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Abstract. Action description languages, such asA andB [6], are expressive in-
struments introduced for formalizing planning domains andproblems. The paper
starts by proposing a methodology to encode an action language (with conditional
effects and static causal laws), a slight variation ofB, usingConstraint Logic Pro-
gramming over Finite Domains. The approach is then generalized to lift the use of
constraints to the level of the action language itself. A prototype implementation
has been developed, and the preliminary results are presented and discussed.

1 Introduction

The construction of intelligent agents that can be effective in real-world environments
has been a goal of researchers from the very first days of Artificial Intelligence. It has
long been recognized that such an agent must be able toacquire, represent, andreason
with knowledge. As such, areasoning componenthas been an inseparable part of most
agent architectures in the literature.

Although the underlying representations and implementations may vary between
agents, the reasoning component of an agent is often responsible for making decisions
that are critical to its existence. Logic programming languages offer many attributes that
make them suitable as knowledge representation languages.Their declarative nature al-
lows the modular development of provably correct reasoningmodules [2]. Recursive
definitions can be easily expressed and reasoned upon. Control knowledge and heuris-
tic information can be declaratively introduced in the reasoning process. Furthermore,
many logic programming languages offer a natural support for nonmonotonic reason-
ing, which is considered essential for commonsense reasoning. These features, along
with the presence of efficient solvers [1, 11, 15, 7], make logic programming an attrac-
tive paradigm for knowledge representation and reasoning.

In the context of knowledge representation and reasoning, avery important appli-
cation of logic programming has been in the domain of reasoning about actions and
change and planning [2]. Planning problems have been effectively encoded usingAn-
swer Set Programming (ASP)[2]—where distinct answer sets represent different trajec-
tories leading to the desired goal. Other logic programmingparadigms, e.g.,Constraint
Logic Programming over Finite Domains (CLP(FD)), have been used less frequently to
handle problems in reasoning about actions (e.g., [14, 17]). Comparably more emphasis
has been placed in encoding planning problems as (non-logicprogramming) constraint
satisfaction problems [10].



Recent proposals on representing and reasoning about actions and change have re-
lied on the use of concise and high-level languages, commonly referred to asaction
description languages, e.g., the languagesA andB [6]. Action languages allow one to
write propositions that describe the effects of actions on states, and to create queries to
infer properties of the underlying transition system. Anaction descriptionis a specifi-
cation of a planning problem using the action language.

The goal of this work is to explore the relevance of constraint solving and con-
straint logic programming [11, 1] in dealing with action languages and planning. The
push towards this exploratory study came from a recent investigation [4, 5] aimed at
comparing the practicality and efficiency of answer set programming versus constraint
logic programming in solving various combinatorial and optimization problems. The
study indicated that CLP offers a valid alternative, especially in terms of efficiency, to
ASP when dealing with planning problems; furthermore, CLP offers the flexibility of
programmer-developedsearch strategies and the ability tohandle numerical constraints.

The first step, in this paper, is to demonstrate a scheme that directly processes an
action description specification, in a language similar toB, producing a CLP(FD) pro-
gram that can be used to compute solutions to the planning problem. Our encoding has
some similarities to the one presented in [10], although we rely on CLP instead of CSP,
and our action language supports static causal laws and non-determinism—while the
work of Lopez and Bacchus is restricted to STRIPS-like specifications.

While the first step relies on using constraints to compute solutions to a planning
problem, the second step brings the expressive power of constraints to the level of the
action language, by allowing multi-valued fluents and constraint-producingactions. The
extended action language (namedBFD

MV ) can be as easily supported by the CLP(FD)
framework, and it allows a declarative encoding of problemsinvolving actions with
resources, delayed effects, and maintenance goals. These ideas have been developed in
a prototype, and some preliminary experiments are reported.

We believe that the use of CLP(FD) can greatly facilitate thetransition of declarative
extensions of action languages to concrete and effective implementations, overcoming
some inherent limitations (e.g., efficiency and limited handling of numbers) of other
logic-based systems (e.g., ASP).

2 An Action Language

“Action languages are formal models of parts of the natural language that are used
for talking about the effect of actions”[6]. Action languages are used to defineaction
descriptionsthat embed knowledge to formalize planning problems. In this section, we
use a variant of the languageB, based on the syntax used in [16]. With a slight abuse of
notation, we simply refer to this language asB.

2.1 Syntax of B

An action signature consists of a setF of fluent names, a setA of action names, and a
setV of values for fluents inF . In this section, we consider Boolean fluents, henceV =
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{0, 1}.1 A fluent literalis either a fluentf or its negationneg (f). Fluents and actions are
concretely represented bygroundatomic formulaep(t1, . . . , tn) from a logic language
L. For simplicity, we assume that the set of admissible terms is finite.

The languageB allows us to specify anaction descriptionD, which relates actions,
states, and fluents using predicates of the following forms:
◦ executable(a, [list-of-conditions]) asserts that the given conditions have

to be satisfied in the current state in order for the actiona to be executable;
◦ causes(a, l, [list-of-conditions]) encodes a dynamic causal law, de-

scribing the effect (the fluent literall ) of the execution of actiona in a state satis-
fying the given conditions;
◦ caused([list-of-conditions], l) describes a static causal law—i.e., the

fact that the fluent literall is true in a state satisfying the given preconditions;
(where[list-of-conditions] denotes a list of fluent literals). Anaction descrip-
tion is a set of executability conditions, static, and dynamic laws. A specificplanning
problemcontains an action descriptionD along with a description of theinitial state
and thedesired goal(O):

◦ initially(l) asserts that the fluent literall is true in the initial state,

◦ goal(f) asserts that the goal requires the fluent literalf to be true in the final state.

