
GASP: Answer Set Programming with Lazy
Grounding

A. Dal Palù1, A. Dovier2, E. Pontelli3, and G. Rossi1

1 Dip. Matematica, Univ. Parma,
{alessandro.dalpalu|gianfranco.rossi}@unipr.it

2 Dip. Matematica e Informatica, Univ. Udine, dovier@dimi.uniud.it
3 Dept. Computer Science, New Mexico State Univ., epontell@cs.nmsu.edu

Abstract. In this paper we present a novel methodology to compute
stable models in Answer Set Programming. The process is performed
with a bottom-up approach that does not require the preprocessing of
the typical grounding phase. The implementation is completely in Prolog
and Constraint Logic Programming over finite domains.

1 Introduction

In recent years, we have witnessed a significant increase of interest towards the
Answer Set Programming (briefly, ASP) paradigm [14, 15]. The growth of the
field has been sparked by two essential activities:

– The development of effective implementations (e.g., Smodels [16], DLV [6],
ASSAT [7], Cmodels [1], Clasp [8])

– The continuous development of knowledge building blocks (e.g., [2]) enabling
the application of ASP to various problem domains.

The majority of ASP systems rely on a two-stage computation model. The actual
computation of the answer set is performed only on propositional programs—
either directly (as in Smodels and DLV and Clasp) or appealing to the use of a
SAT solver (as in ASSAT and Cmodels). On the other hand, the convenience
of ASP programming vitally builds on the use of first-order constructs. This
introduces the need of a grounding phase, typically performed by a separate
grounding program (e.g., Lparse or GrinGo, or the grounding module of DLV).

The development of sophisticated applications of ASP in real-world domains
(e.g., planning [11], phylogenetic inference [3]) has highlighted the strengths and
weaknesses of this paradigm. The high expressive power enables the compact and
elegant encoding of complex forms of knowledge (e.g., common-sense knowledge,
defaults). At the same time, the technology underlying the execution of ASP is
still lagging behind and it is often unable to keep up with the demand of complex
applications. This has been, for example, highlighted in a recent study of use of
ASP to address complex planning problems (drawn from the recent international
planning competitions) [18]. A problem like Pipeline (from International Plan-
ning Competition n. 5, IPC-5), whose first 9 instances can be effectively solved

by state-of-the-art planners like FF [10], can be solved only for instance 1 using
ASP. Using Lparse+Smodels, instances 2 through 4 do not terminate within
several hours of execution, while for instance 5 Lparse generates a ground image
that is beyond the input capabilities of Smodels.

In this manuscript, we propose a novel implementation of ASP—hereafter
named GASP (Grounding-lazy ASP). The spirit of our effort can be summarized
as follows:

– The execution model relies on a novel bottom-up scheme;
– The bottom-up execution model does not require preliminary grounding of

the program;
– The internal representation of the program and the computation make use

of constraint logic programming over finite domains [4].

This combination of ideas provides a novel system with significant potentials. In
particular:
• It enables the simple integration of new features in the solver, such as con-

straints and aggregates. If preliminary grounding was required, these features
would have to be encoded as ground programs, thus reducing the capability
to devise general strategies to optimize the search, and often further growing
the size of the ground program.

• The adoption of a non-ground search allows the system to control the search
process effectively at a higher level, enabling the adoption of Prolog-level
implementations of search strategies and the use of static analysis techniques.
While in theorem proving-based ASP solvers the search is driven by literals
(i.e., the branching in the search tree is generated by alternatively trying
to prove p and not p), here the search is “rule-driven” in the sense that an
applicable rule (possibly not ground) is selected and applied.

• It reduces the impact of grounding the whole program before execution, as
observed in some domains (e.g., [18]). Grounding is lazily applied to the rules
being considered during construction of an answer set, and the ground rules
are not kept beyond their needed use.

Given an ASP program P , the key ingredients of the proposed system are:

1. an efficient implementation of the immediate consequence operator TP (for
definite and normal programs);

2. an implementation of an alternating fixpoint procedure for the computation
of well-founded models of a (non-ground) program;

3. a mechanism for nondeterministic selection and application of a ground rule
to a partial model;

4. an optimization of the search procedure for a family of ASP program that
exploits constraint-based mechanisms.

GASP has been developed into a prototype, completely implemented in Prolog
and available from http://www.dimi.uniud.it/dovier/CLPASP. For efficiency,

the representation of predicates is mapped to finite domain sets (FDSETs), and
techniques are developed to implement a permutation-free search, which avoids
the repeated reconstruction of the same answer sets. As shown in Section 6, our
implementation can benefit from Finite Domain (FD) and Finite Domain Set
(FDSET) constraint primitives to speed-up the answer sets search.

The prototype is aimed at demonstrating the feasibility of the proposed ap-
proach; at the current stage the system is slower than state-of-the-art ASP
solvers. Actually, the TP computation of definite programs and the computa-
tion of well-founded models have already performances comparable to other sys-
tems, while the computation of stable models needs to be further improved. In
particular, performance improvements could be gained by using low level data
structures that allow constant time w.r.t. linear time access to rules and models.

2 Preliminaries

Let us consider a logic language composed of a collection of propositional atoms
A. An ASP rule has the form:

p ← p0, . . . , pn,not pn+1, . . . ,not pm

where {p, p0, . . . , pn, pn+1, . . . , pm} ⊆ A. A program is a collection of ASP rules.
We also refer to these programs as propositional programs. An ASP constraint is
an ASP rule without head: ← p0, . . . , pn,not pn+1, . . . ,not pm. ASP constraints
are a syntactic extension very used in practice. The ASP constraint above is
equivalent, for stable models, to p ← not p, p0, . . . , pn,not pn+1, . . . ,not pm,
where p is a new propositional atom.

