%polynom1.html#K13>k13_polynom1</a>,'Bags',_). constr_name(<a href=%MML%polynom1.html#K14>k14_polynom1</a>,'Bags__2',_). constr_name(<a href=%MML%polynom1.html#M1>m1_polynom1</a>,'Element__55',_). constr_name(<a href=%MML%polynom1.html#K15>k15_polynom1</a>,'.__131',_). constr_name(<a href=%MML%polynom1.html#K16>k16_polynom1</a>,'EmptyBag',_). constr_name(<a href=%MML%polynom1.html#K17>k17_polynom1</a>,'BagOrder',_). constr_name(<a href=%MML%polynom1.html#K18>k18_polynom1</a>,'NatMinor',_). constr_name(<a href=%MML%polynom1.html#K19>k19_polynom1</a>,support__3,_). constr_name(<a href=%MML%polynom1.html#K20>k20_polynom1</a>,divisors,_). constr_name(<a href=%MML%polynom1.html#K21>k21_polynom1</a>,decomp,_). constr_name(<a href=%MML%polynom1.html#K22>k22_polynom1</a>,'+__72',_). constr_name(<a href=%MML%polynom1.html#K23>k23_polynom1</a>,'+__73',_). constr_name(<a href=%MML%polynom1.html#K24>k24_polynom1</a>,'-__85',_). constr_name(<a href=%MML%polynom1.html#K25>k25_polynom1</a>,'-__86',_). constr_name(<a href=%MML%polynom1.html#K26>k26_polynom1</a>,'0_',_). constr_name(<a href=%MML%polynom1.html#K27>k27_polynom1</a>,'1___3',_). constr_name(<a href=%MML%polynom1.html#K28>k28_polynom1</a>,'*'__19',_). constr_name(<a href=%MML%polynom1.html#K29>k29_polynom1</a>,'*'__20',_). constr_name(<a href=%MML%polynom1.html#K30>k30_polynom1</a>,'Polynom-Ring',_). constr_name(<a href=%MML%waybel26.html#K1>k1_waybel26</a>,oContMaps,_). constr_name(<a href=%MML%waybel26.html#K2>k2_waybel26</a>,pi__10,_). constr_name(<a href=%MML%waybel26.html#K3>k3_waybel26</a>,oContMaps__2,_). constr_name(<a href=%MML%waybel26.html#K4>k4_waybel26</a>,oContMaps__3,_). constr_name(<a href=%MML%waybel26.html#K5>k5_waybel26</a>,'*graph',_). constr_name(<a href=%MML%waybel26.html#K6>k6_waybel26</a>,'*graph__2',_). constr_name(<a href=%MML%asympt_0.html#V1>v1_asympt_0</a>,logbase,_). constr_name(<a href=%MML%asympt_0.html#V2>v2_asympt_0</a>,'eventually-nonnegative',_). constr_name(<a href=%MML%asympt_0.html#V3>v3_asympt_0</a>,positive__2,_). constr_name(<a href=%MML%asympt_0.html#V4>v4_asympt_0</a>,'eventually-positive',_). constr_name(<a href=%MML%asympt_0.html#V5>v5_asympt_0</a>,'eventually-nonzero',_). constr_name(<a href=%MML%asympt_0.html#V6>v6_asympt_0</a>,'eventually-nondecreasing',_). constr_name(<a href=%MML%asympt_0.html#K1>k1_asympt_0</a>,'+__74',_). constr_name(<a href=%MML%asympt_0.html#K2>k2_asympt_0</a>,'+__75',_). constr_name(<a href=%MML%asympt_0.html#K3>k3_asympt_0</a>,'(#)__30',_). constr_name(<a href=%MML%asympt_0.html#K4>k4_asympt_0</a>,max__6,_). constr_name(<a href=%MML%asympt_0.html#R1>r1_asympt_0</a>,majorizes,_). constr_name(<a href=%MML%asympt_0.html#K5>k5_asympt_0</a>,'Big_Oh',_). constr_name(<a href=%MML%asympt_0.html#K6>k6_asympt_0</a>,'Big_Omega',_). constr_name(<a href=%MML%asympt_0.html#K7>k7_asympt_0</a>,'Big_Theta',_). constr_name(<a href=%MML%asympt_0.html#K8>k8_asympt_0</a>,'Big_Oh__2',_). constr_name(<a href=%MML%asympt_0.html#K9>k9_asympt_0</a>,'Big_Omega__2',_). constr_name(<a href=%MML%asympt_0.html#K10>k10_asympt_0</a>,'Big_Theta__2',_). constr_name(<a href=%MML%asympt_0.html#K11>k11_asympt_0</a>,taken_every,_). constr_name(<a href=%MML%asympt_0.html#R2>r2_asympt_0</a>,is_smooth_wrt,_). constr_name(<a href=%MML%asympt_0.html#V7>v7_asympt_0</a>,smooth,_). constr_name(<a href=%MML%asympt_0.html#K12>k12_asympt_0</a>,'+__76',_). constr_name(<a href=%MML%asympt_0.html#K13>k13_asympt_0</a>,max__7,_). constr_name(<a href=%MML%asympt_0.html#K14>k14_asympt_0</a>,to_power__5,_). constr_name(<a href=%MML%asympt_1.html#K1>k1_asympt_1</a>,'seq_a^',_). constr_name(<a href=%MML%asympt_1.html#K2>k2_asympt_1</a>,seq_logn,_). constr_name(<a href=%MML%asympt_1.html#K3>k3_asympt_1</a>,'seq_n^',_). constr_name(<a href=%MML%asympt_1.html#K4>k4_asympt_1</a>,seq_const,_). constr_name(<a href=%MML%asympt_1.html#K5>k5_asympt_1</a>,'seq_n!',_). constr_name(<a href=%MML%asympt_1.html#K6>k6_asympt_1</a>,'.__132',_). constr_name(<a href=%MML%asympt_1.html#K7>k7_asympt_1</a>,'Prob28',_). constr_name(<a href=%MML%asympt_1.html#K8>k8_asympt_1</a>,seq_prob28,_). constr_name(<a href=%MML%asympt_1.html#K9>k9_asympt_1</a>,'POWEROF2SET',_). constr_name(<a href=%MML%asympt_1.html#K10>k10_asympt_1</a>,'Step1',_). constr_name(<a href=%MML%waybel27.html#V1>v1_waybel27</a>,uncurrying,_). constr_name(<a href=%MML%waybel27.html#V2>v2_waybel27</a>,currying,_). constr_name(<a href=%MML%waybel27.html#V3>v3_waybel27</a>,commuting,_). constr_name(<a href=%MML%waybel27.html#K1>k1_waybel27</a>,'.__133',_). constr_name(<a href=%MML%waybel27.html#K2>k2_waybel27</a>,'UPS',_). constr_name(<a href=%MML%waybel27.html#K3>k3_waybel27</a>,'.__134',_). constr_name(<a href=%MML%waybel27.html#K4>k4_waybel27</a>,'UPS__2',_). constr_name(<a href=%MML%integra2.html#V1>v1_integra2</a>,'non-decreasing__4',_). constr_name(<a href=%MML%integra2.html#K1>k1_integra2</a>,'*__128',_). constr_name(<a href=%MML%integra2.html#K2>k2_integra2</a>,delta__8,_). constr_name(<a href=%MML%integra2.html#K3>k3_integra2</a>,upper_sum__2,_). constr_name(<a href=%MML%integra2.html#K4>k4_integra2</a>,lower_sum__2,_). constr_name(<a href=%MML%scmpds_7.html#K1>k1_scmpds_7</a>,'for-up__2',_). constr_name(<a href=%MML%scmpds_7.html#K2>k2_scmpds_7</a>,'for-down',_). constr_name(<a href=%MML%scmpds_7.html#K3>k3_scmpds_7</a>,sum__3,_). constr_name(<a href=%MML%scmpds_7.html#K4>k4_scmpds_7</a>,sum__4,_). constr_name(<a href=%MML%bvfunc24.html#K1>k1_bvfunc24</a>,'{..}__49',_). constr_name(<a href=%MML%waybel28.html#V1>v1_waybel28</a>,greater_or_equal_to_id,_). constr_name(<a href=%MML%waybel28.html#K1>k1_waybel28</a>,'*__129',_). constr_name(<a href=%MML%waybel28.html#K2>k2_waybel28</a>,'*__130',_). constr_name(<a href=%MML%waybel28.html#K3>k3_waybel28</a>,'lim_inf-Convergence',_). constr_name(<a href=%MML%waybel28.html#K4>k4_waybel28</a>,xi,_). constr_name(<a href=%MML%waybel29.html#K1>k1_waybel29</a>,'Sigma',_). constr_name(<a href=%MML%waybel29.html#K2>k2_waybel29</a>,'Sigma__2',_). constr_name(<a href=%MML%waybel29.html#K3>k3_waybel29</a>,'Theta',_). constr_name(<a href=%MML%waybel29.html#K4>k4_waybel29</a>,alpha__2,_). constr_name(<a href=%MML%waybel29.html#K5>k5_waybel29</a>,commute__3,_). constr_name(<a href=%MML%waybel30.html#K1>k1_waybel30</a>,'^0',_). constr_name(<a href=%MML%waybel30.html#V1>v1_waybel30</a>,with_small_semilattices,_). constr_name(<a href=%MML%waybel30.html#V2>v2_waybel30</a>,with_compact_semilattices,_). constr_name(<a href=%MML%waybel30.html#V3>v3_waybel30</a>,with_open_semilattices,_). constr_name(<a href=%MML%waybel31.html#K1>k1_waybel31</a>,'CLweight',_). constr_name(<a href=%MML%waybel31.html#K2>k2_waybel31</a>,'Way_Up',_). constr_name(<a href=%MML%lattice7.html#R1>r1_lattice7</a>,'c=__9',_). constr_name(<a href=%MML%lattice7.html#M1>m1_lattice7</a>,'Chain__5',_). constr_name(<a href=%MML%lattice7.html#K1>k1_lattice7</a>,height__2,_). constr_name(<a href=%MML%lattice7.html#R2>r2_lattice7</a>,'<(1)',_). constr_name(<a href=%MML%lattice7.html#K2>k2_lattice7</a>,max__8,_). constr_name(<a href=%MML%lattice7.html#K3>k3_lattice7</a>,'Join-IRR',_). constr_name(<a href=%MML%lattice7.html#K4>k4_lattice7</a>,'LOWER',_). constr_name(<a href=%MML%lattice7.html#M2>m2_lattice7</a>,'Ring_of_sets',_). constr_name(<a href=%MML%complfld.html#K1>k1_complfld</a>,'F_Complex',_). constr_name(<a href=%MML%complfld.html#K2>k2_complfld</a>,'*'__21',_). constr_name(<a href=%MML%complfld.html#K3>k3_complfld</a>,'|....|__14',_). constr_name(<a href=%MML%integra4.html#R1>r1_integra4</a>,divide_into_equal,_). constr_name(<a href=%MML%radix_2.html#K1>k1_radix_2</a>,'SubDigit2',_). constr_name(<a href=%MML%radix_2.html#K2>k2_radix_2</a>,'DigitSD2',_). constr_name(<a href=%MML%radix_2.html#K3>k3_radix_2</a>,'SDDec2',_). constr_name(<a href=%MML%radix_2.html#K4>k4_radix_2</a>,'DigitDC2',_). constr_name(<a href=%MML%radix_2.html#K5>k5_radix_2</a>,'DecSD2',_). constr_name(<a href=%MML%radix_2.html#K6>k6_radix_2</a>,'Table1',_). constr_name(<a href=%MML%radix_2.html#K7>k7_radix_2</a>,'Mul_mod',_). constr_name(<a href=%MML%radix_2.html#K8>k8_radix_2</a>,'Table2',_). constr_name(<a href=%MML%radix_2.html#K9>k9_radix_2</a>,'Pow_mod',_). constr_name(<a href=%MML%integra5.html#K1>k1_integra5</a>,'||__4',_). constr_name(<a href=%MML%integra5.html#R1>r1_integra5</a>,is_integrable_on__2,_). constr_name(<a href=%MML%integra5.html#K2>k2_integra5</a>,integral__2,_). constr_name(<a href=%MML%integra5.html#K3>k3_integra5</a>,'['..']',_). constr_name(<a href=%MML%integra5.html#K4>k4_integra5</a>,integral__3,_). constr_name(<a href=%MML%rfunct_4.html#R1>r1_rfunct_4</a>,is_strictly_convex_on,_). constr_name(<a href=%MML%rfunct_4.html#R2>r2_rfunct_4</a>,is_quasiconvex_on,_). constr_name(<a href=%MML%rfunct_4.html#R3>r3_rfunct_4</a>,is_strictly_quasiconvex_on,_). constr_name(<a href=%MML%rfunct_4.html#R4>r4_rfunct_4</a>,is_strongly_quasiconvex_on,_). constr_name(<a href=%MML%rfunct_4.html#R5>r5_rfunct_4</a>,is_upper_semicontinuous_in,_). constr_name(<a href=%MML%rfunct_4.html#R6>r6_rfunct_4</a>,is_upper_semicontinuous_on,_). constr_name(<a href=%MML%rfunct_4.html#R7>r7_rfunct_4</a>,is_lower_semicontinuous_in,_). constr_name(<a href=%MML%rfunct_4.html#R8>r8_rfunct_4</a>,is_lower_semicontinuous_on,_). constr_name(<a href=%MML%amistd_1.html#V1>v1_amistd_1</a>,'jump-only',_). constr_name(<a href=%MML%amistd_1.html#V2>v2_amistd_1</a>,'jump-only__2',_). constr_name(<a href=%MML%amistd_1.html#K1>k1_amistd_1</a>,'NIC',_). constr_name(<a href=%MML%amistd_1.html#K2>k2_amistd_1</a>,'JUMP',_). constr_name(<a href=%MML%amistd_1.html#K3>k3_amistd_1</a>,'SUCC',_). constr_name(<a href=%MML%amistd_1.html#R1>r1_amistd_1</a>,'<=__9',_). constr_name(<a href=%MML%amistd_1.html#V3>v3_amistd_1</a>,'InsLoc-antisymmetric',_). constr_name(<a href=%MML%amistd_1.html#V4>v4_amistd_1</a>,standard__2,_). constr_name(<a href=%MML%amistd_1.html#K4>k4_amistd_1</a>,'STC',_). constr_name(<a href=%MML%amistd_1.html#K5>k5_amistd_1</a>,'il.__2',_). constr_name(<a href=%MML%amistd_1.html#K6>k6_amistd_1</a>,locnum,_). constr_name(<a href=%MML%amistd_1.html#K7>k7_amistd_1</a>,locnum__2,_). constr_name(<a href=%MML%amistd_1.html#K8>k8_amistd_1</a>,'+__77',_). constr_name(<a href=%MML%amistd_1.html#K9>k9_amistd_1</a>,'NextLoc',_). constr_name(<a href=%MML%amistd_1.html#V5>v5_amistd_1</a>,sequential__2,_). constr_name(<a href=%MML%amistd_1.html#V6>v6_amistd_1</a>,closed__10,_). constr_name(<a href=%MML%amistd_1.html#V7>v7_amistd_1</a>,'really-closed',_). constr_name(<a href=%MML%amistd_1.html#V8>v8_amistd_1</a>,'para-closed',_). constr_name(<a href=%MML%amistd_1.html#V9>v9_amistd_1</a>,lower__3,_). constr_name(<a href=%MML%amistd_1.html#K10>k10_amistd_1</a>,'LastLoc',_). constr_name(<a href=%MML%amistd_1.html#V10>v10_amistd_1</a>,'halt-ending',_). constr_name(<a href=%MML%amistd_1.html#V11>v11_amistd_1</a>,'unique-halt',_). constr_name(<a href=%MML%amistd_2.html#K1>k1_amistd_2</a>,'PA',_). constr_name(<a href=%MML%amistd_2.html#V1>v1_amistd_2</a>,'product-like',_). constr_name(<a href=%MML%amistd_2.html#K2>k2_amistd_2</a>,'-->__25',_). constr_name(<a href=%MML%amistd_2.html#K3>k3_amistd_2</a>,'AddressPart',_). constr_name(<a href=%MML%amistd_2.html#K4>k4_amistd_2</a>,'AddressPart__2',_). constr_name(<a href=%MML%amistd_2.html#V2>v2_amistd_2</a>,homogeneous__6,_). constr_name(<a href=%MML%amistd_2.html#K5>k5_amistd_2</a>,'AddressParts',_). constr_name(<a href=%MML%amistd_2.html#V3>v3_amistd_2</a>,with_explicit_jumps,_). constr_name(<a href=%MML%amistd_2.html#V4>v4_amistd_2</a>,without_implicit_jumps,_). constr_name(<a href=%MML%amistd_2.html#V5>v5_amistd_2</a>,with_explicit_jumps__2,_). constr_name(<a href=%MML%amistd_2.html#V6>v6_amistd_2</a>,without_implicit_jumps__2,_). constr_name(<a href=%MML%amistd_2.html#V7>v7_amistd_2</a>,'with-non-trivial-Instruction-Locations',_). constr_name(<a href=%MML%amistd_2.html#V8>v8_amistd_2</a>,regular__2,_). constr_name(<a href=%MML%amistd_2.html#V9>v9_amistd_2</a>,'ins-loc-free',_). constr_name(<a href=%MML%amistd_2.html#K6>k6_amistd_2</a>,'Stop',_). constr_name(<a href=%MML%amistd_2.html#K7>k7_amistd_2</a>,'Stop__2',_). constr_name(<a href=%MML%amistd_2.html#K8>k8_amistd_2</a>,'IncAddr__5',_). constr_name(<a href=%MML%amistd_2.html#K9>k9_amistd_2</a>,'IncAddr__6',_). constr_name(<a href=%MML%amistd_2.html#K10>k10_amistd_2</a>,'Shift__4',_). constr_name(<a href=%MML%amistd_2.html#V10>v10_amistd_2</a>,'IC-good',_). constr_name(<a href=%MML%amistd_2.html#V11>v11_amistd_2</a>,'IC-good__2',_). constr_name(<a href=%MML%amistd_2.html#V12>v12_amistd_2</a>,'Exec-preserving',_). constr_name(<a href=%MML%amistd_2.html#V13>v13_amistd_2</a>,'Exec-preserving__2',_). constr_name(<a href=%MML%amistd_2.html#K11>k11_amistd_2</a>,'CutLastLoc',_). constr_name(<a href=%MML%amistd_2.html#K12>k12_amistd_2</a>,'';'__9',_). constr_name(<a href=%MML%amistd_2.html#K13>k13_amistd_2</a>,'';'__10',_). constr_name(<a href=%MML%scmring3.html#K1>k1_scmring3</a>,'-->__26',_). constr_name(<a href=%MML%scmring3.html#K2>k2_scmring3</a>,'dl.__2',_). constr_name(<a href=%MML%polynom2.html#V1>v1_polynom2</a>,empty__7,_). constr_name(<a href=%MML%polynom2.html#K1>k1_polynom2</a>,support__4,_). constr_name(<a href=%MML%polynom2.html#K2>k2_polynom2</a>,'*__131',_). constr_name(<a href=%MML%polynom2.html#K3>k3_polynom2</a>,eval,_). constr_name(<a href=%MML%polynom2.html#K4>k4_polynom2</a>,'@__38',_). constr_name(<a href=%MML%polynom2.html#K5>k5_polynom2</a>,eval__2,_). constr_name(<a href=%MML%polynom2.html#K6>k6_polynom2</a>,'Polynom-Evaluation',_). constr_name(<a href=%MML%polynom3.html#K1>k1_polynom3</a>,'Del__5',_). constr_name(<a href=%MML%polynom3.html#K2>k2_polynom3</a>,'<*..*>__50',_). constr_name(<a href=%MML%polynom3.html#K3>k3_polynom3</a>,'^__19',_). constr_name(<a href=%MML%polynom3.html#K4>k4_polynom3</a>,'^^__6',_). constr_name(<a href=%MML%polynom3.html#R1>r1_polynom3</a>,'<__3',_). constr_name(<a href=%MML%polynom3.html#R2>r2_polynom3</a>,'<=__10',_). constr_name(<a href=%MML%polynom3.html#K5>k5_polynom3</a>,'TuplesOrder',_). constr_name(<a href=%MML%polynom3.html#K6>k6_polynom3</a>,'Decomp',_). constr_name(<a href=%MML%polynom3.html#K7>k7_polynom3</a>,prodTuples,_). constr_name(<a href=%MML%polynom3.html#K8>k8_polynom3</a>,'+__78',_). constr_name(<a href=%MML%polynom3.html#K9>k9_polynom3</a>,'+__79',_). constr_name(<a href=%MML%polynom3.html#K10>k10_polynom3</a>,'-__87',_). constr_name(<a href=%MML%polynom3.html#K11>k11_polynom3</a>,'-__88',_). constr_name(<a href=%MML%polynom3.html#K12>k12_polynom3</a>,'0_.',_). constr_name(<a href=%MML%polynom3.html#K13>k13_polynom3</a>,'1_.',_). constr_name(<a href=%MML%polynom3.html#K14>k14_polynom3</a>,'*'__22',_). constr_name(<a href=%MML%polynom3.html#K15>k15_polynom3</a>,'*'__23',_). constr_name(<a href=%MML%polynom3.html#K16>k16_polynom3</a>,'Polynom-Ring__2',_). constr_name(<a href=%MML%fuzzy_1.html#M1>m1_fuzzy_1</a>,'Membership_Func',_). constr_name(<a href=%MML%fuzzy_1.html#R1>r1_fuzzy_1</a>,is_less_than__3,_). constr_name(<a href=%MML%fuzzy_1.html#R2>r2_fuzzy_1</a>,is_less_than__4,_). constr_name(<a href=%MML%fuzzy_1.html#K1>k1_fuzzy_1</a>,min__6,_). constr_name(<a href=%MML%fuzzy_1.html#K2>k2_fuzzy_1</a>,max__9,_). constr_name(<a href=%MML%fuzzy_1.html#K3>k3_fuzzy_1</a>,'1_minus',_). constr_name(<a href=%MML%fuzzy_1.html#K4>k4_fuzzy_1</a>,'EMF',_). constr_name(<a href=%MML%fuzzy_1.html#K5>k5_fuzzy_1</a>,'UMF',_). constr_name(<a href=%MML%fuzzy_1.html#K6>k6_fuzzy_1</a>,'\\+\\__12',_). constr_name(<a href=%MML%fuzzy_1.html#K7>k7_fuzzy_1</a>,ab_difMF,_). constr_name(<a href=%MML%fuzzy_2.html#K1>k1_fuzzy_2</a>,'\\__19',_). constr_name(<a href=%MML%fuzzy_2.html#K2>k2_fuzzy_2</a>,'*__132',_). constr_name(<a href=%MML%fuzzy_2.html#K3>k3_fuzzy_2</a>,'++',_). constr_name(<a href=%MML%hahnban1.html#K1>k1_hahnban1</a>,'[**..**]',_). constr_name(<a href=%MML%hahnban1.html#K2>k2_hahnban1</a>,i_FC,_). constr_name(<a href=%MML%hahnban1.html#K3>k3_hahnban1</a>,'+__80',_). constr_name(<a href=%MML%hahnban1.html#K4>k4_hahnban1</a>,'-__89',_). constr_name(<a href=%MML%hahnban1.html#K5>k5_hahnban1</a>,'-__90',_). constr_name(<a href=%MML%hahnban1.html#K6>k6_hahnban1</a>,'*__133',_). constr_name(<a href=%MML%hahnban1.html#K7>k7_hahnban1</a>,'0Functional',_). constr_name(<a href=%MML%hahnban1.html#V1>v1_hahnban1</a>,additive__7,_). constr_name(<a href=%MML%hahnban1.html#V2>v2_hahnban1</a>,homogeneous__7,_). constr_name(<a href=%MML%hahnban1.html#V3>v3_hahnban1</a>,'0-preserving__2',_). constr_name(<a href=%MML%hahnban1.html#K8>k8_hahnban1</a>,'*'__24',_). constr_name(<a href=%MML%hahnban1.html#V4>v4_hahnban1</a>,subadditive__2,_). constr_name(<a href=%MML%hahnban1.html#V5>v5_hahnban1</a>,additive__8,_). constr_name(<a href=%MML%hahnban1.html#V6>v6_hahnban1</a>,'Real_homogeneous',_). constr_name(<a href=%MML%hahnban1.html#V7>v7_hahnban1</a>,homogeneous__8,_). constr_name(<a href=%MML%hahnban1.html#V8>v8_hahnban1</a>,'0-preserving__3',_). constr_name(<a href=%MML%hahnban1.html#K9>k9_hahnban1</a>,'0RFunctional',_). constr_name(<a href=%MML%hahnban1.html#K10>k10_hahnban1</a>,'RealVS',_). constr_name(<a href=%MML%hahnban1.html#K11>k11_hahnban1</a>,projRe,_). constr_name(<a href=%MML%hahnban1.html#K12>k12_hahnban1</a>,projIm,_). constr_name(<a href=%MML%hahnban1.html#K13>k13_hahnban1</a>,'RtoC',_). constr_name(<a href=%MML%hahnban1.html#K14>k14_hahnban1</a>,'CtoR',_). constr_name(<a href=%MML%hahnban1.html#K15>k15_hahnban1</a>,'i-shift',_). constr_name(<a href=%MML%hahnban1.html#K16>k16_hahnban1</a>,prodReIm,_). constr_name(<a href=%MML%waybel32.html#V1>v1_waybel32</a>,upper__2,_). constr_name(<a href=%MML%waybel32.html#V2>v2_waybel32</a>,order_consistent,_). constr_name(<a href=%MML%waybel32.html#K1>k1_waybel32</a>,'*'__25',_). constr_name(<a href=%MML%waybel32.html#K2>k2_waybel32</a>,inf_net,_). constr_name(<a href=%MML%pencil_1.html#R1>r1_pencil_1</a>,are_collinear,_). constr_name(<a href=%MML%pencil_1.html#V1>v1_pencil_1</a>,closed_under_lines,_). constr_name(<a href=%MML%pencil_1.html#V2>v2_pencil_1</a>,strong,_). constr_name(<a href=%MML%pencil_1.html#V3>v3_pencil_1</a>,void__4,_). constr_name(<a href=%MML%pencil_1.html#V4>v4_pencil_1</a>,degenerated__2,_). constr_name(<a href=%MML%pencil_1.html#V5>v5_pencil_1</a>,with_non_trivial_blocks,_). constr_name(<a href=%MML%pencil_1.html#V6>v6_pencil_1</a>,identifying_close_blocks,_). constr_name(<a href=%MML%pencil_1.html#V7>v7_pencil_1</a>,'truly-partial',_). constr_name(<a href=%MML%pencil_1.html#V8>v8_pencil_1</a>,without_isolated_points,_). constr_name(<a href=%MML%pencil_1.html#V9>v9_pencil_1</a>,connected__8,_). constr_name(<a href=%MML%pencil_1.html#V10>v10_pencil_1</a>,strongly_connected__3,_). constr_name(<a href=%MML%pencil_1.html#V11>v11_pencil_1</a>,'TopStruct-yielding',_). constr_name(<a href=%MML%pencil_1.html#V12>v12_pencil_1</a>,'non-void-yielding',_). constr_name(<a href=%MML%pencil_1.html#V13>v13_pencil_1</a>,'trivial-yielding',_). constr_name(<a href=%MML%pencil_1.html#V14>v14_pencil_1</a>,'non-Trivial-yielding',_). constr_name(<a href=%MML%pencil_1.html#K1>k1_pencil_1</a>,'.__135',_). constr_name(<a href=%MML%pencil_1.html#V15>v15_pencil_1</a>,'PLS-yielding',_). constr_name(<a href=%MML%pencil_1.html#K2>k2_pencil_1</a>,'.__136',_). constr_name(<a href=%MML%pencil_1.html#V16>v16_pencil_1</a>,'Segre-like',_). constr_name(<a href=%MML%pencil_1.html#K3>k3_pencil_1</a>,indx__2,_). constr_name(<a href=%MML%pencil_1.html#K4>k4_pencil_1</a>,'Segre_Blocks',_). constr_name(<a href=%MML%pencil_1.html#K5>k5_pencil_1</a>,'Segre_Product',_). constr_name(<a href=%MML%pencil_1.html#K6>k6_pencil_1</a>,'Segre_Product__2',_). constr_name(<a href=%MML%polynom4.html#K1>k1_polynom4</a>,'Leading-Monomial',_). constr_name(<a href=%MML%polynom4.html#K2>k2_polynom4</a>,eval__3,_). constr_name(<a href=%MML%polynom4.html#K3>k3_polynom4</a>,'Polynom-Evaluation__2',_). constr_name(<a href=%MML%scmpds_8.html#K1>k1_scmpds_8</a>,'Dstate',_). constr_name(<a href=%MML%scmpds_8.html#K2>k2_scmpds_8</a>,'while<0__2',_). constr_name(<a href=%MML%scmpds_8.html#K3>k3_scmpds_8</a>,'while>0__2',_). constr_name(<a href=%MML%scpisort.html#R1>r1_scpisort</a>,is_FinSequence_on,_). constr_name(<a href=%MML%scpisort.html#K1>k1_scpisort</a>,'insert-sort__2',_). constr_name(<a href=%MML%scpqsort.html#K1>k1_scpqsort</a>,'Partition',_). constr_name(<a href=%MML%scpqsort.html#K2>k2_scpqsort</a>,'QuickSort',_). constr_name(<a href=%MML%scpinvar.html#K1>k1_scpinvar</a>,sum__5,_). constr_name(<a href=%MML%scpinvar.html#K2>k2_scpinvar</a>,'Fib-macro__2',_). constr_name(<a href=%MML%scpinvar.html#K3>k3_scpinvar</a>,'while<>0',_). constr_name(<a href=%MML%scpinvar.html#K4>k4_scpinvar</a>,'GCD-Algorithm__2',_). constr_name(<a href=%MML%orders_4.html#M1>m1_orders_4</a>,'Chain__6',_). constr_name(<a href=%MML%orders_4.html#V1>v1_orders_4</a>,countable__2,_). constr_name(<a href=%MML%orders_4.html#R1>r1_orders_4</a>,form_upper_lower_partition_of,_). constr_name(<a href=%MML%lattice8.html#R1>r1_lattice8</a>,'c=__10',_). constr_name(<a href=%MML%lattice8.html#V1>v1_lattice8</a>,finitely_typed,_). constr_name(<a href=%MML%lattice8.html#R2>r2_lattice8</a>,'has_a_representation_of_type<=',_). constr_name(<a href=%MML%lattice8.html#K1>k1_lattice8</a>,new_set2,_). constr_name(<a href=%MML%lattice8.html#K2>k2_lattice8</a>,new_bi_fun2,_). constr_name(<a href=%MML%lattice8.html#K3>k3_lattice8</a>,'ConsecutiveSet2',_). constr_name(<a href=%MML%lattice8.html#K4>k4_lattice8</a>,'Quadr2',_). constr_name(<a href=%MML%lattice8.html#K5>k5_lattice8</a>,'ConsecutiveDelta2',_). constr_name(<a href=%MML%lattice8.html#K6>k6_lattice8</a>,'ConsecutiveDelta2__2',_). constr_name(<a href=%MML%lattice8.html#K7>k7_lattice8</a>,'NextSet2',_). constr_name(<a href=%MML%lattice8.html#K8>k8_lattice8</a>,'NextDelta2',_). constr_name(<a href=%MML%lattice8.html#K9>k9_lattice8</a>,'NextDelta2__2',_). constr_name(<a href=%MML%lattice8.html#R3>r3_lattice8</a>,is_extension2_of,_). constr_name(<a href=%MML%lattice8.html#M1>m1_lattice8</a>,'ExtensionSeq2',_). constr_name(<a href=%MML%hilbert3.html#K1>k1_hilbert3</a>,'=>__12',_). constr_name(<a href=%MML%hilbert3.html#K2>k2_hilbert3</a>,'SetVal',_). constr_name(<a href=%MML%hilbert3.html#K3>k3_hilbert3</a>,'SetVal__2',_). constr_name(<a href=%MML%hilbert3.html#M1>m1_hilbert3</a>,'Permutation',_). constr_name(<a href=%MML%hilbert3.html#K4>k4_hilbert3</a>,'Perm',_). constr_name(<a href=%MML%hilbert3.html#K5>k5_hilbert3</a>,'Perm__2',_). constr_name(<a href=%MML%hilbert3.html#V1>v1_hilbert3</a>,canonical,_). constr_name(<a href=%MML%hilbert3.html#V2>v2_hilbert3</a>,'pseudo-canonical',_). constr_name(<a href=%MML%heyting3.html#K1>k1_heyting3</a>,'SubstPoset',_). constr_name(<a href=%MML%heyting3.html#K2>k2_heyting3</a>,'PFArt',_). constr_name(<a href=%MML%heyting3.html#K3>k3_heyting3</a>,'PFCrt',_). constr_name(<a href=%MML%heyting3.html#K4>k4_heyting3</a>,'PFBrt',_). constr_name(<a href=%MML%heyting3.html#K5>k5_heyting3</a>,'PFDrt',_). constr_name(<a href=%MML%comptrig.html#K1>k1_comptrig</a>,'Arg',_). constr_name(<a href=%MML%comptrig.html#M1>m1_comptrig</a>,'CRoot',_). constr_name(<a href=%MML%polynom5.html#K1>k1_polynom5</a>,'|....|__15',_). constr_name(<a href=%MML%polynom5.html#K2>k2_polynom5</a>,'`^',_). constr_name(<a href=%MML%polynom5.html#K3>k3_polynom5</a>,'*__134',_). constr_name(<a href=%MML%polynom5.html#K4>k4_polynom5</a>,'<%..