Multivalued Action Languages
with Constraintsin CLP(FD)

Agostino Doviet, Andrea Formisarg and Enrico Ponteffi

1 Univ. di Udine, Dip. di Matematica e Informaticdovier@dimi.uniud.it
2 Univ. di Perugia, Dip. di Matematica e Informatidarmis@dipmat.unipg.it
3 New Mexico State University, Dept. Computer Scierggontell@cs.nmsu.edu

Abstract. Action description languages, such.dandB [6], are expressive in-
struments introduced for formalizing planning domains prmblems. The paper
starts by proposing a methodology to encode an action layggfveith conditional
effects and static causal laws), a slight variatio#8péisingConstraint Logic Pro-
gramming over Finite Domaind he approach is then generalized to lift the use of
constraints to the level of the action language itself. Agype implementation
has been developed, and the preliminary results are pegbant discussed.

1 Introduction

The construction of intelligent agents that can be effecitivreal-world environments
has been a goal of researchers from the very first days of édifintelligence. It has
long been recognized that such an agent must be ablegioire representandreason
with knowledge. As such, @asoning componeihas been an inseparable part of most
agent architectures in the literature.

Although the underlying representations and implemenstimay vary between
agents, the reasoning component of an agent is often ragpofie making decisions
that are critical to its existence. Logic programming laages offer many attributes that
make them suitable as knowledge representation langulges.declarative nature al-
lows the modular development of provably correct reasommoglules [2]. Recursive
definitions can be easily expressed and reasoned upon.dCknowledge and heuris-
tic information can be declaratively introduced in the m@sg process. Furthermore,
many logic programming languages offer a natural supparhémmonotonic reason-
ing, which is considered essential for commonsense reagoihese features, along
with the presence of efficient solvers [1, 11, 15, 7], makéd@gogramming an attrac-
tive paradigm for knowledge representation and reasoning.

In the context of knowledge representation and reasoningraimportant appli-
cation of logic programming has been in the domain of reaspabout actions and
change and planning [2]. Planning problems have been eiéécencoded usingn-
swer Set Programming (ASR]—where distinct answer sets represent different trajec
tories leading to the desired goal. Other logic programnpiaigadigms, e.gConstraint
Logic Programming over Finite Domains (CLP(FDlave been used less frequently to
handle problems in reasoning about actions (e.qg., [14, Cinparably more emphasis
has been placed in encoding planning problems as (nonfoggramming) constraint
satisfaction problems [10].

Recent proposals on representing and reasoning aboubseta change have re-
lied on the use of concise and high-level languages, comymeifi¢rred to asaction
description language®.g., the language4 and?B [6]. Action languages allow one to
write propositions that describe the effects of actionstates, and to create queries to
infer properties of the underlying transition system. @ation descriptionis a specifi-
cation of a planning problem using the action language.

The goal of this work is to explore the relevance of constrawiving and con-
straint logic programming [11, 1] in dealing with action tarages and planning. The
push towards this exploratory study came from a recent tigeson [4, 5] aimed at
comparing the practicality and efficiency of answer set pgagming versus constraint
logic programming in solving various combinatorial andiopzation problems. The
study indicated that CLP offers a valid alternative, esalcin terms of efficiency, to
ASP when dealing with planning problems; furthermore, Clffers the flexibility of
programmer-developed search strategies and the abilitgridle numerical constraints.

The first step, in this paper, is to demonstrate a scheme iteatlgt processes an
action description specification, in a language similaBtgroducing a CLP(FD) pro-
gram that can be used to compute solutions to the plannirggmro Our encoding has
some similarities to the one presented in [10], althoughelgaon CLP instead of CSP,
and our action language supports static causal laws andlemmminism—while the
work of Lopez and Bacchus is restricted to STRIPS-like dftions.