ASP programs can be expressed using first-order atoms, variables, and a
finite set of constants. Moreover, a set of arithmetic (and other) primitives are
allowed. Any non-ground rule in this case represent a family of ground rules. And
every ground atom, with abuse of notation, can be seen as a propositional atom
of the set A. Replacing each non-ground rule with the equivalent finite set of
ground rules is said the grounding process. For instance, the non-ground program
p(a).p(b).r(X) ← q(X,Y). is grounded to the ground program p(a).p(b).r(a) ←
q(a, a).r(a) ← q(a, b).r(b) ← q(b, a).r(b) ← q(b, b).

Given a rule a ← body, let us denote with body+ the collection of pos-
itive literals in body and with body− the collection of atoms that appear in
negative literals in body. Hence, the rule a ← body can be represented as
a ← body+,not body−. Given a ← body, let head(a ← body) denote a.

We view an interpretation I as a subset of the set of atoms I ⊆ A. I satisfies
an atom p if p ∈ I (denoted by I |= p). The interpretation I satisfies the
literal not p if p 6∈ I (denoted by I |= not p). The notion of entailment can be
generalized to conjunctions of literals in the obvious way. An interpretation I is
a model of a program P if for every rule p ← p0, . . . , pn,not pn+1, . . . ,not pm of
P , if I |= p0 ∧ . . . ∧ pn ∧ not pn+1, . . . ,∧not pm then I |= p. We refer to these
classical interpretations as 2-interpretations.

The traditional immediate consequence operator TP is generalized to the case
of ASP programs as follows:

TP (I) = {a ∈ A | (a ← body) ∈ P, I |= body} (1)

Any program admits the trivial modelA (w.l.o.g., let us assume thatA = BP ,
the Herbrand base of the program P). However, this model does not reflect the
meaning of the program. It is widely accepted that the notion of stable model [9]
is a necessary and sufficient condition for being an intended model of a program.

Let P I be the definite clause program obtained by adding to the definite
clauses in P the rules p ← p0, . . . , pn such that p ← p0, . . . , pn,notpn+1, . . . ,notpm

is in P and pn+1 /∈ I, . . . , pm /∈ I. A model I of P is stable if I is the least fixpoint
of the operator TP I . Stable models are also known as answer sets.

Unfortunately, deciding the existence of a stable model is NP-complete. When
looking for stable models it appears clear, for some atoms, that they must be
present in all stable models and, for some other atoms, that they cannot be
present in any stable model. This suggested a 3-valued representation of inter-
pretations.

A 3-interpretation I is a pair 〈I+, I−〉 such that I+∪I− ⊆ A and I+∩I− = ∅.
Intuitively, I+ denotes the atoms that are known to be true while I− denotes
those atoms that are known to be false. Let us observe that it is not required that
I+ ∪ I− = A. If I+ ∪ I− = A, then the interpretation I is said to be complete.

Given two 3-interpretations I, J , we use I ⊆ J to denote the fact that I+ ⊆
J+ and I− ⊆ J−. The notion of entailment for 3-interpretations can be defined
as follows. If p ∈ A, then I |= p iff p ∈ I+; I |= not p iff p ∈ I−.

The well-founded model [19] of a general program P is a 3-interpretation de-
noted as wf(P). Intuitively, the well-founded model of P contains only (possibly
not all) the literals that are necessarily true and the ones that are necessarily
false in all stable models of P . The remaining literals are undefined, because
they depend on loops of dependent literals in P and thus there is no unique
interpretation for them. It is well-known that a general program P has a unique
well-founded model wf(P) [19]. If wf(P) is complete then it is also a stable model
(and it is the unique stable model of P).

A well-founded model can be computed deterministically using the idea of
alternating fixpoints [20]. This technique uses pairs of 2-interpretations (denoted
by I and J) for building the 3-interpretation wf(P). The immediate consequence
operator is extended, with the introduction of another interpretation J :

TP,J(I) =

a ∈ A :

(a ← body+,not body−) ∈ P,
I |= body+,
(∀p ∈ body−)(J 6|= p)

 (2)

With this extension, the computation of the well-founded model of P is obtained
as follows: {

K0 = lfp(TP+,∅) U0 = lfp(TP,K0)
Ki = lfp(TP,Ui−1) Ui = lfp(TP,Ki) i > 0

where P+, used for computing K0, is the subset of P composed by definite
clauses (facts and rules without negation in body), and lfp is the least fixpoint
operator.

When (Ki, Ui) = (Ki+1, Ui+1), the fixpoint is reached and the well-founded
(possibly partial) model is the 3-interpretation:

wf(P) = 〈Ki, BP \ Ui〉
where BP is the Herbrand base of the program P .

3 Computation-based characterization of stable models

The computation model adopted in GASP has been derived from recent investi-
gations about alternative models to characterize answer set semantics for various
extensions of ASP—e.g., programs with abstract constraint atoms [17].

3.1 Computations and Answer Sets

The work described in [12] provides a computation-based characterization of
answer sets for programs with abstract constraints. One of the side-effects of
that research is the development of a computation-based view of answer sets
for general logic programs. The original definition of answer sets [9] requires
guessing an interpretation and successively validating it—through the notion of
reduct (P I) and the ability to compute minimal models of a definite program
(e.g., via repeated iterations of the immediate consequence operator [13]).

The characterization of answer sets derived from [12] does not require the
initial guessing of a complete interpretation; instead it combines the guessing
process with the construction of the answer set.

Let us present this alternative characterization in the case of propositional
programs.

Definition 1 (Computation). A computation of a program P is a sequence
of 2-interpretations I0, I1, I2, . . . that satisfies the following conditions:

– I0 = ∅
– Ii ⊆ Ii+1 for all i ≥ 0 (Persistence of Beliefs)
–

⋃∞
i=0 Ii is a model of P (Convergence)

– Ii+1 ⊆ TP (Ii) for all i ≥ 0 (Revision)
– if a ∈ Ii+1 \ Ii then there is a rule a ← body in P such that Ij |= body for

each j ≥ i (Persistence of Reason).