%>__7',_). constr_name(<a href=%MML%polynom5.html#K5>k5_polynom5</a>,'Subst__3',_). constr_name(<a href=%MML%polynom5.html#R1>r1_polynom5</a>,is_a_root_of,_). constr_name(<a href=%MML%polynom5.html#V1>v1_polynom5</a>,with_roots,_). constr_name(<a href=%MML%polynom5.html#V2>v2_polynom5</a>,'algebraic-closed',_). constr_name(<a href=%MML%polynom5.html#K6>k6_polynom5</a>,'Roots',_). constr_name(<a href=%MML%polynom5.html#K7>k7_polynom5</a>,'NormPolynomial',_). constr_name(<a href=%MML%polynom5.html#K8>k8_polynom5</a>,'FPower',_). constr_name(<a href=%MML%polynom5.html#K9>k9_polynom5</a>,'Polynomial-Function',_). constr_name(<a href=%MML%finseq_7.html#K1>k1_finseq_7</a>,'Replace__2',_). constr_name(<a href=%MML%finseq_7.html#K2>k2_finseq_7</a>,'Swap',_). constr_name(<a href=%MML%jct_misc.html#K1>k1_jct_misc</a>,pr1__13,_). constr_name(<a href=%MML%jct_misc.html#K2>k2_jct_misc</a>,pr2__13,_). constr_name(<a href=%MML%jct_misc.html#V1>v1_jct_misc</a>,connected__9,_). constr_name(<a href=%MML%jct_misc.html#K3>k3_jct_misc</a>,dist__10,_). constr_name(<a href=%MML%jordan1a.html#K1>k1_jordan1a</a>,'Center',_). constr_name(<a href=%MML%jordan1a.html#K2>k2_jordan1a</a>,north_halfline,_). constr_name(<a href=%MML%jordan1a.html#K3>k3_jordan1a</a>,east_halfline,_). constr_name(<a href=%MML%jordan1a.html#K4>k4_jordan1a</a>,south_halfline,_). constr_name(<a href=%MML%jordan1a.html#K5>k5_jordan1a</a>,west_halfline,_). constr_name(<a href=%MML%fuzzy_3.html#K1>k1_fuzzy_3</a>,'Zmf',_). constr_name(<a href=%MML%fuzzy_3.html#K2>k2_fuzzy_3</a>,'Umf',_). constr_name(<a href=%MML%fintopo2.html#K1>k1_fintopo2</a>,'P_1',_). constr_name(<a href=%MML%fintopo2.html#K2>k2_fintopo2</a>,'P_2',_). constr_name(<a href=%MML%fintopo2.html#K3>k3_fintopo2</a>,'P_0',_). constr_name(<a href=%MML%fintopo2.html#K4>k4_fintopo2</a>,'P_A',_). constr_name(<a href=%MML%fintopo2.html#K5>k5_fintopo2</a>,'P_e',_). constr_name(<a href=%MML%fintopo2.html#L1>l1_fintopo2</a>,'FMT_Space_Str',_). constr_name(<a href=%MML%fintopo2.html#V1>v1_fintopo2</a>,strict__FMT_Space_Str,_). constr_name(<a href=%MML%fintopo2.html#U1>u1_fintopo2</a>,'BNbd',the_BNbd). constr_name(<a href=%MML%fintopo2.html#G1>g1_fintopo2</a>,'FMT_Space_Str_constr',_). constr_name(<a href=%MML%fintopo2.html#K6>k6_fintopo2</a>,'U_FMT',_). constr_name(<a href=%MML%fintopo2.html#K7>k7_fintopo2</a>,'NeighSp',_). constr_name(<a href=%MML%fintopo2.html#V2>v2_fintopo2</a>,'Fo_filled',_). constr_name(<a href=%MML%fintopo2.html#K8>k8_fintopo2</a>,'^Fodelta',_). constr_name(<a href=%MML%fintopo2.html#K9>k9_fintopo2</a>,'^Fob',_). constr_name(<a href=%MML%fintopo2.html#K10>k10_fintopo2</a>,'^Foi',_). constr_name(<a href=%MML%fintopo2.html#K11>k11_fintopo2</a>,'^Fos',_). constr_name(<a href=%MML%fintopo2.html#K12>k12_fintopo2</a>,'^Fon',_). constr_name(<a href=%MML%fintopo2.html#K13>k13_fintopo2</a>,'^Fodel_i',_). constr_name(<a href=%MML%fintopo2.html#K14>k14_fintopo2</a>,'^Fodel_o',_). constr_name(<a href=%MML%fintopo2.html#V3>v3_fintopo2</a>,'Fo_open',_). constr_name(<a href=%MML%fintopo2.html#V4>v4_fintopo2</a>,'Fo_closed',_). constr_name(<a href=%MML%binom.html#V1>v1_binom</a>,'add-cancelable',_). constr_name(<a href=%MML%binom.html#K1>k1_binom</a>,'+__81',_). constr_name(<a href=%MML%binom.html#K2>k2_binom</a>,'|^__18',_). constr_name(<a href=%MML%binom.html#K3>k3_binom</a>,'Nat-mult-left',_). constr_name(<a href=%MML%binom.html#K4>k4_binom</a>,'Nat-mult-right',_). constr_name(<a href=%MML%binom.html#K5>k5_binom</a>,'*__135',_). constr_name(<a href=%MML%binom.html#K6>k6_binom</a>,'*__136',_). constr_name(<a href=%MML%binom.html#K7>k7_binom</a>,choose__4,_). constr_name(<a href=%MML%binom.html#K8>k8_binom</a>,'In_Power__2',_). constr_name(<a href=%MML%ideal_1.html#V1>v1_ideal_1</a>,'add-closed',_). constr_name(<a href=%MML%ideal_1.html#V2>v2_ideal_1</a>,'left-ideal',_). constr_name(<a href=%MML%ideal_1.html#V3>v3_ideal_1</a>,'right-ideal',_). constr_name(<a href=%MML%ideal_1.html#V4>v4_ideal_1</a>,trivial__3,_). constr_name(<a href=%MML%ideal_1.html#V5>v5_ideal_1</a>,proper__4,_). constr_name(<a href=%MML%ideal_1.html#K1>k1_ideal_1</a>,'add|',_). constr_name(<a href=%MML%ideal_1.html#K2>k2_ideal_1</a>,'mult|',_). constr_name(<a href=%MML%ideal_1.html#K3>k3_ideal_1</a>,'Gr',_). constr_name(<a href=%MML%ideal_1.html#M1>m1_ideal_1</a>,'LinearCombination',_). constr_name(<a href=%MML%ideal_1.html#M2>m2_ideal_1</a>,'LeftLinearCombination',_). constr_name(<a href=%MML%ideal_1.html#M3>m3_ideal_1</a>,'RightLinearCombination',_). constr_name(<a href=%MML%ideal_1.html#K4>k4_ideal_1</a>,'^__20',_). constr_name(<a href=%MML%ideal_1.html#K5>k5_ideal_1</a>,'^__21',_). constr_name(<a href=%MML%ideal_1.html#K6>k6_ideal_1</a>,'^__22',_). constr_name(<a href=%MML%ideal_1.html#R1>r1_ideal_1</a>,represents__2,_). constr_name(<a href=%MML%ideal_1.html#R2>r2_ideal_1</a>,represents__3,_). constr_name(<a href=%MML%ideal_1.html#R3>r3_ideal_1</a>,represents__4,_). constr_name(<a href=%MML%ideal_1.html#K7>k7_ideal_1</a>,'-Ideal',_). constr_name(<a href=%MML%ideal_1.html#K8>k8_ideal_1</a>,'-LeftIdeal',_). constr_name(<a href=%MML%ideal_1.html#K9>k9_ideal_1</a>,'-RightIdeal',_). constr_name(<a href=%MML%ideal_1.html#M4>m4_ideal_1</a>,'Basis__6',_). constr_name(<a href=%MML%ideal_1.html#K10>k10_ideal_1</a>,'*__137',_). constr_name(<a href=%MML%ideal_1.html#K11>k11_ideal_1</a>,'+__82',_). constr_name(<a href=%MML%ideal_1.html#K12>k12_ideal_1</a>,'+__83',_). constr_name(<a href=%MML%ideal_1.html#K13>k13_ideal_1</a>,'/\\__30',_). constr_name(<a href=%MML%ideal_1.html#K14>k14_ideal_1</a>,'*'__26',_). constr_name(<a href=%MML%ideal_1.html#K15>k15_ideal_1</a>,'*'__27',_). constr_name(<a href=%MML%ideal_1.html#R4>r4_ideal_1</a>,'are_co-prime__3',_). constr_name(<a href=%MML%ideal_1.html#K16>k16_ideal_1</a>,'%__5',_). constr_name(<a href=%MML%ideal_1.html#K17>k17_ideal_1</a>,sqrt__3,_). constr_name(<a href=%MML%ideal_1.html#V6>v6_ideal_1</a>,finitely_generated,_). constr_name(<a href=%MML%ideal_1.html#V7>v7_ideal_1</a>,'Noetherian',_). constr_name(<a href=%MML%ideal_1.html#V8>v8_ideal_1</a>,principal__4,_). constr_name(<a href=%MML%ideal_1.html#V9>v9_ideal_1</a>,'PID',_). constr_name(<a href=%MML%hilbasis.html#K1>k1_hilbasis</a>,bag_extend,_). constr_name(<a href=%MML%hilbasis.html#K2>k2_hilbasis</a>,'UnitBag',_). constr_name(<a href=%MML%hilbasis.html#K3>k3_hilbasis</a>,'1_1',_). constr_name(<a href=%MML%hilbasis.html#K4>k4_hilbasis</a>,minlen,_). constr_name(<a href=%MML%hilbasis.html#K5>k5_hilbasis</a>,monomial,_). constr_name(<a href=%MML%hilbasis.html#K6>k6_hilbasis</a>,upm,_). constr_name(<a href=%MML%hilbasis.html#K7>k7_hilbasis</a>,mpu,_). constr_name(<a href=%MML%dynkin.html#K1>k1_dynkin</a>,followed_by,_). constr_name(<a href=%MML%dynkin.html#K2>k2_dynkin</a>,followed_by__2,_). constr_name(<a href=%MML%dynkin.html#K3>k3_dynkin</a>,followed_by__3,_). constr_name(<a href=%MML%dynkin.html#K4>k4_dynkin</a>,seqIntersection,_). constr_name(<a href=%MML%dynkin.html#V1>v1_dynkin</a>,disjoint_valued__4,_). constr_name(<a href=%MML%dynkin.html#K5>k5_dynkin</a>,disjointify,_). constr_name(<a href=%MML%dynkin.html#K6>k6_dynkin</a>,disjointify__2,_). constr_name(<a href=%MML%dynkin.html#M1>m1_dynkin</a>,'Dynkin_System',_). constr_name(<a href=%MML%dynkin.html#K7>k7_dynkin</a>,generated_Dynkin_System,_). constr_name(<a href=%MML%dynkin.html#K8>k8_dynkin</a>,'DynSys',_). constr_name(<a href=%MML%dynkin.html#K9>k9_dynkin</a>,'DynSys__2',_). constr_name(<a href=%MML%taxonom1.html#M1>m1_taxonom1</a>,'Classification',_). constr_name(<a href=%MML%taxonom1.html#M2>m2_taxonom1</a>,'Strong_Classification',_). constr_name(<a href=%MML%taxonom1.html#K1>k1_taxonom1</a>,low_toler,_). constr_name(<a href=%MML%taxonom1.html#V1>v1_taxonom1</a>,nonnegative__3,_). constr_name(<a href=%MML%taxonom1.html#K2>k2_taxonom1</a>,fam_class,_). constr_name(<a href=%MML%taxonom1.html#R1>r1_taxonom1</a>,are_in_tolerance_wrt,_). constr_name(<a href=%MML%taxonom1.html#K3>k3_taxonom1</a>,dist_toler,_). constr_name(<a href=%MML%taxonom1.html#K4>k4_taxonom1</a>,fam_class_metr,_). constr_name(<a href=%MML%yellow18.html#V1>v1_yellow18</a>,'one-to-one__5',_). constr_name(<a href=%MML%yellow18.html#R1>r1_yellow18</a>,are_equivalent__2,_). constr_name(<a href=%MML%yellow18.html#R2>r2_yellow18</a>,are_opposite,_). constr_name(<a href=%MML%yellow18.html#K1>k1_yellow18</a>,opp__16,_). constr_name(<a href=%MML%yellow18.html#K2>k2_yellow18</a>,'dualizing-func',_). constr_name(<a href=%MML%yellow18.html#R3>r3_yellow18</a>,are_dual,_). constr_name(<a href=%MML%yellow18.html#V2>v2_yellow18</a>,'para-functional',_). constr_name(<a href=%MML%yellow18.html#K3>k3_yellow18</a>,'-carrier_of',_). constr_name(<a href=%MML%yellow18.html#V3>v3_yellow18</a>,'set-id-inheriting',_). constr_name(<a href=%MML%yellow18.html#V4>v4_yellow18</a>,concrete,_). constr_name(<a href=%MML%yellow18.html#K4>k4_yellow18</a>,'Concretized',_). constr_name(<a href=%MML%yellow18.html#K5>k5_yellow18</a>,'Concretization',_). constr_name(<a href=%MML%urysohn3.html#M1>m1_urysohn3</a>,'Drizzle',_). constr_name(<a href=%MML%urysohn3.html#K1>k1_urysohn3</a>,'.__137',_). constr_name(<a href=%MML%urysohn3.html#K2>k2_urysohn3</a>,'.__138',_). constr_name(<a href=%MML%urysohn3.html#M2>m2_urysohn3</a>,'Rain',_). constr_name(<a href=%MML%urysohn3.html#K3>k3_urysohn3</a>,inf_number_dyadic,_). constr_name(<a href=%MML%urysohn3.html#K4>k4_urysohn3</a>,'Tempest',_). constr_name(<a href=%MML%urysohn3.html#K5>k5_urysohn3</a>,'.__139',_). constr_name(<a href=%MML%urysohn3.html#K6>k6_urysohn3</a>,'Rainbow',_). constr_name(<a href=%MML%urysohn3.html#K7>k7_urysohn3</a>,'.__140',_). constr_name(<a href=%MML%urysohn3.html#K8>k8_urysohn3</a>,'Thunder',_). constr_name(<a href=%MML%urysohn3.html#K9>k9_urysohn3</a>,'.__141',_). constr_name(<a href=%MML%polyalg1.html#L1>l1_polyalg1</a>,'AlgebraStr__2',_). constr_name(<a href=%MML%polyalg1.html#V1>v1_polyalg1</a>,strict__AlgebraStr__2,_). constr_name(<a href=%MML%polyalg1.html#G1>g1_polyalg1</a>,'AlgebraStr_constr__2',_). constr_name(<a href=%MML%polyalg1.html#V2>v2_polyalg1</a>,'mix-associative',_). constr_name(<a href=%MML%polyalg1.html#K1>k1_polyalg1</a>,'Formal-Series',_). constr_name(<a href=%MML%polyalg1.html#M1>m1_polyalg1</a>,'Subalgebra',_). constr_name(<a href=%MML%polyalg1.html#V3>v3_polyalg1</a>,opers_closed__3,_). constr_name(<a href=%MML%polyalg1.html#K2>k2_polyalg1</a>,'GenAlg',_). constr_name(<a href=%MML%polyalg1.html#K3>k3_polyalg1</a>,'Polynom-Algebra',_). constr_name(<a href=%MML%circtrm1.html#K1>k1_circtrm1</a>,'-CircuitStr',_). constr_name(<a href=%MML%circtrm1.html#K2>k2_circtrm1</a>,the_sort_of__3,_). constr_name(<a href=%MML%circtrm1.html#K3>k3_circtrm1</a>,the_action_of,_). constr_name(<a href=%MML%circtrm1.html#K4>k4_circtrm1</a>,'-CircuitSorts',_). constr_name(<a href=%MML%circtrm1.html#K5>k5_circtrm1</a>,'-CircuitCharact',_). constr_name(<a href=%MML%circtrm1.html#K6>k6_circtrm1</a>,'-Circuit',_). constr_name(<a href=%MML%circtrm1.html#K7>k7_circtrm1</a>,'@__39',_). constr_name(<a href=%MML%circtrm1.html#M1>m1_circtrm1</a>,'CompatibleValuation',_). constr_name(<a href=%MML%circtrm1.html#R1>r1_circtrm1</a>,are_equivalent_wrt,_). constr_name(<a href=%MML%circtrm1.html#R2>r2_circtrm1</a>,are_equivalent__3,_). constr_name(<a href=%MML%circtrm1.html#R3>r3_circtrm1</a>,preserves_inputs_of,_). constr_name(<a href=%MML%circtrm1.html#R4>r4_circtrm1</a>,form_embedding_of,_). constr_name(<a href=%MML%circtrm1.html#R5>r5_circtrm1</a>,are_similar_wrt,_). constr_name(<a href=%MML%circtrm1.html#R6>r6_circtrm1</a>,are_similar__3,_). constr_name(<a href=%MML%circtrm1.html#R7>r7_circtrm1</a>,calculates,_). constr_name(<a href=%MML%circtrm1.html#R8>r8_circtrm1</a>,specifies,_). constr_name(<a href=%MML%circtrm1.html#M2>m2_circtrm1</a>,'SortMap',_). constr_name(<a href=%MML%circtrm1.html#M3>m3_circtrm1</a>,'OperMap',_). constr_name(<a href=%MML%ami_7.html#K1>k1_ami_7</a>,'+*__18',_). constr_name(<a href=%MML%ami_7.html#V1>v1_ami_7</a>,with_non_trivial_Instructions,_). constr_name(<a href=%MML%ami_7.html#V2>v2_ami_7</a>,with_non_trivial_ObjectKinds,_). constr_name(<a href=%MML%ami_7.html#K2>k2_ami_7</a>,'Output__2',_). constr_name(<a href=%MML%ami_7.html#K3>k3_ami_7</a>,'Out_\\_Inp',_). constr_name(<a href=%MML%ami_7.html#K4>k4_ami_7</a>,'Out_U_Inp',_). constr_name(<a href=%MML%ami_7.html#K5>k5_ami_7</a>,'Input__2',_). constr_name(<a href=%MML%ami_7.html#K6>k6_ami_7</a>,'+*__19',_). constr_name(<a href=%MML%scmfsa10.html#K1>k1_scmfsa10</a>,'-->__27',_). constr_name(<a href=%MML%robbins1.html#L1>l1_robbins1</a>,'ComplStr',_). constr_name(<a href=%MML%robbins1.html#V1>v1_robbins1</a>,strict__ComplStr,_). constr_name(<a href=%MML%robbins1.html#U1>u1_robbins1</a>,'Compl',the_Compl). constr_name(<a href=%MML%robbins1.html#G1>g1_robbins1</a>,'ComplStr_constr',_). constr_name(<a href=%MML%robbins1.html#L2>l2_robbins1</a>,'ComplLattStr',_). constr_name(<a href=%MML%robbins1.html#V2>v2_robbins1</a>,strict__ComplLattStr,_). constr_name(<a href=%MML%robbins1.html#G2>g2_robbins1</a>,'ComplLattStr_constr',_). constr_name(<a href=%MML%robbins1.html#L3>l3_robbins1</a>,'OrthoLattStr',_). constr_name(<a href=%MML%robbins1.html#V3>v3_robbins1</a>,strict__OrthoLattStr,_). constr_name(<a href=%MML%robbins1.html#G3>g3_robbins1</a>,'OrthoLattStr_constr',_). constr_name(<a href=%MML%robbins1.html#K1>k1_robbins1</a>,'TrivComplLat',_). constr_name(<a href=%MML%robbins1.html#K2>k2_robbins1</a>,'TrivOrtLat',_). constr_name(<a href=%MML%robbins1.html#K3>k3_robbins1</a>,'`__4',_). constr_name(<a href=%MML%robbins1.html#K4>k4_robbins1</a>,'*'__28',_). constr_name(<a href=%MML%robbins1.html#V4>v4_robbins1</a>,'Robbins',_). constr_name(<a href=%MML%robbins1.html#V5>v5_robbins1</a>,'Huntington',_). constr_name(<a href=%MML%robbins1.html#V6>v6_robbins1</a>,'join-idempotent',_). constr_name(<a href=%MML%robbins1.html#K5>k5_robbins1</a>,'+__84',_). constr_name(<a href=%MML%robbins1.html#K6>k6_robbins1</a>,'*'__29',_). constr_name(<a href=%MML%robbins1.html#K7>k7_robbins1</a>,'Bot',_). constr_name(<a href=%MML%robbins1.html#V7>v7_robbins1</a>,'well-complemented',_). constr_name(<a href=%MML%robbins1.html#K8>k8_robbins1</a>,'CLatt',_). constr_name(<a href=%MML%robbins1.html#V8>v8_robbins1</a>,with_idempotent_element,_). constr_name(<a href=%MML%robbins1.html#K9>k9_robbins1</a>,'\\delta',_). constr_name(<a href=%MML%robbins1.html#K10>k10_robbins1</a>,'Expand',_). constr_name(<a href=%MML%robbins1.html#K11>k11_robbins1</a>,'_0',_). constr_name(<a href=%MML%robbins1.html#K12>k12_robbins1</a>,'Double__2',_). constr_name(<a href=%MML%robbins1.html#K13>k13_robbins1</a>,'_1',_). constr_name(<a href=%MML%robbins1.html#K14>k14_robbins1</a>,'_2',_). constr_name(<a href=%MML%robbins1.html#K15>k15_robbins1</a>,'_3',_). constr_name(<a href=%MML%robbins1.html#K16>k16_robbins1</a>,'_4',_). constr_name(<a href=%MML%robbins1.html#K17>k17_robbins1</a>,'\\beta',_). constr_name(<a href=%MML%robbins1.html#V9>v9_robbins1</a>,de_Morgan,_). constr_name(<a href=%MML%fuzzy_4.html#K1>k1_fuzzy_4</a>,converse,_). constr_name(<a href=%MML%fuzzy_4.html#K2>k2_fuzzy_4</a>,min__7,_). constr_name(<a href=%MML%fuzzy_4.html#K3>k3_fuzzy_4</a>,'(#)__31',_). constr_name(<a href=%MML%fuzzy_4.html#K4>k4_fuzzy_4</a>,'Imf',_). constr_name(<a href=%MML%jgraph_2.html#K1>k1_jgraph_2</a>,'Out_In_Sq',_). constr_name(<a href=%MML%jgraph_2.html#K2>k2_jgraph_2</a>,'AffineMap',_). constr_name(<a href=%MML%comput_1.html#K1>k1_comput_1</a>,'+*__20',_). constr_name(<a href=%MML%comput_1.html#K2>k2_comput_1</a>,'.__142',_). constr_name(<a href=%MML%comput_1.html#V1>v1_comput_1</a>,compatible__2,_). constr_name(<a href=%MML%comput_1.html#V2>v2_comput_1</a>,'from-natural-fseqs',_). constr_name(<a href=%MML%comput_1.html#V3>v3_comput_1</a>,'len-total',_). constr_name(<a href=%MML%comput_1.html#V4>v4_comput_1</a>,homogeneous__9,_). constr_name(<a href=%MML%comput_1.html#K3>k3_comput_1</a>,arity__2,_). constr_name(<a href=%MML%comput_1.html#V5>v5_comput_1</a>,with_the_same_arity,_). constr_name(<a href=%MML%comput_1.html#K4>k4_comput_1</a>,arity__3,_). constr_name(<a href=%MML%comput_1.html#K5>k5_comput_1</a>,'HFuncs',_). constr_name(<a href=%MML%comput_1.html#K6>k6_comput_1</a>,const__2,_). constr_name(<a href=%MML%comput_1.html#K7>k7_comput_1</a>,succ__6,_). constr_name(<a href=%MML%comput_1.html#K8>k8_comput_1</a>,proj__5,_). constr_name(<a href=%MML%comput_1.html#M1>m1_comput_1</a>,'Element__56',_). constr_name(<a href=%MML%comput_1.html#R1>r1_comput_1</a>,'is_primitive-recursively_expressed_by',_). constr_name(<a href=%MML%comput_1.html#K9>k9_comput_1</a>,primrec,_). constr_name(<a href=%MML%comput_1.html#K10>k10_comput_1</a>,primrec__2,_). constr_name(<a href=%MML%comput_1.html#V6>v6_comput_1</a>,composition_closed,_). constr_name(<a href=%MML%comput_1.html#V7>v7_comput_1</a>,'primitive-recursion_closed',_). constr_name(<a href=%MML%comput_1.html#V8>v8_comput_1</a>,'primitive-recursively_closed',_). constr_name(<a href=%MML%comput_1.html#K11>k11_comput_1</a>,'PrimRec',_). constr_name(<a href=%MML%comput_1.html#V9>v9_comput_1</a>,'primitive-recursive',_). constr_name(<a href=%MML%comput_1.html#K12>k12_comput_1</a>,'initial-funcs',_). constr_name(<a href=%MML%comput_1.html#K13>k13_comput_1</a>,'PR-closure',_). constr_name(<a href=%MML%comput_1.html#K14>k14_comput_1</a>,'composition-closure',_). constr_name(<a href=%MML%comput_1.html#K15>k15_comput_1</a>,'PrimRec-Approximation',_). constr_name(<a href=%MML%comput_1.html#V10>v10_comput_1</a>,nullary,_). constr_name(<a href=%MML%comput_1.html#V11>v11_comput_1</a>,unary,_). constr_name(<a href=%MML%comput_1.html#V12>v12_comput_1</a>,binary__4,_). constr_name(<a href=%MML%comput_1.html#V13>v13_comput_1</a>,'3-ary',_). constr_name(<a href=%MML%comput_1.html#K16>k16_comput_1</a>,'(1,2)->(1,?,2)',_). constr_name(<a href=%MML%comput_1.html#K17>k17_comput_1</a>,'[+]',_). constr_name(<a href=%MML%comput_1.html#K18>k18_comput_1</a>,'[*]__5',_). constr_name(<a href=%MML%comput_1.html#K19>k19_comput_1</a>,'[!]',_). constr_name(<a href=%MML%comput_1.html#K20>k20_comput_1</a>,'[^]',_). constr_name(<a href=%MML%comput_1.html#K21>k21_comput_1</a>,'[pred]',_). constr_name(<a href=%MML%comput_1.html#K22>k22_comput_1</a>,'[-]',_). constr_name(<a href=%MML%turing_1.html#K1>k1_turing_1</a>,'+*__21',_). constr_name(<a href=%MML%turing_1.html#K2>k2_turing_1</a>,'.-->__13',_). constr_name(<a href=%MML%turing_1.html#K3>k3_turing_1</a>,'SegM',_). constr_name(<a href=%MML%turing_1.html#K4>k4_turing_1</a>,'Prefix',_). constr_name(<a href=%MML%turing_1.html#L1>l1_turing_1</a>,'TuringStr',_). constr_name(<a href=%MML%turing_1.html#V1>v1_turing_1</a>,strict__TuringStr,_). constr_name(<a href=%MML%turing_1.html#U1>u1_turing_1</a>,'Symbols',the_Symbols). constr_name(<a href=%MML%turing_1.html#U2>u2_turing_1</a>,'States__2',the_States__2). constr_name(<a href=%MML%turing_1.html#U3>u3_turing_1</a>,'Tran__2',the_Tran__2). constr_name(<a href=%MML%turing_1.html#U4>u4_turing_1</a>,'InitS__2',the_InitS__2). constr_name(<a href=%MML%turing_1.html#U5>u5_turing_1</a>,'AcceptS',the_AcceptS). constr_name(<a href=%MML%turing_1.html#G1>g1_turing_1</a>,'TuringStr_constr',_). constr_name(<a href=%MML%turing_1.html#K5>k5_turing_1</a>,'Tape-Chg',_). constr_name(<a href=%MML%turing_1.html#K6>k6_turing_1</a>,offset,_). constr_name(<a href=%MML%turing_1.html#K7>k7_turing_1</a>,'Head',_). constr_name(<a href=%MML%turing_1.html#K8>k8_turing_1</a>,'TRAN',_). constr_name(<a href=%MML%turing_1.html#K9>k9_turing_1</a>,'Following__5',_). constr_name(<a href=%MML%turing_1.html#K10>k10_turing_1</a>,'Computation__3',_). constr_name(<a href=%MML%turing_1.html#V2>v2_turing_1</a>,'Accept-Halt',_). constr_name(<a href=%MML%turing_1.html#K11>k11_turing_1</a>,'Result__4',_). constr_name(<a href=%MML%turing_1.html#K12>k12_turing_1</a>,id__20,_). constr_name(<a href=%MML%turing_1.html#K13>k13_turing_1</a>,'Sum_Tran',_). constr_name(<a href=%MML%turing_1.html#R1>r1_turing_1</a>,is_1_between,_). constr_name(<a href=%MML%turing_1.html#R2>r2_turing_1</a>,storeData,_). constr_name(<a href=%MML%turing_1.html#K14>k14_turing_1</a>,'SumTuring',_). constr_name(<a href=%MML%turing_1.html#R3>r3_turing_1</a>,computes__2,_). constr_name(<a href=%MML%turing_1.html#K15>k15_turing_1</a>,'Succ_Tran',_). constr_name(<a href=%MML%turing_1.html#K16>k16_turing_1</a>,'SuccTuring',_). constr_name(<a href=%MML%turing_1.html#K17>k17_turing_1</a>,'Zero_Tran',_). constr_name(<a href=%MML%turing_1.html#K18>k18_turing_1</a>,'ZeroTuring',_). constr_name(<a href=%MML%turing_1.html#K19>k19_turing_1</a>,'U3(n)Tran',_). constr_name(<a href=%MML%turing_1.html#K20>k20_turing_1</a>,'U3(n)Turing',_). constr_name(<a href=%MML%turing_1.html#K21>k21_turing_1</a>,'UnionSt',_). constr_name(<a href=%MML%turing_1.html#K22>k22_turing_1</a>,'FirstTuringTran',_). constr_name(<a href=%MML%turing_1.html#K23>k23_turing_1</a>,'SecondTuringTran',_). constr_name(<a href=%MML%turing_1.html#K24>k24_turing_1</a>,'`1__24',_). constr_name(<a href=%MML%turing_1.html#K25>k25_turing_1</a>,'`2__30',_). constr_name(<a href=%MML%turing_1.html#K26>k26_turing_1</a>,'FirstTuringState',_). constr_name(<a href=%MML%turing_1.html#K27>k27_turing_1</a>,'SecondTuringState',_). constr_name(<a href=%MML%turing_1.html#K28>k28_turing_1</a>,'FirstTuringSymbol',_). constr_name(<a href=%MML%turing_1.html#K29>k29_turing_1</a>,'SecondTuringSymbol',_). constr_name(<a href=%MML%turing_1.html#K30>k30_turing_1</a>,'Uniontran',_). constr_name(<a href=%MML%turing_1.html#K31>k31_turing_1</a>,'UnionTran',_). constr_name(<a href=%MML%turing_1.html#K32>k32_turing_1</a>,'';'__11',_). constr_name(<a href=%MML%yellow19.html#K1>k1_yellow19</a>,'NeighborhoodSystem',neighborhood_system). constr_name(<a href=%MML%yellow19.html#M1>m1_yellow19</a>,'Subset',_). constr_name(<a href=%MML%yellow19.html#K2>k2_yellow19</a>,a_filter,filter_of_net_str). constr_name(<a href=%MML%yellow19.html#K3>k3_yellow19</a>,a_net,net_of_bool_filter). constr_name(<a href=%MML%yellow19.html#V1>v1_yellow19</a>,'Cauchy__4',cauchy_net_str). constr_name(<a href=%MML%waybel33.html#K1>k1_waybel33</a>,lim_inf__3,_). constr_name(<a href=%MML%waybel33.html#V1>v1_waybel33</a>,'lim-inf',_). constr_name(<a href=%MML%waybel33.html#K2>k2_waybel33</a>,'Xi',_). constr_name(<a href=%MML%yellow20.html#R1>r1_yellow20</a>,have_the_same_composition,_). constr_name(<a href=%MML%yellow20.html#K1>k1_yellow20</a>,'Intersect__2',_). constr_name(<a href=%MML%yellow20.html#K2>k2_yellow20</a>,'Intersect__3',_). constr_name(<a href=%MML%yellow20.html#K3>k3_yellow20</a>,incl__6,_). constr_name(<a href=%MML%yellow20.html#K4>k4_yellow20</a>,'|__30',_). constr_name(<a href=%MML%yellow20.html#K5>k5_yellow20</a>,'|__31',_). constr_name(<a href=%MML%yellow20.html#R2>r2_yellow20</a>,are_isomorphic_under,_). constr_name(<a href=%MML%yellow20.html#R3>r3_yellow20</a>,'are_anti-isomorphic_under',_). constr_name(<a href=%MML%yellow21.html#K1>k1_yellow21</a>,'as_1-sorted',_). constr_name(<a href=%MML%yellow21.html#K2>k2_yellow21</a>,'POSETS',_). constr_name(<a href=%MML%yellow21.html#V1>v1_yellow21</a>,'carrier-underlaid',_). constr_name(<a href=%MML%yellow21.html#V2>v2_yellow21</a>,'lattice-wise',_). constr_name(<a href=%MML%yellow21.html#V3>v3_yellow21</a>,with_complete_lattices,_). constr_name(<a href=%MML%yellow21.html#K3>k3_yellow21</a>,latt__5,_). constr_name(<a href=%MML%yellow21.html#K4>k4_yellow21</a>,latt__6,_). constr_name(<a href=%MML%yellow21.html#K5>k5_yellow21</a>,'@__40',_). constr_name(<a href=%MML%yellow21.html#V4>v4_yellow21</a>,with_all_isomorphisms,_). constr_name(<a href=%MML%yellow21.html#V5>v5_yellow21</a>,'upper-bounded__3',_). constr_name(<a href=%MML%yellow21.html#K6>k6_yellow21</a>,'-UPS_category',_). constr_name(<a href=%MML%yellow21.html#K7>k7_yellow21</a>,'-CONT_category',_). constr_name(<a href=%MML%yellow21.html#K8>k8_yellow21</a>,'-ALG_category',_). constr_name(<a href=%MML%waybel34.html#K1>k1_waybel34</a>,'LowerAdj',_). constr_name(<a href=%MML%waybel34.html#K2>k2_waybel34</a>,'UpperAdj',_). constr_name(<a href=%MML%waybel34.html#K3>k3_waybel34</a>,opp__17,_). constr_name(<a href=%MML%waybel34.html#K4>k4_waybel34</a>,'-INF_category',_). constr_name(<a href=%MML%waybel34.html#K5>k5_waybel34</a>,'-SUP_category',_). constr_name(<a href=%MML%waybel34.html#K6>k6_waybel34</a>,'LowerAdj__2',_). constr_name(<a href=%MML%waybel34.html#K7>k7_waybel34</a>,'UpperAdj__2',_). constr_name(<a href=%MML%waybel34.html#V1>v1_waybel34</a>,'waybelow-preserving',_). constr_name(<a href=%MML%waybel34.html#V2>v2_waybel34</a>,relatively_open,_). constr_name(<a href=%MML%waybel34.html#K8>k8_waybel34</a>,'-INF(SC)_category',_). constr_name(<a href=%MML%waybel34.html#K9>k9_waybel34</a>,'-SUP(SO)_category',_). constr_name(<a href=%MML%waybel34.html#K10>k10_waybel34</a>,'-CL_category',_). constr_name(<a href=%MML%waybel34.html#K11>k11_waybel34</a>,'-CL-opp_category',_). constr_name(<a href=%MML%waybel34.html#V3>v3_waybel34</a>,'compact-preserving',_). constr_name(<a href=%MML%waybel34.html#V4>v4_waybel34</a>,'finite-sups-preserving',_). constr_name(<a href=%MML%waybel34.html#V5>v5_waybel34</a>,'bottom-preserving',_). constr_name(<a href=%MML%waybel34.html#V6>v6_waybel34</a>,'finite-sups-inheriting',_). constr_name(<a href=%MML%waybel34.html#V7>v7_waybel34</a>,'bottom-inheriting',_). constr_name(<a href=%MML%msafree3.html#K1>k1_msafree3</a>,'Free__5',_). constr_name(<a href=%MML%msafree3.html#K2>k2_msafree3</a>,variables_in__4,_). constr_name(<a href=%MML%msafree3.html#K3>k3_msafree3</a>,variables_in__5,_). constr_name(<a href=%MML%msafree3.html#K4>k4_msafree3</a>,variables_in__6,_). constr_name(<a href=%MML%msafree3.html#K5>k5_msafree3</a>,'-Terms__2',_). constr_name(<a href=%MML%jordan1e.html#K1>k1_jordan1e</a>,'Upper_Seq',_). constr_name(<a href=%MML%jordan1e.html#K2>k2_jordan1e</a>,'Lower_Seq',_). constr_name(<a href=%MML%polynom6.html#R1>r1_polynom6</a>,is_ringisomorph_to__2,_). constr_name(<a href=%MML%polynom6.html#K1>k1_polynom6</a>,'+^__6',_). constr_name(<a href=%MML%polynom6.html#K2>k2_polynom6</a>,'Compress',_). constr_name(<a href=%MML%pencil_2.html#K1>k1_pencil_2</a>,'Del__6',_). constr_name(<a href=%MML%pencil_2.html#M1>m1_pencil_2</a>,'Segre-Coset',_). constr_name(<a href=%MML%pencil_2.html#R1>r1_pencil_2</a>,are_joinable,_). constr_name(<a href=%MML%pencil_2.html#V1>v1_pencil_2</a>,isomorphic__3,_). constr_name(<a href=%MML%pencil_2.html#K2>k2_pencil_2</a>,'.:__50',_). constr_name(<a href=%MML%pencil_2.html#K3>k3_pencil_2</a>,'"__36',_). constr_name(<a href=%MML%jgraph_3.html#K1>k1_jgraph_3</a>,'Sq_Circ',_). constr_name(<a href=%MML%pythtrip.html#V1>v1_pythtrip</a>,square,_). constr_name(<a href=%MML%pythtrip.html#M1>m1_pythtrip</a>,'Pythagorean_triple',_). constr_name(<a href=%MML%pythtrip.html#V2>v2_pythtrip</a>,degenerate,_). constr_name(<a href=%MML%pythtrip.html#V3>v3_pythtrip</a>,simplified,_). constr_name(<a href=%MML%jordan1h.html#K1>k1_jordan1h</a>,'RealOrd',_). constr_name(<a href=%MML%jordan1h.html#K2>k2_jordan1h</a>,'Values__2',_). constr_name(<a href=%MML%jordan1h.html#K3>k3_jordan1h</a>,'X-SpanStart',_). constr_name(<a href=%MML%jordan1h.html#R1>r1_jordan1h</a>,is_sufficiently_large_for,_). constr_name(<a href=%MML%polynom7.html#V1>v1_polynom7</a>,'non-zero__4',_). constr_name(<a href=%MML%polynom7.html#V2>v2_polynom7</a>,univariate,_). constr_name(<a href=%MML%polynom7.html#V3>v3_polynom7</a>,'monomial-like',_). constr_name(<a href=%MML%polynom7.html#K1>k1_polynom7</a>,'Monom',_). constr_name(<a href=%MML%polynom7.html#K2>k2_polynom7</a>,term__3,_). constr_name(<a href=%MML%polynom7.html#K3>k3_polynom7</a>,coefficient,_). constr_name(<a href=%MML%polynom7.html#V4>v4_polynom7</a>,'Constant',_). constr_name(<a href=%MML%polynom7.html#K4>k4_polynom7</a>,'|__32',_). constr_name(<a href=%MML%polynom7.html#K5>k5_polynom7</a>,'*__138',_). constr_name(<a href=%MML%polynom7.html#K6>k6_polynom7</a>,'*__139',_). constr_name(<a href=%MML%fsm_2.html#V1>v1_fsm_2</a>,calculating_type,_). constr_name(<a href=%MML%fsm_2.html#R1>r1_fsm_2</a>,is_accessible_via,_). constr_name(<a href=%MML%fsm_2.html#V2>v2_fsm_2</a>,accessible__2,_). constr_name(<a href=%MML%fsm_2.html#V3>v3_fsm_2</a>,regular__3,_). constr_name(<a href=%MML%fsm_2.html#L1>l1_fsm_2</a>,'SM_Final',_). constr_name(<a href=%MML%fsm_2.html#V4>v4_fsm_2</a>,strict__SM_Final,_). constr_name(<a href=%MML%fsm_2.html#U1>u1_fsm_2</a>,'FinalS',the_FinalS). constr_name(<a href=%MML%fsm_2.html#G1>g1_fsm_2</a>,'SM_Final_constr',_). constr_name(<a href=%MML%fsm_2.html#R2>r2_fsm_2</a>,leads_to_final_state_of,_). constr_name(<a href=%MML%fsm_2.html#V5>v5_fsm_2</a>,halting__5,_). constr_name(<a href=%MML%fsm_2.html#L2>l2_fsm_2</a>,'Moore-SM_Final',_). constr_name(<a href=%MML%fsm_2.html#V6>v6_fsm_2</a>,'strict__Moore-SM_Final',_). constr_name(<a href=%MML%fsm_2.html#G2>g2_fsm_2</a>,'Moore-SM_Final_constr',_). constr_name(<a href=%MML%fsm_2.html#K1>k1_fsm_2</a>,'-TwoStatesMooreSM',_). constr_name(<a href=%MML%fsm_2.html#R3>r3_fsm_2</a>,is_result_of,_). constr_name(<a href=%MML%fsm_2.html#K2>k2_fsm_2</a>,'Result__5',_). constr_name(<a href=%MML%taxonom2.html#V1>v1_taxonom2</a>,with_superior,_). constr_name(<a href=%MML%taxonom2.html#V2>v2_taxonom2</a>,with_comparable_down,_). constr_name(<a href=%MML%taxonom2.html#V3>v3_taxonom2</a>,hierarchic,_). constr_name(<a href=%MML%taxonom2.html#M1>m1_taxonom2</a>,'Hierarchy',_). constr_name(<a href=%MML%taxonom2.html#V4>v4_taxonom2</a>,'mutually-disjoint',_). constr_name(<a href=%MML%taxonom2.html#V5>v5_taxonom2</a>,'T_3',_). constr_name(<a href=%MML%taxonom2.html#V6>v6_taxonom2</a>,'lower-bounded__3',_). constr_name(<a href=%MML%taxonom2.html#V7>v7_taxonom2</a>,'with_max's',_). constr_name(<a href=%MML%jgraph_4.html#K1>k1_jgraph_4</a>,'NormF',_). constr_name(<a href=%MML%jgraph_4.html#K2>k2_jgraph_4</a>,'FanW',_). constr_name(<a href=%MML%jgraph_4.html#K3>k3_jgraph_4</a>,'-FanMorphW',_). constr_name(<a href=%MML%jgraph_4.html#K4>k4_jgraph_4</a>,'FanN',_). constr_name(<a href=%MML%jgraph_4.html#K5>k5_jgraph_4</a>,'-FanMorphN',_). constr_name(<a href=%MML%jgraph_4.html#K6>k6_jgraph_4</a>,'FanE',_). constr_name(<a href=%MML%jgraph_4.html#K7>k7_jgraph_4</a>,'-FanMorphE',_). constr_name(<a href=%MML%jgraph_4.html#K8>k8_jgraph_4</a>,'FanS',_). constr_name(<a href=%MML%jgraph_4.html#K9>k9_jgraph_4</a>,'-FanMorphS',_). constr_name(<a href=%MML%rcomp_2.html#K1>k1_rcomp_2</a>,'[....