While the first step relies on using constraints to computetems to a planning
problem, the second step brings the expressive power otredmts to the level of the
action language, by allowing multi-valued fluents and caist-producing actions. The
extended action language (namB{%,) can be as easily supported by the CLP(FD)
framework, and it allows a declarative encoding of problemwlving actions with
resources, delayed effects, and maintenance goals. Tihesehave been developed in
a prototype, and some preliminary experiments are reported

We believe that the use of CLP(FD) can greatly facilitatetthmsition of declarative
extensions of action languages to concrete and effectipéeimentations, overcoming
some inherent limitations (e.g., efficiency and limited dilarg of numbers) of other
logic-based systems (e.g., ASP).

2 An Action Language

“Action languages are formal models of parts of the natustdguage that are used
for talking about the effect of actiong®]. Action languages are used to defaetion
descriptionghat embed knowledge to formalize planning problems. Is $leiction, we
use a variant of the languadfk based on the syntax used in [16]. With a slight abuse of
notation, we simply refer to this languagelas

2.1 Syntaxof B

An action signature consists of a sEtof fluent names, a set of action names, and a
setV of values for fluents irf. In this section, we consider Boolean fluents, hevice

{0,1}. A fluent literalis either a fluenf or its negatiomeg (f). Fluents and actions are
concretely represented lgyoundatomic formulaen(t4, . . . , t,,) from a logic language
L. For simplicity, we assume that the set of admissible temfisite.

The languagé allows us to specify aaction descriptiorD, which relates actions,
states, and fluents using predicates of the following forms:

o executable(a, [list-of-conditions]) asserts that the given conditions have
to be satisfied in the current state in order for the actiam be executable;
o causes(a, |, [list-of-conditions]) encodes a dynamic causal law, de-

scribing the effect (the fluent literal) of the execution of actioa in a state satis-
fying the given conditions;

o caused([list-of-conditions], 1) describes a static causal law—i.e., the
fact that the fluent literdl is true in a state satisfying the given preconditions;
(where[list-of-conditions] denotes a list of fluent literals). Aaction descrip-

tion is a set of executability conditions, static, and dynamieslaA specificplanning
problemcontains an action descriptidd along with a description of thanitial state
and thedesired goalO):

o initially(l) asserts that the fluent literalis true in the initial state,
o goal(fy asserts that the goal requires the fluent litért be true in the final state.
Fig. 4 reports an encoding of the three barrels problem usiisganguage.

2.2 Semanticsof B

If f € Fis afluent, andS is a set of fluent literals, we say that= fiff f € S
andS | neg(f) iff neg(f) € S. Lists of literals[(y, ..., £,] denote conjunctions
of literals. We denote with-S the set{f : neg(f) € S} U {neg(f) : f € S}.

A set of fluent literals isconsistentf there are no fluenty s.t. S = f andS =
neg(f). If SU-S D FthenS is complete A setS of literals isclosedunder a set
of static lawsSL = {caused (C4,¢1),...,caused (Cy,¥l,)}, ifforall i € {1,...,n}

it holds thatS = C; = S = ¢;. The setClos,(S) is defined as the smallest set of
literals containingS and closed unde$ L. Clos,(.5) is uniquely determined and not
necessarily consistent.

The semantics of an action language on the action signawuré, A) is given
in terms of a transition systersS, v, R) [6], consisting of a sef of states, a total
interpretation functionn : F x & — V (in this sectionV = {0,1}), and a transition
relationR C S x A x S. Given a transition systeff, v, R) and a state € S, let:

Lit(s) ={f e F : v(f,s) =1} U{neg(f) : f € F,v(f,s) =0}

Observe thaf.it(s) is consistent and complete. Given a set of dynamic &8s =
{causes (a, ¢1,C4),...,causes (a,¢,,C,)} for the actiona € A and a state € S,
we define theeffect ofa in s as follows:E(a, s) = {¢; : 1 <i < n, Lit(s) = C;}.