The results presented in [12] imply the following theorem.

Theorem 1. Given a program P and a 2-interpretation I, I is an answer set
of P if and only if there exists a computation that converges to I.

The notion of computation characterizes answer sets through an incremental
construction process, where the choices are performed at the level of what rules
are actually applied to extend the partial answer set.

3.2 A Refined View of Computation

This original notion of computation can be refined in various ways:

– The Persistence of Beliefs rule, together with the Convergence rule, indicate
that all elements that have a uniquely determined truth value at any stage
of the computation can be safely added.

– The notion of computation can be made more specific by enabling the ap-
plication of only one rule at each step (instead of an arbitrary subset of the
applicable rules).

These two observations allow us to rephrase the notion of computation in the
context of 3-interpretations as follows. Given a rule a ← body and an interpre-
tation I, we say that the rule is applicable w.r.t. I if

body+ ⊆ I+ and body− ∩ I+ = ∅ .

We extend the definition of applicable to a non-ground rule R w.r.t. I iff
there exists a grounding r of R that is applicable w.r.t. I.

Given a program P and an interpretation I, we denote with P∪I the program

P ∪ I = (P \ {r ∈ P | head(r) ∈ I−}) ∪ I+.

Intuitively, P ∪ I is the program P modified in such a way to guarantee that all
elements in I+ are true and all elements in I− are false.

Definition 2 (GASP Computation). A GASP computation of a program P
is a sequence of 3-interpretations I0, I1, I2, . . . that satisfies the following prop-
erties:

– I0 = wf(P)
– Ii ⊆ Ii+1 for all i ≥ 0 (Persistence of Beliefs)
– if I =

⋃∞
i=0 Ii, then 〈I+,A \ I+〉 is a model of P (Convergence)

– for each i ≥ 0 there exists a rule a ← body in P that is applicable w.r.t. Ii

and Ii+1 = wf(P ∪ Ii ∪ 〈body+, body−〉) (Revision)
– if a ∈ I+

i+1 \ I+
i then there is a rule a ← body in P which is applicable w.r.t.

Ij, for each j ≥ i (Persistence of Reason).

The following result holds:

Theorem 2. Given a program P , a 3-interpretation I is an answer set of P if
and only if there exists a GASP computation that converges to I.

Proof Sketch. One direction is quite simple, by observing that the computa-
tions described in Def. 2 are special cases of the computations of Def. 1 (thus
they produce answer sets). The other direction builds on the observation that
each computation as in Def. 1 can be rewritten as a computation as in Def. 2,
thanks to the Revision and Persistence of Reason properties. 2

4 Computing models using FDSETs

In this section we show how to encode and handle interpretations and answer
sets in Prolog using FDSETs. In particular, we show how to represent an inter-
pretation and how to compute the operator TP and the well-founded model.

FDSETs are a data structure available in the clpfd library of SICStus Prolog
that allows to efficiently store and compute on sets of integer numbers. Ba-
sically, a set {a1, a2, . . . , an} is interpreted as the union of a set of intervals
[ab1 ..ae1], . . . , [abk

..aek
] and stored consequently as [[ab1 |ae1], . . . , [abk

|aek
]]. A li-

brary of built-in predicates for dealing with this data structure is made available.
Using FDSETs, constraint propagation can be implemented more efficiently than
working on naive representations that store all the points of the various domains.
This will help us in an efficient implementation of the various immediate conse-
quence operators.

4.1 Representation of Interpretations

Most existing front-ends to ASP systems allow the programmer to express pro-
grams using a first-order notation. Program atoms are expressed in the form
p(t1, . . . , tn), where each ti is either a constant or a variable. Each rule rep-
resents a syntactic sugar for the collection of its ground instances. Languages
like those supported by the Lparse+Smodels system impose syntactic restric-
tions to facilitate the grounding process and ensure finiteness of the collection
of ground clauses. In particular, Lparse requires each rule in the program to
be range restricted, i.e., all variables in the rule should occur in body+. Further-
more, Lparse requires all variables to appear in at least one atom built using
a domain predicate—i.e., a predicate that is not recursively defined. Domain
predicates play for variables the same role as types in traditional programming
languages.4

In the scheme proposed here, the instances of a predicate that are true and
false within an interpretation are encoded as sets of tuples, and handled using
FD techniques.

We identify with pn a predicate p with arity n. In the program, a pred-
icate pn appears as p(X1, . . . , Xn) where, in place of some variables, a con-
stant can occur (e.g., p(a,X, Y, d)). The interpretation of the predicate pn can
be modeled as a set of tuples (a1, a2, . . . , an), where ai ∈ Consts(P)—where
Consts(P) denotes the set of constants in the language used by the program
P . The explicit representation of the set of tuples has the maximal cardinal-
ity |Consts(P)|n. The idea is to use a more compact representation based on
FDSETs, after a mapping of tuples to integers. Without loss of generality, we
assume that Consts(P) ⊆ N. Each tuple a = (a0, . . . , an−1) is mapped to
the unique number map(a) =

∑
i∈[0..n−1] aiMi, where M is a “big number”,

M ≥ |Consts(P)|. In case of predicates without arguments (predicates of arity

4 Some of these restrictions have been relaxed in other systems, e.g., DLV.

0), for the empty tuple () we set map(()) = 0. We also extend the map function
to the case of non-ground tuples, using FD variables. If Y = (y1, y2, . . . , yn),
where yi ∈ Vars(P) ∪ Consts(P), then map(Y) is the FD constraint that rep-
resent the sum defined above. For instance, if Y = (3, X, 1, Y) and M = 10,
then map(Y) = 3 + X ∗ 10 + 1 ∗ 102 + Y ∗ 103. Moreover, all variables possibly
occurring in Y are constrained to have domain 0..M− 1.