[__2',_). constr_name(<a href=%MML%rcomp_2.html#K2>k2_rcomp_2</a>,']....]__2',_). constr_name(<a href=%MML%dickson.html#V1>v1_dickson</a>,ascending__2,_). constr_name(<a href=%MML%dickson.html#V2>v2_dickson</a>,'weakly-ascending',_). constr_name(<a href=%MML%dickson.html#V3>v3_dickson</a>,quasi_ordered,_). constr_name(<a href=%MML%dickson.html#K1>k1_dickson</a>,'EqRel__2',_). constr_name(<a href=%MML%dickson.html#K2>k2_dickson</a>,'<=E',_). constr_name(<a href=%MML%dickson.html#K3>k3_dickson</a>,'\\~',_). constr_name(<a href=%MML%dickson.html#K4>k4_dickson</a>,'\\~__2',_). constr_name(<a href=%MML%dickson.html#K5>k5_dickson</a>,'\\~__3',_). constr_name(<a href=%MML%dickson.html#K6>k6_dickson</a>,'min-classes',_). constr_name(<a href=%MML%dickson.html#R1>r1_dickson</a>,'is_Dickson-basis_of',_). constr_name(<a href=%MML%dickson.html#V4>v4_dickson</a>,'Dickson',_). constr_name(<a href=%MML%dickson.html#K7>k7_dickson</a>,mindex,_). constr_name(<a href=%MML%dickson.html#K8>k8_dickson</a>,mindex__2,_). constr_name(<a href=%MML%dickson.html#K9>k9_dickson</a>,'Dickson-bases',_). constr_name(<a href=%MML%dickson.html#K10>k10_dickson</a>,'NATOrd',_). constr_name(<a href=%MML%dickson.html#K11>k11_dickson</a>,'OrderedNAT',_). constr_name(<a href=%MML%bagorder.html#K1>k1_bagorder</a>,'-cut__3',_). constr_name(<a href=%MML%bagorder.html#K2>k2_bagorder</a>,'Fin__3',_). constr_name(<a href=%MML%bagorder.html#V1>v1_bagorder</a>,'non-increasing__5',_). constr_name(<a href=%MML%bagorder.html#K3>k3_bagorder</a>,'TotDegree',_). constr_name(<a href=%MML%bagorder.html#V2>v2_bagorder</a>,admissible,_). constr_name(<a href=%MML%bagorder.html#K4>k4_bagorder</a>,'InvLexOrder',_). constr_name(<a href=%MML%bagorder.html#K5>k5_bagorder</a>,'Graded',_). constr_name(<a href=%MML%bagorder.html#K6>k6_bagorder</a>,'GrLexOrder',_). constr_name(<a href=%MML%bagorder.html#K7>k7_bagorder</a>,'GrInvLexOrder',_). constr_name(<a href=%MML%bagorder.html#K8>k8_bagorder</a>,'BlockOrder',_). constr_name(<a href=%MML%bagorder.html#K9>k9_bagorder</a>,'NaivelyOrderedBags',_). constr_name(<a href=%MML%bagorder.html#K10>k10_bagorder</a>,'PosetMin',_). constr_name(<a href=%MML%bagorder.html#K11>k11_bagorder</a>,'PosetMax',_). constr_name(<a href=%MML%bagorder.html#K12>k12_bagorder</a>,'FinOrd-Approx',_). constr_name(<a href=%MML%bagorder.html#K13>k13_bagorder</a>,'FinOrd',_). constr_name(<a href=%MML%bagorder.html#K14>k14_bagorder</a>,'FinPoset',_). constr_name(<a href=%MML%bagorder.html#K15>k15_bagorder</a>,'MinElement',_). constr_name(<a href=%MML%bagorder.html#K16>k16_bagorder</a>,'SeqShift',_). constr_name(<a href=%MML%circcmb2.html#K1>k1_circcmb2</a>,'MSAlg__4',_). constr_name(<a href=%MML%facirc_2.html#K1>k1_facirc_2</a>,'SingleMSS',_). constr_name(<a href=%MML%facirc_2.html#K2>k2_facirc_2</a>,'SingleMSA',_). constr_name(<a href=%MML%facirc_2.html#K3>k3_facirc_2</a>,'<*>__4',_). constr_name(<a href=%MML%facirc_2.html#K4>k4_facirc_2</a>,'-BitAdderStr',_). constr_name(<a href=%MML%facirc_2.html#K5>k5_facirc_2</a>,'-BitAdderCirc',_). constr_name(<a href=%MML%facirc_2.html#K6>k6_facirc_2</a>,'-BitMajorityOutput',_). constr_name(<a href=%MML%facirc_2.html#K7>k7_facirc_2</a>,'-BitAdderOutput',_). constr_name(<a href=%MML%fib_num.html#K1>k1_fib_num</a>,tau,_). constr_name(<a href=%MML%fib_num.html#K2>k2_fib_num</a>,tau_bar,_). constr_name(<a href=%MML%jordan11.html#K1>k1_jordan11</a>,'ApproxIndex',_). constr_name(<a href=%MML%jordan11.html#K2>k2_jordan11</a>,'Y-InitStart',_). constr_name(<a href=%MML%jordan11.html#K3>k3_jordan11</a>,'Y-SpanStart',_). constr_name(<a href=%MML%jordan12.html#R1>r1_jordan12</a>,is_in_general_position_wrt,_). constr_name(<a href=%MML%jordan12.html#R2>r2_jordan12</a>,are_in_general_position,_). constr_name(<a href=%MML%jordan13.html#K1>k1_jordan13</a>,'Span',_). constr_name(<a href=%MML%jordan14.html#K1>k1_jordan14</a>,'SpanStart',_). constr_name(<a href=%MML%circcmb3.html#V1>v1_circcmb3</a>,stabilizing,_). constr_name(<a href=%MML%circcmb3.html#V2>v2_circcmb3</a>,stabilizing__2,_). constr_name(<a href=%MML%circcmb3.html#V3>v3_circcmb3</a>,'with_stabilization-limit',_). constr_name(<a href=%MML%circcmb3.html#K1>k1_circcmb3</a>,'Result__6',_). constr_name(<a href=%MML%circcmb3.html#K2>k2_circcmb3</a>,'stabilization-time',_). constr_name(<a href=%MML%circcmb3.html#K3>k3_circcmb3</a>,'<*..*>__51',_). constr_name(<a href=%MML%circcmb3.html#K4>k4_circcmb3</a>,'<*..*>__52',_). constr_name(<a href=%MML%circcmb3.html#V4>v4_circcmb3</a>,'one-gate',_). constr_name(<a href=%MML%circcmb3.html#V5>v5_circcmb3</a>,'one-gate__2',_). constr_name(<a href=%MML%circcmb3.html#K5>k5_circcmb3</a>,'Output__3',_). constr_name(<a href=%MML%circcmb3.html#M1>m1_circcmb3</a>,'Signature',_). constr_name(<a href=%MML%circcmb3.html#K6>k6_circcmb3</a>,'1GateCircStr__3',_). constr_name(<a href=%MML%circcmb3.html#M2>m2_circcmb3</a>,'Circuit',_). constr_name(<a href=%MML%circcmb3.html#K7>k7_circcmb3</a>,'1GateCircuit__5',_). constr_name(<a href=%MML%circcmb3.html#K8>k8_circcmb3</a>,'+*__22',_). constr_name(<a href=%MML%circcmb3.html#K9>k9_circcmb3</a>,'+*__23',_). constr_name(<a href=%MML%circcmb3.html#V6>v6_circcmb3</a>,with_nonpair_inputs,_). constr_name(<a href=%MML%borsuk_4.html#K1>k1_borsuk_4</a>,'I(01)',_). constr_name(<a href=%MML%jordan1k.html#K1>k1_jordan1k</a>,dist_min__2,_). constr_name(<a href=%MML%jordan1k.html#K2>k2_jordan1k</a>,min_dist_min__2,_). constr_name(<a href=%MML%jordan1k.html#K3>k3_jordan1k</a>,max_dist_max__2,_). constr_name(<a href=%MML%jordan1k.html#K4>k4_jordan1k</a>,dist_min__3,_). constr_name(<a href=%MML%jordan1k.html#K5>k5_jordan1k</a>,dist__11,_). constr_name(<a href=%MML%jordan1k.html#K6>k6_jordan1k</a>,'Lower_Middle_Point',_). constr_name(<a href=%MML%jordan1k.html#K7>k7_jordan1k</a>,'Upper_Middle_Point',_). constr_name(<a href=%MML%jordan16.html#V1>v1_jordan16</a>,continuous__5,_). constr_name(<a href=%MML%jordan16.html#K1>k1_jordan16</a>,'AffineMap__2',_). constr_name(<a href=%MML%jordan17.html#R1>r1_jordan17</a>,are_in_this_order_on,_). constr_name(<a href=%MML%jordan18.html#K1>k1_jordan18</a>,'North-Bound',_). constr_name(<a href=%MML%jordan18.html#K2>k2_jordan18</a>,'South-Bound',_). constr_name(<a href=%MML%jordan18.html#R1>r1_jordan18</a>,'-separate',_). constr_name(<a href=%MML%osalg_1.html#K1>k1_osalg_1</a>,the_result_sort_of__2,_). constr_name(<a href=%MML%osalg_1.html#L1>l1_osalg_1</a>,'OverloadedMSSign',_). constr_name(<a href=%MML%osalg_1.html#V1>v1_osalg_1</a>,strict__OverloadedMSSign,_). constr_name(<a href=%MML%osalg_1.html#U1>u1_osalg_1</a>,'Overloading',the_Overloading). constr_name(<a href=%MML%osalg_1.html#G1>g1_osalg_1</a>,'OverloadedMSSign_constr',_). constr_name(<a href=%MML%osalg_1.html#L2>l2_osalg_1</a>,'RelSortedSign',_). constr_name(<a href=%MML%osalg_1.html#V2>v2_osalg_1</a>,strict__RelSortedSign,_). constr_name(<a href=%MML%osalg_1.html#G2>g2_osalg_1</a>,'RelSortedSign_constr',_). constr_name(<a href=%MML%osalg_1.html#L3>l3_osalg_1</a>,'OverloadedRSSign',_). constr_name(<a href=%MML%osalg_1.html#V3>v3_osalg_1</a>,strict__OverloadedRSSign,_). constr_name(<a href=%MML%osalg_1.html#G3>g3_osalg_1</a>,'OverloadedRSSign_constr',_). constr_name(<a href=%MML%osalg_1.html#V4>v4_osalg_1</a>,'order-sorted',_). constr_name(<a href=%MML%osalg_1.html#R1>r1_osalg_1</a>,'~=',_). constr_name(<a href=%MML%osalg_1.html#V5>v5_osalg_1</a>,discernable,_). constr_name(<a href=%MML%osalg_1.html#V6>v6_osalg_1</a>,'op-discrete',_). constr_name(<a href=%MML%osalg_1.html#K2>k2_osalg_1</a>,'OSSign',_). constr_name(<a href=%MML%osalg_1.html#R2>r2_osalg_1</a>,'<=__11',_). constr_name(<a href=%MML%osalg_1.html#V7>v7_osalg_1</a>,monotone__5,_). constr_name(<a href=%MML%osalg_1.html#V8>v8_osalg_1</a>,monotone__6,_). constr_name(<a href=%MML%osalg_1.html#R3>r3_osalg_1</a>,has_least_args_for,_). constr_name(<a href=%MML%osalg_1.html#R4>r4_osalg_1</a>,has_least_sort_for,_). constr_name(<a href=%MML%osalg_1.html#R5>r5_osalg_1</a>,has_least_rank_for,_). constr_name(<a href=%MML%osalg_1.html#V9>v9_osalg_1</a>,regular__4,_). constr_name(<a href=%MML%osalg_1.html#V10>v10_osalg_1</a>,regular__5,_). constr_name(<a href=%MML%osalg_1.html#K3>k3_osalg_1</a>,'LBound__2',_). constr_name(<a href=%MML%osalg_1.html#K4>k4_osalg_1</a>,'ConstOSSet',_). constr_name(<a href=%MML%osalg_1.html#V11>v11_osalg_1</a>,'order-sorted__2',_). constr_name(<a href=%MML%osalg_1.html#K5>k5_osalg_1</a>,'ConstOSSet__2',_). constr_name(<a href=%MML%osalg_1.html#V12>v12_osalg_1</a>,'order-sorted__3',_). constr_name(<a href=%MML%osalg_1.html#K6>k6_osalg_1</a>,'ConstOSA',_). constr_name(<a href=%MML%osalg_1.html#K7>k7_osalg_1</a>,'OSAlg',_). constr_name(<a href=%MML%osalg_1.html#R6>r6_osalg_1</a>,'<=__12',_). constr_name(<a href=%MML%osalg_1.html#V13>v13_osalg_1</a>,monotone__7,_). constr_name(<a href=%MML%osalg_1.html#K8>k8_osalg_1</a>,'TrivialOSA',_). constr_name(<a href=%MML%osalg_1.html#K9>k9_osalg_1</a>,'OperNames',_). constr_name(<a href=%MML%osalg_1.html#K10>k10_osalg_1</a>,'Name',_). constr_name(<a href=%MML%osalg_1.html#M1>m1_osalg_1</a>,'Element__57',_). constr_name(<a href=%MML%osalg_1.html#K11>k11_osalg_1</a>,'LBound__3',_). constr_name(<a href=%MML%osalg_2.html#M1>m1_osalg_2</a>,'OrderSortedSubset',_). constr_name(<a href=%MML%osalg_2.html#M2>m2_osalg_2</a>,'OSSubset',_). constr_name(<a href=%MML%osalg_2.html#K1>k1_osalg_2</a>,'OSConstants',_). constr_name(<a href=%MML%osalg_2.html#K2>k2_osalg_2</a>,'OSCl',_). constr_name(<a href=%MML%osalg_2.html#K3>k3_osalg_2</a>,'OSConstants__2',_). constr_name(<a href=%MML%osalg_2.html#K4>k4_osalg_2</a>,'OSbool',_). constr_name(<a href=%MML%osalg_2.html#K5>k5_osalg_2</a>,'OSSubSort',_). constr_name(<a href=%MML%osalg_2.html#K6>k6_osalg_2</a>,'OSSubSort__2',_). constr_name(<a href=%MML%osalg_2.html#K7>k7_osalg_2</a>,'@__41',_). constr_name(<a href=%MML%osalg_2.html#K8>k8_osalg_2</a>,'OSSubSort__3',_). constr_name(<a href=%MML%osalg_2.html#K9>k9_osalg_2</a>,'OSMSubSort',_). constr_name(<a href=%MML%osalg_2.html#K10>k10_osalg_2</a>,'GenOSAlg',_). constr_name(<a href=%MML%osalg_2.html#K11>k11_osalg_2</a>,'"\\/"_os',_). constr_name(<a href=%MML%osalg_2.html#K12>k12_osalg_2</a>,'OSSub',_). constr_name(<a href=%MML%osalg_2.html#K13>k13_osalg_2</a>,'OSSub__2',_). constr_name(<a href=%MML%osalg_2.html#K14>k14_osalg_2</a>,'OSAlg_join',_). constr_name(<a href=%MML%osalg_2.html#K15>k15_osalg_2</a>,'OSAlg_meet',_). constr_name(<a href=%MML%osalg_2.html#K16>k16_osalg_2</a>,'OSSubAlLattice',_). constr_name(<a href=%MML%osalg_3.html#V1>v1_osalg_3</a>,'order-sorted__4',_). constr_name(<a href=%MML%osalg_3.html#R1>r1_osalg_3</a>,are_os_isomorphic,_). constr_name(<a href=%MML%osalg_3.html#R2>r2_osalg_3</a>,are_os_isomorphic__2,_). constr_name(<a href=%MML%osalg_3.html#R3>r3_osalg_3</a>,are_os_isomorphic__3,_). constr_name(<a href=%MML%osalg_4.html#V1>v1_osalg_4</a>,'os-compatible',_). constr_name(<a href=%MML%osalg_4.html#M1>m1_osalg_4</a>,'OrderSortedRelation',_). constr_name(<a href=%MML%osalg_4.html#K1>k1_osalg_4</a>,'Path_Rel',_). constr_name(<a href=%MML%osalg_4.html#R1>r1_osalg_4</a>,'~=__2',_). constr_name(<a href=%MML%osalg_4.html#K2>k2_osalg_4</a>,'Components__2',_). constr_name(<a href=%MML%osalg_4.html#K3>k3_osalg_4</a>,'CComp__2',_). constr_name(<a href=%MML%osalg_4.html#K4>k4_osalg_4</a>,'-carrier_of__2',_). constr_name(<a href=%MML%osalg_4.html#V2>v2_osalg_4</a>,locally_directed,_). constr_name(<a href=%MML%osalg_4.html#K5>k5_osalg_4</a>,'CompClass',_). constr_name(<a href=%MML%osalg_4.html#K6>k6_osalg_4</a>,'OSClass',_). constr_name(<a href=%MML%osalg_4.html#K7>k7_osalg_4</a>,'OSClass__2',_). constr_name(<a href=%MML%osalg_4.html#K8>k8_osalg_4</a>,'OSClass__3',_). constr_name(<a href=%MML%osalg_4.html#K9>k9_osalg_4</a>,'#_os',_). constr_name(<a href=%MML%osalg_4.html#K10>k10_osalg_4</a>,'OSQuotRes',_). constr_name(<a href=%MML%osalg_4.html#K11>k11_osalg_4</a>,'OSQuotArgs',_). constr_name(<a href=%MML%osalg_4.html#K12>k12_osalg_4</a>,'OSQuotRes__2',_). constr_name(<a href=%MML%osalg_4.html#K13>k13_osalg_4</a>,'OSQuotArgs__2',_). constr_name(<a href=%MML%osalg_4.html#K14>k14_osalg_4</a>,'OSQuotCharact',_). constr_name(<a href=%MML%osalg_4.html#K15>k15_osalg_4</a>,'OSQuotCharact__2',_). constr_name(<a href=%MML%osalg_4.html#K16>k16_osalg_4</a>,'QuotOSAlg',_). constr_name(<a href=%MML%osalg_4.html#K17>k17_osalg_4</a>,'OSNat_Hom',_). constr_name(<a href=%MML%osalg_4.html#K18>k18_osalg_4</a>,'OSNat_Hom__2',_). constr_name(<a href=%MML%osalg_4.html#K19>k19_osalg_4</a>,'OSCng',_). constr_name(<a href=%MML%osalg_4.html#K20>k20_osalg_4</a>,'OSHomQuot',_). constr_name(<a href=%MML%osalg_4.html#K21>k21_osalg_4</a>,'OSHomQuot__2',_). constr_name(<a href=%MML%osalg_4.html#V3>v3_osalg_4</a>,monotone__8,_). constr_name(<a href=%MML%osalg_4.html#K22>k22_osalg_4</a>,'OSHomQuot__3',_). constr_name(<a href=%MML%osalg_4.html#K23>k23_osalg_4</a>,'OSHomQuot__4',_). constr_name(<a href=%MML%osafree.html#M1>m1_osafree</a>,'OSGeneratorSet',_). constr_name(<a href=%MML%osafree.html#V1>v1_osafree</a>,osfree,_). constr_name(<a href=%MML%osafree.html#V2>v2_osafree</a>,osfree__2,_). constr_name(<a href=%MML%osafree.html#K1>k1_osafree</a>,'OSREL',_). constr_name(<a href=%MML%osafree.html#K2>k2_osafree</a>,'DTConOSA',_). constr_name(<a href=%MML%osafree.html#K3>k3_osafree</a>,'OSSym',_). constr_name(<a href=%MML%osafree.html#K4>k4_osafree</a>,'ParsedTerms',_). constr_name(<a href=%MML%osafree.html#K5>k5_osafree</a>,'ParsedTerms__2',_). constr_name(<a href=%MML%osafree.html#K6>k6_osafree</a>,'PTDenOp',_). constr_name(<a href=%MML%osafree.html#K7>k7_osafree</a>,'PTOper',_). constr_name(<a href=%MML%osafree.html#K8>k8_osafree</a>,'ParsedTermsOSA',_). constr_name(<a href=%MML%osafree.html#K9>k9_osafree</a>,'OSSym__2',_). constr_name(<a href=%MML%osafree.html#K10>k10_osafree</a>,'LeastSort',_). constr_name(<a href=%MML%osafree.html#K11>k11_osafree</a>,'LeastSorts',_). constr_name(<a href=%MML%osafree.html#K12>k12_osafree</a>,pi__11,_). constr_name(<a href=%MML%osafree.html#K13>k13_osafree</a>,'@__42',_). constr_name(<a href=%MML%osafree.html#K14>k14_osafree</a>,pi__12,_). constr_name(<a href=%MML%osafree.html#K15>k15_osafree</a>,'LCongruence',_). constr_name(<a href=%MML%osafree.html#K16>k16_osafree</a>,'FreeOSA',_). constr_name(<a href=%MML%osafree.html#K17>k17_osafree</a>,'@__43',_). constr_name(<a href=%MML%osafree.html#K18>k18_osafree</a>,'@__44',_). constr_name(<a href=%MML%osafree.html#K19>k19_osafree</a>,'PTClasses',_). constr_name(<a href=%MML%osafree.html#K20>k20_osafree</a>,'PTCongruence',_). constr_name(<a href=%MML%osafree.html#K21>k21_osafree</a>,'PTVars',_). constr_name(<a href=%MML%osafree.html#K22>k22_osafree</a>,'PTVars__2',_). constr_name(<a href=%MML%osafree.html#K23>k23_osafree</a>,'OSFreeGen',_). constr_name(<a href=%MML%osafree.html#K24>k24_osafree</a>,'OSFreeGen__2',_). constr_name(<a href=%MML%osafree.html#K25>k25_osafree</a>,'OSClass__4',_). constr_name(<a href=%MML%osafree.html#K26>k26_osafree</a>,pi__13,_). constr_name(<a href=%MML%osafree.html#K27>k27_osafree</a>,'NHReverse',_). constr_name(<a href=%MML%osafree.html#K28>k28_osafree</a>,'NHReverse__2',_). constr_name(<a href=%MML%osafree.html#K29>k29_osafree</a>,'PTMin',_). constr_name(<a href=%MML%osafree.html#M2>m2_osafree</a>,'MinTerm',_). constr_name(<a href=%MML%osafree.html#K30>k30_osafree</a>,'MinTerms',_). constr_name(<a href=%MML%rusub_1.html#M1>m1_rusub_1</a>,'Subspace__3',_). constr_name(<a href=%MML%rusub_1.html#K1>k1_rusub_1</a>,'(0).__4',_). constr_name(<a href=%MML%rusub_1.html#K2>k2_rusub_1</a>,'(Omega).__5',_). constr_name(<a href=%MML%rusub_1.html#K3>k3_rusub_1</a>,'+__85',_). constr_name(<a href=%MML%rusub_1.html#M2>m2_rusub_1</a>,'Coset__4',_). constr_name(<a href=%MML%rusub_2.html#K1>k1_rusub_2</a>,'+__86',_). constr_name(<a href=%MML%rusub_2.html#K2>k2_rusub_2</a>,'/\\__31',_). constr_name(<a href=%MML%rusub_2.html#K3>k3_rusub_2</a>,'Subspaces__4',_). constr_name(<a href=%MML%rusub_2.html#R1>r1_rusub_2</a>,is_the_direct_sum_of__4,_). constr_name(<a href=%MML%rusub_2.html#M1>m1_rusub_2</a>,'Linear_Compl__3',_). constr_name(<a href=%MML%rusub_2.html#K4>k4_rusub_2</a>,'|--__6',_). constr_name(<a href=%MML%rusub_2.html#K5>k5_rusub_2</a>,'SubJoin__5',_). constr_name(<a href=%MML%rusub_2.html#K6>k6_rusub_2</a>,'SubMeet__5',_). constr_name(<a href=%MML%rusub_3.html#K1>k1_rusub_3</a>,'Lin__6',_). constr_name(<a href=%MML%rusub_3.html#M1>m1_rusub_3</a>,'Basis__7',_). constr_name(<a href=%MML%rusub_4.html#V1>v1_rusub_4</a>,'finite-dimensional__3',_). constr_name(<a href=%MML%rusub_4.html#K1>k1_rusub_4</a>,dim__3,_). constr_name(<a href=%MML%rusub_4.html#K2>k2_rusub_4</a>,'Subspaces_of__3',_). constr_name(<a href=%MML%rusub_4.html#V2>v2_rusub_4</a>,'Affine',_). constr_name(<a href=%MML%rusub_4.html#K3>k3_rusub_4</a>,'Up__3',_). constr_name(<a href=%MML%rusub_4.html#K4>k4_rusub_4</a>,'Up__4',_). constr_name(<a href=%MML%rusub_4.html#V3>v3_rusub_4</a>,'Subspace-like',_). constr_name(<a href=%MML%rusub_4.html#K5>k5_rusub_4</a>,'+__87',_). constr_name(<a href=%MML%rusub_4.html#K6>k6_rusub_4</a>,'+__88',_). constr_name(<a href=%MML%rusub_4.html#K7>k7_rusub_4</a>,'+__89',_). constr_name(<a href=%MML%rusub_5.html#R1>r1_rusub_5</a>,is_parallel_to,_). constr_name(<a href=%MML%rusub_5.html#K1>k1_rusub_5</a>,'-__91',_). constr_name(<a href=%MML%rusub_5.html#K2>k2_rusub_5</a>,'Ort_Comp',_). constr_name(<a href=%MML%rusub_5.html#K3>k3_rusub_5</a>,'Ort_Comp__2',_). constr_name(<a href=%MML%rusub_5.html#K4>k4_rusub_5</a>,'Family_open_set__2',_). constr_name(<a href=%MML%rusub_5.html#K5>k5_rusub_5</a>,'TopUnitSpace',_). constr_name(<a href=%MML%armstrng.html#K1>k1_armstrng</a>,'Maximal_in',_). constr_name(<a href=%MML%armstrng.html#R1>r1_armstrng</a>,'is_/\\-irreducible_in',_). constr_name(<a href=%MML%armstrng.html#K2>k2_armstrng</a>,'/\\-IRR',_). constr_name(<a href=%MML%armstrng.html#V1>v1_armstrng</a>,'(B1)',_). constr_name(<a href=%MML%armstrng.html#K3>k3_armstrng</a>,''&'__13',_). constr_name(<a href=%MML%armstrng.html#L1>l1_armstrng</a>,'DB-Rel',_). constr_name(<a href=%MML%armstrng.html#V2>v2_armstrng</a>,'strict__DB-Rel',_). constr_name(<a href=%MML%armstrng.html#U1>u1_armstrng</a>,'Attributes__2',the_Attributes__2). constr_name(<a href=%MML%armstrng.html#U2>u2_armstrng</a>,'Domains',the_Domains). constr_name(<a href=%MML%armstrng.html#U3>u3_armstrng</a>,'Relationship',the_Relationship). constr_name(<a href=%MML%armstrng.html#G1>g1_armstrng</a>,'DB-Rel_constr',_). constr_name(<a href=%MML%armstrng.html#K4>k4_armstrng</a>,'Dependencies',_). constr_name(<a href=%MML%armstrng.html#M1>m1_armstrng</a>,'Element__58',_). constr_name(<a href=%MML%armstrng.html#R2>r2_armstrng</a>,'>|>',_). constr_name(<a href=%MML%armstrng.html#K5>k5_armstrng</a>,'Dependency-str',_). constr_name(<a href=%MML%armstrng.html#R3>r3_armstrng</a>,'>=',_). constr_name(<a href=%MML%armstrng.html#K6>k6_armstrng</a>,'[..]__26',_). constr_name(<a href=%MML%armstrng.html#K7>k7_armstrng</a>,'Dependencies-Order',_). constr_name(<a href=%MML%armstrng.html#V3>v3_armstrng</a>,'(F1)',_). constr_name(<a href=%MML%armstrng.html#V4>v4_armstrng</a>,'(F3)',_). constr_name(<a href=%MML%armstrng.html#V5>v5_armstrng</a>,'(F4)',_). constr_name(<a href=%MML%armstrng.html#V6>v6_armstrng</a>,full_family,_). constr_name(<a href=%MML%armstrng.html#V7>v7_armstrng</a>,'(DC3)',_). constr_name(<a href=%MML%armstrng.html#K8>k8_armstrng</a>,'Maximal_wrt',_). constr_name(<a href=%MML%armstrng.html#R4>r4_armstrng</a>,'^|^',_). constr_name(<a href=%MML%armstrng.html#V8>v8_armstrng</a>,'(M1)',_). constr_name(<a href=%MML%armstrng.html#V9>v9_armstrng</a>,'(M2)',_). constr_name(<a href=%MML%armstrng.html#V10>v10_armstrng</a>,'(M3)',_). constr_name(<a href=%MML%armstrng.html#K9>k9_armstrng</a>,'saturated-subsets',_). constr_name(<a href=%MML%armstrng.html#K10>k10_armstrng</a>,deps_encl_by,_). constr_name(<a href=%MML%armstrng.html#K11>k11_armstrng</a>,enclosure_of,_). constr_name(<a href=%MML%armstrng.html#K12>k12_armstrng</a>,'Dependency-closure',_). constr_name(<a href=%MML%armstrng.html#R5>r5_armstrng</a>,'is_generator-set_of',_). constr_name(<a href=%MML%armstrng.html#K13>k13_armstrng</a>,'candidate-keys',_). constr_name(<a href=%MML%armstrng.html#V11>v11_armstrng</a>,without_proper_subsets,_). constr_name(<a href=%MML%armstrng.html#V12>v12_armstrng</a>,'(DC4)',_). constr_name(<a href=%MML%armstrng.html#V13>v13_armstrng</a>,'(DC5)',_). constr_name(<a href=%MML%armstrng.html#V14>v14_armstrng</a>,'(DC6)',_). constr_name(<a href=%MML%armstrng.html#K14>k14_armstrng</a>,charact_set,_). constr_name(<a href=%MML%armstrng.html#R6>r6_armstrng</a>,is_p_i_w_ncv_of,_). constr_name(<a href=%MML%convex1.html#K1>k1_convex1</a>,'*__140',_). constr_name(<a href=%MML%convex1.html#V1>v1_convex1</a>,convex__3,_). constr_name(<a href=%MML%convex1.html#V2>v2_convex1</a>,convex__4,_). constr_name(<a href=%MML%convex1.html#K2>k2_convex1</a>,'Convex-Family',_). constr_name(<a href=%MML%convex1.html#K3>k3_convex1</a>,conv,_). constr_name(<a href=%MML%vectsp10.html#K1>k1_vectsp10</a>,'StructVectSp',_). constr_name(<a href=%MML%vectsp10.html#K2>k2_vectsp10</a>,'CosetSet',_). constr_name(<a href=%MML%vectsp10.html#K3>k3_vectsp10</a>,addCoset,_). constr_name(<a href=%MML%vectsp10.html#K4>k4_vectsp10</a>,zeroCoset,_). constr_name(<a href=%MML%vectsp10.html#K5>k5_vectsp10</a>,lmultCoset,_). constr_name(<a href=%MML%vectsp10.html#K6>k6_vectsp10</a>,'VectQuot',_). constr_name(<a href=%MML%vectsp10.html#V1>v1_vectsp10</a>,constant__5,_). constr_name(<a href=%MML%vectsp10.html#K7>k7_vectsp10</a>,coeffFunctional,_). constr_name(<a href=%MML%vectsp10.html#K8>k8_vectsp10</a>,ker,_). constr_name(<a href=%MML%vectsp10.html#V2>v2_vectsp10</a>,degenerated__3,_). constr_name(<a href=%MML%vectsp10.html#K9>k9_vectsp10</a>,'Ker__2',_). constr_name(<a href=%MML%vectsp10.html#K10>k10_vectsp10</a>,'QFunctional',_). constr_name(<a href=%MML%vectsp10.html#K11>k11_vectsp10</a>,'CQFunctional',_). constr_name(<a href=%MML%bilinear.html#K1>k1_bilinear</a>,'NulForm',_). constr_name(<a href=%MML%bilinear.html#K2>k2_bilinear</a>,'+__90',_). constr_name(<a href=%MML%bilinear.html#K3>k3_bilinear</a>,'*__141',_). constr_name(<a href=%MML%bilinear.html#K4>k4_bilinear</a>,'-__92',_). constr_name(<a href=%MML%bilinear.html#K5>k5_bilinear</a>,'-__93',_). constr_name(<a href=%MML%bilinear.html#K6>k6_bilinear</a>,'-__94',_). constr_name(<a href=%MML%bilinear.html#K7>k7_bilinear</a>,'-__95',_). constr_name(<a href=%MML%bilinear.html#K8>k8_bilinear</a>,'+__91',_). constr_name(<a href=%MML%bilinear.html#K9>k9_bilinear</a>,'FunctionalFAF',_). constr_name(<a href=%MML%bilinear.html#K10>k10_bilinear</a>,'FunctionalSAF',_). constr_name(<a href=%MML%bilinear.html#K11>k11_bilinear</a>,'FormFunctional',_). constr_name(<a href=%MML%bilinear.html#V1>v1_bilinear</a>,additiveFAF,_). constr_name(<a href=%MML%bilinear.html#V2>v2_bilinear</a>,additiveSAF,_). constr_name(<a href=%MML%bilinear.html#V3>v3_bilinear</a>,homogeneousFAF,_). constr_name(<a href=%MML%bilinear.html#V4>v4_bilinear</a>,homogeneousSAF,_). constr_name(<a href=%MML%bilinear.html#K12>k12_bilinear</a>,leftker,_). constr_name(<a href=%MML%bilinear.html#K13>k13_bilinear</a>,rightker,_). constr_name(<a href=%MML%bilinear.html#K14>k14_bilinear</a>,diagker,_). constr_name(<a href=%MML%bilinear.html#K15>k15_bilinear</a>,'LKer',_). constr_name(<a href=%MML%bilinear.html#K16>k16_bilinear</a>,'RKer',_). constr_name(<a href=%MML%bilinear.html#K17>k17_bilinear</a>,'LQForm',_). constr_name(<a href=%MML%bilinear.html#K18>k18_bilinear</a>,'RQForm',_). constr_name(<a href=%MML%bilinear.html#K19>k19_bilinear</a>,'QForm',_). constr_name(<a href=%MML%bilinear.html#V5>v5_bilinear</a>,'degenerated-on-left',_). constr_name(<a href=%MML%bilinear.html#V6>v6_bilinear</a>,'degenerated-on-right',_). constr_name(<a href=%MML%bilinear.html#V7>v7_bilinear</a>,symmetric__6,_). constr_name(<a href=%MML%bilinear.html#V8>v8_bilinear</a>,alternating__2,_). constr_name(<a href=%MML%hermitan.html#V1>v1_hermitan</a>,cmplxhomogeneous,_). constr_name(<a href=%MML%hermitan.html#K1>k1_hermitan</a>,'*'__30',_). constr_name(<a href=%MML%hermitan.html#K2>k2_hermitan</a>,'QcFunctional',_). constr_name(<a href=%MML%hermitan.html#V2>v2_hermitan</a>,cmplxhomogeneousFAF,_). constr_name(<a href=%MML%hermitan.html#V3>v3_hermitan</a>,hermitan,_). constr_name(<a href=%MML%hermitan.html#V4>v4_hermitan</a>,diagRvalued,_). constr_name(<a href=%MML%hermitan.html#V5>v5_hermitan</a>,'diagReR+0valued',_). constr_name(<a href=%MML%hermitan.html#K3>k3_hermitan</a>,'*'__31',_). constr_name(<a href=%MML%hermitan.html#K4>k4_hermitan</a>,signnorm,_). constr_name(<a href=%MML%hermitan.html#K5>k5_hermitan</a>,quasinorm,_). constr_name(<a href=%MML%hermitan.html#K6>k6_hermitan</a>,quasinorm__2,_). constr_name(<a href=%MML%hermitan.html#K7>k7_hermitan</a>,'RQ*Form',_). constr_name(<a href=%MML%hermitan.html#K8>k8_hermitan</a>,'Q*Form',_). constr_name(<a href=%MML%hermitan.html#V6>v6_hermitan</a>,positivediagvalued,_). constr_name(<a href=%MML%hermitan.html#K9>k9_hermitan</a>,'ScalarForm',_). constr_name(<a href=%MML%necklace.html#R1>r1_necklace</a>,are_mutually_different__3,_). constr_name(<a href=%MML%necklace.html#R2>r2_necklace</a>,embeds,_). constr_name(<a href=%MML%necklace.html#R3>r3_necklace</a>,embeds__2,_). constr_name(<a href=%MML%necklace.html#R4>r4_necklace</a>,is_equimorphic_to,_). constr_name(<a href=%MML%necklace.html#V1>v1_necklace</a>,symmetric__7,_). constr_name(<a href=%MML%necklace.html#V2>v2_necklace</a>,asymmetric__2,_). constr_name(<a href=%MML%necklace.html#V3>v3_necklace</a>,irreflexive__2,_). constr_name(<a href=%MML%necklace.html#K1>k1_necklace</a>,'-SuccRelStr',_). constr_name(<a href=%MML%necklace.html#K2>k2_necklace</a>,'SymRelStr',_). constr_name(<a href=%MML%necklace.html#K3>k3_necklace</a>,'ComplRelStr',_). constr_name(<a href=%MML%necklace.html#K4>k4_necklace</a>,'Necklace',_). constr_name(<a href=%MML%termord.html#V1>v1_termord</a>,'non-zero__5',_). constr_name(<a href=%MML%termord.html#R1>r1_termord</a>,'<=__13',_). constr_name(<a href=%MML%termord.html#R2>r2_termord</a>,'<__4',_). constr_name(<a href=%MML%termord.html#K1>k1_termord</a>,min__8,_). constr_name(<a href=%MML%termord.html#K2>k2_termord</a>,max__10,_). constr_name(<a href=%MML%termord.html#K3>k3_termord</a>,'HT',_). constr_name(<a href=%MML%termord.html#K4>k4_termord</a>,'HC',_). constr_name(<a href=%MML%termord.html#K5>k5_termord</a>,'HM',_). constr_name(<a href=%MML%termord.html#K6>k6_termord</a>,'Red',_). constr_name(<a href=%MML%polyred.html#K1>k1_polyred</a>,'*'__32',_). constr_name(<a href=%MML%polyred.html#R1>r1_polyred</a>,'<=__14',_). constr_name(<a href=%MML%polyred.html#R2>r2_polyred</a>,'<__5',_). constr_name(<a href=%MML%polyred.html#K2>k2_polyred</a>,'Support__2',_). constr_name(<a href=%MML%polyred.html#R3>r3_polyred</a>,reduces_to,_). constr_name(<a href=%MML%polyred.html#R4>r4_polyred</a>,reduces_to__2,_). constr_name(<a href=%MML%polyred.html#R5>r5_polyred</a>,reduces_to__3,_). constr_name(<a href=%MML%polyred.html#R6>r6_polyred</a>,is_reducible_wrt,_). constr_name(<a href=%MML%polyred.html#R7>r7_polyred</a>,is_reducible_wrt__2,_). constr_name(<a href=%MML%polyred.html#R8>r8_polyred</a>,top_reduces_to,_). constr_name(<a href=%MML%polyred.html#R9>r9_polyred</a>,is_top_reducible_wrt,_). constr_name(<a href=%MML%polyred.html#R10>r10_polyred</a>,is_top_reducible_wrt__2,_). constr_name(<a href=%MML%polyred.html#K3>k3_polyred</a>,'PolyRedRel',_). constr_name(<a href=%MML%polyred.html#R11>r11_polyred</a>,are_congruent_mod__2,_). constr_name(<a href=%MML%pnproc_1.html#M1>m1_pnproc_1</a>,marking,_). constr_name(<a href=%MML%pnproc_1.html#K1>k1_pnproc_1</a>,multitude_of,_). constr_name(<a href=%MML%pnproc_1.html#K2>k2_pnproc_1</a>,'.