Let D be an action description defined on the action signafdrér, A), composed
of dynamic lawsD L, executability condition§ £, and static causal law$.. The tran-
sition systemS, v, R) described byD is a transition system such that:

! Consequently, we often say that a fluent is true (resp.,)fifl#s value is1 (resp.,0).

o If s € S, thenLit(s) is closed unde§C;
e Risthe setof all triplegs, a, s’) such that

Lit(s') = Closz(E(a, s) U (Lit(s) N Lit(s"))) 1)

andLit(s) = C for at least one conditioaxecutable (a,C)in EL.
Let (D, O) be a planning problem instance, whefie= {¢ | initially (0) € O}
is a complete set of fluent literals. #hajectory is a sequencega;sias .. .ans, S.t.
(8iyait1, Si+1) € R (0 < i < n). Given the corresponding transition systéf) v, R),
a sequence of actions, .. ., a,, is a solution (glan) to the planning probleniD, O)
if there is a trajectorgoai sy ... ans, iN (S, v, R) S.t. Lit(sg) = A andLit(sy,) E ¢
for eachgoal (¢) € O. The plan is sequential and the desired length is given.

3 Modding B and planning problemsin CLP(FD)

Let us describe how action theories are mapped to finite doo@istraints. We will
focus on how constraints can be used to model the possiligiticns from each indi-
vidual state of the transition system.slf ands,, are the starting and ending states of a
transition, we assert constraints that relate the truthevaf fluents ins,, ands,, .

A Boolean variable is introduced to describe the truth valeach fluent in a state.
The value of a fluenf in s, (resp.,s,) is represented by the variab}e} (resp.,EV}).
These variables can be used to build expressioigEV}) that represent the truth value
of each fluent literall . In particular, ifl is a fluent , thenlv y = IV 4} if | is the literal
neg(f) ,thenlv} =1 — IV Y. Similar equations can be set f&¥;. In a similar spirit,
given a conjunction of literals = |1 4, ..., 1 ,] we will denote withlv ¥, the expression
V7 A--- AIVY 5 an analogous definition is given fan,. We will also introduce, for
each actioru;, a Boolean variabl@, representing whether the action is executed or
not in the transition frons, to s,, under consideration.

Given a specific fluenf, we develop constraints that determine wieff is true
and false. Let us consider the dynamic causal laws that fia#ea consequence:

causes (a,, f,a1) causes (az,, , f, @m)
Analogously, we consider the static causal laws that assgftf):
causes (ay,,neg(f), 41) causes (ay,,neg(f), Bn)
Let us also consider the static causal laws relatefi to
caused (71, f) caused (3, f)
caused (11, neg(f)) caused (¢, neg(f))
Finally, for each actiom; we will have its executability conditions:
executable (a;, &%) executable (a;, d})

Figure 1 describes the Boolean constraints that can be nggatoding the relations
that determine the truth value of the flughtwe will denote withC's"" the conjunction
of such constraints. Given an action specification over gt®f&fluents?, the system
of constraint<”2 ™ includes:

e the constrainC?*** for eachf € F and for eacth < v < N whereN is the
chosen length of the plan;

EVy « Posfired 1" v (-Negfired " AIV) 2
—Posfired 3 v -Negfired " 3)

Posfired 7* < DynP} Vv StatP } 4
Negfired " < DynN; Vv StatN 7 (5)
DynP} « \/7" (IV 5, AAY) (6)

StatP |} < \/"_ EV, @)
DynN} « V7 (IV 3, AAY) (8)

StatN } « \/'_ EVY, 9)

Fig. 1. The constrainC’;"* for the generic fluenf

o foreachf € Fand0 < v < N, the constraints/ § = EV}

e foreach0 < v < N, the constrainEaieA Al =1

o foreach0 < v < N and for each action; € A, the constraintgy — \/*_, IV ¥,
J

This modeling has been translated into a concrete impleatientusing SICStus Pro-
log. In this translation constrained CLP variables dingodflect the Boolean variables
modeling fluent and action’s occurrences. Consequentlgaldaws and executability
conditions are directly translated into CLP constraintse Tomplete code and proofs
can be found atww.dimi.uniud.it/dovier/CLPASP .Let us proceed with a sketch
of the correctness proof of the constraint-based encoding the semantics.