A 3-interpretation 〈I+, I−〉 can be represented by a set of 4-tuples

(p, n, POSp,n, NEGp,n),

one for each predicate symbol, where p is the predicate name, n its arity, and

POSp,n = {map(x) : I+ |= p(x)}
NEGp,n = {map(x) : I− |= not p(x)}

The sets POS and NEG are represented and handled efficiently, by using FD-
SETs. For instance, if

POSp,3 = {map(0, 0, 1), map(0, 0, 2), map(0, 0, 3), map(0, 0, 8),
map(0, 0, 9),map(0, 1, 0),map(0, 1, 1), map(0, 1, 2)}

and M = 10, then its representation as FDSETs is simply: [[1|3], [8|12]], in other
words, the disjunction of two intervals.

4.2 Minimum model computation

We start showing how the computation of the TP (see equation (1)) can be
implemented using finite domains and FDSETs. Actually, the TP implemented
is slightly more complex than the one needed for definite programs, but it has
the advantage to be used also during the answer set computation of general
programs, when negative information is also known.

We define a simple fixpoint procedure that calls recursively apply_def_rule
until the model is no longer modifiable. The definition of this predicate is re-
ported in Figure 1. Observe in line 1 that rule([H],PBody,NBody) is the internal
representation of the rule H ← PBody,not NBody, while atom(P,N,POS_P_N,
NEG_P_N) is the internal representation of the tuple for the current interpreta-
tion of predicate P of arity N, as described in Section 4.1. In line 2, the variables
of the (possibly non-ground) rule H ← PBody,not NBody are renamed with
fresh variables. These variables are assigned to the finite set domain 0..M1 where
M1=M − 1 (and the “big number” M introduced in the previous subsection is
defined by a fact bigM(M)). Constraints on the atoms of the body are set in lines
5 and 6. The predicate build_constraint sets membership (in_set) and non
membership (nin_set) constraints on the variables of the atoms of the positive
part (resp. negative part) of the body. The idea is that C3 = 1 iff the positive
body is satisfied by the model I and C4 = 1 iff the negative body is satisfied by
I. The predicate tuple_num converts a tuple into a unique FD value according
to the function map defined in the previous section. In lines (10) and (11), we

(1) apply def rule(rule([H],PBody,NBody),I,[atom(P,N,NEWPOS P N,NEG P N)|PARTI]):-
(2) copy term([H,PBody,NBody],[H1,PBody1,NBody1]),
(3) term variables([H1,PBody1],VARS),
(4) bigM(M),M1 is M-1,domain(VARS,0,M1),
(5) build constraint(PBody1,I,C3,pos),
(6) build constraint(NBody1,I,C4,negknown),
(7) H1 =..[P|ARGS],
(8) tuple num(ARGS,VAR,N),
(9) select(atom(P,N,POS P N,NEG P N),I,PARTI),
(10) nin set(N,VAR,POS P N,C1),
(11) nin set(N,VAR,NEG P N,C2),
(12) findall(X,(C1+C2+C3+C4 #>= 4, X #= VAR,labeling([ff],VARS)),LIST),
(13) list to fdset(LIST,SET),
(14) fdset union(POS P N,SET,NEWPOS P N).
(15) build constraint([R|Rs],I,C,Sign):-
(16) R =.. [F|ARGS],
(17) builtin(F),!,
(18) expression(F,ARGS,C2),
(19) C #<=> C2 #/\ C1,
(20) build constraint(Rs,I,C1,Sign).
(21) build constraint([R|Rs],I,C,Sign):-
(22) R =.. [F|ARGS],!,
(23) tuple num(ARGS,VAR,ARITY),
(24) member(atom(F,ARITY,POS F,NEG F),I),
(25) (Sign=neg,!, nin set(ARITY,VAR,POS F,C2);
(26) Sign=pos,!, C2 #<=> VAR in set POS F;
(27) Sign=negknown, C2 #<=> VAR in set NEG F),
(28) build constraint(Rs,I,C1,Sign),
(29) C #<=> C1 #/\ C2.
(30) build constraint([], ,1,).
(31) tuple num(ARGS,VAL,ARITY) :-
(32) (ARGS = [],!, VAL=0, ARITY=0;
(33) ARGS = [VAL],!, ARITY=1;
(34) ARGS = [Arg1,Arg2],!, bigM(M), ARITY=2, VAL #= M*Arg1+Arg2;
(35) ARGS = [A1,A2,A3], bigM(M), ARITY=3, VAL #= M*M*A1+M*A2+A3).

Fig. 1. TP computation

add the constraints expressing the fact that the head is not yet in the positive
part of the model (useless rule application) and it is not in the negative part of
the model (inconsistent rule application). The variables C1 and C2 take care of
these constraints.

In line (12), we collect all the ground instances of the rule that lead to
new positive introductions of instances of the head. The list of new values for
the atom P (lines (13)–(14)) is converted to the positive domain and added to
the previous values. Observe that build_constraint takes care also of built-
in predicates (e.g., equalities) calling the auxiliary predicate expression that
parses the terms in the built-in atom. The additional parameter will be used
later to support the computation of the well-founded model.

Observe that (local) grounding is performed in line (12), making sure that
useless or redundant grounding are avoided a priori.

4.3 Well-founded model computation

Computing a well-founded model is a deterministic step during GASP compu-
tation. As done for TP in the previous section, the implementation is based on

FD constraint programming and FDSETs representation of interpretations. The
idea of alternating fixpoint [20] is coded in Prolog.

The implementation boils down to controlling the alternating fixpoint com-
putation and to encode the TP,J operator (2). We present here the core procedure
that analyzes a clause and computes the head predicates to be included in the
resulting interpretation.