Fig. 4 reports an encoding of the three barrels problem usingthis language.

2.2 Semantics of B

If f ∈ F is a fluent, andS is a set of fluent literals, we say thatS |= f iff f ∈ S
andS |= neg(f) iff neg(f) ∈ S. Lists of literals[ℓ1, . . . , ℓn] denote conjunctions
of literals. We denote with¬S the set{f : neg(f) ∈ S} ∪ {neg(f) : f ∈ S}.
A set of fluent literals isconsistentif there are no fluentsf s.t. S |= f andS |=
neg(f). If S ∪ ¬S ⊇ F thenS is complete. A setS of literals isclosedunder a set
of static lawsSL = {caused (C1, ℓ1), . . . , caused (Cn, ℓn)}, if for all i ∈ {1, . . . , n}
it holds thatS |= Ci ⇒ S |= ℓi. The setCloSL(S) is defined as the smallest set of
literals containingS and closed underSL. CloSL(S) is uniquely determined and not
necessarily consistent.

The semantics of an action language on the action signature〈V ,F ,A〉 is given
in terms of a transition system〈S, v, R〉 [6], consisting of a setS of states, a total
interpretation functionv : F × S −→ V (in this sectionV = {0, 1}), and a transition
relationR ⊆ S ×A× S. Given a transition system〈S, v, R〉 and a states ∈ S, let:

Lit(s) = {f ∈ F : v(f, s) = 1} ∪ {neg(f) : f ∈ F , v(f, s) = 0}.

Observe thatLit(s) is consistent and complete. Given a set of dynamic lawsDL =
{causes (a, ℓ1, C1), . . . , causes (a, ℓn, Cn)} for the actiona ∈ A and a states ∈ S,
we define theeffect ofa in s as follows:E(a, s) = {ℓi : 1 6 i 6 n,Lit(s) |= Ci}.

LetD be an action description defined on the action signature〈V ,F ,A〉, composed
of dynamic lawsDL, executability conditionsEL, and static causal lawsSL. The tran-
sition system〈S, v, R〉 described byD is a transition system such that:

1 Consequently, we often say that a fluent is true (resp., false) if its value is1 (resp.,0).

3



• If s ∈ S, thenLit(s) is closed underSL;
• R is the set of all triples〈s, a, s′〉 such that

Lit(s′) = CloSL(E(a, s) ∪ (Lit(s) ∩ Lit(s′))) (1)

andLit(s) |= C for at least one conditionexecutable (a, C) in EL.
Let 〈D,O〉 be a planning problem instance, where∆ = {ℓ | initially (ℓ) ∈ O}
is a complete set of fluent literals. Atrajectory is a sequences0a1s1a2 . . . ansn s.t.
〈si, ai+1, si+1〉 ∈ R (0 ≤ i < n). Given the corresponding transition system〈S, v, R〉,
a sequence of actionsa1, . . . , an is a solution (aplan) to the planning problem〈D,O〉
if there is a trajectorys0a1s1 . . . ansn in 〈S, v, R〉 s.t.Lit(s0) = ∆ andLit(sn) |= ℓ
for eachgoal (ℓ) ∈ O. The plan is sequential and the desired length is given.

3 Modeling B and planning problems in CLP(FD)

Let us describe how action theories are mapped to finite domain constraints. We will
focus on how constraints can be used to model the possible transitions from each indi-
vidual state of the transition system. Ifsv andsu are the starting and ending states of a
transition, we assert constraints that relate the truth value of fluents insv andsu.

A Boolean variable is introduced to describe the truth valueof each fluent in a state.
The value of a fluentf in sv (resp.,su) is represented by the variableIV v

f (resp.,EVu
f ).

These variables can be used to build expressionsIV v
l (EVu

l ) that represent the truth value
of each fluent literall . In particular, ifl is a fluentf , thenIV v

l = IV v
f ; if l is the literal

neg(f) , thenIV v
l = 1 − IV v

f . Similar equations can be set forEVl. In a similar spirit,
given a conjunction of literalsα ≡ [l 1, . . . , l n] we will denote withIV v

α the expression
IV v

l1
∧ · · · ∧ IV v

ln
; an analogous definition is given forEVu

α. We will also introduce, for
each actionai, a Boolean variableAv

i , representing whether the action is executed or
not in the transition fromsv to su under consideration.

Given a specific fluentf , we develop constraints that determine whenEVu
f is true

and false. Let us consider the dynamic causal laws that havef as a consequence:

causes (at1 , f, α1) · · · causes (atm
, f, αm)

Analogously, we consider the static causal laws that assertneg (f):

causes (af1
, neg(f), β1) · · · causes (afn

, neg(f), βn)

Let us also consider the static causal laws related tof

caused (γ1, f) · · · caused (γh, f)
caused (ψ1, neg(f)) · · · caused (ψℓ, neg(f))

Finally, for each actionai we will have its executability conditions:
executable (ai, δ

i
1) . . . executable (ai, δ

i
p)

Figure 1 describes the Boolean constraints that can be used in encoding the relations
that determine the truth value of the fluentf . We will denote withCv,u

f the conjunction
of such constraints. Given an action specification over the set of fluentsF , the system
of constraintsCv,v+1

F includes:

• the constraintCv,v+1
f for eachf ∈ F and for each0 ≤ v < N whereN is the

chosen length of the plan;
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EVuf ↔ Posfired v,u
f ∨ (¬Negfired v,u

f ∧ IV v
f ) (2)

¬Posfired v,u
f ∨ ¬Negfired v,u

f (3)

Posfired v,u
f ↔ DynPvf ∨ StatP u

f (4)