N -

D\

S S’
FU-F

Fig. 2. Sets of fluents involved in a state transition

Let.S = Lit(sy) (resp.,S" = Lit(sy+1)) be the set of fluent literals that holds in
sy (resp.,s,+1). We denote by = E(a, s), and byClo = Clos.. Fig. 2 depicts the
equationS’ = Clo(E U (SN S’)). From any specific, known§ (resp.,S’), we can

obtain a consistent assignmen{ (resp.,os/) of truth values for all the variablay %

(resp.,E\/;i“) of s, (resp.,s,+1). Conversely, each truth assignment(resp.,os:) for

all variablesv ¥ (resp.,E\/’Ji“) corresponds to a consistent set of fluesigesp.,S”).
Let o, be the assignment of truth values for such variables sudhwthial) = 1 if

and only ifa; occurs in the state transition fros to s,+1. Note that the domains of

os,0g, ando, are disjoint, so we can safely denotedyo og: o o, the composition
of the three assignments. Clearly,C S’.

Theorem 1 states the completeness of the constraint-basaelimg of the planning
problem. For any given action descriptith if a triple (s, a, s’) belongs to the transition
system described b, then the assignment= o5 o o5 0 7, satisfiesc}’”“.

Theorem 1 (Completeness). If S’ = Clos,(F(ai, s,) U (SN S’)) thenos oog ooy,
is a solution of the constrair@:""".

Let us observe that the converse of the above theorem doesnessarily hold. The
problem arises from the fact that the implicit minimalitytire closure operation is not
reflected in the computation of solutions to the constr&oinsider the action descrip-
tion whereF = {f ,g,h} andA = {a}, with predicates:

executable(a,[]). causes(a,f,[]). caused([g],h). cause d([h],q).

SettingS = {neg(f) ,neg(g) ,neg(h) } andsS’ = {f,g,h} determines a solution of
the constrain€:"*" with the execution of action, butClos, (EU(SNS")) = {f } C
S’. However, the following holds:

Theorem 2 (Weak Soundness). Letog o ogs o o, identify a solution of the constraint
C% . ThenCloss(E(ai,s,) U (SN SY)) C S

Let us consider the set of static causal laws. SL identifies adefinite propositional
program P as follows. For each positive fluent liteng) let o(p) be the (fresh) pred-
icate symbolp, and for each negative fluent literabg(p) let o(neg(p)) be the
(fresh) predicate symbgl. The programP is the set of clauses of the forg(p) «
©(11),...,p(Im), for each static causal lawaused([I1,...,Im],p) . Notice thap
andp are independent predicate symboldinFrom P one can extract the dependency
graphgG(P) in the usual way, and the following result can be stated.

Theorem 3 (Correctness). Letog, 05,0, be a solution of the constrair@}’”“. If
the dependency graph #fis acyclic, therClos.(E(a;, s») U (SN S)) = 5.

If the programP meets the conditions of the previous theorem, then thefirig holds.

Theorem 4. There is a trajectory(so, a1, $1, a2, . . ., an, S,) iN the transition system if
and only if there is a solution for the constrain@2' A C* A~ ACE B

4 TheAction Language BER,

Constraints represent a very declarative notation to esgprelationships between un-
knowns; as such, the ability to use them directly in the actlreory would greatly
enhance the declarative and expressive power of the aaimyuhge, facilitating the
encoding of complex action domains, such as those involvinlivalued fluents.