Let us consider a clause of P :

pn(Y 0) ← pn1
1 (Y 1), . . . , pnk

k (Y k),not p
nk+1
k+1 (Y k+1), . . . ,not p

nj

j (Y j)

with |Y i| = ni and Y i ∈ (Vars(P) ∪ Consts(P))ni . Note that Y i may contain
repeated variables and it can share variables with other literals in the clause.

Given two interpretations I and J , the application of TP,J to I considers each
clause such that I |= body+, J 6|= body−. For these clauses, a set of new head
predicates is produced and added to the resulting interpretation. Instead of a
generate and test approach, in which the new tuples in the head are generated
using unification, we adopt a constraint-based approach. For each clause and
interpretation I, we build a CSP that characterizes the atoms pn(X) derivable
from the body.

For each predicate pni
i we introduce a FD variable Vi and we create the

constraint Vi = map(Y i). This constraint allows us to connect the individual
variables in Y i to the variable Vi representing the possible tuples associated to
pni

i . The domain of Vi is POS, where (pni
i , ni, POS, NEG) is part of the current

interpretation I. For each literal notp
nj

j , we use the same scheme, except for the
fact that the domain of Vj is disjoint from the set Pos′, with (pni

i , ni, POS′, NEG′) ∈
J . For the head of the rule, we define a FD variable V0 similarly. These FD
constraints allow us to link the tuple assignments, according to the variable
occurrences.

An additional constraint is posted to ensure that the tuples in V0 (the ones
that are to be added to the interpretation) are not already present in the model
and are not causing contradictions with the known negative tuples. According to
the semantics of TP,J , we use a call to the predicate build_constraint(NBody,J,
C4,neg) in Figure 1. The difference between this constraint and the correspond-
ing one used in the computation of TP computation is that, by definition, the
negative part of the rule may not appear in J+.

Finally, a labeling phase for the variables occurring in X allows us to produce
the set of ground instances of X that satisfy the CSP. The atoms pn(X) are
added to the interpretation, exploiting FDSETs operations.

Example 1. Let us consider an example of the application of TP,∅(I) using a
clause and the FD representation of domains. In particular, let us consider the
clause

p(X) ← q(X, Y),not r(Y)

where I = 〈{q(1, 1), q(1, 2), q(2, 2), p(1)}, ∅〉. Let M = 3, then I is represented as

(p, 1, [[1|1]], []), (q, 2, [[4|4], [7|8]], []), (r, 1, [], []).

The CSP induced is: V0 = X, V1 = X + 3Y, V2 = Y , where the initial do-
mains for V0 and V2 is the set {0, . . . ,M − 1} = {0, 1, 2}, while V1 ∈ {4, 7, 8}.
Using constraint propagation, the domains can be restricted to V0 ∈ {1, 2} and
V2 ∈ {1, 2}. Moreover, the predicate p is constrained to be different from the
values already known: V0 6∈ {1}; the predicate p is also constrained not to be
in contradiction to its negative facts: in this case no constraint is added. The
solution to this CSP is X ∈ {2} and thus the fact p(2) can be added to the
interpretation.

4.4 Computing answer sets

The complete answer set enumeration is based on the well-founded model com-
putation, alternated with a non-deterministic choice phase. Basically, we collect
the well-founded model I of P . If the model is complete, we return the result.
Otherwise, if there are some unknown literals, we start the stable model compu-
tation with I as initial interpretation. The call to wf(P) save the first can detect
inconsistent interpretations (failed I). In Figure 2, we summarize in pseudocode
the algorithm.

(1) rec search(P,I)

(2) R = applicable rules(I)

(3) if (R = ∅ and I is a model) output: I is a stable model

(4) else select a ← body+,not body− ∈ R
(5) I = wf(P ∪ {body−}∪ I)

(6) if (I not failed) rec search(P,I)

Fig. 2. The answer set computation

Each applicable rule represents a non-deterministic choice in the computation
of a stable model. The stable model computation explores each of these choices
(line 4), and computes Ii+1 using the wf operator starting for P ∪ {body−} ∪ Ii

(line 5), as defined in the GASP computation. Note that a is immediately inserted
into the model. This step requires the local grounding of each applicable rule
in P , according to the interpretation Ii. The local grounding phase is repeated
several times during computation, but it should be noted that each ground rule
is produced only once along each branch, due to the constraints introduced. Let
us observe that every time the local grounding in invoked, a CSP is built. We
believe that the enhancement of this step (e.g., building CSPs less often) could
reduce the search time significantly. In line 6 I not failed means that I+∩I− 6= ∅.

The process may encounter a contradiction while adding new facts to the in-
terpretation, and consequently the computation may encounter failures. When-
ever there are no more applicable rules, a leaf in the search tree is reached (line
3) and the corresponding stable model is obtained (convergence property).

The applicable rules w.r.t. an interpretation Ii are determined (line 2) as
defined in GASP computation, i.e., solving the CSP using FD and FDSETs
with similar techniques to the ones described in the previous sections. Here, the
constraints for the negative part are slightly different from the well-founded rule
applicability, since the negative part of a clause may not appear in the current
I+, while in wf we used the additional interpretation J+.

In order to separate failure nodes from leaf nodes (stable models with no
applicable rules), we organized the expansion as follows. We first collect every
applicable rule at a node of the computation (line 2), then we non determinis-
tically apply the rule and add the new heads to the next interpretation. If the
head produces a literal in contradiction to the interpretation, a failure is raised
by a consistency check and the search backtracks (line 6). Note that I can be
failed, since the well-founded computation is based on a new program that could
introduce some contradictions (line 5).

From the implementation point of view, we verified that computing well-
founded models at every non-deterministic application of a rule is time consum-
ing. In particular, the extraction of the extension of P with new facts from the
positive interpretation is inefficient.