Negfired v,u
f ↔ DynNvf ∨ StatN u

f (5)

DynPvf ↔
Wm

i=1
(IV v

αi
∧ Avti) (6)

StatP u
f ↔

Wh

i=1
EVuγi

(7)

DynNvf ↔
Wn

i=1
(IV v

βi
∧ Avfi

) (8)

StatN u
f ↔

Wℓ

i=1
EVuψi

(9)

Fig. 1. The constraintCv,u
f for the generic fluentf

• for eachf ∈ F and0 ≤ v ≤ N , the constraintsIV v
f = EVv

f

• for each0 ≤ v < N , the constraint
∑

aj∈A Av
j = 1

• for each0 ≤ v < N and for each actionai ∈ A, the constraintsAv
i →

∨p

j=1 IV v
δi

j

This modeling has been translated into a concrete implementation using SICStus Pro-
log. In this translation constrained CLP variables directly reflect the Boolean variables
modeling fluent and action’s occurrences. Consequently, causal laws and executability
conditions are directly translated into CLP constraints. The complete code and proofs
can be found atwww.dimi.uniud.it/dovier/CLPASP . Let us proceed with a sketch
of the correctness proof of the constraint-based encoding w.r.t. the semantics.

F ∪ ¬F
S S′

E

Fig. 2. Sets of fluents involved in a state transition

Let S = Lit(sv) (resp.,S′ = Lit(sv+1)) be the set of fluent literals that holds in
sv (resp.,sv+1). We denote byE = E(a, s), and byClo = CloSL. Fig. 2 depicts the
equationS′ = Clo(E ∪ (S ∩ S′)). From any specific, known,S (resp.,S′), we can
obtain a consistent assignmentσS (resp.,σS′ ) of truth values for all the variablesIV v

f

(resp.,EVv+1
f ) of sv (resp.,sv+1). Conversely, each truth assignmentσS (resp.,σS′ ) for

all variablesIV v
f (resp.,EVv+1

f ) corresponds to a consistent set of fluentsS (resp.,S′).

Let σa be the assignment of truth values for such variables such that σa(Av
i ) = 1 if

and only ifai occurs in the state transition fromsv to sv+1. Note that the domains of
σS , σS′ , andσa are disjoint, so we can safely denote byσS ◦ σS′ ◦ σa the composition
of the three assignments. Clearly,E ⊆ S′.
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Theorem 1 states the completeness of the constraint-based modeling of the planning
problem. For any given action descriptionD, if a triple 〈s, a, s′〉 belongs to the transition
system described byD, then the assignmentσ = σS ◦ σS′ ◦ σa satisfiesCv,v+1

F .

Theorem 1 (Completeness). If S′ = CloSL(E(ai, sv)∪ (S ∩ S′)) thenσS ◦ σS′ ◦ σa

is a solution of the constraintCv,v+1
F .

Let us observe that the converse of the above theorem does notnecessarily hold. The
problem arises from the fact that the implicit minimality inthe closure operation is not
reflected in the computation of solutions to the constraint.Consider the action descrip-
tion whereF = {f , g, h} andA = {a}, with predicates:

executable(a,[]). causes(a,f,[]). caused([g],h). cause d([h],g).

SettingS = {neg(f) , neg(g) , neg(h) } andS′ = {f , g, h} determines a solution of
the constraintCv,v+1

F with the execution of actiona, butCloSL(E∪(S∩S′)) = {f } ⊂
S′. However, the following holds:

Theorem 2 (Weak Soundness). LetσS ◦ σS′ ◦ σa identify a solution of the constraint
Cv,v+1

F . ThenCloSL(E(ai, sv) ∪ (S ∩ S′)) ⊆ S′.

Let us consider the set of static causal lawsSL. SL identifies adefinite propositional
programP as follows. For each positive fluent literalp, let ϕ(p) be the (fresh) pred-
icate symbolp, and for each negative fluent literalneg(p) let ϕ(neg(p) ) be the
(fresh) predicate symbol̃p. The programP is the set of clauses of the formϕ(p) ←
ϕ(l1 ), . . . , ϕ(lm ), for each static causal lawcaused([l1,...,lm],p) . Notice thatp
andp̃ are independent predicate symbols inP . FromP one can extract the dependency
graphG(P ) in the usual way, and the following result can be stated.

Theorem 3 (Correctness). Let σS , σS′ , σa be a solution of the constraintCv,v+1
F . If

the dependency graph ofP is acyclic, thenCloSL(E(ai, sv) ∪ (S ∩ S′)) = S′.

If the programP meets the conditions of the previous theorem, then the following holds.

Theorem 4. There is a trajectory〈s0, a1, s1, a2, . . . , an, sn〉 in the transition system if
and only if there is a solution for the constraintsC0,1

F ∧ C1,2
F ∧ · · · ∧Cn−1,n

F .

4 The Action Language B
FD

MV

Constraints represent a very declarative notation to express relationships between un-
knowns; as such, the ability to use them directly in the action theory would greatly
enhance the declarative and expressive power of the action language, facilitating the
encoding of complex action domains, such as those involvingmultivalued fluents.

Example 1 (Control Knowledge).Domain-specific control knowledge can be formal-
ized as constraints that we expect to be satisfied by all the trajectories. For example, we
may know that if a certain action occurs at a given time step (e.g., ingest poison )
then at the next time step we will always perform the same action (e.g.,call doctor ).
This could be encoded asocc(ingest poison) ⇒occ(call doctor) 1 where
occ(a) is a fluent describing the occurrence of the actiona andf 1 indicates that the
fluentf should hold at the next time step. The operator⇒ is an implication constraint.
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Example 2 (Delayed Effect).Let us assume that the actiona (e.g.,req reimbursement )
has a delayed effect (e.g.,bank account increased by $50 after 30 time units). This
could be expressed as a dynamic causal law:

causes(request reimbursement,incr(bank,50) 30,[])

whereincr is a constraint introduced to deal with additive computations.

