
The ProSpec and EQTrafo User’s Manual

Peter Baumgartner and Bernd Thomas

Universität Koblenz-Landau

Rheinau 1

56075 Koblenz

{peter,bthomas}@informatik.uni-koblenz.de

Draft of July 26, 1997

1 Introduction

This document describes two tools developed at the AI Group at the University of
Koblenz. Both are intended as frontends to be used in conjunction with classical, first or-
der clause logic theorem provers (such as PROTEIN [Baumgartner and Furbach, 1994]).

ProSpec: ProSpec takes as input a file consisting of a sort declaration and some well-

sorted formulas (not neccessarily clauses), possibly containing the equality pred-
icate. The output is a set of unsorted clauses with equality. In brief, ProSpec
transforms sorted logic with equality into unsorted logic with equality in a seman-
tics preserving way.

EQTrafo: EQTrafo takes as input a file consisting of clauses, possibly containing the
equality predicate. The output is a set of clauses not containing the equality
predicate. In brief EQTrafo transforms clause logic with equality into clause logic
without equality in a semantics preserving way.

Hence, typically a sorted specification with equality is proved using the command se-
quence ProSpec— EQTrafo— Protein.

2 ProSpec

We will first describe the semantics of the transformation; the subsequent ProSpec user’s
guide will describe the concrete syntax and how to run the program.
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2.1 Syntax and Semantics of the Transformation

By a sorted specification we mean a pair consisting of a sort declaration and a set of
well-sorted sorted formulas.

Following standard terminology, a sort declaration for a signature Σ consists of

• a set Sort of symbols, called sorts,

• a mapping s : Var 7→ Sort which maps each variable of Σ to a sort,

• a set of term declarations of the form t ∈ S , where S ∈ Sort,

• a set of predicate declarations of the form P : S1 × · · · × Sn , where P is an n-ary
predicate symbol and Si ∈ Sort,

• and a set of subsort declarations of the form S1 ⊑ S2 where S1 ,S2 ∈ Sort.

For instance, using the convention that a variable x with sort s (i.e. s(x ) = S ) is
displayed as xS , a valid term declaration is succ(succ(xEven)) ∈ Even (provided Even ∈
Sort). An example for a subsort declaration would be Nat ⊑ Integer .

Although these notions all are standard, we gave them here in order to formulate
restrictions apply in our case:

• The sort hierarchie must be a tree: whenever S ⊑ S1 and S ⊑ S2 then S1 = S2 .

• For every n − ary predicate symbol P there is exactly one predicate declaration

P : S1 × · · · × Sn where Si ∈ Sort, for 1 ≤ i ≤ n.

• For every n − ary function symbol f there is exactly one term declaration

f (x 1
S1
, . . . , xn

Sn
) ∈ S where S , Si ∈ Sort, xi 6= xj , for 1 ≤ i , j ≤ n and i 6= j .

This is also noted as

f : S1 × · · · × Sn 7→ S

This restriction is also called the elementary restriction of sorted signatures, and
the term declarations are also called function declarations.

By a declaration we mean either a predicate declaration or a function declaration. The
tree-restriction and the restrictions posed in the declarations are quite severe. Netherthe-
less they turned out to be useful in practice.

The restrictions stated so far are precisely the same as in [Schmitt and Wernecke,
1989]. The reasons is that our ProSpec transformation coincides with the predicative
encoding of sorts of Schmitt and Wernecke, and hence has to make the same assumptions
about the sort declarations.
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However, we want to be more general and allow polymorphism in our declarations
(again, this is standard, see [?]). The idea is to allow a variable in place where a sort

is required. These sort variables are taken from a set disjoint to the object variables.
Further, we would like to have declarations of the form cons : U × list(U ) 7→ list(U ).
This motivates the following definition of a sort

Definition 2.1 (Polymorphic Sorts)
Let B 6= ∅ be a set of symbols, called basic sorts, let U be a set of variables, called sort

variables, and let F be a set of function symbols of given arity, called sort functions.
The set Sort is the smallest set consisting of sorts, where a sort is defined inductively
as follows:

• Every basic sort B ∈ B is a sort.

• Every variable U ∈ U is a sort.

• If S1 , . . . ,Sn are sorts, then F (S1 , . . . ,Sn) is a sort, where F ∈ F .

When taking this modified definition of Sort, the restrictions on sort declarations
posed above can remain unchanged, except that the following restricion on subsort dec-
larations has to be made:

Every subsort declaration is of the form S1 ⊑ S2 where S1 ,S2 ∈ B.

With this restriction, the transitive closure of “⊑” can be extended to a partial order on
Sort (see [?]).

Now, equality is declared as follows: = : U × U , where U ∈ U . Notice that this
is an “unusual” declaration of equality, since it permits equations only on terms of the
same sort (the “usual” declaration would be = : t × t where t is a basic sort and is
the least upper bound of all basic sorts). This restriction is motivated by the equality
transformation EQTrafo, which is complete for this declaration only.

A further consequence of this declaration concerns semantics: for interpretations it
has to be required that different sorts are mapped to domains which do not have any
elements in common.

STOP 2.6.97

It has to be clarified what a well-sorted formula is. In brief, one has to take care
when building formulas that all terms and atoms obey the sort declarations: whenever
according to the declaration part a term of sort S is expected, then only a term of sort
S or subsort of S may be used. Since this is completely standard we will not repeat
the definition here (See e.g. [Oberschelp, 1989]). The only thing to note is that our
restrictions imply that each term gets a unique sort1

With respect to semantics, one has to use sorted interpretations. Again, this is
standard. The only thing to mention here is that a sorted interpretation I maps each
sort S ∈ Sort to a non-empty domain I(S ).

1Our sorted signatures are subterm-closed : every subterm of a well-sorted term is well-sorted as well.
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ProSpec transforms a well-sorted specification ΦS into an unsorted clause set Φ in
such a way that the semantics of the sorts is preserved. Such transformations are well-
known in the literature and are referred to as sort relativations. Relativations are ex-
pected to satisfy the following property:

Sort theorem: ΦS is satisfiable with some sort interpretation if and only if Φ is satisfiable
in some unsorted interpretation.

Since the relativation carried out by ProSpec satisfies the sort theorem, we thus have
a semantics for sorted specifications, by simply taking the semantics of the relativised
version.

Designing a sort relativation is a tradeoff between expressibility and efficiency . In
ProSpec we decided to have rather severe restrictions on sort declarations, which, on
the other hand, allow for a very simple transformation. Further, and more important,
the relativised clause set can be treated very efficiently, because all the reasoning stem-
ming from the sort information is carried out by ordinary unification. For instance,
we do not allow the declaration that different sorts have a common subsort, because
this would either need a non-standard unification algorithm or a much more complex
transformation.

2.2 ProSpec User’s Guide
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