__143',_). constr_name(<a href=%MML%pnproc_1.html#R1>r1_pnproc_1</a>,'=__10',_). constr_name(<a href=%MML%pnproc_1.html#K3>k3_pnproc_1</a>,'{$}',_). constr_name(<a href=%MML%pnproc_1.html#R2>r2_pnproc_1</a>,'c=__11',_). constr_name(<a href=%MML%pnproc_1.html#K4>k4_pnproc_1</a>,'+__92',_). constr_name(<a href=%MML%pnproc_1.html#K5>k5_pnproc_1</a>,'-__96',_). constr_name(<a href=%MML%pnproc_1.html#M2>m2_pnproc_1</a>,transition,_). constr_name(<a href=%MML%pnproc_1.html#K6>k6_pnproc_1</a>,'Pre__2',_). constr_name(<a href=%MML%pnproc_1.html#K7>k7_pnproc_1</a>,'Post__2',_). constr_name(<a href=%MML%pnproc_1.html#K8>k8_pnproc_1</a>,fire,_). constr_name(<a href=%MML%pnproc_1.html#K9>k9_pnproc_1</a>,fire__2,_). constr_name(<a href=%MML%pnproc_1.html#M3>m3_pnproc_1</a>,'Petri_net',_). constr_name(<a href=%MML%pnproc_1.html#M4>m4_pnproc_1</a>,'Element__59',_). constr_name(<a href=%MML%pnproc_1.html#K10>k10_pnproc_1</a>,fire__3,_). constr_name(<a href=%MML%pnproc_1.html#K11>k11_pnproc_1</a>,fire__4,_). constr_name(<a href=%MML%pnproc_1.html#K12>k12_pnproc_1</a>,before,_). constr_name(<a href=%MML%pnproc_1.html#K13>k13_pnproc_1</a>,concur,_). constr_name(<a href=%MML%pnproc_1.html#K14>k14_pnproc_1</a>,'Shift__5',_). constr_name(<a href=%MML%pnproc_1.html#K15>k15_pnproc_1</a>,'NeutralProcess',_). constr_name(<a href=%MML%pnproc_1.html#K16>k16_pnproc_1</a>,'ElementaryProcess',_). constr_name(<a href=%MML%radix_3.html#K1>k1_radix_3</a>,'-SD_Sub_S',_). constr_name(<a href=%MML%radix_3.html#K2>k2_radix_3</a>,'-SD_Sub',_). constr_name(<a href=%MML%radix_3.html#K3>k3_radix_3</a>,'-SD_Sub_S__2',_). constr_name(<a href=%MML%radix_3.html#K4>k4_radix_3</a>,'-SD_Sub__2',_). constr_name(<a href=%MML%radix_3.html#K5>k5_radix_3</a>,'SDSub_Add_Carry',_). constr_name(<a href=%MML%radix_3.html#K6>k6_radix_3</a>,'SDSub_Add_Data',_). constr_name(<a href=%MML%radix_3.html#K7>k7_radix_3</a>,'DigA_SDSub',_). constr_name(<a href=%MML%radix_3.html#K8>k8_radix_3</a>,'SD2SDSubDigit',_). constr_name(<a href=%MML%radix_3.html#K9>k9_radix_3</a>,'SD2SDSubDigitS',_). constr_name(<a href=%MML%radix_3.html#K10>k10_radix_3</a>,'SD2SDSub',_). constr_name(<a href=%MML%radix_3.html#K11>k11_radix_3</a>,'DigB_SDSub',_). constr_name(<a href=%MML%radix_3.html#K12>k12_radix_3</a>,'SDSub2INTDigit',_). constr_name(<a href=%MML%radix_3.html#K13>k13_radix_3</a>,'SDSub2INT',_). constr_name(<a href=%MML%radix_3.html#K14>k14_radix_3</a>,'SDSub2IntOut',_). constr_name(<a href=%MML%radix_4.html#K1>k1_radix_4</a>,'SDSubAddDigit',_). constr_name(<a href=%MML%radix_4.html#K2>k2_radix_4</a>,''+'__2',_). constr_name(<a href=%MML%graph_5.html#M1>m1_graph_5</a>,'Element__60',_). constr_name(<a href=%MML%graph_5.html#K1>k1_graph_5</a>,vertices,_). constr_name(<a href=%MML%graph_5.html#K2>k2_graph_5</a>,vertices__2,_). constr_name(<a href=%MML%graph_5.html#R1>r1_graph_5</a>,is_orientedpath_of,_). constr_name(<a href=%MML%graph_5.html#R2>r2_graph_5</a>,is_orientedpath_of__2,_). constr_name(<a href=%MML%graph_5.html#K3>k3_graph_5</a>,'OrientedPaths',_). constr_name(<a href=%MML%graph_5.html#R3>r3_graph_5</a>,is_acyclicpath_of,_). constr_name(<a href=%MML%graph_5.html#R4>r4_graph_5</a>,is_acyclicpath_of__2,_). constr_name(<a href=%MML%graph_5.html#K4>k4_graph_5</a>,'AcyclicPaths',_). constr_name(<a href=%MML%graph_5.html#K5>k5_graph_5</a>,'AcyclicPaths__2',_). constr_name(<a href=%MML%graph_5.html#K6>k6_graph_5</a>,'AcyclicPaths__3',_). constr_name(<a href=%MML%graph_5.html#K7>k7_graph_5</a>,'AcyclicPaths__4',_). constr_name(<a href=%MML%graph_5.html#K8>k8_graph_5</a>,'Real>=0',_). constr_name(<a href=%MML%graph_5.html#R5>r5_graph_5</a>,'is_weight>=0of',_). constr_name(<a href=%MML%graph_5.html#R6>r6_graph_5</a>,is_weight_of,_). constr_name(<a href=%MML%graph_5.html#K9>k9_graph_5</a>,'RealSequence',_). constr_name(<a href=%MML%graph_5.html#K10>k10_graph_5</a>,cost,_). constr_name(<a href=%MML%graph_5.html#R7>r7_graph_5</a>,is_shortestpath_of,_). constr_name(<a href=%MML%graph_5.html#R8>r8_graph_5</a>,is_shortestpath_of__2,_). constr_name(<a href=%MML%graph_5.html#R9>r9_graph_5</a>,islongestInShortestpath,_). constr_name(<a href=%MML%hausdorf.html#K1>k1_hausdorf</a>,'{..}__50',_). constr_name(<a href=%MML%hausdorf.html#K2>k2_hausdorf</a>,'HausDist',_). constr_name(<a href=%MML%hausdorf.html#K3>k3_hausdorf</a>,max_dist_min__2,_). constr_name(<a href=%MML%hausdorf.html#K4>k4_hausdorf</a>,'HausDist__2',_). constr_name(<a href=%MML%chain_1.html#K1>k1_chain_1</a>,bool__10,_). constr_name(<a href=%MML%chain_1.html#K2>k2_chain_1</a>,'.__144',_). constr_name(<a href=%MML%chain_1.html#M1>m1_chain_1</a>,'Grating',_). constr_name(<a href=%MML%chain_1.html#K3>k3_chain_1</a>,'.__145',_). constr_name(<a href=%MML%chain_1.html#M2>m2_chain_1</a>,'Gap',_). constr_name(<a href=%MML%chain_1.html#K4>k4_chain_1</a>,cell__2,_). constr_name(<a href=%MML%chain_1.html#K5>k5_chain_1</a>,cells,_). constr_name(<a href=%MML%chain_1.html#K6>k6_chain_1</a>,'0___2',_). constr_name(<a href=%MML%chain_1.html#K7>k7_chain_1</a>,'Omega__2',_). constr_name(<a href=%MML%chain_1.html#K8>k8_chain_1</a>,'+__93',_). constr_name(<a href=%MML%chain_1.html#K9>k9_chain_1</a>,'infinite-cell',_). constr_name(<a href=%MML%chain_1.html#K10>k10_chain_1</a>,star,_). constr_name(<a href=%MML%chain_1.html#K11>k11_chain_1</a>,del,_). constr_name(<a href=%MML%chain_1.html#R1>r1_chain_1</a>,bounds,_). constr_name(<a href=%MML%chain_1.html#M3>m3_chain_1</a>,'Cycle',_). constr_name(<a href=%MML%chain_1.html#K12>k12_chain_1</a>,'0___3',_). constr_name(<a href=%MML%chain_1.html#K13>k13_chain_1</a>,'Omega__3',_). constr_name(<a href=%MML%chain_1.html#K14>k14_chain_1</a>,'+__94',_). constr_name(<a href=%MML%chain_1.html#K15>k15_chain_1</a>,del__2,_). constr_name(<a href=%MML%chain_1.html#K16>k16_chain_1</a>,'Chains__2',_). constr_name(<a href=%MML%chain_1.html#K17>k17_chain_1</a>,del__3,_). constr_name(<a href=%MML%bhsp_5.html#K1>k1_bhsp_5</a>,'++__2',_). constr_name(<a href=%MML%bhsp_5.html#K2>k2_bhsp_5</a>,setop_SUM,_). constr_name(<a href=%MML%bhsp_5.html#K3>k3_bhsp_5</a>,'PO__2',_). constr_name(<a href=%MML%bhsp_5.html#K4>k4_bhsp_5</a>,'Func_Seq',_). constr_name(<a href=%MML%bhsp_5.html#K5>k5_bhsp_5</a>,setopfunc,_). constr_name(<a href=%MML%bhsp_5.html#K6>k6_bhsp_5</a>,setop_xPre_PROD,_). constr_name(<a href=%MML%bhsp_5.html#K7>k7_bhsp_5</a>,setop_xPROD,_). constr_name(<a href=%MML%bhsp_5.html#M1>m1_bhsp_5</a>,'OrthogonalFamily',_). constr_name(<a href=%MML%bhsp_5.html#M2>m2_bhsp_5</a>,'OrthonormalFamily',_). constr_name(<a href=%MML%binari_4.html#K1>k1_binari_4</a>,'MajP',_). constr_name(<a href=%MML%binari_4.html#K2>k2_binari_4</a>,'2sComplement',_). constr_name(<a href=%MML%euclid_2.html#K1>k1_euclid_2</a>,'|(..)|',_). constr_name(<a href=%MML%euclid_2.html#K2>k2_euclid_2</a>,'|(..)|__2',_). constr_name(<a href=%MML%euclid_2.html#R1>r1_euclid_2</a>,are_orthogonal__2,_). constr_name(<a href=%MML%polyeq_2.html#K1>k1_polyeq_2</a>,'Four',_). constr_name(<a href=%MML%polyeq_2.html#K2>k2_polyeq_2</a>,'Four0',_). constr_name(<a href=%MML%waybel35.html#V1>v1_waybel35</a>,'extra-order',_). constr_name(<a href=%MML%waybel35.html#K1>k1_waybel35</a>,'-LowerMap',_). constr_name(<a href=%MML%waybel35.html#M1>m1_waybel35</a>,strict_chain,_). constr_name(<a href=%MML%waybel35.html#V2>v2_waybel35</a>,maximal__2,_). constr_name(<a href=%MML%waybel35.html#K2>k2_waybel35</a>,'Strict_Chains',_). constr_name(<a href=%MML%waybel35.html#R1>r1_waybel35</a>,satisfies_SIC_on,_). constr_name(<a href=%MML%waybel35.html#V3>v3_waybel35</a>,satisfying_SIC,_). constr_name(<a href=%MML%waybel35.html#K3>k3_waybel35</a>,'SetBelow',_). constr_name(<a href=%MML%waybel35.html#K4>k4_waybel35</a>,'SetBelow__2',_). constr_name(<a href=%MML%waybel35.html#V4>v4_waybel35</a>,'sup-closed',_). constr_name(<a href=%MML%waybel35.html#K5>k5_waybel35</a>,'SupBelow',_). constr_name(<a href=%MML%waybel35.html#K6>k6_waybel35</a>,'SupBelow__2',_). constr_name(<a href=%MML%oposet_1.html#L1>l1_oposet_1</a>,'OrthoRelStr',_). constr_name(<a href=%MML%oposet_1.html#V1>v1_oposet_1</a>,strict__OrthoRelStr,_). constr_name(<a href=%MML%oposet_1.html#G1>g1_oposet_1</a>,'OrthoRelStr_constr',_). constr_name(<a href=%MML%oposet_1.html#K1>k1_oposet_1</a>,'{}__6',_). constr_name(<a href=%MML%oposet_1.html#K2>k2_oposet_1</a>,'[#]__6',_). constr_name(<a href=%MML%oposet_1.html#V2>v2_oposet_1</a>,dneg,_). constr_name(<a href=%MML%oposet_1.html#K3>k3_oposet_1</a>,'TrivOrthoRelStr',_). constr_name(<a href=%MML%oposet_1.html#K4>k4_oposet_1</a>,'TrivAsymOrthoRelStr',_). constr_name(<a href=%MML%oposet_1.html#V3>v3_oposet_1</a>,'Dneg',_). constr_name(<a href=%MML%oposet_1.html#V4>v4_oposet_1</a>,'SubReFlexive',_). constr_name(<a href=%MML%oposet_1.html#V5>v5_oposet_1</a>,'SubIrreFlexive',_). constr_name(<a href=%MML%oposet_1.html#V6>v6_oposet_1</a>,'SubSymmetric',_). constr_name(<a href=%MML%oposet_1.html#V7>v7_oposet_1</a>,'SubAntisymmetric',_). constr_name(<a href=%MML%oposet_1.html#V8>v8_oposet_1</a>,'Asymmetric',_). constr_name(<a href=%MML%oposet_1.html#V9>v9_oposet_1</a>,'SubTransitive',_). constr_name(<a href=%MML%oposet_1.html#V10>v10_oposet_1</a>,'SubQuasiOrdered',_). constr_name(<a href=%MML%oposet_1.html#V11>v11_oposet_1</a>,'QuasiOrdered',_). constr_name(<a href=%MML%oposet_1.html#V12>v12_oposet_1</a>,'QuasiPure',_). constr_name(<a href=%MML%oposet_1.html#V13>v13_oposet_1</a>,'SubPartialOrdered',_). constr_name(<a href=%MML%oposet_1.html#V14>v14_oposet_1</a>,'PartialOrdered',_). constr_name(<a href=%MML%oposet_1.html#V15>v15_oposet_1</a>,'Pure',_). constr_name(<a href=%MML%oposet_1.html#V16>v16_oposet_1</a>,'SubStrictPartialOrdered',_). constr_name(<a href=%MML%oposet_1.html#V17>v17_oposet_1</a>,'StrictPartialOrdered',_). constr_name(<a href=%MML%oposet_1.html#V18>v18_oposet_1</a>,'Orderinvolutive',_). constr_name(<a href=%MML%oposet_1.html#V19>v19_oposet_1</a>,'OrderInvolutive',_). constr_name(<a href=%MML%oposet_1.html#R1>r1_oposet_1</a>,'QuasiOrthoComplement_on',_). constr_name(<a href=%MML%oposet_1.html#V20>v20_oposet_1</a>,'QuasiOrthocomplemented',_). constr_name(<a href=%MML%oposet_1.html#R2>r2_oposet_1</a>,'OrthoComplement_on',_). constr_name(<a href=%MML%oposet_1.html#V21>v21_oposet_1</a>,'Orthocomplemented',_). constr_name(<a href=%MML%jgraph_6.html#K1>k1_jgraph_6</a>,inside_of_rectangle,_). constr_name(<a href=%MML%jgraph_6.html#K2>k2_jgraph_6</a>,closed_inside_of_rectangle,_). constr_name(<a href=%MML%jgraph_6.html#K3>k3_jgraph_6</a>,outside_of_rectangle,_). constr_name(<a href=%MML%jgraph_6.html#K4>k4_jgraph_6</a>,closed_outside_of_rectangle,_). constr_name(<a href=%MML%jgraph_6.html#K5>k5_jgraph_6</a>,circle,_). constr_name(<a href=%MML%jgraph_6.html#K6>k6_jgraph_6</a>,inside_of_circle,_). constr_name(<a href=%MML%jgraph_6.html#K7>k7_jgraph_6</a>,closed_inside_of_circle,_). constr_name(<a href=%MML%jgraph_6.html#K8>k8_jgraph_6</a>,outside_of_circle,_). constr_name(<a href=%MML%jgraph_6.html#K9>k9_jgraph_6</a>,closed_outside_of_circle,_). constr_name(<a href=%MML%bhsp_6.html#K1>k1_bhsp_6</a>,setsum,_). constr_name(<a href=%MML%bhsp_6.html#V1>v1_bhsp_6</a>,summable_set,_). constr_name(<a href=%MML%bhsp_6.html#K2>k2_bhsp_6</a>,sum__6,_). constr_name(<a href=%MML%bhsp_6.html#V2>v2_bhsp_6</a>,'Bounded__2',_). constr_name(<a href=%MML%bhsp_6.html#V3>v3_bhsp_6</a>,weakly_summable_set,_). constr_name(<a href=%MML%bhsp_6.html#R1>r1_bhsp_6</a>,is_summable_set_by,_). constr_name(<a href=%MML%bhsp_6.html#K3>k3_bhsp_6</a>,sum_byfunc,_). constr_name(<a href=%MML%fscirc_2.html#K1>k1_fscirc_2</a>,'-BitSubtracterStr',_). constr_name(<a href=%MML%fscirc_2.html#K2>k2_fscirc_2</a>,'-BitSubtracterCirc',_). constr_name(<a href=%MML%fscirc_2.html#K3>k3_fscirc_2</a>,'-BitBorrowOutput',_). constr_name(<a href=%MML%fscirc_2.html#K4>k4_fscirc_2</a>,'-BitSubtracterOutput',_). constr_name(<a href=%MML%graphsp.html#K1>k1_graphsp</a>,':=__12',_). constr_name(<a href=%MML%graphsp.html#K2>k2_graphsp</a>,':=__13',_). constr_name(<a href=%MML%graphsp.html#K3>k3_graphsp</a>,id__21,_). constr_name(<a href=%MML%graphsp.html#K4>k4_graphsp</a>,'*__142',_). constr_name(<a href=%MML%graphsp.html#K5>k5_graphsp</a>,'*__143',_). constr_name(<a href=%MML%graphsp.html#K6>k6_graphsp</a>,'.__146',_). constr_name(<a href=%MML%graphsp.html#K7>k7_graphsp</a>,repeat,_). constr_name(<a href=%MML%graphsp.html#K8>k8_graphsp</a>,'.__147',_). constr_name(<a href=%MML%graphsp.html#K9>k9_graphsp</a>,'OuterVx',_). constr_name(<a href=%MML%graphsp.html#K10>k10_graphsp</a>,'LifeSpan',_). constr_name(<a href=%MML%graphsp.html#K11>k11_graphsp</a>,while_do,_). constr_name(<a href=%MML%graphsp.html#K12>k12_graphsp</a>,'Edge',_). constr_name(<a href=%MML%graphsp.html#K13>k13_graphsp</a>,'Weight',_). constr_name(<a href=%MML%graphsp.html#K14>k14_graphsp</a>,'Weight__2',_). constr_name(<a href=%MML%graphsp.html#K15>k15_graphsp</a>,'UnusedVx',_). constr_name(<a href=%MML%graphsp.html#K16>k16_graphsp</a>,'UsedVx',_). constr_name(<a href=%MML%graphsp.html#K17>k17_graphsp</a>,'Argmin',_). constr_name(<a href=%MML%graphsp.html#K18>k18_graphsp</a>,findmin,_). constr_name(<a href=%MML%graphsp.html#K19>k19_graphsp</a>,newpathcost,_). constr_name(<a href=%MML%graphsp.html#R1>r1_graphsp</a>,hasBetterPathAt,_). constr_name(<a href=%MML%graphsp.html#K20>k20_graphsp</a>,'Relax',_). constr_name(<a href=%MML%graphsp.html#K21>k21_graphsp</a>,'Relax__2',_). constr_name(<a href=%MML%graphsp.html#R2>r2_graphsp</a>,equal_at,_). constr_name(<a href=%MML%graphsp.html#R3>r3_graphsp</a>,is_vertex_seq_at,_). constr_name(<a href=%MML%graphsp.html#R4>r4_graphsp</a>,is_simple_vertex_seq_at,_). constr_name(<a href=%MML%graphsp.html#R5>r5_graphsp</a>,is_oriented_edge_seq_of,_). constr_name(<a href=%MML%graphsp.html#R6>r6_graphsp</a>,is_Input_of_Dijkstra_Alg,_). constr_name(<a href=%MML%graphsp.html#K22>k22_graphsp</a>,'DijkstraAlgorithm',_). constr_name(<a href=%MML%rsspace.html#K1>k1_rsspace</a>,the_set_of_RealSequences,_). constr_name(<a href=%MML%rsspace.html#K2>k2_rsspace</a>,seq_id,_). constr_name(<a href=%MML%rsspace.html#K3>k3_rsspace</a>,'R_id',_). constr_name(<a href=%MML%rsspace.html#K4>k4_rsspace</a>,l_add,_). constr_name(<a href=%MML%rsspace.html#K5>k5_rsspace</a>,l_mult,_). constr_name(<a href=%MML%rsspace.html#K6>k6_rsspace</a>,'Zeroseq',_). constr_name(<a href=%MML%rsspace.html#K7>k7_rsspace</a>,'Linear_Space_of_RealSequences',_). constr_name(<a href=%MML%rsspace.html#K8>k8_rsspace</a>,'Add_',_). constr_name(<a href=%MML%rsspace.html#K9>k9_rsspace</a>,'Mult_',_). constr_name(<a href=%MML%rsspace.html#K10>k10_rsspace</a>,'Zero_',_). constr_name(<a href=%MML%rsspace.html#K11>k11_rsspace</a>,the_set_of_l2RealSequences,_). constr_name(<a href=%MML%rsspace.html#K12>k12_rsspace</a>,l_scalar,_). constr_name(<a href=%MML%rsspace.html#K13>k13_rsspace</a>,l2_Space,_). constr_name(<a href=%MML%convex2.html#K1>k1_convex2</a>,'LinComb__2',_). constr_name(<a href=%MML%complex2.html#K1>k1_complex2</a>,'F_tize',_). constr_name(<a href=%MML%complex2.html#K2>k2_complex2</a>,'.|.__4',_). constr_name(<a href=%MML%complex2.html#K3>k3_complex2</a>,'Rotate__3',_). constr_name(<a href=%MML%complex2.html#K4>k4_complex2</a>,angle,_). constr_name(<a href=%MML%complex2.html#K5>k5_complex2</a>,angle__2,_). constr_name(<a href=%MML%euclid_3.html#K1>k1_euclid_3</a>,cpx2euc,_). constr_name(<a href=%MML%euclid_3.html#K2>k2_euclid_3</a>,euc2cpx,_). constr_name(<a href=%MML%euclid_3.html#K3>k3_euclid_3</a>,'Arg__2',_). constr_name(<a href=%MML%euclid_3.html#K4>k4_euclid_3</a>,angle__3,_). constr_name(<a href=%MML%euclid_3.html#K5>k5_euclid_3</a>,'Triangle',_). constr_name(<a href=%MML%euclid_3.html#K6>k6_euclid_3</a>,closed_inside_of_triangle,_). constr_name(<a href=%MML%euclid_3.html#K7>k7_euclid_3</a>,inside_of_triangle,_). constr_name(<a href=%MML%euclid_3.html#K8>k8_euclid_3</a>,outside_of_triangle,_). constr_name(<a href=%MML%euclid_3.html#K9>k9_euclid_3</a>,plane,_). constr_name(<a href=%MML%euclid_3.html#R1>r1_euclid_3</a>,are_lindependent2,_). constr_name(<a href=%MML%euclid_3.html#K10>k10_euclid_3</a>,tricord1,_). constr_name(<a href=%MML%euclid_3.html#K11>k11_euclid_3</a>,tricord2,_). constr_name(<a href=%MML%euclid_3.html#K12>k12_euclid_3</a>,tricord3,_). constr_name(<a href=%MML%euclid_3.html#K13>k13_euclid_3</a>,trcmap1,_). constr_name(<a href=%MML%euclid_3.html#K14>k14_euclid_3</a>,trcmap2,_). constr_name(<a href=%MML%euclid_3.html#K15>k15_euclid_3</a>,trcmap3,_). constr_name(<a href=%MML%neckla_2.html#V1>v1_neckla_2</a>,'N-free',_). constr_name(<a href=%MML%neckla_2.html#K1>k1_neckla_2</a>,union_of,_). constr_name(<a href=%MML%neckla_2.html#K2>k2_neckla_2</a>,sum_of,_). constr_name(<a href=%MML%neckla_2.html#K3>k3_neckla_2</a>,fin_RelStr,_). constr_name(<a href=%MML%neckla_2.html#K4>k4_neckla_2</a>,fin_RelStr_sp,_). constr_name(<a href=%MML%groeb_1.html#K1>k1_groeb_1</a>,'{..}__51',_). constr_name(<a href=%MML%groeb_1.html#K2>k2_groeb_1</a>,'HT__2',_). constr_name(<a href=%MML%groeb_1.html#K3>k3_groeb_1</a>,multiples,_). constr_name(<a href=%MML%groeb_1.html#R1>r1_groeb_1</a>,is_Groebner_basis_wrt,_). constr_name(<a href=%MML%groeb_1.html#R2>r2_groeb_1</a>,is_Groebner_basis_of,_). constr_name(<a href=%MML%groeb_1.html#K4>k4_groeb_1</a>,'DivOrder',_). constr_name(<a href=%MML%groeb_1.html#R3>r3_groeb_1</a>,is_monic_wrt,_). constr_name(<a href=%MML%groeb_1.html#R4>r4_groeb_1</a>,is_reduced_wrt,_). constr_name(<a href=%MML%groeb_2.html#K1>k1_groeb_2</a>,'/__27',_). constr_name(<a href=%MML%groeb_2.html#K2>k2_groeb_2</a>,lcm__3,_). constr_name(<a href=%MML%groeb_2.html#R1>r1_groeb_2</a>,are_disjoint,_). constr_name(<a href=%MML%groeb_2.html#K3>k3_groeb_2</a>,'S-Poly',_). constr_name(<a href=%MML%groeb_2.html#K4>k4_groeb_2</a>,'S-Poly__2',_). constr_name(<a href=%MML%groeb_2.html#K5>k5_groeb_2</a>,'^__23',_). constr_name(<a href=%MML%groeb_2.html#R2>r2_groeb_2</a>,is_MonomialRepresentation_of,_). constr_name(<a href=%MML%groeb_2.html#R3>r3_groeb_2</a>,is_Standard_Representation_of,_). constr_name(<a href=%MML%groeb_2.html#R4>r4_groeb_2</a>,is_Standard_Representation_of__2,_). constr_name(<a href=%MML%groeb_2.html#R5>r5_groeb_2</a>,has_a_Standard_Representation_of,_). constr_name(<a href=%MML%groeb_2.html#R6>r6_groeb_2</a>,has_a_Standard_Representation_of__2,_). constr_name(<a href=%MML%borsuk_5.html#R1>r1_borsuk_5</a>,are_mutually_different__4,_). constr_name(<a href=%MML%borsuk_5.html#R2>r2_borsuk_5</a>,are_mutually_different__5,_). constr_name(<a href=%MML%borsuk_5.html#K1>k1_borsuk_5</a>,'IRRAT',_). constr_name(<a href=%MML%borsuk_5.html#K2>k2_borsuk_5</a>,'RAT__2',_). constr_name(<a href=%MML%borsuk_5.html#K3>k3_borsuk_5</a>,'IRRAT__2',_). constr_name(<a href=%MML%borsuk_5.html#V1>v1_borsuk_5</a>,with_proper_subsets,_). constr_name(<a href=%MML%kurato_1.html#K1>k1_kurato_1</a>,'Kurat14Part',_). constr_name(<a href=%MML%kurato_1.html#K2>k2_kurato_1</a>,'Kurat14Set',_). constr_name(<a href=%MML%kurato_1.html#K3>k3_kurato_1</a>,'Kurat14ClPart',_). constr_name(<a href=%MML%kurato_1.html#K4>k4_kurato_1</a>,'Kurat14OpPart',_). constr_name(<a href=%MML%kurato_1.html#K5>k5_kurato_1</a>,'Kurat7Set',_). constr_name(<a href=%MML%kurato_1.html#K6>k6_kurato_1</a>,'KurExSet',_). constr_name(<a href=%MML%kurato_1.html#V1>v1_kurato_1</a>,'Cl-closed',_). constr_name(<a href=%MML%kurato_1.html#V2>v2_kurato_1</a>,'Int-closed',_). constr_name(<a href=%MML%convex3.html#K1>k1_convex3</a>,'ConvexComb',_). constr_name(<a href=%MML%convex3.html#K2>k2_convex3</a>,'ConvexComb__2',_). constr_name(<a href=%MML%convex3.html#V1>v1_convex3</a>,cone,_). constr_name(<a href=%MML%robbins2.html#V1>v1_robbins2</a>,satisfying_DN_1,_). constr_name(<a href=%MML%robbins2.html#V2>v2_robbins2</a>,satisfying_MD_1,_). constr_name(<a href=%MML%robbins2.html#V3>v3_robbins2</a>,satisfying_MD_2,_). constr_name(<a href=%MML%convfun1.html#K1>k1_convfun1</a>,'Add_in_Prod_of_RLS',_). constr_name(<a href=%MML%convfun1.html#K2>k2_convfun1</a>,'Mult_in_Prod_of_RLS',_). constr_name(<a href=%MML%convfun1.html#K3>k3_convfun1</a>,'Prod_of_RLS',_). constr_name(<a href=%MML%convfun1.html#K4>k4_convfun1</a>,'RLS_Real',_). constr_name(<a href=%MML%convfun1.html#K5>k5_convfun1</a>,'Sum__23',_). constr_name(<a href=%MML%convfun1.html#K6>k6_convfun1</a>,epigraph,_). constr_name(<a href=%MML%convfun1.html#V1>v1_convfun1</a>,convex__5,_). constr_name(<a href=%MML%abcmiz_0.html#V1>v1_abcmiz_0</a>,'Noetherian__2',_). constr_name(<a href=%MML%abcmiz_0.html#V2>v2_abcmiz_0</a>,'Mizar-widening-like',_). constr_name(<a href=%MML%abcmiz_0.html#L1>l1_abcmiz_0</a>,'AdjectiveStr',_). constr_name(<a href=%MML%abcmiz_0.html#V3>v3_abcmiz_0</a>,strict__AdjectiveStr,_). constr_name(<a href=%MML%abcmiz_0.html#U1>u1_abcmiz_0</a>,adjectives,the_adjectives). constr_name(<a href=%MML%abcmiz_0.html#U2>u2_abcmiz_0</a>,'non-op',the_non_op). constr_name(<a href=%MML%abcmiz_0.html#G1>g1_abcmiz_0</a>,'AdjectiveStr_constr',_). constr_name(<a href=%MML%abcmiz_0.html#V4>v4_abcmiz_0</a>,void__5,_). constr_name(<a href=%MML%abcmiz_0.html#K1>k1_abcmiz_0</a>,'non-',_). constr_name(<a href=%MML%abcmiz_0.html#V5>v5_abcmiz_0</a>,involutive,_). constr_name(<a href=%MML%abcmiz_0.html#V6>v6_abcmiz_0</a>,without_fixpoints,_). constr_name(<a href=%MML%abcmiz_0.html#L2>l2_abcmiz_0</a>,'TA-structure',_). constr_name(<a href=%MML%abcmiz_0.html#V7>v7_abcmiz_0</a>,'strict__TA-structure',_). constr_name(<a href=%MML%abcmiz_0.html#U3>u3_abcmiz_0</a>,'adj-map',the_adj_map). constr_name(<a href=%MML%abcmiz_0.html#G2>g2_abcmiz_0</a>,'TA-structure_constr',_). constr_name(<a href=%MML%abcmiz_0.html#K2>k2_abcmiz_0</a>,adjs,_). constr_name(<a href=%MML%abcmiz_0.html#V8>v8_abcmiz_0</a>,consistent,_). constr_name(<a href=%MML%abcmiz_0.html#V9>v9_abcmiz_0</a>,'adj-structured',_). constr_name(<a href=%MML%abcmiz_0.html#K3>k3_abcmiz_0</a>,types,_). constr_name(<a href=%MML%abcmiz_0.html#K4>k4_abcmiz_0</a>,types__2,_). constr_name(<a href=%MML%abcmiz_0.html#V10>v10_abcmiz_0</a>,'adjs-typed',_). constr_name(<a href=%MML%abcmiz_0.html#R1>r1_abcmiz_0</a>,is_applicable_to,_). constr_name(<a href=%MML%abcmiz_0.html#R2>r2_abcmiz_0</a>,is_applicable_to__2,_). constr_name(<a href=%MML%abcmiz_0.html#K5>k5_abcmiz_0</a>,ast,_). constr_name(<a href=%MML%abcmiz_0.html#K6>k6_abcmiz_0</a>,ast__2,_). constr_name(<a href=%MML%abcmiz_0.html#K7>k7_abcmiz_0</a>,apply__2,_). constr_name(<a href=%MML%abcmiz_0.html#K8>k8_abcmiz_0</a>,ast__3,_). constr_name(<a href=%MML%abcmiz_0.html#R3>r3_abcmiz_0</a>,is_applicable_to__3,_). constr_name(<a href=%MML%abcmiz_0.html#K9>k9_abcmiz_0</a>,sub__2,_). constr_name(<a href=%MML%abcmiz_0.html#L3>l3_abcmiz_0</a>,'TAS-structure',_). constr_name(<a href=%MML%abcmiz_0.html#V11>v11_abcmiz_0</a>,'strict__TAS-structure',_). constr_name(<a href=%MML%abcmiz_0.html#U4>u4_abcmiz_0</a>,'sub-map',the_sub_map). constr_name(<a href=%MML%abcmiz_0.html#G3>g3_abcmiz_0</a>,'TAS-structure_constr',_). constr_name(<a href=%MML%abcmiz_0.html#K10>k10_abcmiz_0</a>,sub__3,_). constr_name(<a href=%MML%abcmiz_0.html#V12>v12_abcmiz_0</a>,'non-absorbing',_). constr_name(<a href=%MML%abcmiz_0.html#V13>v13_abcmiz_0</a>,subjected,_). constr_name(<a href=%MML%abcmiz_0.html#R4>r4_abcmiz_0</a>,is_properly_applicable_to,_). constr_name(<a href=%MML%abcmiz_0.html#R5>r5_abcmiz_0</a>,is_properly_applicable_to__2,_). constr_name(<a href=%MML%abcmiz_0.html#R6>r6_abcmiz_0</a>,is_properly_applicable_to__3,_). constr_name(<a href=%MML%abcmiz_0.html#V14>v14_abcmiz_0</a>,commutative__4,_). constr_name(<a href=%MML%abcmiz_0.html#K11>k11_abcmiz_0</a>,'@-->',_). constr_name(<a href=%MML%abcmiz_0.html#K12>k12_abcmiz_0</a>,radix,_). constr_name(<a href=%MML%euclid_4.html#K1>k1_euclid_4</a>,'Line__8',_). constr_name(<a href=%MML%euclid_4.html#K2>k2_euclid_4</a>,'Line__9',_). constr_name(<a href=%MML%euclid_4.html#V1>v1_euclid_4</a>,being_line__3,_). constr_name(<a href=%MML%euclid_4.html#K3>k3_euclid_4</a>,'Rn2Fin',_). constr_name(<a href=%MML%euclid_4.html#K4>k4_euclid_4</a>,'|....