Example 3 (Maintenance Goals).It is not uncommon to encounter planning problems
where along with the type of goals described earlier (known as achievementgoals),
there are alsomaintenancegoals, representing properties that must persist throughout
the trajectory. Constraints are a natural way of encoding maintenance properties, and
can be introduced along with simple temporal operators. E.g., if the fluentfuel repre-
sents the amount of fuel available, then the maintenance goal which guarantees that we
will not be left stranded could be encoded as:always(fuel > 0) .

Furthermore, the encoding of an action theory using multivalued fluents leads to more
compact and more efficient representations, facilitating constraint propagation during
planning (with pruning of the search space) and better exposing non-determinism (that
could be exploited, for example, by a parallel planner).

4.1 Syntax of B
F D

MV

Let us introduce the syntax ofBFD
MV . As forB, the action signature consists of a setF

of fluent names, a setA of action names, and a setV of values for fluents inF .
In the definition of an action description, an assertion (domain declaration) of the

kind fluent (f, v1, v2) or fluent (f, {v1, . . . , vk}) declares thatf is a fluent and that
its set of valuesV is the interval[v1, v2] or the set{v1, . . . , vk}.2 An annotated fluent
(AF) is an expressionfa, wheref is a fluent anda ∈ N

−.3 Intuitively speaking, an
annotated fluentfa denotes the value the fluentf had in the past,−a steps ago. Such
fluents can be used influent expressions (FE), which are defined inductively as follows:

FE ::= n | AF | abs (FE) | FE1 ⊕ FE2 | rei(FC)

wheren ∈ Z,⊕ ∈ {+,−, ∗, /,mod}. rei(FC) is the reification of fluent constraintFC.
Fluent expressions can be used to buildfluent constraints(FC), i.e., formulae of the

form FE1 op FE2, whereFE1 andFE2 are fluent expressions andop ∈ {eq, neq , geq ,
leq , lt , gt }. The languageBFD

MV allows one to specify anaction description, which
relates actions, states, and fluents using predicates of thefollowing forms:

◦ axioms of the formexecutable (a, C) asserting that the fluent constraintC has to
be entailed by the current state in order for the actiona to be executable.

◦ axioms of the formcauses (a, C,C1) encode dynamic causal laws. The action
a can be executed if the constraintC1 is entailed by the current state; the state
produced by the execution of the action is required to entailthe constraintC.

◦ axioms of the formcaused (C1, C2) describe static causal laws. If the fluent con-
straintC1 is satisfied in a state, then the constraintC2 must also hold in such state.

2 Note that we could generalize the notion of domain to more complex and non-numeric sets.
3 With N

− we denote the set{0,−1,−2,−3, . . . }. We will often denotef0 simply byf .
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An action descriptionis a set of executability conditions, static and dynamic laws.
Observe that traditional action languages likeB are special cases ofBFD

MV . For ex-
ample, the dynamic causal law ofB:

causes(a, f, [f 1,...,f k, neg(g 1),..., neg(g h)])

can be encoded as
causes(a, f 0 eq 1,[f 0

1 eq 1,...,f 0

k eq 1, g 0

1 eq 0, ..., g 0

h eq 0])

A specific instance of a planning problem is a pair〈D,O〉, whereD is an action the-
ory, andO contains any number of axioms of the forminitially (C) andgoal (C),
whereC is a fluent constraint.

4.2 Semantics of B
F D

MV

Each fluentf is assigned uniquely to a domaindom(f) in the following way:
◦ If fluent (f, v1, v2) ∈ D thendom(f) = {v1, v1 + 1, . . . , v2}.
◦ If fluent (f, Set) ∈ D, thendom(f) = Set.

A functionν : F → Z ∪ {⊥} is astateif ν(f) ∈ dom(f) for all f ∈ F . For a number
n ≥ 1, we define astate sequencēν as a tuple〈ν0, . . . , νn〉 where eachνi is a state.

Let us consider a state sequenceν̄, a step0 ≤ i < |ν̄|, a fluent expressionϕ, and let
us define the concept ofvalueof ϕ in ν̄ at stepi (denoted bȳν(ϕ, i)):
• ν̄(x, i) = x if x is a number
• ν̄(fa, i) = νi−|a|(f) if |a| ≤ i,⊥ otherwise
• ν̄(abs(ϕ), i) = abs(ν̄(ϕ, i))

• ν̄(ϕ1 ⊕ ϕ2, i) = ν̄(ϕ1, i)⊕ ν̄(ϕ2, i)

We treat the interpretation of the various⊕ operations and relations as strict w.r.t.⊥.
Given a fluent constraintϕ1 opϕ2, a state sequencēν and a time0 ≤ i < |ν̄|, the notion
of satisfaction̄ν |=i ϕ1 op ϕ2 is defined as̄ν |=i ϕ1 op ϕ2 ⇔ ν̄(ϕ1, i) op ν̄(ϕ2, i).
If ν̄(ϕ1, i) or ν̄(ϕ2, i) is ⊥, then ν̄ 6|=i ϕ1 op ϕ2. |=i can be generalized to the case
of propositional combinations of fluent constraints. In particular, ν̄(rei(C), i) = 1 if
ν̄ |=i C, elseν̄(rei(C), i) = 0. The operations∩ and∪ on states are defined next:

ν1 ∪ ν2(f) =







ν1(f) if ν1(f) = ν2(f)
ν1(f) if ν2(f) = ⊥
ν2(f) if ν1(f) = ⊥

ν1 ∩ ν2(f) =

{

ν1(f) if ν1(f) = ν2(f)
⊥ otherwise

Let ν̄ be a state sequence; we say thatν̄ is consistent if, for each0 ≤ i < |ν̄|, and for
each static causal lawcaused (C1, C2) we have that:̄ν |=i C1 ⇒ ν̄ |=i C2.