To gain efficiency, we substituted the call to the well-founded computation
with a variant of the TP operator. The extension of TP to ASP considers rules
where body+ ∈ I+ and body− ∈ I− (actually, the same implemented in the code
in Figure 1). The TP operator adds new positive atoms as stated by the head
of the rule. Other consequences that a call to the well-founded solutions could
detect in one call will be detected in the successive part of the computation (we
are not loosing correctness or completeness).

5 A permutation-free labeling

When enumerating stable models with a bottom up tree-based search, special
care is needed in order to avoid producing repeated models. In fact, the concept of
applicable rules and their non-deterministic applications allows the exploration
of equivalent branches, where the order of rule applications is swapped, while
the interpretation converges to the same set.

Let us abstract the process of search over a tree as follows. Every node u
in the search tree is related to a set of possible choices C(u) to be tried, where
C(u) ⊆ R and R is a set of applicable rules. The applicable rules at u depend
on the interpretation I(u) present at that node. Each non-deterministic choice
r ∈ C(u) at u opens a branch, labeled by r, and it defines a child node of u in
the search tree.

We now show a simple example of the combinatorial explosion of the num-
ber of branches due to all permutations. Let us assume that a simple search
tree has a root u with C(u) = {a, b, c}, where a, b, c are three ground rules.
And assume that the application of each of them leave the other still appli-
cable. The expansion of the tree produces 6 different leaves, according to the
possible permutations in the application of available rules. The interpretation

I = {head(a), head(b), head(c), . . .} is explored under every possible order of
application of the facts in the program.

Let us introduce a transitive (partial) relation ≺: R × R. Given A = a1 ≺
a2 ≺ . . . ≺ an and B = b1 ≺ b2 ≺ . . . ≺ bm, the extension of A w.r.t. B is the
new order a1 ≺ a2 ≺ . . . ≺ an ≺ c1 ≺ . . . ≺ ck, where c1, . . . , ck are the elements
in B \A retrieved in the same order as in B.

For example, let a, b, c ∈ R and a ≺ b ≺ c. The order can be used to guide
the nodes expansion, in particular to force the backtracking whenever the order
is not respected along a branch. In our example, assuming to expand the rule
b at the root, the applicable rules at the next node are {a, c}. The application
of a constructs a branch in which b is applied before a and thus that branch
fails. The application of c is allowed, and produces a new node in which only a.
is applicable. However the application of a generates a branch b ≺ c 6≺ a which
results in a failure. The complete exploration of the search tree leads to a single
success leaf, which corresponds to the application of rules in the order a ≺ b ≺ c.

Given a node u, for each applicable rule r ∈ C(u) at u, a child of u′ is
expanded. We denote with r = rule(u′) the rule that caused the generation of u′.
Note that all applicable rules must be collected at a node. When expanding the
corresponding child, a test on the order is performed and a backtrack is invoked
in case of a failure. This strategy allows us to distinguish between a success
node (no applicable rules) and a failure node (every applicable rule violates the
order). In fact, filtering out rules that are applicable but violate the ordering
would produce an ambiguity on the type of node at hand.

When computing stable models, there is no a-priori order which is suitable
to avoid permutations. In fact, the order is built dynamically, while exploring
the nodes. Basically, a partial ordering is defined at each node, starting with the
empty order at the root. Every time a node u is considered, the order Ord(u)
is extended with the applicable rules C(u) of the node. Any expanded child v
inherits the new order. To detect the order violation, it is sufficient to test if
r(u) ≺ r(v) using the order Ord(v). If the test fails, then backtracking is forced,
since there is a left branch that contains the expansion u ≺ v.

6 Experiments

The prototype implementing the ideas described above, as well as all the tests
described in this section, are available at http://www.dimi.uniud.it/dovier/
CLPASP. The prototype has been developed using SICStus Prolog 4 http://www.
sics.se/isl/sicstuswww/site/, chosen for its rich library of FDSET primi-
tives. Although other faster constraint solvers could be used (e.g., Gecode) we
prefer to stay into the realm of declarative programming for the scope of this
paper.

We performed some preliminary experiments, using different classes of ASP
programs, and we report execution times in Table 1. All the experiments have
been performed on an AMD Opteron 2GHz Windows XP machine. For ASP tests

we used Lparse 1.1.5 and Smodels 2.33 http://www.tcs.hut.fi/Software/
smodels/ compiled and run under cygwin.5

We used seven families of bechmarks.
The first family of experiments (test0.lp) aims at testing the practical running

time of computing the lfp(TP) for definite program. We defined recursively a
simple binary predicate p, with the semantics p(1, 2), p(2, 3), ..., p(N−1, N), and
a predicate h which computes its transitive closure. The growth of the running
time of GASP is in fact quadratic in N . GASP outperforms Lparse+Smodels
in this case, basically due to the grounding time. Let us observe that the size of
the grounded file with N = 256 is 922KB.

The second family of programs (test1.lp) is obtained by adding to the previ-
ous one the following clause defining the predicate r:

r(X, Y) :- h(X, Y),not p(X,Y).
The whole program admits a well-founded and stable model and this test has
been selected to check the effectiveness (and the limits) of computing well-
founded models directly in Prolog. We still have a quadratic growth, but the
number of calls to TP is now greater and in this case Lparse+Smodels win.
Actually, a low-level implementation of the fixpoint of TP (e.g., using a C++
constraint solver as Gecode) surely will allow better performances in this case.
The size of the grounded file with N = 256 is 1.8MB.

The third family of benchmarks is instead based on graphs obtained mod-
ifying the above example. The predicate p admits two different stable models.
In this case, the preliminary computation of well-founded model returns a sub-
model and the rest of the GASP computation procedure must be used. The
grounding time (and size of the program—with N = 80 the file is 26MB) are
not negligible. However, GASP sensibly outperforms Lparse+Smodels even
removing the time spent for grounding.