|__16',_). constr_name(<a href=%MML%euclid_4.html#K5>k5_euclid_4</a>,'|(..)|__3',_). constr_name(<a href=%MML%euclid_4.html#R1>r1_euclid_4</a>,are_orthogonal__3,_). constr_name(<a href=%MML%euclid_4.html#K6>k6_euclid_4</a>,'Line__10',_). constr_name(<a href=%MML%euclid_4.html#K7>k7_euclid_4</a>,'Line__11',_). constr_name(<a href=%MML%euclid_4.html#V2>v2_euclid_4</a>,being_line__4,_). constr_name(<a href=%MML%euclid_4.html#K8>k8_euclid_4</a>,'TPn2Rn',_). constr_name(<a href=%MML%euclid_4.html#K9>k9_euclid_4</a>,'|....|__17',_). constr_name(<a href=%MML%euclid_4.html#K10>k10_euclid_4</a>,'|(..)|__4',_). constr_name(<a href=%MML%euclid_4.html#R2>r2_euclid_4</a>,are_orthogonal__4,_). constr_name(<a href=%MML%rsspace3.html#K1>k1_rsspace3</a>,the_set_of_l1RealSequences,_). constr_name(<a href=%MML%rsspace3.html#K2>k2_rsspace3</a>,l_norm,_). constr_name(<a href=%MML%rsspace3.html#K3>k3_rsspace3</a>,l1_Space,_). constr_name(<a href=%MML%rsspace3.html#K4>k4_rsspace3</a>,dist__12,_). constr_name(<a href=%MML%rsspace3.html#V1>v1_rsspace3</a>,'CCauchy',_). constr_name(<a href=%MML%euclid_5.html#K1>k1_euclid_5</a>,'`1__25',_). constr_name(<a href=%MML%euclid_5.html#K2>k2_euclid_5</a>,'`2__31',_). constr_name(<a href=%MML%euclid_5.html#K3>k3_euclid_5</a>,'`3__8',_). constr_name(<a href=%MML%euclid_5.html#K4>k4_euclid_5</a>,'|[..]|__3',_). constr_name(<a href=%MML%euclid_5.html#K5>k5_euclid_5</a>,'<X>',_). constr_name(<a href=%MML%euclid_5.html#K6>k6_euclid_5</a>,'|{..}|',_). constr_name(<a href=%MML%matrix_4.html#K1>k1_matrix_4</a>,'-__97',_). constr_name(<a href=%MML%lfuzzy_0.html#V1>v1_lfuzzy_0</a>,real__2,_). constr_name(<a href=%MML%lfuzzy_0.html#V2>v2_lfuzzy_0</a>,interval__3,_). constr_name(<a href=%MML%lfuzzy_0.html#K1>k1_lfuzzy_0</a>,'RealPoset',_). constr_name(<a href=%MML%lfuzzy_0.html#K2>k2_lfuzzy_0</a>,max__11,_). constr_name(<a href=%MML%lfuzzy_0.html#K3>k3_lfuzzy_0</a>,min__9,_). constr_name(<a href=%MML%lfuzzy_0.html#K4>k4_lfuzzy_0</a>,'FuzzyLattice',_). constr_name(<a href=%MML%lfuzzy_0.html#K5>k5_lfuzzy_0</a>,'@__45',_). constr_name(<a href=%MML%lfuzzy_0.html#K6>k6_lfuzzy_0</a>,'@__46',_). constr_name(<a href=%MML%lfuzzy_0.html#K7>k7_lfuzzy_0</a>,'.__148',_). constr_name(<a href=%MML%lfuzzy_0.html#K8>k8_lfuzzy_0</a>,'.__149',_). constr_name(<a href=%MML%kurato_2.html#K1>k1_kurato_2</a>,'Union__4',_). constr_name(<a href=%MML%kurato_2.html#K2>k2_kurato_2</a>,meet__12,_). constr_name(<a href=%MML%kurato_2.html#K3>k3_kurato_2</a>,'^\\__4',_). constr_name(<a href=%MML%kurato_2.html#K4>k4_kurato_2</a>,lim_inf__4,_). constr_name(<a href=%MML%kurato_2.html#K5>k5_kurato_2</a>,lim_sup__2,_). constr_name(<a href=%MML%kurato_2.html#V1>v1_kurato_2</a>,descending__2,_). constr_name(<a href=%MML%kurato_2.html#V2>v2_kurato_2</a>,ascending__3,_). constr_name(<a href=%MML%kurato_2.html#V3>v3_kurato_2</a>,convergent__9,_). constr_name(<a href=%MML%kurato_2.html#V4>v4_kurato_2</a>,constant__6,_). constr_name(<a href=%MML%kurato_2.html#K6>k6_kurato_2</a>,'Lim_K',_). constr_name(<a href=%MML%kurato_2.html#K7>k7_kurato_2</a>,'.__150',_). constr_name(<a href=%MML%kurato_2.html#M1>m1_kurato_2</a>,subsequence__4,_). constr_name(<a href=%MML%kurato_2.html#K8>k8_kurato_2</a>,'Lim_inf',_). constr_name(<a href=%MML%kurato_2.html#K9>k9_kurato_2</a>,'Lim_sup',_). constr_name(<a href=%MML%jordan_a.html#K1>k1_jordan_a</a>,'Eucl_dist',_). constr_name(<a href=%MML%jordan_a.html#M1>m1_jordan_a</a>,'Segmentation',_). constr_name(<a href=%MML%jordan_a.html#K2>k2_jordan_a</a>,'Segm__2',_). constr_name(<a href=%MML%jordan_a.html#K3>k3_jordan_a</a>,diameter__2,_). constr_name(<a href=%MML%jordan_a.html#K4>k4_jordan_a</a>,diameter__3,_). constr_name(<a href=%MML%jordan_a.html#K5>k5_jordan_a</a>,'S-Gap',_). constr_name(<a href=%MML%binari_5.html#K1>k1_binari_5</a>,''nand'',_). constr_name(<a href=%MML%binari_5.html#K2>k2_binari_5</a>,''nand'__2',_). constr_name(<a href=%MML%binari_5.html#K3>k3_binari_5</a>,''nor'',_). constr_name(<a href=%MML%binari_5.html#K4>k4_binari_5</a>,''nor'__2',_). constr_name(<a href=%MML%binari_5.html#K5>k5_binari_5</a>,''xnor'',_). constr_name(<a href=%MML%binari_5.html#K6>k6_binari_5</a>,''xnor'__2',_). constr_name(<a href=%MML%scmpds_9.html#K1>k1_scmpds_9</a>,'-->__28',_). constr_name(<a href=%MML%scmpds_9.html#K2>k2_scmpds_9</a>,locnum__3,_). constr_name(<a href=%MML%scmpds_9.html#K3>k3_scmpds_9</a>,locnum__4,_). constr_name(<a href=%MML%jordan19.html#K1>k1_jordan19</a>,'Upper_Appr',_). constr_name(<a href=%MML%jordan19.html#K2>k2_jordan19</a>,'Lower_Appr',_). constr_name(<a href=%MML%jordan19.html#K3>k3_jordan19</a>,'North_Arc',_). constr_name(<a href=%MML%jordan19.html#K4>k4_jordan19</a>,'South_Arc',_). constr_name(<a href=%MML%rfinseq2.html#K1>k1_rfinseq2</a>,max_p,_). constr_name(<a href=%MML%rfinseq2.html#K2>k2_rfinseq2</a>,min_p,_). constr_name(<a href=%MML%rfinseq2.html#K3>k3_rfinseq2</a>,max__12,_). constr_name(<a href=%MML%rfinseq2.html#K4>k4_rfinseq2</a>,min__10,_). constr_name(<a href=%MML%rfinseq2.html#K5>k5_rfinseq2</a>,sort_d,_). constr_name(<a href=%MML%rfinseq2.html#K6>k6_rfinseq2</a>,sort_a,_). constr_name(<a href=%MML%radix_5.html#K1>k1_radix_5</a>,'SDMinDigit',_). constr_name(<a href=%MML%radix_5.html#K2>k2_radix_5</a>,'SDMin',_). constr_name(<a href=%MML%radix_5.html#K3>k3_radix_5</a>,'SDMaxDigit',_). constr_name(<a href=%MML%radix_5.html#K4>k4_radix_5</a>,'SDMax',_). constr_name(<a href=%MML%radix_5.html#K5>k5_radix_5</a>,'FminDigit',_). constr_name(<a href=%MML%radix_5.html#K6>k6_radix_5</a>,'Fmin',_). constr_name(<a href=%MML%radix_5.html#K7>k7_radix_5</a>,'FmaxDigit',_). constr_name(<a href=%MML%radix_5.html#K8>k8_radix_5</a>,'Fmax',_). constr_name(<a href=%MML%radix_6.html#K1>k1_radix_6</a>,'M0Digit',_). constr_name(<a href=%MML%radix_6.html#K2>k2_radix_6</a>,'M0',_). constr_name(<a href=%MML%radix_6.html#K3>k3_radix_6</a>,'MmaxDigit',_). constr_name(<a href=%MML%radix_6.html#K4>k4_radix_6</a>,'Mmax',_). constr_name(<a href=%MML%radix_6.html#K5>k5_radix_6</a>,'MminDigit',_). constr_name(<a href=%MML%radix_6.html#K6>k6_radix_6</a>,'Mmin',_). constr_name(<a href=%MML%radix_6.html#R1>r1_radix_6</a>,needs_digits_of,_). constr_name(<a href=%MML%radix_6.html#K7>k7_radix_6</a>,'MmaskDigit',_). constr_name(<a href=%MML%radix_6.html#K8>k8_radix_6</a>,'Mmask',_). constr_name(<a href=%MML%radix_6.html#K9>k9_radix_6</a>,'FSDMinDigit',_). constr_name(<a href=%MML%radix_6.html#K10>k10_radix_6</a>,'FSDMin',_). constr_name(<a href=%MML%radix_6.html#R2>r2_radix_6</a>,is_Zero_over,_). constr_name(<a href=%MML%lfuzzy_1.html#R1>r1_lfuzzy_1</a>,is_less_than__5,_). constr_name(<a href=%MML%lfuzzy_1.html#K1>k1_lfuzzy_1</a>,min__11,_). constr_name(<a href=%MML%lfuzzy_1.html#K2>k2_lfuzzy_1</a>,max__13,_). constr_name(<a href=%MML%lfuzzy_1.html#V1>v1_lfuzzy_1</a>,reflexive__8,_). constr_name(<a href=%MML%lfuzzy_1.html#V2>v2_lfuzzy_1</a>,symmetric__8,_). constr_name(<a href=%MML%lfuzzy_1.html#V3>v3_lfuzzy_1</a>,transitive__5,_). constr_name(<a href=%MML%lfuzzy_1.html#V4>v4_lfuzzy_1</a>,antisymmetric__3,_). constr_name(<a href=%MML%lfuzzy_1.html#K3>k3_lfuzzy_1</a>,chi__7,_). constr_name(<a href=%MML%lfuzzy_1.html#K4>k4_lfuzzy_1</a>,iter__4,_). constr_name(<a href=%MML%lfuzzy_1.html#K5>k5_lfuzzy_1</a>,'TrCl',_). constr_name(<a href=%MML%roughs_1.html#V1>v1_roughs_1</a>,diagonal,_). constr_name(<a href=%MML%roughs_1.html#K1>k1_roughs_1</a>,'.__151',_). constr_name(<a href=%MML%roughs_1.html#K2>k2_roughs_1</a>,'Union__5',_). constr_name(<a href=%MML%roughs_1.html#V2>v2_roughs_1</a>,with_equivalence,_). constr_name(<a href=%MML%roughs_1.html#V3>v3_roughs_1</a>,with_tolerance,_). constr_name(<a href=%MML%roughs_1.html#K3>k3_roughs_1</a>,'LAp',_). constr_name(<a href=%MML%roughs_1.html#K4>k4_roughs_1</a>,'UAp',_). constr_name(<a href=%MML%roughs_1.html#K5>k5_roughs_1</a>,'BndAp',_). constr_name(<a href=%MML%roughs_1.html#V4>v4_roughs_1</a>,rough,_). constr_name(<a href=%MML%roughs_1.html#M1>m1_roughs_1</a>,'RoughSet',_). constr_name(<a href=%MML%roughs_1.html#K6>k6_roughs_1</a>,'MemberFunc',_). constr_name(<a href=%MML%roughs_1.html#K7>k7_roughs_1</a>,'FinSeqM',_). constr_name(<a href=%MML%roughs_1.html#R1>r1_roughs_1</a>,'_c=',_). constr_name(<a href=%MML%roughs_1.html#R2>r2_roughs_1</a>,'c=^',_). constr_name(<a href=%MML%roughs_1.html#R3>r3_roughs_1</a>,'_c=^',_). constr_name(<a href=%MML%roughs_1.html#R4>r4_roughs_1</a>,'_=',_). constr_name(<a href=%MML%roughs_1.html#R5>r5_roughs_1</a>,'=^',_). constr_name(<a href=%MML%roughs_1.html#R6>r6_roughs_1</a>,'_=^',_). constr_name(<a href=%MML%prgcor_1.html#K1>k1_prgcor_1</a>,idiv1_prg,_). constr_name(<a href=%MML%prgcor_1.html#K2>k2_prgcor_1</a>,idiv_prg,_). constr_name(<a href=%MML%amistd_3.html#K1>k1_amistd_3</a>,'TrivialInfiniteTree',_). constr_name(<a href=%MML%amistd_3.html#K2>k2_amistd_3</a>,'FirstLoc',_). constr_name(<a href=%MML%amistd_3.html#K3>k3_amistd_3</a>,'LocNums',_). constr_name(<a href=%MML%amistd_3.html#K4>k4_amistd_3</a>,'LocSeq',_). constr_name(<a href=%MML%amistd_3.html#K5>k5_amistd_3</a>,'ExecTree',_). constr_name(<a href=%MML%lopban_1.html#K1>k1_lopban_1</a>,'[;]__7',_). constr_name(<a href=%MML%lopban_1.html#K2>k2_lopban_1</a>,'FuncAdd',_). constr_name(<a href=%MML%lopban_1.html#K3>k3_lopban_1</a>,'FuncExtMult',_). constr_name(<a href=%MML%lopban_1.html#K4>k4_lopban_1</a>,'FuncZero',_). constr_name(<a href=%MML%lopban_1.html#K5>k5_lopban_1</a>,'RealVectSpace__2',_). constr_name(<a href=%MML%lopban_1.html#K6>k6_lopban_1</a>,'.__152',_). constr_name(<a href=%MML%lopban_1.html#V1>v1_lopban_1</a>,additive__9,_). constr_name(<a href=%MML%lopban_1.html#V2>v2_lopban_1</a>,homogeneous__10,_). constr_name(<a href=%MML%lopban_1.html#K7>k7_lopban_1</a>,'LinearOperators',_). constr_name(<a href=%MML%lopban_1.html#K8>k8_lopban_1</a>,'R_VectorSpace_of_LinearOperators',_). constr_name(<a href=%MML%lopban_1.html#K9>k9_lopban_1</a>,'.__153',_). constr_name(<a href=%MML%lopban_1.html#V3>v3_lopban_1</a>,bounded__13,_). constr_name(<a href=%MML%lopban_1.html#K10>k10_lopban_1</a>,'BoundedLinearOperators',_). constr_name(<a href=%MML%lopban_1.html#K11>k11_lopban_1</a>,'R_VectorSpace_of_BoundedLinearOperators',_). constr_name(<a href=%MML%lopban_1.html#K12>k12_lopban_1</a>,'.__154',_). constr_name(<a href=%MML%lopban_1.html#K13>k13_lopban_1</a>,modetrans,_). constr_name(<a href=%MML%lopban_1.html#K14>k14_lopban_1</a>,'PreNorms',_). constr_name(<a href=%MML%lopban_1.html#K15>k15_lopban_1</a>,'BoundedLinearOperatorsNorm',_). constr_name(<a href=%MML%lopban_1.html#K16>k16_lopban_1</a>,'R_NormSpace_of_BoundedLinearOperators',_). constr_name(<a href=%MML%lopban_1.html#K17>k17_lopban_1</a>,'.__155',_). constr_name(<a href=%MML%lopban_1.html#V4>v4_lopban_1</a>,complete__6,_). constr_name(<a href=%MML%uproots.html#K1>k1_uproots</a>,canFS,_). constr_name(<a href=%MML%uproots.html#K2>k2_uproots</a>,'-bag',_). constr_name(<a href=%MML%uproots.html#K3>k3_uproots</a>,'Sum__24',_). constr_name(<a href=%MML%uproots.html#K4>k4_uproots</a>,degree__2,_). constr_name(<a href=%MML%uproots.html#V1>v1_uproots</a>,'non-zero__6',_). constr_name(<a href=%MML%uproots.html#K5>k5_uproots</a>,poly_shift,_). constr_name(<a href=%MML%uproots.html#K6>k6_uproots</a>,poly_quotient,_). constr_name(<a href=%MML%uproots.html#K7>k7_uproots</a>,multiplicity,_). constr_name(<a href=%MML%uproots.html#K8>k8_uproots</a>,'BRoots',_). constr_name(<a href=%MML%uproots.html#K9>k9_uproots</a>,fpoly_mult_root,_). constr_name(<a href=%MML%uproots.html#K10>k10_uproots</a>,poly_with_roots,_). constr_name(<a href=%MML%uniroots.html#K1>k1_uniroots</a>,'MultGroup',_). constr_name(<a href=%MML%uniroots.html#K2>k2_uniroots</a>,'-roots_of_1',_). constr_name(<a href=%MML%uniroots.html#K3>k3_uniroots</a>,'-th_roots_of_1',_). constr_name(<a href=%MML%uniroots.html#K4>k4_uniroots</a>,unital_poly,_). constr_name(<a href=%MML%uniroots.html#K5>k5_uniroots</a>,'|^__19',_). constr_name(<a href=%MML%uniroots.html#K6>k6_uniroots</a>,cyclotomic_poly,_). constr_name(<a href=%MML%weddwitt.html#K1>k1_weddwitt</a>,'Centralizer',_). constr_name(<a href=%MML%weddwitt.html#K2>k2_weddwitt</a>,'-con_map',_). constr_name(<a href=%MML%weddwitt.html#K3>k3_weddwitt</a>,conjugate_Classes,_). constr_name(<a href=%MML%weddwitt.html#K4>k4_weddwitt</a>,center__2,_). constr_name(<a href=%MML%weddwitt.html#K5>k5_weddwitt</a>,centralizer,_). constr_name(<a href=%MML%weddwitt.html#K6>k6_weddwitt</a>,'VectSp_over_center',_). constr_name(<a href=%MML%weddwitt.html#K7>k7_weddwitt</a>,'VectSp_over_center__2',_). constr_name(<a href=%MML%rsspace4.html#K1>k1_rsspace4</a>,the_set_of_BoundedRealSequences,_). constr_name(<a href=%MML%rsspace4.html#K2>k2_rsspace4</a>,linfty_norm,_). constr_name(<a href=%MML%rsspace4.html#K3>k3_rsspace4</a>,linfty_Space,_). constr_name(<a href=%MML%rsspace4.html#V1>v1_rsspace4</a>,bounded__14,_). constr_name(<a href=%MML%rsspace4.html#K4>k4_rsspace4</a>,'BoundedFunctions',_). constr_name(<a href=%MML%rsspace4.html#K5>k5_rsspace4</a>,'R_VectorSpace_of_BoundedFunctions',_). constr_name(<a href=%MML%rsspace4.html#K6>k6_rsspace4</a>,modetrans__2,_). constr_name(<a href=%MML%rsspace4.html#K7>k7_rsspace4</a>,'PreNorms__2',_). constr_name(<a href=%MML%rsspace4.html#K8>k8_rsspace4</a>,'BoundedFunctionsNorm',_). constr_name(<a href=%MML%rsspace4.html#K9>k9_rsspace4</a>,'R_NormSpace_of_BoundedFunctions',_). constr_name(<a href=%MML%polyeq_3.html#K1>k1_polyeq_3</a>,'*__144',_). constr_name(<a href=%MML%polyeq_3.html#K2>k2_polyeq_3</a>,'+__95',_). constr_name(<a href=%MML%polyeq_3.html#K3>k3_polyeq_3</a>,'^2__7',_). constr_name(<a href=%MML%polyeq_3.html#K4>k4_polyeq_3</a>,'Poly2__3',_). constr_name(<a href=%MML%polyeq_3.html#K5>k5_polyeq_3</a>,'^3',_). constr_name(<a href=%MML%polyeq_3.html#K6>k6_polyeq_3</a>,'Poly_3',_). constr_name(<a href=%MML%polyeq_3.html#K7>k7_polyeq_3</a>,'CPoly2',_). constr_name(<a href=%MML%polyeq_3.html#K8>k8_polyeq_3</a>,'CPoly3',_). constr_name(<a href=%MML%polyeq_3.html#M1>m1_polyeq_3</a>,'CRoot__2',_). constr_name(<a href=%MML%clvect_1.html#L1>l1_clvect_1</a>,'CLSStruct',_). constr_name(<a href=%MML%clvect_1.html#V1>v1_clvect_1</a>,strict__CLSStruct,_). constr_name(<a href=%MML%clvect_1.html#U1>u1_clvect_1</a>,'Mult__2',the_Mult__2). constr_name(<a href=%MML%clvect_1.html#G1>g1_clvect_1</a>,'CLSStruct_constr',_). constr_name(<a href=%MML%clvect_1.html#K1>k1_clvect_1</a>,'*__145',_). constr_name(<a href=%MML%clvect_1.html#V2>v2_clvect_1</a>,'ComplexLinearSpace-like',_). constr_name(<a href=%MML%clvect_1.html#V3>v3_clvect_1</a>,'lineary-closed__4',_). constr_name(<a href=%MML%clvect_1.html#M1>m1_clvect_1</a>,'Subspace__4',_). constr_name(<a href=%MML%clvect_1.html#K2>k2_clvect_1</a>,'(0).__5',_). constr_name(<a href=%MML%clvect_1.html#K3>k3_clvect_1</a>,'(Omega).__6',_). constr_name(<a href=%MML%clvect_1.html#K4>k4_clvect_1</a>,'+__96',_). constr_name(<a href=%MML%clvect_1.html#M2>m2_clvect_1</a>,'Coset__5',_). constr_name(<a href=%MML%clvect_1.html#L2>l2_clvect_1</a>,'CNORMSTR',_). constr_name(<a href=%MML%clvect_1.html#V4>v4_clvect_1</a>,strict__CNORMSTR,_). constr_name(<a href=%MML%clvect_1.html#U2>u2_clvect_1</a>,norm__2,the_norm__2). constr_name(<a href=%MML%clvect_1.html#G2>g2_clvect_1</a>,'CNORMSTR_constr',_). constr_name(<a href=%MML%clvect_1.html#K5>k5_clvect_1</a>,'||....||__6',_). constr_name(<a href=%MML%clvect_1.html#V5>v5_clvect_1</a>,'ComplexNormSpace-like',_). constr_name(<a href=%MML%clvect_1.html#K6>k6_clvect_1</a>,'+__97',_). constr_name(<a href=%MML%clvect_1.html#K7>k7_clvect_1</a>,'-__98',_). constr_name(<a href=%MML%clvect_1.html#K8>k8_clvect_1</a>,'-__99',_). constr_name(<a href=%MML%clvect_1.html#K9>k9_clvect_1</a>,'*__146',_). constr_name(<a href=%MML%clvect_1.html#V6>v6_clvect_1</a>,convergent__10,_). constr_name(<a href=%MML%clvect_1.html#K10>k10_clvect_1</a>,'||....||__7',_). constr_name(<a href=%MML%clvect_1.html#K11>k11_clvect_1</a>,lim__14,_). constr_name(<a href=%MML%lopban_2.html#K1>k1_lopban_2</a>,'*__147',_). constr_name(<a href=%MML%lopban_2.html#K2>k2_lopban_2</a>,'*__148',_). constr_name(<a href=%MML%lopban_2.html#K3>k3_lopban_2</a>,'+__98',_). constr_name(<a href=%MML%lopban_2.html#K4>k4_lopban_2</a>,'*__149',_). constr_name(<a href=%MML%lopban_2.html#K5>k5_lopban_2</a>,'*__150',_). constr_name(<a href=%MML%lopban_2.html#K6>k6_lopban_2</a>,'FuncMult',_). constr_name(<a href=%MML%lopban_2.html#K7>k7_lopban_2</a>,'FuncUnit',_). constr_name(<a href=%MML%lopban_2.html#K8>k8_lopban_2</a>,'Ring_of_BoundedLinearOperators',_). constr_name(<a href=%MML%lopban_2.html#K9>k9_lopban_2</a>,'R_Algebra_of_BoundedLinearOperators',_). constr_name(<a href=%MML%lopban_2.html#L1>l1_lopban_2</a>,'Normed_AlgebraStr',_). constr_name(<a href=%MML%lopban_2.html#V1>v1_lopban_2</a>,strict__Normed_AlgebraStr,_). constr_name(<a href=%MML%lopban_2.html#G1>g1_lopban_2</a>,'Normed_AlgebraStr_constr',_). constr_name(<a href=%MML%lopban_2.html#K10>k10_lopban_2</a>,'R_Normed_Algebra_of_BoundedLinearOperators',_). constr_name(<a href=%MML%lopban_2.html#V2>v2_lopban_2</a>,'Banach_Algebra-like_1',_). constr_name(<a href=%MML%lopban_2.html#V3>v3_lopban_2</a>,'Banach_Algebra-like_2',_). constr_name(<a href=%MML%lopban_2.html#V4>v4_lopban_2</a>,'Banach_Algebra-like_3',_). constr_name(<a href=%MML%lopban_2.html#V5>v5_lopban_2</a>,'Banach_Algebra-like',_). constr_name(<a href=%MML%csspace.html#K1>k1_csspace</a>,the_set_of_ComplexSequences,_). constr_name(<a href=%MML%csspace.html#K2>k2_csspace</a>,seq_id__2,_). constr_name(<a href=%MML%csspace.html#K3>k3_csspace</a>,'C_id',_). constr_name(<a href=%MML%csspace.html#K4>k4_csspace</a>,l_add__2,_). constr_name(<a href=%MML%csspace.html#K5>k5_csspace</a>,l_mult__2,_). constr_name(<a href=%MML%csspace.html#K6>k6_csspace</a>,'CZeroseq',_). constr_name(<a href=%MML%csspace.html#K7>k7_csspace</a>,'Linear_Space_of_ComplexSequences',_). constr_name(<a href=%MML%csspace.html#K8>k8_csspace</a>,'Add___2',_). constr_name(<a href=%MML%csspace.html#K9>k9_csspace</a>,'Mult___2',_). constr_name(<a href=%MML%csspace.html#K10>k10_csspace</a>,'Zero___2',_). constr_name(<a href=%MML%csspace.html#K11>k11_csspace</a>,the_set_of_l2ComplexSequences,_). constr_name(<a href=%MML%csspace.html#L1>l1_csspace</a>,'CUNITSTR',_). constr_name(<a href=%MML%csspace.html#V1>v1_csspace</a>,strict__CUNITSTR,_). constr_name(<a href=%MML%csspace.html#U1>u1_csspace</a>,scalar__2,the_scalar__2). constr_name(<a href=%MML%csspace.html#G1>g1_csspace</a>,'CUNITSTR_constr',_). constr_name(<a href=%MML%csspace.html#K12>k12_csspace</a>,'.|.__5',_). constr_name(<a href=%MML%csspace.html#V2>v2_csspace</a>,'ComplexUnitarySpace-like',_). constr_name(<a href=%MML%csspace.html#R1>r1_csspace</a>,are_orthogonal__5,_). constr_name(<a href=%MML%csspace.html#K13>k13_csspace</a>,'||....||__8',_). constr_name(<a href=%MML%csspace.html#K14>k14_csspace</a>,dist__13,_). constr_name(<a href=%MML%csspace.html#K15>k15_csspace</a>,dist__14,_). constr_name(<a href=%MML%csspace.html#K16>k16_csspace</a>,'-__100',_). constr_name(<a href=%MML%csspace.html#K17>k17_csspace</a>,'+__99',_). constr_name(<a href=%MML%csspace.html#K18>k18_csspace</a>,'+__100',_). constr_name(<a href=%MML%csspace.html#K19>k19_csspace</a>,cl_scalar,_). constr_name(<a href=%MML%csspace.html#K20>k20_csspace</a>,'Complex_l2_Space',_). constr_name(<a href=%MML%jordan20.html#R1>r1_jordan20</a>,is_Lin,_). constr_name(<a href=%MML%jordan20.html#R2>r2_jordan20</a>,is_Rin,_). constr_name(<a href=%MML%jordan20.html#R3>r3_jordan20</a>,is_Lout,_). constr_name(<a href=%MML%jordan20.html#R4>r4_jordan20</a>,is_Rout,_). constr_name(<a href=%MML%jordan20.html#R5>r5_jordan20</a>,is_OSin,_). constr_name(<a href=%MML%jordan20.html#R6>r6_jordan20</a>,is_OSout,_). constr_name(<a href=%MML%fintopo3.html#K1>k1_fintopo3</a>,'^d',_). constr_name(<a href=%MML%fintopo3.html#K2>k2_fintopo3</a>,'Fcl',_). constr_name(<a href=%MML%fintopo3.html#K3>k3_fintopo3</a>,'Fcl__2',_). constr_name(<a href=%MML%fintopo3.html#K4>k4_fintopo3</a>,'Fint',_). constr_name(<a href=%MML%fintopo3.html#K5>k5_fintopo3</a>,'Fint__2',_). constr_name(<a href=%MML%fintopo3.html#K6>k6_fintopo3</a>,'Finf',_). constr_name(<a href=%MML%fintopo3.html#K7>k7_fintopo3</a>,'Finf__2',_). constr_name(<a href=%MML%fintopo3.html#K8>k8_fintopo3</a>,'Fdfl',_). constr_name(<a href=%MML%fintopo3.html#K9>k9_fintopo3</a>,'Fdfl__2',_). constr_name(<a href=%MML%fintopo3.html#K10>k10_fintopo3</a>,'U_FT__2',_). constr_name(<a href=%MML%fintopo3.html#R1>r1_fintopo3</a>,are_mutually_symmetric,_). constr_name(<a href=%MML%lopban_3.html#K1>k1_lopban_3</a>,'Partial_Sums__4',_). constr_name(<a href=%MML%lopban_3.html#V1>v1_lopban_3</a>,summable__5,_). constr_name(<a href=%MML%lopban_3.html#K2>k2_lopban_3</a>,'Sum__25',_). constr_name(<a href=%MML%lopban_3.html#V2>v2_lopban_3</a>,norm_summable,_). constr_name(<a href=%MML%lopban_3.html#V3>v3_lopban_3</a>,constant__7,_). constr_name(<a href=%MML%lopban_3.html#K3>k3_lopban_3</a>,'^\\__5',_). constr_name(<a href=%MML%lopban_3.html#K4>k4_lopban_3</a>,'*__151',_). constr_name(<a href=%MML%lopban_3.html#K5>k5_lopban_3</a>,'*__152',_). constr_name(<a href=%MML%lopban_3.html#V4>v4_lopban_3</a>,invertible__6,_). constr_name(<a href=%MML%lopban_3.html#K6>k6_lopban_3</a>,'*__153',_). constr_name(<a href=%MML%lopban_3.html#K7>k7_lopban_3</a>,'*__154',_). constr_name(<a href=%MML%lopban_3.html#K8>k8_lopban_3</a>,'*__155',_). constr_name(<a href=%MML%lopban_3.html#K9>k9_lopban_3</a>,'"__37',_). constr_name(<a href=%MML%lopban_3.html#K10>k10_lopban_3</a>,'GeoSeq__3',_). constr_name(<a href=%MML%lopban_3.html#K11>k11_lopban_3</a>,'#N__2',_). constr_name(<a href=%MML%sin_cos4.html#K1>k1_sin_cos4</a>,tan,_). constr_name(<a href=%MML%sin_cos4.html#K2>k2_sin_cos4</a>,cot,_). constr_name(<a href=%MML%sin_cos4.html#K3>k3_sin_cos4</a>,cosec,_). constr_name(<a href=%MML%sin_cos4.html#K4>k4_sin_cos4</a>,sec,_). constr_name(<a href=%MML%neckla_3.html#V1>v1_neckla_3</a>,'path-connected',_). constr_name(<a href=%MML%neckla_3.html#K1>k1_neckla_3</a>,component,_). constr_name(<a href=%MML%scmring4.html#K1>k1_scmring4</a>,'-'__7',_). constr_name(<a href=%MML%scmring4.html#K2>k2_scmring4</a>,'.-->__14',_). constr_name(<a href=%MML%scmring4.html#K3>k3_scmring4</a>,'Relocated__3',_). constr_name(<a href=%MML%clvect_2.html#V1>v1_clvect_2</a>,convergent__11,_). constr_name(<a href=%MML%clvect_2.html#K1>k1_clvect_2</a>,lim__15,_). constr_name(<a href=%MML%clvect_2.html#K2>k2_clvect_2</a>,'||....||__9',_). constr_name(<a href=%MML%clvect_2.html#K3>k3_clvect_2</a>,dist__15,_). constr_name(<a href=%MML%clvect_2.html#K4>k4_clvect_2</a>,'Ball__5',_). constr_name(<a href=%MML%clvect_2.html#K5>k5_clvect_2</a>,cl_Ball__3,_). constr_name(<a href=%MML%clvect_2.html#K6>k6_clvect_2</a>,'Sphere__3',_). constr_name(<a href=%MML%clvect_2.html#V2>v2_clvect_2</a>,'Cauchy__5',_). constr_name(<a href=%MML%clvect_2.html#R1>r1_clvect_2</a>,is_compared_to__3,_). constr_name(<a href=%MML%clvect_2.html#R2>r2_clvect_2</a>,is_compared_to__4,_). constr_name(<a href=%MML%clvect_2.html#V3>v3_clvect_2</a>,bounded__15,_). constr_name(<a href=%MML%clvect_2.html#K7>k7_clvect_2</a>,'*__156',_). constr_name(<a href=%MML%clvect_2.html#K8>k8_clvect_2</a>,'^\\__6',_). constr_name(<a href=%MML%clvect_2.html#V4>v4_clvect_2</a>,complete__7,_). constr_name(<a href=%MML%clvect_2.html#V5>v5_clvect_2</a>,'Hilbert__2',_). constr_name(<a href=%MML%recdef_2.html#K1>k1_recdef_2</a>,'`1_3',_). constr_name(<a href=%MML%recdef_2.html#K2>k2_recdef_2</a>,'`2_3',_). constr_name(<a href=%MML%recdef_2.html#K3>k3_recdef_2</a>,'`3_3',_). constr_name(<a href=%MML%recdef_2.html#K4>k4_recdef_2</a>,'`1_4',_). constr_name(<a href=%MML%recdef_2.html#K5>k5_recdef_2</a>,'`2_4',_). constr_name(<a href=%MML%recdef_2.html#K6>k6_recdef_2</a>,'`3_4',_). constr_name(<a href=%MML%recdef_2.html#K7>k7_recdef_2</a>,'`4_4',_). constr_name(<a href=%MML%recdef_2.html#K8>k8_recdef_2</a>,'`1_5',_). constr_name(<a href=%MML%recdef_2.html#K9>k9_recdef_2</a>,'`2_5',_). constr_name(<a href=%MML%recdef_2.html#K10>k10_recdef_2</a>,'`3_5',_). constr_name(<a href=%MML%recdef_2.html#K11>k11_recdef_2</a>,'`4_5',_). constr_name(<a href=%MML%recdef_2.html#K12>k12_recdef_2</a>,'`5_5',_). constr_name(<a href=%MML%lopban_4.html#R1>r1_lopban_4</a>,are_commutative,_). constr_name(<a href=%MML%lopban_4.html#K1>k1_lopban_4</a>,'ExpSeq__3',_). constr_name(<a href=%MML%lopban_4.html#K2>k2_lopban_4</a>,'Coef__2',_). constr_name(<a href=%MML%lopban_4.html#K3>k3_lopban_4</a>,'Coef_e__2',_). constr_name(<a href=%MML%lopban_4.html#K4>k4_lopban_4</a>,'Sift__2',_). constr_name(<a href=%MML%lopban_4.html#K5>k5_lopban_4</a>,'Expan__2',_). constr_name(<a href=%MML%lopban_4.html#K6>k6_lopban_4</a>,'Expan_e__2',_). constr_name(<a href=%MML%lopban_4.html#K7>k7_lopban_4</a>,'Alfa__2',_). constr_name(<a href=%MML%lopban_4.html#K8>k8_lopban_4</a>,'Conj__3',_). constr_name(<a href=%MML%lopban_4.html#K9>k9_lopban_4</a>,exp_,_). constr_name(<a href=%MML%lopban_4.html#K10>k10_lopban_4</a>,exp__8,_). constr_name(<a href=%MML%nat_3.html#K1>k1_nat_3</a>,'|^__20',_). constr_name(<a href=%MML%nat_3.html#K2>k2_nat_3</a>,'|^__21',_). constr_name(<a href=%MML%nat_3.html#K3>k3_nat_3</a>,'|^__22',_). constr_name(<a href=%MML%nat_3.html#K4>k4_nat_3</a>,'*__157',_). constr_name(<a href=%MML%nat_3.html#K5>k5_nat_3</a>,min__12,_). constr_name(<a href=%MML%nat_3.html#K6>k6_nat_3</a>,max__14,_). constr_name(<a href=%MML%nat_3.html#K7>k7_nat_3</a>,'Product__7',_). constr_name(<a href=%MML%nat_3.html#K8>k8_nat_3</a>,'Product__8',_). constr_name(<a href=%MML%nat_3.html#K9>k9_nat_3</a>,'|^__23',_). constr_name(<a href=%MML%nat_3.html#K10>k10_nat_3</a>,'|-count',_). constr_name(<a href=%MML%nat_3.html#K11>k11_nat_3</a>,prime_exponents,_). constr_name(<a href=%MML%nat_3.html#K12>k12_nat_3</a>,prime_factorization,_). constr_name(<a href=%MML%csspace3.html#K1>k1_csspace3</a>,the_set_of_l1ComplexSequences,_). constr_name(<a href=%MML%csspace3.html#K2>k2_csspace3</a>,cl_norm,_). constr_name(<a href=%MML%csspace3.html#K3>k3_csspace3</a>,'Complex_l1_Space',_). constr_name(<a href=%MML%csspace3.html#K4>k4_csspace3</a>,dist__16,_). constr_name(<a href=%MML%csspace3.html#V1>v1_csspace3</a>,'CCauchy__2',_). constr_name(<a href=%MML%taylor_1.html#K1>k1_taylor_1</a>,'#Z__3',_). constr_name(<a href=%MML%taylor_1.html#K2>k2_taylor_1</a>,log_,_). constr_name(<a href=%MML%taylor_1.html#K3>k3_taylor_1</a>,'#R__3',_). constr_name(<a href=%MML%taylor_1.html#K4>k4_taylor_1</a>,diff__5,_). constr_name(<a href=%MML%taylor_1.html#R1>r1_taylor_1</a>,is_differentiable_on__2,_). constr_name(<a href=%MML%taylor_1.html#K5>k5_taylor_1</a>,'Taylor',_). constr_name(<a href=%MML%clopban1.html#K1>k1_clopban1</a>,'[;]__8',_). constr_name(<a href=%MML%clopban1.html#K2>k2_clopban1</a>,'FuncExtMult__2',_). constr_name(<a href=%MML%clopban1.html#K3>k3_clopban1</a>,'ComplexVectSpace',_). constr_name(<a href=%MML%clopban1.html#K4>k4_clopban1</a>,'.