Let a be an action and̄ν be a state sequence. The actiona is executable in̄ν at step
i (0 ≤ i < |ν̄| − 1) if there is an axiomexecutable (a, C) such that̄ν |=i C.

Let us denote withDyn(a) the set of dynamic causal law axioms for actiona. The
effects of executinga at stepi in the state sequencēν, denoted byEff (a, ν̄, i), is

Eff (a, ν̄, i) =
∧

{C | causes (a, C,C1) ∈ Dyn(a), ν̄ |=i C1}

Furthermore, given a constraintC, a state sequencēν, and a stepi, the reductRed(C, ν̄, i)
is defined as the constraint

Red(C, ν̄, i) = C ∧
∧

{f−j = νi−j(f) | f ∈ F , 1 ≤ j ≤ i}
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Let us denote withStat the set of static causal law axioms. We can defineClo(ν̄, i) as

Clo(ν̄, i) =
∧

{C2 | caused (C1, C2) ∈ Stat, ν̄ |=i C1}

A state sequencēν is a valid trajectory if the following conditions hold:
• for each axiom of the forminitial (C) in the action theory we have thatν̄ |=0 C

• for each axiom of the formgoal (C) we have that̄ν |=|ν̄|−1 C

• for each0 ≤ i < |ν̄| − 1 there is an actionai such that
◦ actionai is executable in̄ν at stepi
◦ we have thatνi+1 = σ∪ (νi∩νi+1) (*) whereσ is a solution of the constraint

Red(Eff (ai, ν̄, i), ν̄, i+ 1) ∧Clo(ν̄, i+ 1)

Let us conclude with some comments on the relationship between the semantics ofB
and ofBFD

MV . First of all, the lack of backward references inB allows us to analyze each
B transition independently. Conversely, inBFD

MV we need to keep track of the complete
trajectory—represented by a sequence of states.

In B, the effect of a static or dynamic causal law is to set the truth value of a flu-
ent. Hence, the setsE andClo can be deterministically determined (even if they can
be inconsistent) and the equation (1) takes care of these twosets and of the inertia. In
BFD

MV , instead, less determined effects can be set. For instance,causes (a, f gt 1, [ ]), if
dom(f) = {0, 1, 2, 3}, admits two possible values forf in the next state. One could ex-
tend the semantics of Sect. 2, by working on sets of sets forE or Clo. Instead, we have
chosen to encode the nondeterminism within the solutions ofthe introduced constraints.
Equation (1) is therefore replaced by equation (*) above.

The concrete implementation ofBFD
MV in SICStus Prolog is directly based on this

semantics. We omit the detailed description, which is a fairly mechanical extension of
the implementation ofB (in this case the main difference w.r.t. what done in Sect. 3,is
that the set of the admitted values for multivalued fluents determines the domain of the
CLP constrained variables), and relative proof of correctness due to lack of space.

4.3 Some Concrete Extensions

The languageBFD
MV described above has been implemented using SICStus Prolog,as

a fairly direct generalization of the encoding described for the Boolean case. In addi-
tion, we have introduced in the implementation some additional syntactic extensions,
to facilitate the encoding of recurring problem features.

It is possible to add information about thecostof each action, fluent, and about the
global cost of a plan. This can be done by writing rules of the form:

◦ action cost(action,VAL) (if no information is given, the default cost is 1).

◦ state cost(FE) (if no information is given, the default cost is 1) is the costof a
state, whereFE is a fluent expression built on current fluents.

◦ plan cost(plan op n) wheren is a number, adds the information about the global
cost admitted for the sequence of actions.

◦ goal cost(goal op NUM) adds a constraint about the global cost admitted for the
sequence of states.
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◦ minimize action to constrain the search to a plan with minimal global action cost.

◦ minimize state which forces the search of a plan with minimal goal state cost.

The implementation of these cost-based constraints relieson the optimization features
offered by SICStus’ labeling predicate: the labeling phaseis guided by imposing an
objective function to be optimized.

The language allows the definition ofabsolute temporal constraints, i.e., constraints
that refer to specific time instances in the trajectory. We define a timed fluent as a pair
FLUENT @ TIME. Timed fluents are used to build timed fluent expressions (TE)and
timed primitive constraints (TC). E.g.,contains(5) @ 2 leq contains(5) @ 4

states that, at time 2, barrel 5 contains at most the same amount of water as at time 4.
contains(12) @ 2 eq 3 states that, at time 3, barrel 12 contains 3 liters of water.
These constructs can be used in the following expressions:

◦ cross constraint(TC) imposes the timed constraintTC to hold.

◦ holds(FC,StateNumber) It is a simplification of the above constraint. states that
the primitive fluent constraintFC holds at the desired State Number (0 is the num-
ber of the initial state). It is therefore a generalization of the initially primitive.
It allows to drive the plan search with some point information.

◦ always(FC) states that the fluent constraintsFC holds in all the states. Current
fluents must be used in order to avoid negative references.

The semantics can be easily extended by conjoining these newconstraints to the
formulae of the previous subsection.

4.4 An Extended B
F D

MV
Language: Looking into the Future

We propose to extendBFD
MV to allow constraints that reason about future steps of the

trajectory (along lines similar to [3]).