We then run GASP over problems that define functions, which is a rather
common situation when encoding CSPs using ASP (see, e.g., [5]). In this case a
typical encoding includes the definitions

domain(a1). ... domain(an).
range(b1). ... range(bm).
1 { assignment(X,Y):range(P) } 1 :- domain(X).

plus a set of ASP constraints on the assignment relation. The above cardinality
constraints could be implemented by a naive series of rules of the form:

assignment(X,a1) :- domain(X),
not assignment(X,a2), ..., not assignment(X,an).
...

assignment(X,an) :- domain(X),
not assignment(X,a1), ..., not assignment(X,an-1).

5 To compile Lparse, add #include <stdarg.h> at the beginning of the file
/src/extern.h.

This, however, leads to very poor performances of GASP w.r.t. Lparse+Smodels.
For instance, if we encode this way the Schur problem (see test5.lp below), for
(7, 3) GASP finds the first solution in 5s against the 0.1s of Lparse+Smodels.

However, the current GASP implementation admits an effective extension
that we have exploited.

We can anticipate the calling of the fixpoint procedure by a non-deterministic,
constraint-based, generation of the values of the functions that satisfy ASP con-
straints. In the current implementation it is completely implemented for some
problems but some of the notions used are easy to generalize.

In Figure 3 we report the main code relative to this part. The definition
of the predicates functions and funbuild is problem-independent (whenever
predicate names domain, range, and assigments are used). A list of pairs D =
[X,Y] is generated, where X takes values in domain and Y in range. All values of
the domain must be chosen. With increasing we fix them in increasing order.
We then add some problem-dependent constraints between these values with
predicate constraint adhoc and launch a labeling stage that finds solutions.
We decided to leave blank the options of the labeling (namely, we used the
default options).

Predicate constraint adhoc is problem dependent, but there is a simple
algorithm for translating a family of ASP constraints into recursive rules. We
have used this idea in the remaining tests.

For instance, test3.pl implements a marriage problem where the constraint is
of the form:

:- domain(X),range(Y), assignment(X,Y), X < Y.

That means, forall X and forall Y it cannot be that assignment(X, Y) and
X < Y . This induces a recursive predicate that for all X and for all Y states
that X ≥ Y . This is what we have done in lines (17)–(20) of the code in Figure 3.

This idea is generalized as follows. Consider all ASP constraints dealing ex-
plicitly with the assignment predicate.

– For each each ASP constraint C, split it into the following four parts:
• the “domain” and “range” predicates
• the occurrences of the predicate assignment
• built-in arithmetic atoms
• the other predicates

– The number of occurrences of the predicate assignment governs the number
of nested recursions needed (in other words, the number of forall to be
implemented by recursion).

– The conjunction of built-in (and other) predicates must be negated. This is
done using built-in constraints (in the former case) or using constraints of
non-membership to FDSETs (in the latter case).

We leave a precise specification of this algorithm as a future work.
All the other tests are executed this way. In the encoding of the N-Queens

problem (test 4.lp) two ASP constraints, one for horizontal attack, one for di-
agonal attack must be translated. Each of them requires a double recursion.

(1) functions(WFModel, [atom(assignment,2,ASS,NDOM)|RModel]) :-

(2) member(atom(domain,1,NUM,),WFModel),

(3) member(atom(range,1,RAN,),WFModel),

(4) select(atom(assignment,2, ,NDOM),WFModel,RModel),

(5) fdset size(NUM,L),

(6) length(Xs,L), length(Ys,L),

(7) funbuild(Xs,Ys,NUM,RAN,FUN),

(8) increasing(Xs),

(9) constraint adhoc(RModel,FUN),

(10) labeling([],FUN),

(11) list to fdset(FUN,ASS).

(12) funbuild([],[], , ,[]).

(13) funbuild([X|Xs],[Y|Ys],DOM,RAN,[D|Fun]) :-

(14) X in set DOM, Y in set RAN,

(15) tuple num([X,Y],D,2),

(16) funbuild(Xs,Ys,DOM,RAN,Fun).

(17) constraint adhoc(,[]).

(18) constraint adhoc(,[PAIR|FUN]) :-

(19) pair proj(PAIR,X,Y), %% Similar to num tuple

(20) X #>= Y,

(21) constraint adhoc(,FUN).

(22) constraint adhoc(Model,FUN) :-

(23) member(atom(hate,2,EDGES,),Model),

(24) constraint marriage rec(FUN,EDGES).

(25) constraint marriage rec([],).

(26) constraint marriage rec([PAIR|FUN],EDGES) :-

(27) nin set(2,PAIR,EDGES),

(28) constraint marriage rec(FUN,EDGES).

Fig. 3. Constraint based handling of functions

In the encoding of the Schur numbers (test5.lp) a triple recursion is needed to
state that if assignment(X1, Y) and assignment(X2, Y), then it cannot be that
assignment(X1 + X2, Y).

Finally, in test6.lp we have encoded a marriage problem with an auxiliary
predicate hate, just to describe the extension of the translation method when
non built-in predicates are used together with assignment in a constraint. In
this case, the ASP constraint

:- domain(X),range(Y),hate(X,Y),assignment(X,Y).

is translated into the predicate defined in lines (22)–(28) of Figure 3.