__156',_). constr_name(<a href=%MML%clopban1.html#V1>v1_clopban1</a>,additive__10,_). constr_name(<a href=%MML%clopban1.html#V2>v2_clopban1</a>,homogeneous__11,_). constr_name(<a href=%MML%clopban1.html#K5>k5_clopban1</a>,'LinearOperators__2',_). constr_name(<a href=%MML%clopban1.html#K6>k6_clopban1</a>,'C_VectorSpace_of_LinearOperators',_). constr_name(<a href=%MML%clopban1.html#K7>k7_clopban1</a>,'.__157',_). constr_name(<a href=%MML%clopban1.html#V3>v3_clopban1</a>,bounded__16,_). constr_name(<a href=%MML%clopban1.html#K8>k8_clopban1</a>,'BoundedLinearOperators__2',_). constr_name(<a href=%MML%clopban1.html#K9>k9_clopban1</a>,'C_VectorSpace_of_BoundedLinearOperators',_). constr_name(<a href=%MML%clopban1.html#K10>k10_clopban1</a>,'.__158',_). constr_name(<a href=%MML%clopban1.html#K11>k11_clopban1</a>,modetrans__3,_). constr_name(<a href=%MML%clopban1.html#K12>k12_clopban1</a>,'PreNorms__3',_). constr_name(<a href=%MML%clopban1.html#K13>k13_clopban1</a>,'BoundedLinearOperatorsNorm__2',_). constr_name(<a href=%MML%clopban1.html#K14>k14_clopban1</a>,'C_NormSpace_of_BoundedLinearOperators',_). constr_name(<a href=%MML%clopban1.html#K15>k15_clopban1</a>,'.__159',_). constr_name(<a href=%MML%clopban1.html#V4>v4_clopban1</a>,complete__8,_). constr_name(<a href=%MML%csspace4.html#K1>k1_csspace4</a>,the_set_of_BoundedComplexSequences,_). constr_name(<a href=%MML%csspace4.html#K2>k2_csspace4</a>,'Complex_linfty_norm',_). constr_name(<a href=%MML%csspace4.html#K3>k3_csspace4</a>,'Complex_linfty_Space',_). constr_name(<a href=%MML%csspace4.html#V1>v1_csspace4</a>,bounded__17,_). constr_name(<a href=%MML%csspace4.html#K4>k4_csspace4</a>,'ComplexBoundedFunctions',_). constr_name(<a href=%MML%csspace4.html#K5>k5_csspace4</a>,'C_VectorSpace_of_BoundedFunctions',_). constr_name(<a href=%MML%csspace4.html#K6>k6_csspace4</a>,modetrans__4,_). constr_name(<a href=%MML%csspace4.html#K7>k7_csspace4</a>,'PreNorms__4',_). constr_name(<a href=%MML%csspace4.html#K8>k8_csspace4</a>,'ComplexBoundedFunctionsNorm',_). constr_name(<a href=%MML%csspace4.html#K9>k9_csspace4</a>,'C_NormSpace_of_BoundedFunctions',_). constr_name(<a href=%MML%finseq_8.html#K1>k1_finseq_8</a>,'^__24',_). constr_name(<a href=%MML%finseq_8.html#K2>k2_finseq_8</a>,smid,_). constr_name(<a href=%MML%finseq_8.html#K3>k3_finseq_8</a>,ovlpart,_). constr_name(<a href=%MML%finseq_8.html#K4>k4_finseq_8</a>,ovlcon,_). constr_name(<a href=%MML%finseq_8.html#K5>k5_finseq_8</a>,ovlldiff,_). constr_name(<a href=%MML%finseq_8.html#K6>k6_finseq_8</a>,ovlrdiff,_). constr_name(<a href=%MML%finseq_8.html#R1>r1_finseq_8</a>,separates_uniquely,_). constr_name(<a href=%MML%finseq_8.html#R2>r2_finseq_8</a>,is_substring_of,_). constr_name(<a href=%MML%finseq_8.html#R3>r3_finseq_8</a>,is_preposition_of,_). constr_name(<a href=%MML%finseq_8.html#R4>r4_finseq_8</a>,is_postposition_of,_). constr_name(<a href=%MML%finseq_8.html#K7>k7_finseq_8</a>,instr,_). constr_name(<a href=%MML%finseq_8.html#K8>k8_finseq_8</a>,addcr,_). constr_name(<a href=%MML%finseq_8.html#R5>r5_finseq_8</a>,is_terminated_by,_). constr_name(<a href=%MML%clvect_3.html#K1>k1_clvect_3</a>,'Partial_Sums__5',_). constr_name(<a href=%MML%clvect_3.html#V1>v1_clvect_3</a>,summable__6,_). constr_name(<a href=%MML%clvect_3.html#K2>k2_clvect_3</a>,'Sum__26',_). constr_name(<a href=%MML%clvect_3.html#K3>k3_clvect_3</a>,'Sum__27',_). constr_name(<a href=%MML%clvect_3.html#K4>k4_clvect_3</a>,'Sum__28',_). constr_name(<a href=%MML%clvect_3.html#K5>k5_clvect_3</a>,'Sum__29',_). constr_name(<a href=%MML%clvect_3.html#K6>k6_clvect_3</a>,'Sum__30',_). constr_name(<a href=%MML%clvect_3.html#V2>v2_clvect_3</a>,absolutely_summable__4,_). constr_name(<a href=%MML%clvect_3.html#K7>k7_clvect_3</a>,'*__158',_). constr_name(<a href=%MML%clvect_3.html#V3>v3_clvect_3</a>,'Cauchy__6',_). constr_name(<a href=%MML%cfuncdom.html#K1>k1_cfuncdom</a>,'ComplexFuncAdd',_). constr_name(<a href=%MML%cfuncdom.html#K2>k2_cfuncdom</a>,'ComplexFuncMult',_). constr_name(<a href=%MML%cfuncdom.html#K3>k3_cfuncdom</a>,'ComplexFuncExtMult',_). constr_name(<a href=%MML%cfuncdom.html#K4>k4_cfuncdom</a>,'ComplexFuncZero',_). constr_name(<a href=%MML%cfuncdom.html#K5>k5_cfuncdom</a>,'ComplexFuncUnit',_). constr_name(<a href=%MML%cfuncdom.html#K6>k6_cfuncdom</a>,'ComplexVectSpace__2',_). constr_name(<a href=%MML%cfuncdom.html#K7>k7_cfuncdom</a>,'CRing',_). constr_name(<a href=%MML%cfuncdom.html#L1>l1_cfuncdom</a>,'ComplexAlgebraStr',_). constr_name(<a href=%MML%cfuncdom.html#V1>v1_cfuncdom</a>,strict__ComplexAlgebraStr,_). constr_name(<a href=%MML%cfuncdom.html#G1>g1_cfuncdom</a>,'ComplexAlgebraStr_constr',_). constr_name(<a href=%MML%cfuncdom.html#K8>k8_cfuncdom</a>,'CAlgebra',_). constr_name(<a href=%MML%cfuncdom.html#V2>v2_cfuncdom</a>,'ComplexAlgebra-like',_). constr_name(<a href=%MML%clopban2.html#K1>k1_clopban2</a>,'*__159',_). constr_name(<a href=%MML%clopban2.html#K2>k2_clopban2</a>,'+__101',_). constr_name(<a href=%MML%clopban2.html#K3>k3_clopban2</a>,'*__160',_). constr_name(<a href=%MML%clopban2.html#K4>k4_clopban2</a>,'*__161',_). constr_name(<a href=%MML%clopban2.html#K5>k5_clopban2</a>,'FuncMult__2',_). constr_name(<a href=%MML%clopban2.html#K6>k6_clopban2</a>,'FuncUnit__2',_). constr_name(<a href=%MML%clopban2.html#K7>k7_clopban2</a>,'Ring_of_BoundedLinearOperators__2',_). constr_name(<a href=%MML%clopban2.html#K8>k8_clopban2</a>,'C_Algebra_of_BoundedLinearOperators',_). constr_name(<a href=%MML%clopban2.html#L1>l1_clopban2</a>,'Normed_Complex_AlgebraStr',_). constr_name(<a href=%MML%clopban2.html#V1>v1_clopban2</a>,strict__Normed_Complex_AlgebraStr,_). constr_name(<a href=%MML%clopban2.html#G1>g1_clopban2</a>,'Normed_Complex_AlgebraStr_constr',_). constr_name(<a href=%MML%clopban2.html#K9>k9_clopban2</a>,'C_Normed_Algebra_of_BoundedLinearOperators',_). constr_name(<a href=%MML%clopban2.html#V2>v2_clopban2</a>,'Banach_Algebra-like_1__2',_). constr_name(<a href=%MML%clopban2.html#V3>v3_clopban2</a>,'Banach_Algebra-like_2__2',_). constr_name(<a href=%MML%clopban2.html#V4>v4_clopban2</a>,'Banach_Algebra-like_3__2',_). constr_name(<a href=%MML%clopban2.html#V5>v5_clopban2</a>,'Banach_Algebra-like__2',_). constr_name(<a href=%MML%sin_cos5.html#K1>k1_sin_cos5</a>,coth,_). constr_name(<a href=%MML%sin_cos5.html#K2>k2_sin_cos5</a>,sech,_). constr_name(<a href=%MML%sin_cos5.html#K3>k3_sin_cos5</a>,cosech,_). constr_name(<a href=%MML%polyeq_4.html#K1>k1_polyeq_4</a>,'Poly5',_). constr_name(<a href=%MML%borsuk_6.html#V1>v1_borsuk_6</a>,'real-membered__2',_). constr_name(<a href=%MML%borsuk_6.html#K1>k1_borsuk_6</a>,'L[01]__2',_). constr_name(<a href=%MML%borsuk_6.html#R1>r1_borsuk_6</a>,are_connected__3,_). constr_name(<a href=%MML%borsuk_6.html#K2>k2_borsuk_6</a>,'RePar',_). constr_name(<a href=%MML%borsuk_6.html#K3>k3_borsuk_6</a>,'1RP',_). constr_name(<a href=%MML%borsuk_6.html#K4>k4_borsuk_6</a>,'2RP',_). constr_name(<a href=%MML%borsuk_6.html#K5>k5_borsuk_6</a>,'3RP',_). constr_name(<a href=%MML%borsuk_6.html#K6>k6_borsuk_6</a>,'LowerLeftUnitTriangle',_). constr_name(<a href=%MML%borsuk_6.html#K7>k7_borsuk_6</a>,'UpperUnitTriangle',_). constr_name(<a href=%MML%borsuk_6.html#K8>k8_borsuk_6</a>,'LowerRightUnitTriangle',_). constr_name(<a href=%MML%borsuk_6.html#M1>m1_borsuk_6</a>,'Homotopy',_). constr_name(<a href=%MML%topalg_1.html#K1>k1_topalg_1</a>,'Loops',_). constr_name(<a href=%MML%topalg_1.html#K2>k2_topalg_1</a>,'EqRel__3',_). constr_name(<a href=%MML%topalg_1.html#K3>k3_topalg_1</a>,'FundamentalGroup',_). constr_name(<a href=%MML%topalg_1.html#K4>k4_topalg_1</a>,'pi_1-iso',_). constr_name(<a href=%MML%topalg_1.html#K5>k5_topalg_1</a>,'pi_1-iso__2',_). constr_name(<a href=%MML%topalg_1.html#K6>k6_topalg_1</a>,'RealHomotopy',_). constr_name(<a href=%MML%topalg_1.html#K7>k7_topalg_1</a>,'RealHomotopy__2',_). constr_name(<a href=%MML%nfcont_1.html#K1>k1_nfcont_1</a>,'-__101',_). constr_name(<a href=%MML%nfcont_1.html#K2>k2_nfcont_1</a>,'||....||__10',_). constr_name(<a href=%MML%nfcont_1.html#M1>m1_nfcont_1</a>,'Neighbourhood__2',_). constr_name(<a href=%MML%nfcont_1.html#V1>v1_nfcont_1</a>,compact__7,_). constr_name(<a href=%MML%nfcont_1.html#V2>v2_nfcont_1</a>,closed__11,_). constr_name(<a href=%MML%nfcont_1.html#V3>v3_nfcont_1</a>,open__9,_). constr_name(<a href=%MML%nfcont_1.html#K3>k3_nfcont_1</a>,'*__162',_). constr_name(<a href=%MML%nfcont_1.html#K4>k4_nfcont_1</a>,'*__163',_). constr_name(<a href=%MML%nfcont_1.html#R1>r1_nfcont_1</a>,is_continuous_in__3,_). constr_name(<a href=%MML%nfcont_1.html#R2>r2_nfcont_1</a>,is_continuous_in__4,_). constr_name(<a href=%MML%nfcont_1.html#R3>r3_nfcont_1</a>,is_continuous_on__3,_). constr_name(<a href=%MML%nfcont_1.html#R4>r4_nfcont_1</a>,is_continuous_on__4,_). constr_name(<a href=%MML%nfcont_1.html#R5>r5_nfcont_1</a>,is_Lipschitzian_on__2,_). constr_name(<a href=%MML%nfcont_1.html#R6>r6_nfcont_1</a>,is_Lipschitzian_on__3,_). constr_name(<a href=%MML%nfcont_2.html#R1>r1_nfcont_2</a>,is_uniformly_continuous_on__2,_). constr_name(<a href=%MML%nfcont_2.html#R2>r2_nfcont_2</a>,is_uniformly_continuous_on__3,_). constr_name(<a href=%MML%nfcont_2.html#M1>m1_nfcont_2</a>,contraction__2,_). constr_name(<a href=%MML%clopban3.html#K1>k1_clopban3</a>,'Partial_Sums__6',_). constr_name(<a href=%MML%clopban3.html#V1>v1_clopban3</a>,summable__7,_). constr_name(<a href=%MML%clopban3.html#K2>k2_clopban3</a>,'Sum__31',_). constr_name(<a href=%MML%clopban3.html#V2>v2_clopban3</a>,norm_summable__2,_). constr_name(<a href=%MML%clopban3.html#V3>v3_clopban3</a>,constant__8,_). constr_name(<a href=%MML%clopban3.html#K3>k3_clopban3</a>,'^\\__7',_). constr_name(<a href=%MML%clopban3.html#K4>k4_clopban3</a>,'*__164',_). constr_name(<a href=%MML%clopban3.html#K5>k5_clopban3</a>,'*__165',_). constr_name(<a href=%MML%clopban3.html#K6>k6_clopban3</a>,'*__166',_). constr_name(<a href=%MML%clopban3.html#K7>k7_clopban3</a>,'"__38',_). constr_name(<a href=%MML%clopban3.html#K8>k8_clopban3</a>,'GeoSeq__4',_). constr_name(<a href=%MML%clopban3.html#K9>k9_clopban3</a>,'#N__3',_). constr_name(<a href=%MML%clopban4.html#R1>r1_clopban4</a>,are_commutative__2,_). constr_name(<a href=%MML%clopban4.html#K1>k1_clopban4</a>,'ExpSeq__4',_). constr_name(<a href=%MML%clopban4.html#K2>k2_clopban4</a>,'Sift__3',_). constr_name(<a href=%MML%clopban4.html#K3>k3_clopban4</a>,'Expan__3',_). constr_name(<a href=%MML%clopban4.html#K4>k4_clopban4</a>,'Expan_e__3',_). constr_name(<a href=%MML%clopban4.html#K5>k5_clopban4</a>,'Alfa__3',_). constr_name(<a href=%MML%clopban4.html#K6>k6_clopban4</a>,'Conj__4',_). constr_name(<a href=%MML%clopban4.html#K7>k7_clopban4</a>,exp___2,_). constr_name(<a href=%MML%clopban4.html#K8>k8_clopban4</a>,exp__9,_). constr_name(<a href=%MML%topalg_2.html#V1>v1_topalg_2</a>,convex__6,_). constr_name(<a href=%MML%topalg_2.html#K1>k1_topalg_2</a>,'ConvexHomotopy',_). constr_name(<a href=%MML%topalg_2.html#K2>k2_topalg_2</a>,'ConvexHomotopy__2',_). constr_name(<a href=%MML%topalg_2.html#V2>v2_topalg_2</a>,convex__7,_). constr_name(<a href=%MML%topalg_2.html#V3>v3_topalg_2</a>,convex__8,_). constr_name(<a href=%MML%topalg_2.html#K3>k3_topalg_2</a>,'R^1__2',_). constr_name(<a href=%MML%topalg_2.html#K4>k4_topalg_2</a>,'R1Homotopy',_). constr_name(<a href=%MML%topalg_2.html#K5>k5_topalg_2</a>,'R1Homotopy__2',_). constr_name(<a href=%MML%topreal9.html#K1>k1_topreal9</a>,'Ball__6',_). constr_name(<a href=%MML%topreal9.html#K2>k2_topreal9</a>,cl_Ball__4,_). constr_name(<a href=%MML%topreal9.html#K3>k3_topreal9</a>,'Sphere__4',_). constr_name(<a href=%MML%topreal9.html#V1>v1_topreal9</a>,homogeneous__12,_). constr_name(<a href=%MML%topreal9.html#V2>v2_topreal9</a>,additive__11,_). constr_name(<a href=%MML%topreal9.html#K4>k4_topreal9</a>,halfline__2,_). constr_name(<a href=%MML%fib_num2.html#K1>k1_fib_num2</a>,'Prefix__2',_). constr_name(<a href=%MML%fib_num2.html#K2>k2_fib_num2</a>,'FIB',_). constr_name(<a href=%MML%fib_num2.html#K3>k3_fib_num2</a>,'EvenNAT',_). constr_name(<a href=%MML%fib_num2.html#K4>k4_fib_num2</a>,'OddNAT',_). constr_name(<a href=%MML%fib_num2.html#K5>k5_fib_num2</a>,'EvenFibs',_). constr_name(<a href=%MML%fib_num2.html#K6>k6_fib_num2</a>,'OddFibs',_). constr_name(<a href=%MML%hallmar1.html#K1>k1_hallmar1</a>,union__14,_). constr_name(<a href=%MML%hallmar1.html#K2>k2_hallmar1</a>,'Cut',_). constr_name(<a href=%MML%hallmar1.html#R1>r1_hallmar1</a>,is_a_system_of_different_representatives_of,_). constr_name(<a href=%MML%hallmar1.html#V1>v1_hallmar1</a>,'Hall',_). constr_name(<a href=%MML%hallmar1.html#M1>m1_hallmar1</a>,'Reduction',_). constr_name(<a href=%MML%hallmar1.html#M2>m2_hallmar1</a>,'Reduction__2',_). constr_name(<a href=%MML%hallmar1.html#M3>m3_hallmar1</a>,'Singlification',_). constr_name(<a href=%MML%hallmar1.html#M4>m4_hallmar1</a>,'Singlification__2',_). constr_name(<a href=%MML%ndiff_1.html#V1>v1_ndiff_1</a>,being_not_0,_). constr_name(<a href=%MML%ndiff_1.html#K1>k1_ndiff_1</a>,'(#)__32',_). constr_name(<a href=%MML%ndiff_1.html#K2>k2_ndiff_1</a>,'*__167',_). constr_name(<a href=%MML%ndiff_1.html#V2>v2_ndiff_1</a>,convergent_to_0__2,_). constr_name(<a href=%MML%ndiff_1.html#V3>v3_ndiff_1</a>,'REST-like__2',_). constr_name(<a href=%MML%ndiff_1.html#R1>r1_ndiff_1</a>,is_differentiable_in__2,_). constr_name(<a href=%MML%ndiff_1.html#K3>k3_ndiff_1</a>,diff__6,_). constr_name(<a href=%MML%ndiff_1.html#R2>r2_ndiff_1</a>,is_differentiable_on__3,_). constr_name(<a href=%MML%ndiff_1.html#K4>k4_ndiff_1</a>,'`|__2',_). constr_name(<a href=%MML%fib_num3.html#K1>k1_fib_num3</a>,'Lucas',_). constr_name(<a href=%MML%fib_num3.html#K2>k2_fib_num3</a>,'GenFib',_). constr_name(<a href=%MML%latsum_1.html#R1>r1_latsum_1</a>,tolerates__7,_). constr_name(<a href=%MML%latsum_1.html#K1>k1_latsum_1</a>,'[*]__6',_). constr_name(<a href=%MML%nagata_1.html#V1>v1_nagata_1</a>,discrete__5,_). constr_name(<a href=%MML%nagata_1.html#K1>k1_nagata_1</a>,'.__160',_). constr_name(<a href=%MML%nagata_1.html#K2>k2_nagata_1</a>,'Union__6',_). constr_name(<a href=%MML%nagata_1.html#V2>v2_nagata_1</a>,sigma_discrete,_). constr_name(<a href=%MML%nagata_1.html#V3>v3_nagata_1</a>,sigma_locally_finite,_). constr_name(<a href=%MML%nagata_1.html#V4>v4_nagata_1</a>,sigma_discrete__2,_). constr_name(<a href=%MML%nagata_1.html#V5>v5_nagata_1</a>,'Basis_sigma_discrete',_). constr_name(<a href=%MML%nagata_1.html#V6>v6_nagata_1</a>,'Basis_sigma_locally_finite',_). constr_name(<a href=%MML%nagata_1.html#K3>k3_nagata_1</a>,'+__102',_). constr_name(<a href=%MML%nagata_1.html#K4>k4_nagata_1</a>,'Toler__2',_). constr_name(<a href=%MML%nagata_1.html#K5>k5_nagata_1</a>,min__13,_). constr_name(<a href=%MML%nagata_1.html#R1>r1_nagata_1</a>,is_a_pseudometric_of,_). constr_name(<a href=%MML%group_8.html#K1>k1_group_8</a>,'Double_Cosets',_). constr_name(<a href=%MML%catalan1.html#K1>k1_catalan1</a>,'Catalan',_). constr_name(<a href=%MML%sheffer1.html#V1>v1_sheffer1</a>,'upper-bounded'',_). constr_name(<a href=%MML%sheffer1.html#K1>k1_sheffer1</a>,'Top'',_). constr_name(<a href=%MML%sheffer1.html#V2>v2_sheffer1</a>,'lower-bounded'',_). constr_name(<a href=%MML%sheffer1.html#K2>k2_sheffer1</a>,'Bot'',_). constr_name(<a href=%MML%sheffer1.html#V3>v3_sheffer1</a>,'distributive'',_). constr_name(<a href=%MML%sheffer1.html#R1>r1_sheffer1</a>,'is_a_complement'_of',_). constr_name(<a href=%MML%sheffer1.html#V4>v4_sheffer1</a>,'complemented'',_). constr_name(<a href=%MML%sheffer1.html#K3>k3_sheffer1</a>,'`#',_). constr_name(<a href=%MML%sheffer1.html#V5>v5_sheffer1</a>,'meet-idempotent',_). constr_name(<a href=%MML%sheffer1.html#L1>l1_sheffer1</a>,'ShefferStr',_). constr_name(<a href=%MML%sheffer1.html#V6>v6_sheffer1</a>,strict__ShefferStr,_). constr_name(<a href=%MML%sheffer1.html#U1>u1_sheffer1</a>,stroke,the_stroke). constr_name(<a href=%MML%sheffer1.html#G1>g1_sheffer1</a>,'ShefferStr_constr',_). constr_name(<a href=%MML%sheffer1.html#L2>l2_sheffer1</a>,'ShefferLattStr',_). constr_name(<a href=%MML%sheffer1.html#V7>v7_sheffer1</a>,strict__ShefferLattStr,_). constr_name(<a href=%MML%sheffer1.html#G2>g2_sheffer1</a>,'ShefferLattStr_constr',_). constr_name(<a href=%MML%sheffer1.html#L3>l3_sheffer1</a>,'ShefferOrthoLattStr',_). constr_name(<a href=%MML%sheffer1.html#V8>v8_sheffer1</a>,strict__ShefferOrthoLattStr,_). constr_name(<a href=%MML%sheffer1.html#G3>g3_sheffer1</a>,'ShefferOrthoLattStr_constr',_). constr_name(<a href=%MML%sheffer1.html#K4>k4_sheffer1</a>,'TrivShefferOrthoLattStr',_). constr_name(<a href=%MML%sheffer1.html#K5>k5_sheffer1</a>,'|__33',_). constr_name(<a href=%MML%sheffer1.html#V9>v9_sheffer1</a>,properly_defined,_). constr_name(<a href=%MML%sheffer1.html#V10>v10_sheffer1</a>,satisfying_Sheffer_1,_). constr_name(<a href=%MML%sheffer1.html#V11>v11_sheffer1</a>,satisfying_Sheffer_2,_). constr_name(<a href=%MML%sheffer1.html#V12>v12_sheffer1</a>,satisfying_Sheffer_3,_). constr_name(<a href=%MML%sheffer1.html#K6>k6_sheffer1</a>,'"__39',_). constr_name(<a href=%MML%sheffer2.html#V1>v1_sheffer2</a>,satisfying_Sh_1,_). constr_name(<a href=%MML%ndiff_2.html#K1>k1_ndiff_2</a>,'*__168',_). constr_name(<a href=%MML%ndiff_2.html#K2>k2_ndiff_2</a>,'*__169',_). constr_name(<a href=%MML%ndiff_2.html#R1>r1_ndiff_2</a>,is_Gateaux_differentiable_in,_). constr_name(<a href=%MML%ndiff_2.html#K3>k3_ndiff_2</a>,'Gateaux_diff',_). constr_name(<a href=%MML%prgcor_2.html#K1>k1_prgcor_2</a>,'FS2XFS',_). constr_name(<a href=%MML%prgcor_2.html#K2>k2_prgcor_2</a>,'XFS2FS',_). constr_name(<a href=%MML%prgcor_2.html#K3>k3_prgcor_2</a>,'FS2XFS*',_). constr_name(<a href=%MML%prgcor_2.html#K4>k4_prgcor_2</a>,'XFS2FS*',_). constr_name(<a href=%MML%prgcor_2.html#R1>r1_prgcor_2</a>,is_an_xrep_of,_). constr_name(<a href=%MML%prgcor_2.html#K5>k5_prgcor_2</a>,'IFLGT',_). constr_name(<a href=%MML%prgcor_2.html#K6>k6_prgcor_2</a>,'.__161',_). constr_name(<a href=%MML%prgcor_2.html#K7>k7_prgcor_2</a>,inner_prd_prg,_). constr_name(<a href=%MML%prgcor_2.html#R2>r2_prgcor_2</a>,scalar_prd_prg,_). constr_name(<a href=%MML%prgcor_2.html#R3>r3_prgcor_2</a>,vector_minus_prg,_). constr_name(<a href=%MML%prgcor_2.html#R4>r4_prgcor_2</a>,vector_add_prg,_). constr_name(<a href=%MML%prgcor_2.html#R5>r5_prgcor_2</a>,vector_sub_prg,_). constr_name(<a href=%MML%fintopo4.html#R1>r1_fintopo4</a>,are_separated__3,_). constr_name(<a href=%MML%fintopo4.html#R2>r2_fintopo4</a>,is_continuous,_). constr_name(<a href=%MML%fintopo4.html#K1>k1_fintopo4</a>,'Nbdl1',_). constr_name(<a href=%MML%fintopo4.html#K2>k2_fintopo4</a>,'FTSL1',_). constr_name(<a href=%MML%fintopo4.html#K3>k3_fintopo4</a>,'Nbdc1',_). constr_name(<a href=%MML%fintopo4.html#K4>k4_fintopo4</a>,'FTSC1',_). constr_name(<a href=%MML%nagata_2.html#K1>k1_nagata_2</a>,'PairFunc',_). constr_name(<a href=%MML%nagata_2.html#K2>k2_nagata_2</a>,dist__17,_). constr_name(<a href=%MML%nagata_2.html#K3>k3_nagata_2</a>,inf__8,_). constr_name(<a href=%MML%topalg_3.html#K1>k1_topalg_3</a>,'FundGrIso',_). constr_name(<a href=%MML%topalg_3.html#K2>k2_topalg_3</a>,'FundGrIso__2',_). constr_name(<a href=%MML%vfunct_2.html#K1>k1_vfunct_2</a>,'+__103',_). constr_name(<a href=%MML%vfunct_2.html#K2>k2_vfunct_2</a>,'-__102',_). constr_name(<a href=%MML%vfunct_2.html#K3>k3_vfunct_2</a>,'(#)__33',_). constr_name(<a href=%MML%vfunct_2.html#K4>k4_vfunct_2</a>,'(#)__34',_). constr_name(<a href=%MML%vfunct_2.html#K5>k5_vfunct_2</a>,'||....||__11',_). constr_name(<a href=%MML%vfunct_2.html#K6>k6_vfunct_2</a>,'-__103',_). constr_name(<a href=%MML%vfunct_2.html#R1>r1_vfunct_2</a>,is_bounded_on__4,_). constr_name(<a href=%MML%ncfcont1.html#K1>k1_ncfcont1</a>,'-__104',_). constr_name(<a href=%MML%ncfcont1.html#K2>k2_ncfcont1</a>,'||....||__12',_). constr_name(<a href=%MML%ncfcont1.html#K3>k3_ncfcont1</a>,'||....||__13',_). constr_name(<a href=%MML%ncfcont1.html#K4>k4_ncfcont1</a>,'||....||__14',_). constr_name(<a href=%MML%ncfcont1.html#M1>m1_ncfcont1</a>,'Neighbourhood__3',_). constr_name(<a href=%MML%ncfcont1.html#V1>v1_ncfcont1</a>,compact__8,_). constr_name(<a href=%MML%ncfcont1.html#V2>v2_ncfcont1</a>,closed__12,_). constr_name(<a href=%MML%ncfcont1.html#V3>v3_ncfcont1</a>,open__10,_). constr_name(<a href=%MML%ncfcont1.html#K5>k5_ncfcont1</a>,'*__170',_). constr_name(<a href=%MML%ncfcont1.html#K6>k6_ncfcont1</a>,'*__171',_). constr_name(<a href=%MML%ncfcont1.html#K7>k7_ncfcont1</a>,'*__172',_). constr_name(<a href=%MML%ncfcont1.html#K8>k8_ncfcont1</a>,'*__173',_). constr_name(<a href=%MML%ncfcont1.html#K9>k9_ncfcont1</a>,'*__174',_). constr_name(<a href=%MML%ncfcont1.html#K10>k10_ncfcont1</a>,'*__175',_). constr_name(<a href=%MML%ncfcont1.html#R1>r1_ncfcont1</a>,is_continuous_in__5,_). constr_name(<a href=%MML%ncfcont1.html#R2>r2_ncfcont1</a>,is_continuous_in__6,_). constr_name(<a href=%MML%ncfcont1.html#R3>r3_ncfcont1</a>,is_continuous_in__7,_). constr_name(<a href=%MML%ncfcont1.html#R4>r4_ncfcont1</a>,is_continuous_in__8,_). constr_name(<a href=%MML%ncfcont1.html#R5>r5_ncfcont1</a>,is_continuous_in__9,_). constr_name(<a href=%MML%ncfcont1.html#R6>r6_ncfcont1</a>,is_continuous_in__10,_). constr_name(<a href=%MML%ncfcont1.html#R7>r7_ncfcont1</a>,is_continuous_on__5,_). constr_name(<a href=%MML%ncfcont1.html#R8>r8_ncfcont1</a>,is_continuous_on__6,_). constr_name(<a href=%MML%ncfcont1.html#R9>r9_ncfcont1</a>,is_continuous_on__7,_). constr_name(<a href=%MML%ncfcont1.html#R10>r10_ncfcont1</a>,is_continuous_on__8,_). constr_name(<a href=%MML%ncfcont1.html#R11>r11_ncfcont1</a>,is_continuous_on__9,_). constr_name(<a href=%MML%ncfcont1.html#R12>r12_ncfcont1</a>,is_continuous_on__10,_). constr_name(<a href=%MML%ncfcont1.html#R13>r13_ncfcont1</a>,is_Lipschitzian_on__4,_). constr_name(<a href=%MML%ncfcont1.html#R14>r14_ncfcont1</a>,is_Lipschitzian_on__5,_). constr_name(<a href=%MML%ncfcont1.html#R15>r15_ncfcont1</a>,is_Lipschitzian_on__6,_). constr_name(<a href=%MML%ncfcont1.html#R16>r16_ncfcont1</a>,is_Lipschitzian_on__7,_). constr_name(<a href=%MML%ncfcont1.html#R17>r17_ncfcont1</a>,is_Lipschitzian_on__8,_). constr_name(<a href=%MML%ncfcont1.html#R18>r18_ncfcont1</a>,is_Lipschitzian_on__9,_). constr_name(<a href=%MML%topalg_4.html#K1>k1_topalg_4</a>,'Gr2Iso',_). constr_name(<a href=%MML%topalg_4.html#K2>k2_topalg_4</a>,'Gr2Iso__2',_). constr_name(<a href=%MML%topalg_4.html#K3>k3_topalg_4</a>,'<:..:>__14',_). constr_name(<a href=%MML%topalg_4.html#K4>k4_topalg_4</a>,pr1__14,_). constr_name(<a href=%MML%topalg_4.html#K5>k5_topalg_4</a>,pr2__14,_). constr_name(<a href=%MML%topalg_4.html#K6>k6_topalg_4</a>,'<:..:>__15',_). constr_name(<a href=%MML%topalg_4.html#K7>k7_topalg_4</a>,'<:..:>__16',_). constr_name(<a href=%MML%topalg_4.html#K8>k8_topalg_4</a>,pr1__15,_). constr_name(<a href=%MML%topalg_4.html#K9>k9_topalg_4</a>,pr2__15,_). constr_name(<a href=%MML%topalg_4.html#K10>k10_topalg_4</a>,pr1__16,_). constr_name(<a href=%MML%topalg_4.html#K11>k11_topalg_4</a>,pr2__16,_). constr_name(<a href=%MML%topalg_4.html#K12>k12_topalg_4</a>,'FGPrIso',_). constr_name(<a href=%MML%topalg_4.html#K13>k13_topalg_4</a>,'FGPrIso__2',_). constr_name(<a href=%MML%substut1.html#K1>k1_substut1</a>,vSUB,_). constr_name(<a href=%MML%substut1.html#K2>k2_substut1</a>,'@__47',_). constr_name(<a href=%MML%substut1.html#K3>k3_substut1</a>,'CQC_Subst',_). constr_name(<a href=%MML%substut1.html#K4>k4_substut1</a>,'@__48',_). constr_name(<a href=%MML%substut1.html#K5>k5_substut1</a>,'CQC_Subst__2',_). constr_name(<a href=%MML%substut1.html#K6>k6_substut1</a>,'|__34',_). constr_name(<a href=%MML%substut1.html#K7>k7_substut1</a>,'RestrictSub',_). constr_name(<a href=%MML%substut1.html#K8>k8_substut1</a>,'Bound_Vars',_). constr_name(<a href=%MML%substut1.html#K9>k9_substut1</a>,'Bound_Vars__2',_). constr_name(<a href=%MML%substut1.html#K10>k10_substut1</a>,'Dom_Bound_Vars',_). constr_name(<a href=%MML%substut1.html#K11>k11_substut1</a>,'Sub_Var',_). constr_name(<a href=%MML%substut1.html#K12>k12_substut1</a>,'NSub',_). constr_name(<a href=%MML%substut1.html#K13>k13_substut1</a>,upVar,_). constr_name(<a href=%MML%substut1.html#K14>k14_substut1</a>,'ExpandSub',_). constr_name(<a href=%MML%substut1.html#R1>r1_substut1</a>,'PQSub',_). constr_name(<a href=%MML%substut1.html#K15>k15_substut1</a>,'QSub',_). constr_name(<a href=%MML%substut1.html#V1>v1_substut1</a>,'QC-Sub-closed',_). constr_name(<a href=%MML%substut1.html#K16>k16_substut1</a>,'QC-Sub-WFF',_). constr_name(<a href=%MML%substut1.html#K17>k17_substut1</a>,'Sub_P',_). constr_name(<a href=%MML%substut1.html#V2>v2_substut1</a>,'Sub_VERUM',_). constr_name(<a href=%MML%substut1.html#K18>k18_substut1</a>,'`1__26',_). constr_name(<a href=%MML%substut1.html#K19>k19_substut1</a>,'`2__32',_). constr_name(<a href=%MML%substut1.html#K20>k20_substut1</a>,'Sub_not',_). constr_name(<a href=%MML%substut1.html#K21>k21_substut1</a>,'Sub_&',_). constr_name(<a href=%MML%substut1.html#K22>k22_substut1</a>,'`1__27',_). constr_name(<a href=%MML%substut1.html#K23>k23_substut1</a>,'`2__33',_). constr_name(<a href=%MML%substut1.html#V3>v3_substut1</a>,quantifiable,_). constr_name(<a href=%MML%substut1.html#M1>m1_substut1</a>,second_Q_comp,_). constr_name(<a href=%MML%substut1.html#K24>k24_substut1</a>,'Sub_All',_). constr_name(<a href=%MML%substut1.html#K25>k25_substut1</a>,'[..]