Syntax: Let us generalize the syntax presented earlier as follows: an annotated fluent
is of the formfa, wheref ∈ Z. Constructing fluent formulae and fluent constraints
now implies the ability of looking into the future steps of computation. In addition,
we introduce another fluent constraint, that will help us encoding interesting problems:
incr(fa, n) wherefa is an annotated fluent andn is a number. Theincr constraint
provides a simplified view of additive fluents [9].

Semantics: The definition of the semantics becomes a process of “validating” a se-
quence of states to verify their fitness to serve as a trajectory. Given a fluent for-
mula/constraintϕ and a time stepi, we define the conceptAbsolute(ϕ, i) as follows:
◦ if ϕ ≡ n thenAbsolute(ϕ, i) = n

◦ if ϕ ≡ fa thenAbsolute(ϕ, i) = f i+a

◦ if ϕ ≡ ϕ1 ⊕ ϕ2 thenAbsolute(ϕ, i) = Absolute(ϕ1, i)⊕Absolute(ϕ2, i)

◦ if ϕ ≡ abs(ϕ1) thenAbsolute(ϕ, i) = abs(Absolute(ϕ1, i))

◦ if ϕ ≡ rei(ϕ1) thenAbsolute(ϕ, i) = rei(Absolute(ϕ1, i))

◦ if ϕ ≡ ϕ1 op ϕ2 thenAbsolute(ϕ, i) = Absolute(ϕ1, i) op Absolute(ϕ2, i)

◦ if ϕ ≡ incr(ϕ1, n) thenAbsolute(ϕ, i) = incr(Absolute(ϕ1, i), n)

10



For a sequence of statesν̄ = 〈ν0, . . . , νn〉 and actions̄a = 〈a0, . . . , an−1〉, let us define

Global(ā, ν̄) =

n−1
∧

i=0

Absolute(Eff (ai, ν̄, i), i+ 1)

The sequence of statesν̄ is a trajectory if
• for each axiom of the forminitial (C) in the action theory we have thatν̄ |=0 C

• for each axiom of the formgoal (C) in the action theory we have thatν̄ |=|ν̄|−1 C

• there is a sequence of actionsā = 〈a0, a1, . . . , an−1〉with the following properties:
for each0 ≤ i < n we have thatai is executable at stepi of ν̄ and νi+1 =
σ∪(νi∩νi+1), whereσ is a solution ofRed(Global(ā, ν̄), ν̄, i+1)∧Clo(ν̄, i+1).

In particular, ifIncr(C, i) = {n | incr(f i, n) ∈ C} are all theincr constraints for an
annotated fluentf i, thenθ is a solution of it w.r.t. a sequence of statesν̄ if νi(f) =
νi−1(f) +

∑

n∈Incr(C,i) n.

5 Experimental Analysis

The prototype, implemented on an AMD Opteron 2.2GHz Linux machine, has been
validated on a number of benchmarks. Extensive testing has been performed on the
CLP encoding ofB, and additional results can be found atwww.dimi.uniud.it/

dovier/CLPASP . Here we concentrate on two representative examples.

5.1 Three-barrel Problem

We experimented with different encodings of the three-barrel problem. There are three
barrels of capacityN (even number),N/2 + 1, andN/2 − 1, respectively. At the
beginning the largest barrel is full of wine, the other two are empty. We wish to reach
a state in which the two larger barrels contain the same amount of wine. The only
permissible action is to pour wine from one barrel to another, until the latter is full
or the former is empty. Figure 4 shows the encodings of the problem (forN = 12)
in B (where, it is also required that the smallest barrel is emptyat the end) andBFD

MV .
Table 1 provides the execution times (in seconds) for different values ofN and different
plan lengths. TheB encoding has been processed by our CLP(FD) implementation and
by two ASP solvers (Smodels and Cmodels)—the encoding of aB action description in
ASP is natural (see [5]). TheBFD

MV descriptions have been solved using SICStus Prolog.

5.2 2-Dimensional Protein Folding Problem

The problem we have encoded is a simplification of the proteinstructure folding prob-
lem. The input is a chaina1a2 · · · an with ai ∈ {0, 1}, initially placed in a vertical
position, as in Fig. 3-left. We will refer to eachai as anamino acid. The permissible
actions are the counterclockwise/clockwisepivot moves. Once one pointi of the chain
is selected, the pointsa1, a2, . . . , ai will remain fixed, while the pointsai+1, . . . , an

will perform a rigid counterclockwise/clockwise rotation. Each conformation must be
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Barrels’ Len. Ans. B BFDMV

capacities lparse SmodelsCmodels CLP(FD) unconstrained
plan cost

constrained plan cost
(in parentheses)

8-5-3 6 N 8.95 0.10 0.85 0.16+0.36 0.02+0.11 (70) 0.01+0.10
8-5-3 7 Y 8.94 0.28 1.34 0.19+0.47 0.02+0.13 (70) 0.03+0.13
8-5-3 8 Y 9.16 0.39 2.07 0.18+2.66 0.03+0.85 (70) 0.01+0.79
8-5-3 9 Y 9.22 0.39 8.11 0.22+1.05 0.02+0.28 (70) 0.05+0.28
12-7-5 10 N 35.63 18.31 325.28 0.45+26.86 0.05+7.79 (90) 0.03+6.78
12-7-5 11 Y 35.70 45.91 781.28 0.52+28.87 0.05+9.46 (90) 0.04+5.03
12-7-5 12 Y 35.58 81.12 4692.08 0.58+203.34 0.06+57.42(100) 0.04+35.31
12-7-5 13 Y 35.67 18.87 1581.49 0.66+66.52 0.06+25.65(100) 0.03+23.26
16-9-7 14 N 114.16 2018.65 – 1.28+2560.90 0.07+564.68(170) 0.07+518.78
16-9-7 15 Y 113.53 2493.61 – 1.29+2833.97 0.07+688.84(170) 0.07+520.14
16-9-7 16 Y 115.36 6801.36 – 1.37+17765.620.06+4282.86(170) 0.04+1904.17
16-9-7 17 Y 114.04 2294.15 – 1.55+6289.060.06+1571.78(200) 0.06+1389.27
Table 1. Experimental results with various instances of the three-barrels problem (For CLP(FD)
andBFDMV we reported the time required for the constrain and the labelling phases).
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Instance Length Answer BF D
MV