As reported in Table 1 running times of GASP over ASP programs encod-
ing CSPs are encouraging for extensions of the naive implementation. We have
excluded time needed for printing.

speed GASP/
N (n,p) Lparse Smodels GASP Lparse+Smodels

test0 32 0.29 0.15 0.11 4.0x
64 0.96 0.46 0.38 3.7x
128 3.64 0.23 1.52 2.6x
256 14.5 0.97 7.26 2.2x

test1 32 0.35 0.31 0.92 0.7x
64 1.25 0.11 3.42 0.4x
128 4.81 0.47 14.86 0.4x
256 19.2 1.95 75.73 0.3x

test2 10 0.95 0.11 0.17 6x
(1st sol) 20 6.25 0.75 0.49 14x

40 46.1 5.7 1.7 30x
80 354 45.5 7.8 51x

test3 100 4.03 1.36 0.14 38x
(1st sol) 200 15.3 15.8 0.28 111x

400 61.1 221.7 0.47 601x
800 242 3585 0.84 4556x

test4 10 0.73 0.78 0.05 30.2x
(1st sol) 15 2.32 0.43 3.2 0.9x

20 5.5 20.0 87.5 0.3x
25 11.0 4530 35.6 127x

test5 (41,4) 1.03 181.9 3.0 61x
(1st sol) (42,4) 1.16 278.9 3.2 88x

(43,4) 1.18 425.1 3.5 121x
(44,4) 1.21 5035 4958 1x

test6 100 6.7 0.9 0.7 10x
(1st sol) 200 26.7 3.5 2.6 11x

400 108 15.6 10.9 11x
800 440 61.3 32.0 15x

Table 1. Timings (expressed in seconds)

7 Conclusions

In this paper, we provided the foundation for a bottom-up construction of stable
models of a program P without preliminary program grounding. The notion of
GASP computation has been introduced; this model does not rely on the explicit
grounding of the program. Instead, the grounding is local and performed on-
demand during the computation of the answer sets. We believe this approach
can provide an effective avenue to achieve greater efficiency in space and time
w.r.t. a complete program grounding.

We illustrated a preliminary implementation of GASP using CSP on FD
variables and FDSETs. We showed how to design TP , well-founded and sta-
ble models computation based on CSPs. This allowed us to encode the entire
process in Prolog. Interestingly, the running times for TP and the well-founded
computation are comparable to Smodels. Some ASP programs run slower, due

to Prolog overheads and the limited efficiency of some (naive) data structures
used.

We plan to investigate how to extend the model to enable the integration
of other language features commonly encountered in ASP languages, and how
to effectively use such features as constraints to guide the construction of the
FDSET search space. We will also explore how global properties of the program
and of the partial model can be used by the GASP implementation to improve
efficiency.

Acknowledgments

The work is partially supported by MUR FIRB RBNE03B8KK and PRIN projects,
and NSF grants HRD0420407 and CNS0220590. We really thank Andrea Formisano
for the several useful discussions.

References

1. Y. Babovich and M. Maratea. Cmodels-2: SAT-based Answer Sets Solver Enhanced
to Non-tight Programs. In Logic Programming and Non-Monotonic Reasoning,
pages 346–350, LNCS 2923, 2004.

2. C. Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, 2003.

3. D. Brooks, E. Erdem, S. Erdogan, J. Minett, and D. Ringe. Inferring Phyloge-
netic Trees Using Answer Set Programming. Journal of Automated Reasoning,
39(4):471–511, 2007.

4. P. Codognet and D. Diaz. A Minimal Extension of the WAM for clp(fd). In
International Conference on Logic Programming. MIT Press, 1993.

5. A. Dovier, A. Formisano, and E. Pontelli. A Comparison of CLP(FD) and ASP
Solutions to NP-Complete Problems. In International Conference on Logic Pro-
gramming, pages 67–82. Springer Verlag, 2005.

6. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. , S. Perri, and F. Scarcello. The DLV
System for Knowledge Representation and Reasoning. In ACM Transactions on
Computational Logic, 7(3):499–562, 2006

7. F. Lin, and Y. Zhao. ASSAT: Computing answer sets of a logic program by SAT
solvers. In Artificial Intelligence 157(1-2): 115–137, 2004.

8. M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Clasp: a Conflict-driven
Answer Set Solver. In Logic Programming and Non-Monotonic Reasoning, pages
260–265. Springer Verlag, 2007.

9. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programs.
In International Symposium on Logic Programming, pages 1070–1080. MIT Press,
1988.

10. J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation
Through Heuristic Search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

11. V. Lifschitz. Answer Set Planning. In Logic Programming and Non-monotonic
Reasoning, pages 373–374. Springer Verlag, 1999.

12. L. Liu, E. Pontelli, S. Tran, and M. Truszczynski. Logic Programs with Abstract
Constraint Atoms: the Role of Computations. In International Conference on Logic
Programming, pages 286–301. Springer Verlag, 2007.

13. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Heidelberg, 1987.
14. V.W. Marek and M. Truszczyński. Stable Models and an Alternative Logic Pro-

gramming Paradigm. In K.R. Apt, V.W. Marek, M. Truszcziński, and D. S. War-
ren, editors, The Logic Programming Paradigm. Springer Verlag, 1999.

15. I. Niemela. Logic Programs with Stable Model Semantics as a Constraint Pro-
gramming Paradigm. Annals of Mathematics and AI, 25(3-4): 241–273, 1999.

16. I. Niemela and P. Simons. Smodels - An Implementation of the Stable Model
and Well-Founded Semantics for Normal LP. In Logic Programming and Non-
monotonic Reasoning, pages 421–430. Springer Verlag, 1997.

17. T. Son and E. Pontelli. Set Constraints in Logic Programming. In Logic Program-
ming and Non-Monotonic Reasoning, pages 167–179. Springer Verlag, 2004.

18. T. Son and E. Pontelli. Planning for Biochemical Pathways: a Case Study of
Answer Set Planning in Large Planning Problem Instances. In First International
Workshop on Software Engineering for Answer Set Programming, pages 116–130,
2007.

19. A. Van Gelder, K.A. Ross, and J.S. Schlipf. The Well-Founded Semantics for
General Logic Programs. Journal of the ACM, 38(3):620–650, 1991.

20. U. Zukowski, B. Freitag, and S. Brass. Improving the Alternating Fixpoint: The
Transformation Approach. Proc. of the 4th International Conference on Logic
Programming and Nonmonotonic Reasoning. pp. 4–59, 1997.