__27',_). constr_name(<a href=%MML%substut1.html#V4>v4_substut1</a>,'Sub_atomic',_). constr_name(<a href=%MML%substut1.html#V5>v5_substut1</a>,'Sub_negative',_). constr_name(<a href=%MML%substut1.html#V6>v6_substut1</a>,'Sub_conjunctive',_). constr_name(<a href=%MML%substut1.html#V7>v7_substut1</a>,'Sub_universal',_). constr_name(<a href=%MML%substut1.html#K26>k26_substut1</a>,'Sub_the_arguments_of',_). constr_name(<a href=%MML%substut1.html#K27>k27_substut1</a>,'Sub_the_argument_of',_). constr_name(<a href=%MML%substut1.html#K28>k28_substut1</a>,'Sub_the_left_argument_of',_). constr_name(<a href=%MML%substut1.html#K29>k29_substut1</a>,'Sub_the_right_argument_of',_). constr_name(<a href=%MML%substut1.html#K30>k30_substut1</a>,'Sub_the_bound_of',_). constr_name(<a href=%MML%substut1.html#K31>k31_substut1</a>,'Sub_the_scope_of',_). constr_name(<a href=%MML%substut1.html#K32>k32_substut1</a>,'@__49',_). constr_name(<a href=%MML%substut1.html#K33>k33_substut1</a>,'`1__28',_). constr_name(<a href=%MML%substut1.html#K34>k34_substut1</a>,'`2__34',_). constr_name(<a href=%MML%substut1.html#K35>k35_substut1</a>,'S_Bound',_). constr_name(<a href=%MML%substut1.html#K36>k36_substut1</a>,'Quant',_). constr_name(<a href=%MML%substut1.html#K37>k37_substut1</a>,'CQC_Sub',_). constr_name(<a href=%MML%substut1.html#K38>k38_substut1</a>,'CQC-Sub-WFF',_). constr_name(<a href=%MML%substut1.html#K39>k39_substut1</a>,'CQC_Sub__2',_). constr_name(<a href=%MML%sublemma.html#K1>k1_sublemma</a>,'.__162',_). constr_name(<a href=%MML%sublemma.html#K2>k2_sublemma</a>,'`1__29',_). constr_name(<a href=%MML%sublemma.html#K3>k3_sublemma</a>,'Val_S',_). constr_name(<a href=%MML%sublemma.html#R1>r1_sublemma</a>,'|=__8',_). constr_name(<a href=%MML%sublemma.html#K4>k4_sublemma</a>,'Sub_P__2',_). constr_name(<a href=%MML%sublemma.html#K5>k5_sublemma</a>,'CQC_Subst__3',_). constr_name(<a href=%MML%sublemma.html#K6>k6_sublemma</a>,'Sub_not__2',_). constr_name(<a href=%MML%sublemma.html#K7>k7_sublemma</a>,'CQCSub_&',_). constr_name(<a href=%MML%sublemma.html#V1>v1_sublemma</a>,'CQC-WFF-like',_). constr_name(<a href=%MML%sublemma.html#K8>k8_sublemma</a>,'[..]__28',_). constr_name(<a href=%MML%sublemma.html#K9>k9_sublemma</a>,'`1__30',_). constr_name(<a href=%MML%sublemma.html#K10>k10_sublemma</a>,'CQCSub_All',_). constr_name(<a href=%MML%sublemma.html#K11>k11_sublemma</a>,'CQCSub_the_scope_of',_). constr_name(<a href=%MML%sublemma.html#K12>k12_sublemma</a>,'CQCQuant',_). constr_name(<a href=%MML%sublemma.html#K13>k13_sublemma</a>,'|__35',_). constr_name(<a href=%MML%sublemma.html#K14>k14_sublemma</a>,'NEx_Val',_). constr_name(<a href=%MML%sublemma.html#K15>k15_sublemma</a>,'+*__24',_). constr_name(<a href=%MML%sublemma.html#K16>k16_sublemma</a>,'RSub1',_). constr_name(<a href=%MML%sublemma.html#K17>k17_sublemma</a>,'RSub2',_). constr_name(<a href=%MML%substut2.html#K1>k1_substut2</a>,'[..]__29',_). constr_name(<a href=%MML%substut2.html#K2>k2_substut2</a>,'[..]__30',_). constr_name(<a href=%MML%substut2.html#K3>k3_substut2</a>,'Sbst',_). constr_name(<a href=%MML%substut2.html#K4>k4_substut2</a>,'.__163',_). constr_name(<a href=%MML%substut2.html#K5>k5_substut2</a>,'`2__35',_). constr_name(<a href=%MML%substut2.html#K6>k6_substut2</a>,'CFQ',_). constr_name(<a href=%MML%substut2.html#K7>k7_substut2</a>,'QScope',_). constr_name(<a href=%MML%substut2.html#K8>k8_substut2</a>,'Qsc',_). constr_name(<a href=%MML%substut2.html#M1>m1_substut2</a>,'PATH',_). constr_name(<a href=%MML%calcul_1.html#K1>k1_calcul_1</a>,'Ant',_). constr_name(<a href=%MML%calcul_1.html#K2>k2_calcul_1</a>,'Suc',_). constr_name(<a href=%MML%calcul_1.html#R1>r1_calcul_1</a>,is_tail_of,_). constr_name(<a href=%MML%calcul_1.html#R2>r2_calcul_1</a>,is_Subsequence_of,_). constr_name(<a href=%MML%calcul_1.html#K3>k3_calcul_1</a>,'still_not-bound_in__3',_). constr_name(<a href=%MML%calcul_1.html#K4>k4_calcul_1</a>,'set_of_CQC-WFF-seq',_). constr_name(<a href=%MML%calcul_1.html#R3>r3_calcul_1</a>,is_a_correct_step,_). constr_name(<a href=%MML%calcul_1.html#V1>v1_calcul_1</a>,a_proof,_). constr_name(<a href=%MML%calcul_1.html#R4>r4_calcul_1</a>,'|-__6',_). constr_name(<a href=%MML%calcul_1.html#R5>r5_calcul_1</a>,is_formal_provable_from,_). constr_name(<a href=%MML%calcul_1.html#R6>r6_calcul_1</a>,'|=__9',_). constr_name(<a href=%MML%calcul_1.html#R7>r7_calcul_1</a>,'|=__10',_). constr_name(<a href=%MML%calcul_1.html#R8>r8_calcul_1</a>,'|=__11',_). constr_name(<a href=%MML%calcul_1.html#R9>r9_calcul_1</a>,'|=__12',_). constr_name(<a href=%MML%calcul_1.html#R10>r10_calcul_1</a>,'|=__13',_). constr_name(<a href=%MML%calcul_2.html#K1>k1_calcul_2</a>,seq,_). constr_name(<a href=%MML%calcul_2.html#K2>k2_calcul_2</a>,seq__2,_). constr_name(<a href=%MML%calcul_2.html#K3>k3_calcul_2</a>,'Per',_). constr_name(<a href=%MML%calcul_2.html#K4>k4_calcul_2</a>,'Begin',_). constr_name(<a href=%MML%calcul_2.html#K5>k5_calcul_2</a>,'Impl',_). constr_name(<a href=%MML%calcul_2.html#K6>k6_calcul_2</a>,'IdFinS',_). constr_name(<a href=%MML%henmodel.html#K1>k1_henmodel</a>,'min*',_). constr_name(<a href=%MML%henmodel.html#R1>r1_henmodel</a>,'|-__7',_). constr_name(<a href=%MML%henmodel.html#V1>v1_henmodel</a>,'Consistent',_). constr_name(<a href=%MML%henmodel.html#V2>v2_henmodel</a>,'Consistent__2',_). constr_name(<a href=%MML%henmodel.html#K2>k2_henmodel</a>,'HCar',_). constr_name(<a href=%MML%henmodel.html#K3>k3_henmodel</a>,'!__10',_). constr_name(<a href=%MML%henmodel.html#M1>m1_henmodel</a>,'Henkin_interpretation',_). constr_name(<a href=%MML%henmodel.html#K4>k4_henmodel</a>,valH,_). constr_name(<a href=%MML%goedelcp.html#V1>v1_goedelcp</a>,negation_faithful,_). constr_name(<a href=%MML%goedelcp.html#V2>v2_goedelcp</a>,with_examples,_). constr_name(<a href=%MML%goedelcp.html#K1>k1_goedelcp</a>,'ExCl',_). constr_name(<a href=%MML%goedelcp.html#K2>k2_goedelcp</a>,'Ex-bound_in',_). constr_name(<a href=%MML%goedelcp.html#K3>k3_goedelcp</a>,'Ex-the_scope_of',_). constr_name(<a href=%MML%goedelcp.html#K4>k4_goedelcp</a>,bound_in__3,_). constr_name(<a href=%MML%goedelcp.html#K5>k5_goedelcp</a>,the_scope_of__3,_). constr_name(<a href=%MML%goedelcp.html#K6>k6_goedelcp</a>,'still_not-bound_in__4',_). constr_name(<a href=%MML%bvfunc26.html#K1>k1_bvfunc26</a>,''nand'__3',_). constr_name(<a href=%MML%bvfunc26.html#K2>k2_bvfunc26</a>,''nor'__3',_). constr_name(<a href=%MML%bvfunc26.html#K3>k3_bvfunc26</a>,''nand'__4',_). constr_name(<a href=%MML%bvfunc26.html#K4>k4_bvfunc26</a>,''nor'__4',_). constr_name(<a href=%MML%bvfunc26.html#K5>k5_bvfunc26</a>,''nand'__5',_). constr_name(<a href=%MML%bvfunc26.html#K6>k6_bvfunc26</a>,''nor'__5',_). constr_name(<a href=%MML%lp_space.html#K1>k1_lp_space</a>,rto_power,_). constr_name(<a href=%MML%lp_space.html#K2>k2_lp_space</a>,'the_set_of_RealSequences_l^',_). constr_name(<a href=%MML%lp_space.html#K3>k3_lp_space</a>,'l_norm^',_). constr_name(<a href=%MML%lp_space.html#K4>k4_lp_space</a>,'l_Space^',_). constr_name(<a href=%MML%mesfunc3.html#R1>r1_mesfunc3</a>,'are_Re-presentation_of',_). constr_name(<a href=%MML%mesfunc3.html#K1>k1_mesfunc3</a>,integral__4,_). constr_name(<a href=%MML%sin_cos6.html#K1>k1_sin_cos6</a>,arcsin,_). constr_name(<a href=%MML%sin_cos6.html#K2>k2_sin_cos6</a>,arcsin__2,_). constr_name(<a href=%MML%sin_cos6.html#K3>k3_sin_cos6</a>,arcsin__3,_). constr_name(<a href=%MML%sin_cos6.html#K4>k4_sin_cos6</a>,arccos,_). constr_name(<a href=%MML%sin_cos6.html#K5>k5_sin_cos6</a>,arccos__2,_). constr_name(<a href=%MML%sin_cos6.html#K6>k6_sin_cos6</a>,arccos__3,_). constr_name(<a href=%MML%jordan21.html#V1>v1_jordan21</a>,with_the_max_arc,_). constr_name(<a href=%MML%jordan21.html#K1>k1_jordan21</a>,'UMP',_). constr_name(<a href=%MML%jordan21.html#K2>k2_jordan21</a>,'LMP',_). constr_name(<a href=%MML%ncfcont2.html#R1>r1_ncfcont2</a>,is_uniformly_continuous_on__4,_). constr_name(<a href=%MML%ncfcont2.html#R2>r2_ncfcont2</a>,is_uniformly_continuous_on__5,_). constr_name(<a href=%MML%ncfcont2.html#R3>r3_ncfcont2</a>,is_uniformly_continuous_on__6,_). constr_name(<a href=%MML%ncfcont2.html#R4>r4_ncfcont2</a>,is_uniformly_continuous_on__7,_). constr_name(<a href=%MML%ncfcont2.html#R5>r5_ncfcont2</a>,is_uniformly_continuous_on__8,_). constr_name(<a href=%MML%ncfcont2.html#R6>r6_ncfcont2</a>,is_uniformly_continuous_on__9,_). constr_name(<a href=%MML%ncfcont2.html#M1>m1_ncfcont2</a>,contraction__3,_). constr_name(<a href=%MML%rltopsp1.html#K1>k1_rltopsp1</a>,'LSeg__4',_). constr_name(<a href=%MML%rltopsp1.html#V1>v1_rltopsp1</a>,'convex-membered',_). constr_name(<a href=%MML%rltopsp1.html#K2>k2_rltopsp1</a>,'-__105',_). constr_name(<a href=%MML%rltopsp1.html#V2>v2_rltopsp1</a>,symmetric__9,_). constr_name(<a href=%MML%rltopsp1.html#V3>v3_rltopsp1</a>,circled,_). constr_name(<a href=%MML%rltopsp1.html#V4>v4_rltopsp1</a>,'circled-membered',_). constr_name(<a href=%MML%rltopsp1.html#L1>l1_rltopsp1</a>,'RLTopStruct',_). constr_name(<a href=%MML%rltopsp1.html#V5>v5_rltopsp1</a>,strict__RLTopStruct,_). constr_name(<a href=%MML%rltopsp1.html#G1>g1_rltopsp1</a>,'RLTopStruct_constr',_). constr_name(<a href=%MML%rltopsp1.html#V6>v6_rltopsp1</a>,'add-continuous',_). constr_name(<a href=%MML%rltopsp1.html#V7>v7_rltopsp1</a>,'Mult-continuous',_). constr_name(<a href=%MML%rltopsp1.html#K3>k3_rltopsp1</a>,transl__2,_). constr_name(<a href=%MML%rltopsp1.html#V8>v8_rltopsp1</a>,'locally-convex',_). constr_name(<a href=%MML%rltopsp1.html#V9>v9_rltopsp1</a>,bounded__18,_). constr_name(<a href=%MML%rltopsp1.html#K4>k4_rltopsp1</a>,mlt__5,_). constr_name(<a href=%MML%topreala.html#K1>k1_topreala</a>,'Trectangle',_). constr_name(<a href=%MML%topreala.html#K2>k2_topreala</a>,'R2Homeomorphism',_). constr_name(<a href=%MML%toprealb.html#K1>k1_toprealb</a>,'IntIntervals',_). constr_name(<a href=%MML%toprealb.html#K2>k2_toprealb</a>,'IntIntervals__2',_). constr_name(<a href=%MML%toprealb.html#K3>k3_toprealb</a>,'IntIntervals__3',_). constr_name(<a href=%MML%toprealb.html#K4>k4_toprealb</a>,'R^1__3',_). constr_name(<a href=%MML%toprealb.html#K5>k5_toprealb</a>,'R^1__4',_). constr_name(<a href=%MML%toprealb.html#K6>k6_toprealb</a>,'R^1__5',_). constr_name(<a href=%MML%toprealb.html#V1>v1_toprealb</a>,being_simple_closed_curve__2,_). constr_name(<a href=%MML%toprealb.html#K7>k7_toprealb</a>,'Tcircle',_). constr_name(<a href=%MML%toprealb.html#K8>k8_toprealb</a>,'Tunit_circle',_). constr_name(<a href=%MML%toprealb.html#K9>k9_toprealb</a>,'c[10]',_). constr_name(<a href=%MML%toprealb.html#K10>k10_toprealb</a>,'c[-10]',_). constr_name(<a href=%MML%toprealb.html#K11>k11_toprealb</a>,'Topen_unit_circle',_). constr_name(<a href=%MML%toprealb.html#K12>k12_toprealb</a>,'CircleMap',_). constr_name(<a href=%MML%toprealb.html#K13>k13_toprealb</a>,'CircleMap__2',_). constr_name(<a href=%MML%toprealb.html#K14>k14_toprealb</a>,'Circle2IntervalR',_). constr_name(<a href=%MML%toprealb.html#K15>k15_toprealb</a>,'Circle2IntervalL',_). constr_name(<a href=%MML%pencil_3.html#K1>k1_pencil_3</a>,diff__7,_). constr_name(<a href=%MML%pencil_3.html#R1>r1_pencil_3</a>,''||'__5',_). constr_name(<a href=%MML%pencil_3.html#K2>k2_pencil_3</a>,permutation_of_indices,_). constr_name(<a href=%MML%pencil_3.html#K3>k3_pencil_3</a>,canonical_embedding,_). constr_name(<a href=%MML%pencil_3.html#K4>k4_pencil_3</a>,canonical_embedding__2,_). constr_name(<a href=%MML%pencil_4.html#K1>k1_pencil_4</a>,segment,_). constr_name(<a href=%MML%pencil_4.html#K2>k2_pencil_4</a>,pencil,_). constr_name(<a href=%MML%pencil_4.html#K3>k3_pencil_4</a>,pencil__2,_). constr_name(<a href=%MML%pencil_4.html#K4>k4_pencil_4</a>,'Pencils_of',_). constr_name(<a href=%MML%pencil_4.html#K5>k5_pencil_4</a>,'PencilSpace',_). constr_name(<a href=%MML%pencil_4.html#K6>k6_pencil_4</a>,'SubspaceSet',_). constr_name(<a href=%MML%pencil_4.html#K7>k7_pencil_4</a>,'GrassmannSpace',_). constr_name(<a href=%MML%pencil_4.html#K8>k8_pencil_4</a>,'PairSet',_). constr_name(<a href=%MML%pencil_4.html#K9>k9_pencil_4</a>,'PairSet__2',_). constr_name(<a href=%MML%pencil_4.html#K10>k10_pencil_4</a>,'PairSetFamily',_). constr_name(<a href=%MML%pencil_4.html#K11>k11_pencil_4</a>,'VeroneseSpace',_). constr_name(<a href=%MML%pencil_4.html#K12>k12_pencil_4</a>,'VeroneseSpace__2',_). constr_name(<a href=%MML%topgen_1.html#K1>k1_topgen_1</a>,'\\__20',_). constr_name(<a href=%MML%topgen_1.html#K2>k2_topgen_1</a>,'Fr__2',_). constr_name(<a href=%MML%topgen_1.html#R1>r1_topgen_1</a>,is_an_accumulation_point_of,_). constr_name(<a href=%MML%topgen_1.html#K3>k3_topgen_1</a>,'Der',_). constr_name(<a href=%MML%topgen_1.html#R2>r2_topgen_1</a>,is_isolated_in,_). constr_name(<a href=%MML%topgen_1.html#V1>v1_topgen_1</a>,isolated,_). constr_name(<a href=%MML%topgen_1.html#K4>k4_topgen_1</a>,'Der__2',_). constr_name(<a href=%MML%topgen_1.html#V2>v2_topgen_1</a>,'dense-in-itself',_). constr_name(<a href=%MML%topgen_1.html#V3>v3_topgen_1</a>,'dense-in-itself__2',_). constr_name(<a href=%MML%topgen_1.html#V4>v4_topgen_1</a>,'dense-in-itself__3',_). constr_name(<a href=%MML%topgen_1.html#V5>v5_topgen_1</a>,perfect,_). constr_name(<a href=%MML%topgen_1.html#V6>v6_topgen_1</a>,scattered,_). constr_name(<a href=%MML%topgen_1.html#K5>k5_topgen_1</a>,density,_). constr_name(<a href=%MML%topgen_1.html#V7>v7_topgen_1</a>,separable,_). constr_name(<a href=%MML%groeb_3.html#K1>k1_groeb_3</a>,'{..}__52',_). constr_name(<a href=%MML%groeb_3.html#K2>k2_groeb_3</a>,'|__36',_). constr_name(<a href=%MML%groeb_3.html#K3>k3_groeb_3</a>,'Upper_Support',_). constr_name(<a href=%MML%groeb_3.html#K4>k4_groeb_3</a>,'Lower_Support',_). constr_name(<a href=%MML%groeb_3.html#K5>k5_groeb_3</a>,'Up__5',_). constr_name(<a href=%MML%groeb_3.html#K6>k6_groeb_3</a>,'Low',_). constr_name(<a href=%MML%matrix_5.html#K1>k1_matrix_5</a>,'COMPLEX2Field',_). constr_name(<a href=%MML%matrix_5.html#K2>k2_matrix_5</a>,'Field2COMPLEX',_). constr_name(<a href=%MML%matrix_5.html#K3>k3_matrix_5</a>,'+__104',_). constr_name(<a href=%MML%matrix_5.html#K4>k4_matrix_5</a>,'-__106',_). constr_name(<a href=%MML%matrix_5.html#K5>k5_matrix_5</a>,'-__107',_). constr_name(<a href=%MML%matrix_5.html#K6>k6_matrix_5</a>,'*__176',_). constr_name(<a href=%MML%matrix_5.html#K7>k7_matrix_5</a>,'*__177',_). constr_name(<a href=%MML%matrix_5.html#K8>k8_matrix_5</a>,'0_Cx',_). constr_name(<a href=%MML%matrix_5.html#K9>k9_matrix_5</a>,'.__164',_). constr_name(<a href=%MML%topgen_2.html#K1>k1_topgen_2</a>,'Chi',_). constr_name(<a href=%MML%topgen_2.html#K2>k2_topgen_2</a>,'Chi__2',_). constr_name(<a href=%MML%topgen_2.html#M1>m1_topgen_2</a>,'Neighborhood_System',_). constr_name(<a href=%MML%topgen_2.html#K3>k3_topgen_2</a>,'Union__7',_). constr_name(<a href=%MML%topgen_2.html#K4>k4_topgen_2</a>,'.__165',_). constr_name(<a href=%MML%topgen_2.html#V1>v1_topgen_2</a>,'finite-weight',_). constr_name(<a href=%MML%topgen_2.html#K5>k5_topgen_2</a>,'DiscrWithInfin',_). constr_name(<a href=%MML%topgen_3.html#V1>v1_topgen_3</a>,'point-filtered',_). constr_name(<a href=%MML%topgen_3.html#K1>k1_topgen_3</a>,rng__24,_). constr_name(<a href=%MML%topgen_3.html#K2>k2_topgen_3</a>,'Sorgenfrey-line',_). constr_name(<a href=%MML%topgen_3.html#R1>r1_topgen_3</a>,is_local_minimum_of,_). constr_name(<a href=%MML%topgen_3.html#K3>k3_topgen_3</a>,continuum,_). constr_name(<a href=%MML%topgen_3.html#K4>k4_topgen_3</a>,'-powers',_). constr_name(<a href=%MML%topgen_3.html#K5>k5_topgen_3</a>,'ClFinTop',_). constr_name(<a href=%MML%topgen_3.html#K6>k6_topgen_3</a>,'-PointClTop',_). constr_name(<a href=%MML%topgen_3.html#K7>k7_topgen_3</a>,'-DiscreteTop',_). constr_name(<a href=%MML%partfun3.html#V1>v1_partfun3</a>,'positive-yielding',_). constr_name(<a href=%MML%partfun3.html#V2>v2_partfun3</a>,'negative-yielding',_). constr_name(<a href=%MML%partfun3.html#V3>v3_partfun3</a>,'nonpositive-yielding',_). constr_name(<a href=%MML%partfun3.html#V4>v4_partfun3</a>,'nonnegative-yielding',_). constr_name(<a href=%MML%partfun3.html#K1>k1_partfun3</a>,sqrt__4,_). constr_name(<a href=%MML%partfun3.html#K2>k2_partfun3</a>,sqrt__5,_). constr_name(<a href=%MML%partfun3.html#K3>k3_partfun3</a>,'+__105',_). constr_name(<a href=%MML%partfun3.html#K4>k4_partfun3</a>,'-__108',_). constr_name(<a href=%MML%partfun3.html#K5>k5_partfun3</a>,'(#)__35',_). constr_name(<a href=%MML%partfun3.html#K6>k6_partfun3</a>,'-__109',_). constr_name(<a href=%MML%partfun3.html#K7>k7_partfun3</a>,abs__14,_). constr_name(<a href=%MML%partfun3.html#K8>k8_partfun3</a>,sqrt__6,_). constr_name(<a href=%MML%partfun3.html#K9>k9_partfun3</a>,'(#)__36',_). constr_name(<a href=%MML%partfun3.html#K10>k10_partfun3</a>,'^__25',_). constr_name(<a href=%MML%partfun3.html#K11>k11_partfun3</a>,'/__28',_). constr_name(<a href=%MML%partfun3.html#K12>k12_partfun3</a>,'+__106',_). constr_name(<a href=%MML%partfun3.html#K13>k13_partfun3</a>,'-__110',_). constr_name(<a href=%MML%partfun3.html#K14>k14_partfun3</a>,'(#)__37',_). constr_name(<a href=%MML%partfun3.html#K15>k15_partfun3</a>,'-__111',_). constr_name(<a href=%MML%partfun3.html#K16>k16_partfun3</a>,abs__15,_). constr_name(<a href=%MML%partfun3.html#K17>k17_partfun3</a>,sqrt__7,_). constr_name(<a href=%MML%partfun3.html#K18>k18_partfun3</a>,'(#)__38',_). constr_name(<a href=%MML%partfun3.html#K19>k19_partfun3</a>,'^__26',_). constr_name(<a href=%MML%partfun3.html#K20>k20_partfun3</a>,'/__29',_). constr_name(<a href=%MML%robbins3.html#V1>v1_robbins3</a>,'join-Associative',_). constr_name(<a href=%MML%robbins3.html#V2>v2_robbins3</a>,'meet-Associative',_). constr_name(<a href=%MML%robbins3.html#V3>v3_robbins3</a>,'meet-Absorbing',_). constr_name(<a href=%MML%robbins3.html#L1>l1_robbins3</a>,'\\/-SemiLattRelStr',_). constr_name(<a href=%MML%robbins3.html#V4>v4_robbins3</a>,'strict__\\/-SemiLattRelStr',_). constr_name(<a href=%MML%robbins3.html#G1>g1_robbins3</a>,'\\/-SemiLattRelStr_constr',_). constr_name(<a href=%MML%robbins3.html#L2>l2_robbins3</a>,'/\\-SemiLattRelStr',_). constr_name(<a href=%MML%robbins3.html#V5>v5_robbins3</a>,'strict__/\\-SemiLattRelStr',_). constr_name(<a href=%MML%robbins3.html#G2>g2_robbins3</a>,'/\\-SemiLattRelStr_constr',_). constr_name(<a href=%MML%robbins3.html#L3>l3_robbins3</a>,'LattRelStr',_). constr_name(<a href=%MML%robbins3.html#V6>v6_robbins3</a>,strict__LattRelStr,_). constr_name(<a href=%MML%robbins3.html#G3>g3_robbins3</a>,'LattRelStr_constr',_). constr_name(<a href=%MML%robbins3.html#K1>k1_robbins3</a>,'TrivLattRelStr',_). constr_name(<a href=%MML%robbins3.html#K2>k2_robbins3</a>,'LattRel__3',_). constr_name(<a href=%MML%robbins3.html#L4>l4_robbins3</a>,'OrthoLattRelStr',_). constr_name(<a href=%MML%robbins3.html#V7>v7_robbins3</a>,strict__OrthoLattRelStr,_). constr_name(<a href=%MML%robbins3.html#G4>g4_robbins3</a>,'OrthoLattRelStr_constr',_). constr_name(<a href=%MML%robbins3.html#K3>k3_robbins3</a>,'TrivCLRelStr',_). constr_name(<a href=%MML%robbins3.html#V8>v8_robbins3</a>,involutive__2,_). constr_name(<a href=%MML%robbins3.html#V9>v9_robbins3</a>,with_Top,_). constr_name(<a href=%MML%robbins3.html#M1>m1_robbins3</a>,'RelAugmentation',_). constr_name(<a href=%MML%robbins3.html#M2>m2_robbins3</a>,'LatAugmentation',_). constr_name(<a href=%MML%robbins3.html#V10>v10_robbins3</a>,'naturally_sup-generated',_). constr_name(<a href=%MML%robbins3.html#V11>v11_robbins3</a>,'naturally_inf-generated',_). constr_name(<a href=%MML%robbins3.html#M3>m3_robbins3</a>,'CLatAugmentation',_). constr_name(<a href=%MML%robbins3.html#K4>k4_robbins3</a>,'|^|',_). constr_name(<a href=%MML%robbins3.html#K5>k5_robbins3</a>,'|_|',_). constr_name(<a href=%MML%mathmorp.html#K1>k1_mathmorp</a>,'+__107',_). constr_name(<a href=%MML%mathmorp.html#K2>k2_mathmorp</a>,'!__11',_). constr_name(<a href=%MML%mathmorp.html#K3>k3_mathmorp</a>,'(-)',_). constr_name(<a href=%MML%mathmorp.html#K4>k4_mathmorp</a>,'(+)',_). constr_name(<a href=%MML%mathmorp.html#K5>k5_mathmorp</a>,'(O)',_). constr_name(<a href=%MML%mathmorp.html#K6>k6_mathmorp</a>,'(o)',_). constr_name(<a href=%MML%mathmorp.html#K7>k7_mathmorp</a>,'(.)',_). constr_name(<a href=%MML%mathmorp.html#K8>k8_mathmorp</a>,'(*)',_). constr_name(<a href=%MML%mathmorp.html#K9>k9_mathmorp</a>,'(&)',_). constr_name(<a href=%MML%mathmorp.html#K10>k10_mathmorp</a>,'(@)',_). constr_name(<a href=%MML%jordan23.html#V1>v1_jordan23</a>,'almost-one-to-one',_). constr_name(<a href=%MML%jordan23.html#V2>v2_jordan23</a>,'weakly-one-to-one',_). constr_name(<a href=%MML%jordan23.html#V3>v3_jordan23</a>,'poorly-one-to-one',_). constr_name(<a href=%MML%glib_000.html#M1>m1_glib_000</a>,'GraphStruct',_). constr_name(<a href=%MML%glib_000.html#K1>k1_glib_000</a>,'VertexSelector',_). constr_name(<a href=%MML%glib_000.html#K2>k2_glib_000</a>,'EdgeSelector',_). constr_name(<a href=%MML%glib_000.html#K3>k3_glib_000</a>,'SourceSelector',_). constr_name(<a href=%MML%glib_000.html#K4>k4_glib_000</a>,'TargetSelector',_). constr_name(<a href=%MML%glib_000.html#K5>k5_glib_000</a>,'_GraphSelectors',_). constr_name(<a href=%MML%glib_000.html#K6>k6_glib_000</a>,the_Vertices_of,_). constr_name(<a href=%MML%glib_000.html#K7>k7_glib_000</a>,the_Edges_of,_). constr_name(<a href=%MML%glib_000.html#K8>k8_glib_000</a>,the_Source_of,_). constr_name(<a href=%MML%glib_000.html#K9>k9_glib_000</a>,the_Target_of,_). constr_name(<a href=%MML%glib_000.html#V1>v1_glib_000</a>,'[Graph-like]',_). constr_name(<a href=%MML%glib_000.html#K10>k10_glib_000</a>,the_Source_of__2,_). constr_name(<a href=%MML%glib_000.html#K11>k11_glib_000</a>,the_Target_of__2,_). constr_name(<a href=%MML%glib_000.html#K12>k12_glib_000</a>,createGraph,_). constr_name(<a href=%MML%glib_000.html#K13>k13_glib_000</a>,'.set',_). constr_name(<a href=%MML%glib_000.html#K14>k14_glib_000</a>,'.strict',_). constr_name(<a href=%MML%glib_000.html#R1>r1_glib_000</a>,'Joins',_). constr_name(<a href=%MML%glib_000.html#R2>r2_glib_000</a>,'DJoins',_). constr_name(<a href=%MML%glib_000.html#R3>r3_glib_000</a>,'SJoins',_). constr_name(<a href=%MML%glib_000.html#R4>r4_glib_000</a>,'DSJoins',_). constr_name(<a href=%MML%glib_000.html#V2>v2_glib_000</a>,finite__5,_). constr_name(<a href=%MML%glib_000.html#V3>v3_glib_000</a>,loopless,_). constr_name(<a href=%MML%glib_000.html#V4>v4_glib_000</a>,trivial__4,_). constr_name(<a href=%MML%glib_000.html#V5>v5_glib_000</a>,'non-multi__2',_). constr_name(<a href=%MML%glib_000.html#V6>v6_glib_000</a>,'non-Dmulti',_). constr_name(<a href=%MML%glib_000.html#V7>v7_glib_000</a>,simple__4,_). constr_name(<a href=%MML%glib_000.html#V8>v8_glib_000</a>,'Dsimple',_). constr_name(<a href=%MML%glib_000.html#K15>k15_glib_000</a>,'.order()',_). constr_name(<a href=%MML%glib_000.html#K16>k16_glib_000</a>,'.order()__2',_). constr_name(<a href=%MML%glib_000.html#K17>k17_glib_000</a>,'.size()',_). constr_name(<a href=%MML%glib_000.html#K18>k18_glib_000</a>,'.size()__2',_). constr_name(<a href=%MML%glib_000.html#K19>k19_glib_000</a>,'.edgesInto',_). constr_name(<a href=%MML%glib_000.html#K20>k20_glib_000</a>,'.edgesOutOf',_). constr_name(<a href=%MML%glib_000.html#K21>k21_glib_000</a>,'.edgesInOut',_). constr_name(<a href=%MML%glib_000.html#K22>k22_glib_000</a>,'.edgesBetween',_). constr_name(<a href=%MML%glib_000.html#K23>k23_glib_000</a>,'.edgesBetween__2',_). constr_name(<a href=%MML%glib_000.html#K24>k24_glib_000</a>,'.edgesDBetween',_). constr_name(<a href=%MML%glib_000.html#M2>m2_glib_000</a>,'Subgraph__2',_). constr_name(<a href=%MML%glib_000.html#K25>k25_glib_000</a>,the_Vertices_of__2,_). constr_name(<a href=%MML%glib_000.html#K26>k26_glib_000</a>,the_Edges_of__2,_). constr_name(<a href=%MML%glib_000.html#V9>v9_glib_000</a>,spanning,_). constr_name(<a href=%MML%glib_000.html#R5>r5_glib_000</a>,'==',_). constr_name(<a href=%MML%glib_000.html#R6>r6_glib_000</a>,'c=__12',_). constr_name(<a href=%MML%glib_000.html#R7>r7_glib_000</a>,'c<__2',_). constr_name(<a href=%MML%glib_000.html#M3>m3_glib_000</a>,inducedSubgraph,_). constr_name(<a href=%MML%glib_000.html#K27>k27_glib_000</a>,'.edgesIn()',_). constr_name(<a href=%MML%glib_000.html#K28>k28_glib_000</a>,'.edgesOut()',_). constr_name(<a href=%MML%glib_000.html#K29>k29_glib_000</a>,'.edgesInOut()',_). constr_name(<a href=%MML%glib_000.html#K30>k30_glib_000</a>,'.adj',_). constr_name(<a href=%MML%glib_000.html#K31>k31_glib_000</a>,'.inDegree()',_). constr_name(<a href=%MML%glib_000.html#K32>k32_glib_000</a>,'.outDegree()',_). constr_name(<a href=%MML%glib_000.html#K33>k33_glib_000</a>,'.inDegree()__2',_). constr_name(<a href=%MML%glib_000.html#K34>k34_glib_000</a>,'.outDegree()__2',_). constr_name(<a href=%MML%glib_000.html#K35>k35_glib_000</a>,'.degree()',_). constr_name(<a href=%MML%glib_000.html#K36>k36_glib_000</a>,'.degree()__2',_). constr_name(<a href=%MML%glib_000.html#K37>k37_glib_000</a>,'.inNeighbors()',_). constr_name(<a href=%MML%glib_000.html#K38>k38_glib_000</a>,'.outNeighbors()',_). constr_name(<a href=%MML%glib_000.html#K39>k39_glib_000</a>,'.allNeighbors()',_). constr_name(<a href=%MML%glib_000.html#V10>v10_glib_000</a>,isolated__2,_). constr_name(<a href=%MML%glib_000.html#V11>v11_glib_000</a>,endvertex,_). constr_name(<a href=%MML%glib_000.html#V12>v12_glib_000</a>,'Graph-yielding',_). constr_name(<a href=%MML%glib_000.html#V13>v13_glib_000</a>,halting__6,_). constr_name(<a href=%MML%glib_000.html#K40>k40_glib_000</a>,'.Lifespan()',_). constr_name(<a href=%MML%glib_000.html#K41>k41_glib_000</a>,'.Result()',_). constr_name(<a href=%MML%glib_000.html#K42>k42_glib_000</a>,'.