17-2 4 N 0.08+0.00
17-2 5 Y 0.10+0.00
113-4 4 N 0.46+13.18
113-4 5 Y 0.64+25.58

1(001)2-2 4 N 0.08+0.05
1(001)2-2 5 Y 0.11+0.01
1(001)3-4 8 N 0.49+8882.13
1(001)3-4 9 Y 0.58+862.84

Fig. 3. On the left: Initial configuration, a plan, and final configuration with 4 contacts between
1-amino acids. On the right: some results for different sequences, energy levels, and plan lengths.

a self-avoiding-walk, i.e., no two amino acids are in the same position. Moreover,the
chain cannot be broken—i.e., two consecutive amino acids are always at points at dis-
tance 1 (i.e., in contact). The goal is to perform a sequence of pivot moves leading to
a configuration where at leastk non-consecutive amino acids of value 1 are in contact.
Fig. 3 shows a possible plan to reach a configuration with 4 contacts. The figure also
reports some execution times. Fig. 5 reports theBFD

MV action description encoding this
problem. Since the goal is based on the notion of cost of a given state, for which reified
constraints are used extensively, a direct encoding inB does not appear viable.

Let us consider the resolution of the problem starting from the input chain1001001001.
If N = 10, asking for a plan of8 moves and for a solution with cost≥ 4, our planner
finds the plan shown in Fig. 3-center in 862.84s. Notice that,by adding the pair of con-
straintsholds(x(3) eq 11,1) andholds(y(3) eq 11,1) the time is reduced to
61.05s, and with the constraintholds(x(4) eq 11,2). holds(y(4) eq 10,2).

the plan is found in only 5.11s. In this case, multivalued fluents and the ability to intro-
duce domain knowledge allowsBFD

MV to effectively converge to a solution.
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(1) barrel(5). barrel(7). barrel(12).
(2) liter(0). liter(1). liter(2). ... liter(11). liter(12 ).
(3) fluent(cont(B,L)):- barrel(B),liter(L),L =< B.
(4) action(fill(X,Y)):- barrel(X),barrel(Y), neq(X,Y).
(5) causes(fill(X,Y),cont(X,0),[cont(X,LX),cont(Y,LY )]):-
(6) action(fill(X,Y)), fluent(cont(X,LX)),
(7) fluent(cont(Y,LY)), Y-LY >= LX.
(8) causes(fill(X,Y),cont(Y,LYnew),[cont(X,LX),cont( Y,LY)]):-
(9) action(fill(X,Y)), fluent(cont(X,LX)),
(10) fluent(cont(Y,LY)), Y-LY >= LX, LYnew is LX + LY.
(11) causes(fill(X,Y),cont(X,LXnew),[cont(X,LX),cont (Y,LY)]):-
(12) action(fill(X,Y)), fluent(cont(X,LX)),
(13) fluent(cont(Y,LY)), LX >= Y-LY, LXnew is LX-Y+LY.
(14) causes(fill(X,Y),cont(Y,Y),[cont(X,LX),cont(Y,L Y)]):-
(15) action(fill(X,Y)), fluent(cont(X,LX)),
(16) fluent(cont(Y,LY)), LX >= Y-LY.
(17) executable(fill(X,Y),[cont(X,LX),cont(Y,LY)]) :-
(18) action(fill(X,Y)), fluent(cont(X,LX)),
(19) fluent(cont(Y,LY)), LX > 0, LY < Y.
(20) caused([ cont(X,LX) ], neg(cont(X,LY)) ) :-
(21) fluent(cont(X,LX)), fluent(cont(X,LY)),
(22) botte(X),liter(LX),liter(LY),neq(LX,LY).
(23) initially(cont(12,12)). initially(cont(7,0)). ini tially(cont(5,0)).
(24) goal(cont(12,6)). goal(cont(7,6)). goal(cont(5,0) ).

(1) barrel(5). barrel(7). barrel(12).
(2) fluent(cont(B),0,B):- barrel(B).
(3) action(fill(X,Y)):- barrel(X),barrel(Y), neq(X,Y).
(4) causes(fill(X,Y), cont(X) eq 0, [Y-cont(Y) geq cont(X) ]):-
(5) action(fill(X,Y)).
(6) causes(fill(X,Y), cont(Y) eq cont(Y)ˆ(-1) + cont(X)ˆ( -1),
(7) [Y-cont(Y) geq cont(X) ]):- action(fill(X,Y)).
(8) causes(fill(X,Y), cont(Y) eq Y, [Y-cont(Y) lt cont(X)] ):-
(9) action(fill(X,Y)).
(10) causes(fill(X,Y), cont(X) eq cont(X)ˆ(-1)-Y+cont(Y )ˆ(-1),
(11) [Y-cont(Y) lt cont(X)]):- action(fill(X,Y)).
(12) executable(fill(X,Y), [cont(X) gt 0, cont(Y) lt Y]):-
(13) action(fill(X,Y)).
(14) caused([], cont(12) eq 12-cont(5)-cont(7)).
(15) initially(cont(12) eq 12).
(16) goal(cont(12) eq cont(7)).

