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1 Introduction

This document describes two tools developed at the AI Group at the University of
Koblenz. Both are intended as frontends to be used in conjunction with classical, first or-
der clause logic theorem provers (such as PROTEIN [Baumgartner and Furbach, 1994]).

ProSpec: ProSpec takes as input a file consisting of a sort declaration and some well-
sorted formulas (not neccessarily clauses), possibly containing the equality pred-
icate. The output is a set of unsorted clauses with equality. In brief, ProSpec
transforms sorted logic with equality into unsorted logic with equality in a seman-
tics preserving way.

EQTrafo: EQTrafo takes as input a file consisting of clauses, possibly containing the
equality predicate. The output is a set of clauses not containing the equality
predicate. In brief EQTrafo transforms clause logic with equality into clause logic
without equality in a semantics preserving way.

Hence, typically a sorted specification with equality is proved using the command se-
quence ProSpec— EQTrafo— Protein.

2 ProSpec

We will first describe the semantics of the transformation; the subsequent ProSpec user’s
guide will describe the concrete syntax and how to run the program.



2.1 Syntax and Semantics of the Transformation

By a sorted specification we mean a pair consisting of a sort declaration and a set of
well-sorted sorted formulas.
Following standard terminology, a sort declaration for a signature 3 consists of

e a set SORT of symbols, called sorts,

e a mapping s : Var — SORT which maps each variable of X to a sort,

a set of term declarations of the form ¢ € S, where S € SORT,

a set of predicate declarations of the form P : S; x --- x S, where P is an n-ary
predicate symbol and S; € SORT,

e and a set of subsort declarations of the form S; T Sy where S;, S2 € SORT.

For instance, using the convention that a variable z with sort s (i.e. s(z) = S) is
displayed as zg, a valid term declaration is succ(succ(Tryen)) € Even (provided Even €
SORT). An example for a subsort declaration would be Nat T Integer.

Although these notions all are standard, we gave them here in order to formulate
restrictions apply in our case:

e The sort hierarchie must be a tree: whenever S T S; and S C Sy then S; = S5.

e For every m — ary predicate symbol P there is exactly one predicate declaration
P:S; x---x 8, where S; € SORT, for 1 <i <n.
e For every n — ary function symbol f there is exactly one term declaration
f(xél,...,xg”n) € S where S, S; € SORT, w; # z;, for 1 < 4,5 <n and i #j.
This is also noted as
f:Syx--x8,—~S8

This restriction is also called the elementary restriction of sorted signatures, and
the term declarations are also called function declarations.

By a declaration we mean either a predicate declaration or a function declaration. The
tree-restriction and the restrictions posed in the declarations are quite severe. Netherthe-
less they turned out to be useful in practice.

The restrictions stated so far are precisely the same as in [Schmitt and Wernecke,
1989]. The reasons is that our ProSpec transformation coincides with the predicative
encoding of sorts of Schmitt and Wernecke, and hence has to make the same assumptions
about the sort declarations.



However, we want to be more general and allow polymorphism in our declarations
(again, this is standard, see [?]). The idea is to allow a variable in place where a sort
is required. These sort variables are taken from a set disjoint to the object variables.
Further, we would like to have declarations of the form cons : U x list(U) — list(U).
This motivates the following definition of a sort

Definition 2.1 (Polymorphic Sorts)

Let B # () be a set of symbols, called basic sorts, let U be a set of variables, called sort
variables, and let F be a set of function symbols of given arity, called sort functions.
The set SORT is the smallest set consisting of sorts, where a sort is defined inductively
as follows:

e Every basic sort B € B is a sort.

e Every variable U € U is a sort.

o If S;,...,S, are sorts, then F(Sy,...,S,) is a sort, where F' € F.
O

When taking this modified definition of SORT, the restrictions on sort declarations
posed above can remain unchanged, except that the following restricion on subsort dec-
larations has to be made:

Every subsort declaration is of the form S; £ Ss where S;, S» € B.

With this restriction, the transitive closure of “C” can be extended to a partial order on
SORT (see [?]).

Now, equality is declared as follows: = : U x U, where U € U. Notice that this
is an “unusual” declaration of equality, since it permits equations only on terms of the
same sort (the “usual” declaration would be = : ¢ x t where ¢ is a basic sort and is

the least upper bound of all basic sorts). This restriction is motivated by the equality
transformation EQTrafo, which is complete for this declaration only.

A further consequence of this declaration concerns semantics: for interpretations it
has to be required that different sorts are mapped to domains which do not have any
elements in common.

STOP 2.6.97

It has to be clarified what a well-sorted formula is. In brief, one has to take care
when building formulas that all terms and atoms obey the sort declarations: whenever
according to the declaration part a term of sort S is expected, then only a term of sort
S or subsort of S may be used. Since this is completely standard we will not repeat
the definition here (See e.g. [Oberschelp, 1989]). The only thing to note is that our
restrictions imply that each term gets a unique sort!

With respect to semantics, one has to use sorted interpretations. Again, this is
standard. The only thing to mention here is that a sorted interpretation Z maps each
sort S € SORT to a non-empty domain Z(S).

LOur sorted signatures are subterm-closed: every subterm of a well-sorted term is well-sorted as well.



ProSpec transforms a well-sorted specification ®g into an unsorted clause set ® in
such a way that the semantics of the sorts is preserved. Such transformations are well-
known in the literature and are referred to as sort relativations. Relativations are ex-
pected to satisfy the following property:

Sort theorem: &g is satisfiable with some sort interpretation if and only if ® is satisfiable
in some unsorted interpretation.

Since the relativation carried out by ProSpec satisfies the sort theorem, we thus have
a semantics for sorted specifications, by simply taking the semantics of the relativised
version.

Designing a sort relativation is a tradeoff between expressibility and efficiency. In
ProSpec we decided to have rather severe restrictions on sort declarations, which, on
the other hand, allow for a very simple transformation. Further, and more important,
the relativised clause set can be treated very efficiently, because all the reasoning stem-
ming from the sort information is carried out by ordinary unification. For instance,
we do not allow the declaration that different sorts have a common subsort, because
this would either need a non-standard unification algorithm or a much more complex
transformation.

2.2 ProSpec User’s Guide
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