->',_). constr_name(<a href=%MML%glib_000.html#V14>v14_glib_000</a>,finite__6,_). constr_name(<a href=%MML%glib_000.html#V15>v15_glib_000</a>,loopless__2,_). constr_name(<a href=%MML%glib_000.html#V16>v16_glib_000</a>,trivial__5,_). constr_name(<a href=%MML%glib_000.html#V17>v17_glib_000</a>,'non-trivial',_). constr_name(<a href=%MML%glib_000.html#V18>v18_glib_000</a>,'non-multi__3',_). constr_name(<a href=%MML%glib_000.html#V19>v19_glib_000</a>,'non-Dmulti__2',_). constr_name(<a href=%MML%glib_000.html#V20>v20_glib_000</a>,simple__5,_). constr_name(<a href=%MML%glib_000.html#V21>v21_glib_000</a>,'Dsimple__2',_). constr_name(<a href=%MML%glib_001.html#M1>m1_glib_001</a>,'VertexSeq',_). constr_name(<a href=%MML%glib_001.html#M2>m2_glib_001</a>,'EdgeSeq',_). constr_name(<a href=%MML%glib_001.html#M3>m3_glib_001</a>,'Walk',_). constr_name(<a href=%MML%glib_001.html#K1>k1_glib_001</a>,'.walkOf',_). constr_name(<a href=%MML%glib_001.html#K2>k2_glib_001</a>,'.walkOf__2',_). constr_name(<a href=%MML%glib_001.html#K3>k3_glib_001</a>,'.first()',_). constr_name(<a href=%MML%glib_001.html#K4>k4_glib_001</a>,'.last()',_). constr_name(<a href=%MML%glib_001.html#K5>k5_glib_001</a>,'.vertexAt',_). constr_name(<a href=%MML%glib_001.html#K6>k6_glib_001</a>,'.reverse()',_). constr_name(<a href=%MML%glib_001.html#K7>k7_glib_001</a>,'.append',_). constr_name(<a href=%MML%glib_001.html#K8>k8_glib_001</a>,'.cut',_). constr_name(<a href=%MML%glib_001.html#K9>k9_glib_001</a>,'.remove',_). constr_name(<a href=%MML%glib_001.html#K10>k10_glib_001</a>,'.addEdge',_). constr_name(<a href=%MML%glib_001.html#K11>k11_glib_001</a>,'.vertexSeq()',_). constr_name(<a href=%MML%glib_001.html#K12>k12_glib_001</a>,'.edgeSeq()',_). constr_name(<a href=%MML%glib_001.html#K13>k13_glib_001</a>,'.vertices()',_). constr_name(<a href=%MML%glib_001.html#K14>k14_glib_001</a>,'.edges()',_). constr_name(<a href=%MML%glib_001.html#K15>k15_glib_001</a>,'.length()',_). constr_name(<a href=%MML%glib_001.html#K16>k16_glib_001</a>,'.find',_). constr_name(<a href=%MML%glib_001.html#K17>k17_glib_001</a>,'.find__2',_). constr_name(<a href=%MML%glib_001.html#K18>k18_glib_001</a>,'.rfind',_). constr_name(<a href=%MML%glib_001.html#K19>k19_glib_001</a>,'.rfind__2',_). constr_name(<a href=%MML%glib_001.html#R1>r1_glib_001</a>,is_Walk_from,_). constr_name(<a href=%MML%glib_001.html#V1>v1_glib_001</a>,closed__13,_). constr_name(<a href=%MML%glib_001.html#V2>v2_glib_001</a>,directed__4,_). constr_name(<a href=%MML%glib_001.html#V3>v3_glib_001</a>,trivial__6,_). constr_name(<a href=%MML%glib_001.html#V4>v4_glib_001</a>,'Trail-like',_). constr_name(<a href=%MML%glib_001.html#V5>v5_glib_001</a>,'Path-like',_). constr_name(<a href=%MML%glib_001.html#V6>v6_glib_001</a>,'vertex-distinct',_). constr_name(<a href=%MML%glib_001.html#V7>v7_glib_001</a>,'Circuit-like__2',_). constr_name(<a href=%MML%glib_001.html#V8>v8_glib_001</a>,'Cycle-like',_). constr_name(<a href=%MML%glib_001.html#M4>m4_glib_001</a>,'Subwalk',_). constr_name(<a href=%MML%glib_001.html#K20>k20_glib_001</a>,'.remove__2',_). constr_name(<a href=%MML%glib_001.html#K21>k21_glib_001</a>,'.allWalks()',_). constr_name(<a href=%MML%glib_001.html#K22>k22_glib_001</a>,'.allTrails()',_). constr_name(<a href=%MML%glib_001.html#K23>k23_glib_001</a>,'.allPaths()',_). constr_name(<a href=%MML%glib_001.html#K24>k24_glib_001</a>,'.allDWalks()',_). constr_name(<a href=%MML%glib_001.html#K25>k25_glib_001</a>,'.allDTrails()',_). constr_name(<a href=%MML%glib_001.html#K26>k26_glib_001</a>,'.allDPaths()',_). constr_name(<a href=%MML%glib_001.html#M5>m5_glib_001</a>,'Element__61',_). constr_name(<a href=%MML%glib_001.html#M6>m6_glib_001</a>,'Element__62',_). constr_name(<a href=%MML%glib_001.html#M7>m7_glib_001</a>,'Element__63',_). constr_name(<a href=%MML%glib_001.html#M8>m8_glib_001</a>,'Element__64',_). constr_name(<a href=%MML%glib_001.html#M9>m9_glib_001</a>,'Element__65',_). constr_name(<a href=%MML%glib_001.html#M10>m10_glib_001</a>,'Element__66',_). constr_name(<a href=%MML%glib_002.html#V1>v1_glib_002</a>,connected__10,_). constr_name(<a href=%MML%glib_002.html#V2>v2_glib_002</a>,acyclic,_). constr_name(<a href=%MML%glib_002.html#V3>v3_glib_002</a>,'Tree-like__2',_). constr_name(<a href=%MML%glib_002.html#R1>r1_glib_002</a>,is_DTree_rooted_at,_). constr_name(<a href=%MML%glib_002.html#K1>k1_glib_002</a>,'.reachableFrom',_). constr_name(<a href=%MML%glib_002.html#K2>k2_glib_002</a>,'.reachableDFrom',_). constr_name(<a href=%MML%glib_002.html#V4>v4_glib_002</a>,'Component-like',_). constr_name(<a href=%MML%glib_002.html#K3>k3_glib_002</a>,'.componentSet()',_). constr_name(<a href=%MML%glib_002.html#K4>k4_glib_002</a>,'.numComponents()',_). constr_name(<a href=%MML%glib_002.html#K5>k5_glib_002</a>,'.numComponents()__2',_). constr_name(<a href=%MML%glib_002.html#V5>v5_glib_002</a>,'cut-vertex',_). constr_name(<a href=%MML%glib_002.html#V6>v6_glib_002</a>,connected__11,_). constr_name(<a href=%MML%glib_002.html#V7>v7_glib_002</a>,acyclic__2,_). constr_name(<a href=%MML%glib_002.html#V8>v8_glib_002</a>,'Tree-like__3',_). constr_name(<a href=%MML%glib_003.html#K1>k1_glib_003</a>,'Seq__2',_). constr_name(<a href=%MML%glib_003.html#K2>k2_glib_003</a>,'WeightSelector',_). constr_name(<a href=%MML%glib_003.html#K3>k3_glib_003</a>,'ELabelSelector',_). constr_name(<a href=%MML%glib_003.html#K4>k4_glib_003</a>,'VLabelSelector',_). constr_name(<a href=%MML%glib_003.html#V1>v1_glib_003</a>,'[Weighted]',_). constr_name(<a href=%MML%glib_003.html#V2>v2_glib_003</a>,'[ELabeled]',_). constr_name(<a href=%MML%glib_003.html#V3>v3_glib_003</a>,'[VLabeled]',_). constr_name(<a href=%MML%glib_003.html#K5>k5_glib_003</a>,the_Weight_of,_). constr_name(<a href=%MML%glib_003.html#K6>k6_glib_003</a>,the_ELabel_of,_). constr_name(<a href=%MML%glib_003.html#K7>k7_glib_003</a>,the_VLabel_of,_). constr_name(<a href=%MML%glib_003.html#V4>v4_glib_003</a>,'weight-inheriting',_). constr_name(<a href=%MML%glib_003.html#V5>v5_glib_003</a>,'elabel-inheriting',_). constr_name(<a href=%MML%glib_003.html#V6>v6_glib_003</a>,'vlabel-inheriting',_). constr_name(<a href=%MML%glib_003.html#V7>v7_glib_003</a>,'real-weighted',_). constr_name(<a href=%MML%glib_003.html#V8>v8_glib_003</a>,'nonnegative-weighted',_). constr_name(<a href=%MML%glib_003.html#V9>v9_glib_003</a>,'real-elabeled',_). constr_name(<a href=%MML%glib_003.html#V10>v10_glib_003</a>,'real-vlabeled',_). constr_name(<a href=%MML%glib_003.html#V11>v11_glib_003</a>,'real-WEV',_). constr_name(<a href=%MML%glib_003.html#K8>k8_glib_003</a>,'.weightSeq()',_). constr_name(<a href=%MML%glib_003.html#K9>k9_glib_003</a>,'.weightSeq()__2',_). constr_name(<a href=%MML%glib_003.html#K10>k10_glib_003</a>,'.cost()',_). constr_name(<a href=%MML%glib_003.html#K11>k11_glib_003</a>,'.labeledE()',_). constr_name(<a href=%MML%glib_003.html#K12>k12_glib_003</a>,'.labelEdge',_). constr_name(<a href=%MML%glib_003.html#K13>k13_glib_003</a>,'.labelVertex',_). constr_name(<a href=%MML%glib_003.html#K14>k14_glib_003</a>,'.labeledV()',_). constr_name(<a href=%MML%glib_003.html#V12>v12_glib_003</a>,'[Weighted]__2',_). constr_name(<a href=%MML%glib_003.html#V13>v13_glib_003</a>,'[ELabeled]__2',_). constr_name(<a href=%MML%glib_003.html#V14>v14_glib_003</a>,'[VLabeled]__2',_). constr_name(<a href=%MML%glib_003.html#V15>v15_glib_003</a>,'real-weighted__2',_). constr_name(<a href=%MML%glib_003.html#V16>v16_glib_003</a>,'nonnegative-weighted__2',_). constr_name(<a href=%MML%glib_003.html#V17>v17_glib_003</a>,'real-elabeled__2',_). constr_name(<a href=%MML%glib_003.html#V18>v18_glib_003</a>,'real-vlabeled__2',_). constr_name(<a href=%MML%glib_003.html#V19>v19_glib_003</a>,'real-WEV__2',_). constr_name(<a href=%MML%glib_004.html#R1>r1_glib_004</a>,is_mincost_DTree_rooted_at,_). constr_name(<a href=%MML%glib_004.html#R2>r2_glib_004</a>,is_mincost_DPath_from,_). constr_name(<a href=%MML%glib_004.html#K1>k1_glib_004</a>,'.min_DPath_cost',_). constr_name(<a href=%MML%glib_004.html#K2>k2_glib_004</a>,'DIJK:NextBestEdges',_). constr_name(<a href=%MML%glib_004.html#K3>k3_glib_004</a>,'DIJK:Step',_). constr_name(<a href=%MML%glib_004.html#K4>k4_glib_004</a>,'DIJK:Init',_). constr_name(<a href=%MML%glib_004.html#K5>k5_glib_004</a>,'DIJK:CompSeq',_). constr_name(<a href=%MML%glib_004.html#K6>k6_glib_004</a>,'DIJK:SSSP',_). constr_name(<a href=%MML%glib_004.html#K7>k7_glib_004</a>,'WGraphSelectors',_). constr_name(<a href=%MML%glib_004.html#K8>k8_glib_004</a>,'.allWSubgraphs()',_). constr_name(<a href=%MML%glib_004.html#M1>m1_glib_004</a>,'Element__67',_). constr_name(<a href=%MML%glib_004.html#K9>k9_glib_004</a>,'.cost()__2',_). constr_name(<a href=%MML%glib_004.html#K10>k10_glib_004</a>,'PRIM:NextBestEdges',_). constr_name(<a href=%MML%glib_004.html#K11>k11_glib_004</a>,'PRIM:Init',_). constr_name(<a href=%MML%glib_004.html#K12>k12_glib_004</a>,'PRIM:Step',_). constr_name(<a href=%MML%glib_004.html#K13>k13_glib_004</a>,'PRIM:CompSeq',_). constr_name(<a href=%MML%glib_004.html#K14>k14_glib_004</a>,'PRIM:MST',_). constr_name(<a href=%MML%glib_004.html#V1>v1_glib_004</a>,'min-cost',_). constr_name(<a href=%MML%glib_005.html#V1>v1_glib_005</a>,'complete-elabeled',_). constr_name(<a href=%MML%glib_005.html#V2>v2_glib_005</a>,'complete-elabeled__2',_). constr_name(<a href=%MML%glib_005.html#V3>v3_glib_005</a>,'natural-weighted',_). constr_name(<a href=%MML%glib_005.html#V4>v4_glib_005</a>,'natural-elabeled',_). constr_name(<a href=%MML%glib_005.html#V5>v5_glib_005</a>,'natural-weighted__2',_). constr_name(<a href=%MML%glib_005.html#V6>v6_glib_005</a>,'natural-elabeled__2',_). constr_name(<a href=%MML%glib_005.html#K1>k1_glib_005</a>,the_ELabel_of__2,_). constr_name(<a href=%MML%glib_005.html#R1>r1_glib_005</a>,has_valid_flow_from,_). constr_name(<a href=%MML%glib_005.html#K2>k2_glib_005</a>,'.flow',_). constr_name(<a href=%MML%glib_005.html#R2>r2_glib_005</a>,has_maximum_flow_from,_). constr_name(<a href=%MML%glib_005.html#R3>r3_glib_005</a>,is_forward_labeling_in,_). constr_name(<a href=%MML%glib_005.html#R4>r4_glib_005</a>,is_backward_labeling_in,_). constr_name(<a href=%MML%glib_005.html#V7>v7_glib_005</a>,augmenting,_). constr_name(<a href=%MML%glib_005.html#K3>k3_glib_005</a>,'AP:NextBestEdges',_). constr_name(<a href=%MML%glib_005.html#K4>k4_glib_005</a>,'AP:Step',_). constr_name(<a href=%MML%glib_005.html#K5>k5_glib_005</a>,'AP:CompSeq',_). constr_name(<a href=%MML%glib_005.html#K6>k6_glib_005</a>,'AP:FindAugPath',_). constr_name(<a href=%MML%glib_005.html#K7>k7_glib_005</a>,'AP:GetAugPath',_). constr_name(<a href=%MML%glib_005.html#K8>k8_glib_005</a>,'.flowSeq()',_). constr_name(<a href=%MML%glib_005.html#K9>k9_glib_005</a>,'.tolerance()',_). constr_name(<a href=%MML%glib_005.html#K10>k10_glib_005</a>,'.tolerance()__2',_). constr_name(<a href=%MML%glib_005.html#K11>k11_glib_005</a>,'FF:PushFlow',_). constr_name(<a href=%MML%glib_005.html#K12>k12_glib_005</a>,'FF:AugmentPath',_). constr_name(<a href=%MML%glib_005.html#K13>k13_glib_005</a>,'FF:Step',_). constr_name(<a href=%MML%glib_005.html#K14>k14_glib_005</a>,'FF:CompSeq',_). constr_name(<a href=%MML%glib_005.html#K15>k15_glib_005</a>,'FF:MaxFlow',_). constr_name(<a href=%MML%rcomp_3.html#V1>v1_rcomp_3</a>,connected__12,_). constr_name(<a href=%MML%rcomp_3.html#M1>m1_rcomp_3</a>,'IntervalCover',_). constr_name(<a href=%MML%rcomp_3.html#M2>m2_rcomp_3</a>,'IntervalCoverPts',_). constr_name(<a href=%MML%topalg_5.html#K1>k1_topalg_5</a>,'ExtendInt',_). constr_name(<a href=%MML%topalg_5.html#K2>k2_topalg_5</a>,'ExtendInt__2',_). constr_name(<a href=%MML%topalg_5.html#K3>k3_topalg_5</a>,'Prj1',_). constr_name(<a href=%MML%topalg_5.html#K4>k4_topalg_5</a>,'Prj2',_). constr_name(<a href=%MML%topalg_5.html#K5>k5_topalg_5</a>,cLoop,_). constr_name(<a href=%MML%topalg_5.html#K6>k6_topalg_5</a>,cLoop__2,_). constr_name(<a href=%MML%topalg_5.html#K7>k7_topalg_5</a>,'Ciso',_). constr_name(<a href=%MML%topalg_5.html#K8>k8_topalg_5</a>,'Ciso__2',_). constr_name(<a href=%MML%brouwer.html#K1>k1_brouwer</a>,'DiffElems',_). constr_name(<a href=%MML%brouwer.html#K2>k2_brouwer</a>,'Tdisk',_). constr_name(<a href=%MML%brouwer.html#K3>k3_brouwer</a>,'HC__2',_). constr_name(<a href=%MML%brouwer.html#K4>k4_brouwer</a>,'HC__3',_). constr_name(<a href=%MML%brouwer.html#K5>k5_brouwer</a>,'BR-map',_). constr_name(<a href=%MML%stirl2_1.html#K1>k1_stirl2_1</a>,'{..}__53',_). constr_name(<a href=%MML%stirl2_1.html#K2>k2_stirl2_1</a>,'{..}__54',_). constr_name(<a href=%MML%stirl2_1.html#K3>k3_stirl2_1</a>,'{..}__55',_). constr_name(<a href=%MML%stirl2_1.html#K4>k4_stirl2_1</a>,'"__40',_). constr_name(<a href=%MML%stirl2_1.html#K5>k5_stirl2_1</a>,'.__166',_). constr_name(<a href=%MML%stirl2_1.html#V1>v1_stirl2_1</a>,'"increasing',_). constr_name(<a href=%MML%stirl2_1.html#K6>k6_stirl2_1</a>,block,_). constr_name(<a href=%MML%stirl2_1.html#K7>k7_stirl2_1</a>,'"**"__2',_). constr_name(<a href=%MML%stirl2_1.html#K8>k8_stirl2_1</a>,'<%..%>__8',_). constr_name(<a href=%MML%stirl2_1.html#K9>k9_stirl2_1</a>,'<%..%>__9',_). constr_name(<a href=%MML%stirl2_1.html#K10>k10_stirl2_1</a>,'Sum__32',_). constr_name(<a href=%MML%stirl2_1.html#K11>k11_stirl2_1</a>,'.__167',_). constr_name(<a href=%MML%stirl2_1.html#V2>v2_stirl2_1</a>,'"increasing__2',_). constr_name(<a href=%MML%setlim_1.html#V1>v1_setlim_1</a>,monotone__9,_). constr_name(<a href=%MML%setlim_1.html#K1>k1_setlim_1</a>,inferior_setsequence,_). constr_name(<a href=%MML%setlim_1.html#K2>k2_setlim_1</a>,superior_setsequence,_). constr_name(<a href=%MML%setlim_1.html#K3>k3_setlim_1</a>,lim__16,_). constr_name(<a href=%MML%setlim_1.html#V2>v2_setlim_1</a>,constant__9,_). constr_name(<a href=%MML%setlim_1.html#K4>k4_setlim_1</a>,'@inferior_setsequence',_). constr_name(<a href=%MML%setlim_1.html#K5>k5_setlim_1</a>,'@superior_setsequence',_). constr_name(<a href=%MML%setlim_1.html#K6>k6_setlim_1</a>,lim_inf__5,_). constr_name(<a href=%MML%setlim_1.html#K7>k7_setlim_1</a>,lim_sup__3,_). constr_name(<a href=%MML%setlim_1.html#V3>v3_setlim_1</a>,convergent__12,_). constr_name(<a href=%MML%setlim_1.html#K8>k8_setlim_1</a>,lim__17,_). constr_name(<a href=%MML%setlim_1.html#K9>k9_setlim_1</a>,'@Complement__2',_). constr_name(<a href=%MML%isomichi.html#V1>v1_isomichi</a>,supercondensed,_). constr_name(<a href=%MML%isomichi.html#V2>v2_isomichi</a>,subcondensed,_). constr_name(<a href=%MML%isomichi.html#K1>k1_isomichi</a>,'Border',_). constr_name(<a href=%MML%isomichi.html#V3>v3_isomichi</a>,'1st_class',_). constr_name(<a href=%MML%isomichi.html#V4>v4_isomichi</a>,'2nd_class',_). constr_name(<a href=%MML%isomichi.html#V5>v5_isomichi</a>,'3rd_class',_). constr_name(<a href=%MML%isomichi.html#V6>v6_isomichi</a>,with_1st_class_subsets,_). constr_name(<a href=%MML%isomichi.html#V7>v7_isomichi</a>,with_2nd_class_subsets,_). constr_name(<a href=%MML%isomichi.html#V8>v8_isomichi</a>,with_3rd_class_subsets,_). constr_name(<a href=%MML%relset_2.html#K1>k1_relset_2</a>,'/\\__32',_). constr_name(<a href=%MML%relset_2.html#K2>k2_relset_2</a>,'.:__51',_). constr_name(<a href=%MML%relset_2.html#K3>k3_relset_2</a>,'"__41',_). constr_name(<a href=%MML%relset_2.html#K4>k4_relset_2</a>,'.:__52',_). constr_name(<a href=%MML%relset_2.html#K5>k5_relset_2</a>,'.:__53',_). constr_name(<a href=%MML%relset_2.html#K6>k6_relset_2</a>,'.:__54',_). constr_name(<a href=%MML%relset_2.html#K7>k7_relset_2</a>,'.:^',_). constr_name(<a href=%MML%relset_2.html#K8>k8_relset_2</a>,'.:^__2',_). constr_name(<a href=%MML%relset_2.html#K9>k9_relset_2</a>,'*__178',_). constr_name(<a href=%MML%complsp2.html#K1>k1_complsp2</a>,'*'__33',_). constr_name(<a href=%MML%complsp2.html#K2>k2_complsp2</a>,'-__112',_). constr_name(<a href=%MML%complsp2.html#K3>k3_complsp2</a>,'+__108',_). constr_name(<a href=%MML%complsp2.html#K4>k4_complsp2</a>,'*__179',_). constr_name(<a href=%MML%complsp2.html#K5>k5_complsp2</a>,'-__113',_). constr_name(<a href=%MML%complsp2.html#K6>k6_complsp2</a>,'Re__4',_). constr_name(<a href=%MML%complsp2.html#K7>k7_complsp2</a>,'Im__4',_). constr_name(<a href=%MML%complsp2.html#K8>k8_complsp2</a>,'|(..)|__5',_). constr_name(<a href=%MML%complsp2.html#K9>k9_complsp2</a>,'|->__8',_). constr_name(<a href=%MML%complsp2.html#K10>k10_complsp2</a>,'.__168',_). constr_name(<a href=%MML%rinfsup1.html#K1>k1_rinfsup1</a>,sup__8,_). constr_name(<a href=%MML%rinfsup1.html#K2>k2_rinfsup1</a>,inf__9,_). constr_name(<a href=%MML%rinfsup1.html#K3>k3_rinfsup1</a>,inferior_realsequence,_). constr_name(<a href=%MML%rinfsup1.html#K4>k4_rinfsup1</a>,superior_realsequence,_). constr_name(<a href=%MML%rinfsup1.html#K5>k5_rinfsup1</a>,lim_sup__4,_). constr_name(<a href=%MML%rinfsup1.html#K6>k6_rinfsup1</a>,lim_inf__6,_). constr_name(<a href=%MML%sin_cos7.html#K1>k1_sin_cos7</a>,'sinh"',_). constr_name(<a href=%MML%sin_cos7.html#K2>k2_sin_cos7</a>,'cosh1"',_). constr_name(<a href=%MML%sin_cos7.html#K3>k3_sin_cos7</a>,'cosh2"',_). constr_name(<a href=%MML%sin_cos7.html#K4>k4_sin_cos7</a>,'tanh"',_). constr_name(<a href=%MML%sin_cos7.html#K5>k5_sin_cos7</a>,'coth"',_). constr_name(<a href=%MML%sin_cos7.html#K6>k6_sin_cos7</a>,'sech1"',_). constr_name(<a href=%MML%sin_cos7.html#K7>k7_sin_cos7</a>,'sech2"',_). constr_name(<a href=%MML%sin_cos7.html#K8>k8_sin_cos7</a>,'csch"',_). constr_name(<a href=%MML%euclidlp.html#R1>r1_euclidlp</a>,'//__10',_). constr_name(<a href=%MML%euclidlp.html#R2>r2_euclidlp</a>,'//__11',_). constr_name(<a href=%MML%euclidlp.html#R3>r3_euclidlp</a>,are_lindependent2__2,_). constr_name(<a href=%MML%euclidlp.html#R4>r4_euclidlp</a>,'_|___7',_). constr_name(<a href=%MML%euclidlp.html#K1>k1_euclidlp</a>,line_of_REAL,_). constr_name(<a href=%MML%euclidlp.html#K2>k2_euclidlp</a>,dist_v,_). constr_name(<a href=%MML%euclidlp.html#K3>k3_euclidlp</a>,dist__18,_). constr_name(<a href=%MML%euclidlp.html#R5>r5_euclidlp</a>,'//__12',_). constr_name(<a href=%MML%euclidlp.html#R6>r6_euclidlp</a>,'_|___8',_). constr_name(<a href=%MML%euclidlp.html#K4>k4_euclidlp</a>,plane__2,_). constr_name(<a href=%MML%euclidlp.html#V1>v1_euclidlp</a>,being_plane__2,_). constr_name(<a href=%MML%euclidlp.html#K5>k5_euclidlp</a>,plane_of_REAL,_). constr_name(<a href=%MML%euclidlp.html#R7>r7_euclidlp</a>,are_coplane,_). constr_name(<a href=%MML%card_fin.html#K1>k1_card_fin</a>,'Choose',_). constr_name(<a href=%MML%card_fin.html#K2>k2_card_fin</a>,'Intersection__3',_). constr_name(<a href=%MML%card_fin.html#V1>v1_card_fin</a>,'finite-yielding',_). constr_name(<a href=%MML%card_fin.html#K3>k3_card_fin</a>,'|__37',_). constr_name(<a href=%MML%card_fin.html#K4>k4_card_fin</a>,'|__38',_). constr_name(<a href=%MML%card_fin.html#K5>k5_card_fin</a>,'Card_Intersection',_). constr_name(<a href=%MML%card_fin.html#K6>k6_card_fin</a>,'Sum__33',_). constr_name(<a href=%MML%card_fin.html#K7>k7_card_fin</a>,'.__169',_). constr_name(<a href=%MML%setlim_2.html#K1>k1_setlim_2</a>,'(/\\)',_). constr_name(<a href=%MML%setlim_2.html#K2>k2_setlim_2</a>,'(\\/)',_). constr_name(<a href=%MML%setlim_2.html#K3>k3_setlim_2</a>,'(\\)',_). constr_name(<a href=%MML%setlim_2.html#K4>k4_setlim_2</a>,'(\\+\\)',_). constr_name(<a href=%MML%setlim_2.html#K5>k5_setlim_2</a>,'(/\\)__2',_). constr_name(<a href=%MML%setlim_2.html#K6>k6_setlim_2</a>,'(\\/)__2',_). constr_name(<a href=%MML%setlim_2.html#K7>k7_setlim_2</a>,'(\\)__2',_). constr_name(<a href=%MML%setlim_2.html#K8>k8_setlim_2</a>,'(\\)__3',_). constr_name(<a href=%MML%setlim_2.html#K9>k9_setlim_2</a>,'(\\+\\)__2',_). constr_name(<a href=%MML%series_3.html#K1>k1_series_3</a>,'Partial_Product',_). constr_name(<a href=%MML%fintopo5.html#R1>r1_fintopo5</a>,is_homeomorphism,_). constr_name(<a href=%MML%fintopo5.html#K1>k1_fintopo5</a>,'Nbdl2',_). constr_name(<a href=%MML%fintopo5.html#K2>k2_fintopo5</a>,'FTSL2',_). constr_name(<a href=%MML%fintopo5.html#K3>k3_fintopo5</a>,'Nbds2',_). constr_name(<a href=%MML%fintopo5.html#K4>k4_fintopo5</a>,'FTSS2',_). constr_name(<a href=%MML%taylor_2.html#K1>k1_taylor_2</a>,'Maclaurin',_). constr_name(<a href=%MML%prob_3.html#K1>k1_prob_3</a>,'Partial_Intersection',_). constr_name(<a href=%MML%prob_3.html#K2>k2_prob_3</a>,'Partial_Union',_). constr_name(<a href=%MML%prob_3.html#K3>k3_prob_3</a>,'Partial_Diff_Union',_). constr_name(<a href=%MML%prob_3.html#V1>v1_prob_3</a>,disjoint_valued__5,_). constr_name(<a href=%MML%prob_3.html#K4>k4_prob_3</a>,'@Partial_Intersection',_). constr_name(<a href=%MML%prob_3.html#K5>k5_prob_3</a>,'@Partial_Union',_). constr_name(<a href=%MML%prob_3.html#K6>k6_prob_3</a>,'@Partial_Diff_Union',_). constr_name(<a href=%MML%prob_3.html#K7>k7_prob_3</a>,'.__170',_). constr_name(<a href=%MML%prob_3.html#K8>k8_prob_3</a>,'Union__8',_). constr_name(<a href=%MML%prob_3.html#K9>k9_prob_3</a>,'Complement__2',_). constr_name(<a href=%MML%prob_3.html#K10>k10_prob_3</a>,'Intersection__4',_). constr_name(<a href=%MML%prob_3.html#M1>m1_prob_3</a>,'FinSequence__5',_). constr_name(<a href=%MML%prob_3.html#K11>k11_prob_3</a>,'.__171',_). constr_name(<a href=%MML%prob_3.html#K12>k12_prob_3</a>,'@Complement__3',_). constr_name(<a href=%MML%prob_3.html#K13>k13_prob_3</a>,'*__180',_). constr_name(<a href=%MML%prob_3.html#V2>v2_prob_3</a>,'non-decreasing-closed',_). constr_name(<a href=%MML%prob_3.html#V3>v3_prob_3</a>,'non-increasing-closed',_). constr_name(<a href=%MML%prob_3.html#M2>m2_prob_3</a>,'MonotoneClass',_). constr_name(<a href=%MML%prob_3.html#K14>k14_prob_3</a>,monotoneclass,_). constr_name(<a href=%MML%filerec1.html#R1>r1_filerec1</a>,is_a_record_of,_). constr_name(<a href=%MML%circled1.html#K1>k1_circled1</a>,'Circled-Family',_). constr_name(<a href=%MML%circled1.html#K2>k2_circled1</a>,'Cir',_). constr_name(<a href=%MML%circled1.html#V1>v1_circled1</a>,circled__2,_). constr_name(<a href=%MML%circled1.html#K3>k3_circled1</a>,circledComb,_). constr_name(<a href=%MML%circled1.html#K4>k4_circled1</a>,circledComb__2,_). constr_name(<a href=%MML%topgen_4.html#K1>k1_topgen_4</a>,'TotFam',_). constr_name(<a href=%MML%topgen_4.html#V1>v1_topgen_4</a>,'all-open-containing',_). constr_name(<a href=%MML%topgen_4.html#V2>v2_topgen_4</a>,'all-closed-containing',_). constr_name(<a href=%MML%topgen_4.html#V3>v3_topgen_4</a>,closed_for_countable_unions,_). constr_name(<a href=%MML%topgen_4.html#V4>v4_topgen_4</a>,closed_for_countable_meets,_). constr_name(<a href=%MML%topgen_4.html#K2>k2_topgen_4</a>,'INTERSECTION__2',_). constr_name(<a href=%MML%topgen_4.html#K3>k3_topgen_4</a>,'UNION__2',_). constr_name(<a href=%MML%topgen_4.html#V5>v5_topgen_4</a>,'F_sigma',_). constr_name(<a href=%MML%topgen_4.html#V6>v6_topgen_4</a>,'G_delta',_). constr_name(<a href=%MML%topgen_4.html#V7>v7_topgen_4</a>,'T_1/2',_). constr_name(<a href=%MML%topgen_4.html#R1>r1_topgen_4</a>,is_a_condensation_point_of,_). constr_name(<a href=%MML%topgen_4.html#K4>k4_topgen_4</a>,'^0__2',_). constr_name(<a href=%MML%topgen_4.html#K5>k5_topgen_4</a>,'BorelSets',_). constr_name(<a href=%MML%topgen_4.html#V8>v8_topgen_4</a>,'Borel',_). constr_name(<a href=%MML%tietze.html#R1>r1_tietze</a>,is_absolutely_bounded_by,_). constr_name(<a href=%MML%jordan24.html#R1>r1_jordan24</a>,'realize-max-dist-in',_). constr_name(<a href=%MML%jordan24.html#V1>v1_jordan24</a>,isometric__2,_). constr_name(<a href=%MML%jordan24.html#K1>k1_jordan24</a>,'Rotate__4',_). constr_name(<a href=%MML%jordan24.html#V2>v2_jordan24</a>,closed__14,_). constr_name(<a href=%MML%jordan.html#K1>k1_jordan</a>,'`1__31',_). constr_name(<a href=%MML%jordan.html#K2>k2_jordan</a>,'`2__36',_). constr_name(<a href=%MML%jordan.html#K3>k3_jordan</a>,diffX2_1,_). constr_name(<a href=%MML%jordan.html#K4>k4_jordan</a>,diffX2_2,_). constr_name(<a href=%MML%jordan.html#K5>k5_jordan</a>,diffX1_X2_1,_). constr_name(<a href=%MML%jordan.html#K6>k6_jordan</a>,diffX1_X2_2,_). constr_name(<a href=%MML%jordan.html#K7>k7_jordan</a>,'Proj2_1',_). constr_name(<a href=%MML%jordan.html#K8>k8_jordan</a>,'Proj2_2',_). constr_name(<a href=%MML%jordan.html#K9>k9_jordan</a>,'DiskProj',_). constr_name(<a href=%MML%jordan.html#K10>k10_jordan</a>,'RotateCircle',_). constr_name(<a href=%MML%matrixc1.html#K1>k1_matrixc1</a>,'*'__34',_). constr_name(<a href=%MML%matrixc1.html#K2>k2_matrixc1</a>,'@"',_). constr_name(<a href=%MML%matrixc1.html#K3>k3_matrixc1</a>,'FinSeq2Matrix',_). constr_name(<a href=%MML%matrixc1.html#K4>k4_matrixc1</a>,'Matrix2FinSeq',_). constr_name(<a href=%MML%matrixc1.html#K5>k5_matrixc1</a>,mlt__6,_). constr_name(<a href=%MML%matrixc1.html#K6>k6_matrixc1</a>,'Sum__34',_). constr_name(<a href=%MML%matrixc1.html#K7>k7_matrixc1</a>,'*__181',_). constr_name(<a href=%MML%matrixc1.html#K8>k8_matrixc1</a>,'*__182',_). constr_name(<a href=%MML%matrixc1.html#K9>k9_matrixc1</a>,mlt__7,_). constr_name(<a href=%MML%matrixc1.html#K10>k10_matrixc1</a>,'FR2FC',_). constr_name(<a href=%MML%matrixc1.html#K11>k11_matrixc1</a>,'LineSum',_). constr_name(<a href=%MML%matrixc1.html#K12>k12_matrixc1</a>,'ColSum',_). constr_name(<a href=%MML%matrixc1.html#K13>k13_matrixc1</a>,'SumAll',_). constr_name(<a href=%MML%matrixc1.html#K14>k14_matrixc1</a>,'QuadraticForm',_). constr_name(<a href=%MML%topgen_5.html#K1>k1_topgen_5</a>,'y=0-line',_). constr_name(<a href=%MML%topgen_5.html#K2>k2_topgen_5</a>,'y>=0-plane',_). constr_name(<a href=%MML%topgen_5.html#K3>k3_topgen_5</a>,'Niemytzki-plane',_). constr_name(<a href=%MML%topgen_5.html#V1>v1_topgen_5</a>,'Tychonoff',_). constr_name(<a href=%MML%topgen_5.html#K4>k4_topgen_5</a>,'+__109',_). constr_name(<a href=%MML%topgen_5.html#K5>k5_topgen_5</a>,'+__110',_).