Fig. 4. B description (above) andBFDMV description (below) of the 12-7-5 barrels problem

5.3 Other Examples

We report results from two other planning problems. The first(3x3-puzzle) is an en-
coding of the 8-tile puzzle problem, where the goal is to find asequence of moves to
re-order the 8 tiles, starting from a random initial position. In theCommunity-M prob-
lem, there areM persons, identified by the numbers1, 2, . . . ,M . At each time step,
one of the persons, sayj, provided (s)he owns more thanj dollars, givesj dollars to
someone else. The goal consists of reaching a state in which there are no two persons
i andj such that the difference between what is owned byi andj is greater than 1.
Table 2 lists some results forM = 5 and for two variants of the problem: The personi
initially owns i+ 1 dollars (inst1 ) or 2 ∗ i dollars (inst2 ).
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(1) length(10).
(2) amino(A) :- length(N), interval(A,1,N).
(3) direction(clock). direction(antick).
(4) fluent(x(A),1,M) :- length(N), M is 2 * N, amino(A).
(5) fluent(y(A),1,M) :- length(N), M is 2 * N, amino(A).
(6) fluent(type(A),0,1) :- amino(A).
(7) fluent(saw,0,1).
(8) action(pivot(A,D)):- length(N), amino(A), 1<A,A<N, d irection(D).
(9) executable(pivot(A,D),[]) :- action(pivot(A,D)).
(10) causes(pivot(A,clock),x(B) eq x(A)ˆ(-1) +y(B)ˆ(-1) -y(A)ˆ(-1),[]):-
(11) action(pivot(A,clock)),amino(B),B > A.
(12) causes(pivot(A,clock),y(B) eq y(A)ˆ(-1)+x(A)ˆ(-1) -x(B)ˆ(-1),[]):-
(13) action(pivot(A,clock)),amino(B),B > A.
(14) causes(pivot(A,antick),x(B) eq x(A)ˆ(-1)-y(B)ˆ(-1 )+y(A)ˆ(-1),[]):-
(15) action(pivot(A,antick)),amino(B),B > A.
(16) causes(pivot(A,antick),y(B) eq y(A)ˆ(-1)-x(A)ˆ(-1 )+x(B)ˆ(-1),[]):-
(17) action(pivot(A,antick)),amino(B),B > A.
(18) caused([x(A) eq x(B), y(A) eq y(B)],saw eq 0) :-
(19) amino(A),amino(B),A<B.
(20) initially(saw eq 1).
(21) initially(x(A) eq N) :- length(N), amino(A).
(22) initially(y(A) eq Y) :- length(N), amino(A),Y is N+A-1 .
(23) initially(type(X) eq 1) :- amino(X), X mod 3 =:= 1.
(24) initially(type(X) eq 0) :- amino(X), X mod 3 =\= 1.
(25) goal(saw gt 0).
(26) state cost( FE ) :- length(N), auxc(1,4,N,FE).
(27) auxc(I,J,N,0) :- I > N - 3,!.
(28) auxc(I,J,N,FE) :- J > N,!,I1 is I+1,J1 is I1+3,auxc(I1, J1,N,FE).
(29) auxc(I,J,N,FE1+type(I) * type(J) *
(30) rei(abs(x(I)-x(J))+abs(y(I)-y(J)) eq 1)):-
(31) J1 is J + 2, auxc(I,J1,N,FE1).
(32) always(x(1) eq 10). always(y(1) eq 10).
(33) always(x(2) eq 10). always(y(2) eq 11).
(34) goal cost(goal geq 4).

Fig. 5. BFDMV Encoding of the HP-protein folding problem with pivot moveson input of the form
1001001001. . . starting from a vertical straight line.

6 Conclusions and Future Work

The objective of this paper was to initiate an investigationof using constraint logic
programming techniques in handling action description languages and planning prob-
lems. In particular, we presented an implementation of the languageB using CLP(FD),
and reported on its performance. We also presented the action languageBFD

MV , which

Instance LengthAnswer B BFDMV

lparse SmodelsCmodels CLP(FD) unconstrained
plan cost

3x3-puzzle 10 N 45.18 0.83 1.96 0.68+9.230.32+11.95
3x3-puzzle 11 Y 45.59 1.85 2.350.70+24.100.34+27.34

Community-5inst1 6 N 208.39 96.71 3.552.70+73.910.02+34.86
Community-5inst1 7 Y 205.48 10.57 2.45 3.17+0.18 0.04+0.03
Community-5inst2 6 N 204.40 54.20 3.152.67+61.680.03+19.40
Community-5inst2 7 Y 208.48 3.69 1.07 3.17+0.17 0.04+0.02

Table 2. Excerpt of experimental results with different instances of various problems (For
CLP(FD) andBFDMV we reported the time required for the constrain and the labelling phases).
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allows the use of multivalued fluents and the use of constraints as conditions and con-
sequences of actions. We illustrated the application ofBFD

MV to two planning problems.
Both languages have been implemented using SICStus Prolog.

The encoding in CLP(FD) allow us to think of extensions in several directions, such
as encoding of qualitative and quantitative preferences (apreliminary study has been
presented in [12]), introduction of global action constraints for improving efficiency
(e.g., alldifferent among states), and use of constraints to represent incomplete states—
e.g., to determine most general conditions for the existence of a plan and to conduct
conformant planning [13]. We also believe that significant improvements in efficiency
could be achieved by delegating parts of the constraint solving process to a dedicated
solver (e.g., encoded using a constraint platform such as GECODE).
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