Example 1 (Control Knowledgelpomain-specific control knowledge can be formal-
ized as constraints that we expect to be satisfied by all #ijectiories. For example, we
may know that if a certain action occurs at a given time steg. (agest _poison)
then at the next time step we will always perform the sameadgg.g.call _doctor).
This could be encoded asocc(ingest _poison) =-occ(call _doctor) ' where
occ(a) is a fluent describing the occurrence of the actioandf ! indicates that the
fluentf should hold at the next time step. The operatois an implication constraint.

Example 2 (Delayed Effect)et us assume that the actiaffe.g.,req _reimbursement)
has a delayed effect (e.dpank _account increased by $50 after 30 time units). This
could be expressed as a dynamic causal law:

causes(request _reimbursement,incr(bank,50) S |))
whereincr is a constraint introduced to deal with additive computagio

Example 3 (Maintenance Goal$)is not uncommon to encounter planning problems
where along with the type of goals described earlier (knowmehievemengoals),
there are alsonaintenancegoals, representing properties that must persist througho
the trajectory. Constraints are a natural way of encodinghteaance properties, and
can be introduced along with simple temporal operators, i.the fluentfuel repre-
sents the amount of fuel available, then the maintenandendoeh guarantees that we
will not be left stranded could be encoded asiays(fuel > 0)

Furthermore, the encoding of an action theory using muiied fluents leads to more
compact and more efficient representations, facilitatiogstraint propagation during
planning (with pruning of the search space) and better érgason-determinism (that
could be exploited, for example, by a parallel planner).

4.1 Syntaxof BLR,

Let us introduce the syntax & },. As for B3, the action signature consists of a get
of fluent names, a set of action names, and a sgtof values for fluents irf.

In the definition of an action description, an assertidanjain declaratiohof the
kind fluent (f,v1,v2) orfluent (f,{v1,...,vs}) declares thaf is a fluent and that
its set of valued is the intervalfv,, v2] or the set{vy, ..., v;}.? An annotated fluent
(AF) is an expressiorf®, where f is a fluent anch € N~ .3 Intuitively speaking, an
annotated fluenf® denotes the value the fluefithad in the past-a steps ago. Such
fluents can be used ftuent expression$E), which are defined inductively as follows:

FE ::=n | AF | abs (FE) | FE, & FE, | rei(FC)

wheren € Z, ® € {4, —, *, /,mod}. rei(FC) is the reification of fluent constraifrC.

Fluent expressions can be used to bélignt constraint¢FC), i.e., formulae of the
form FE; op FEz, whereFE; andFE; are fluent expressions and < {eq, neq, geq,
leg ,It ,gt }. The languagdds . allows one to specify aaction descriptionwhich
relates actions, states, and fluents using predicates &dltbeing forms:

o axioms of the fornexecutable (a, C) asserting that the fluent constra@ithas to
be entailed by the current state in order for the actida be executable.

o axioms of the formcauses (a,C,Cy) encode dynamic causal laws. The action
a can be executed if the constraifif is entailed by the current state; the state
produced by the execution of the action is required to etftaitonstrainC.

o axioms of the forntaused (C1, Cs) describe static causal laws. If the fluent con-
straintC] is satisfied in a state, then the constraditmust also hold in such state.

2 Note that we could generalize the notion of domain to morepierand non-numeric sets.
3 with N~ we denote the s€0, —1, -2, —3, ... }. We will often denotef® simply by f.

An action descriptions a set of executability conditions, static and dynamicslaw
Observe that traditional action languages ltkare special cases ##,7,. For ex-
ample, the dynamic causal law Bf

causes(a, f, [f Tyeen & heg(@ 1),..., neg(g 3))]
can be encoded as
causes(a, f % eq 1f Yeql..f Ceql1l g%eq0 ..., g 9 eqo0)
A specific instance of a planning problem is a p@r, O), whereD is an action the-

ory, andO contains any number of axioms of the foimitially (C) andgoal (C),
whereC'is a fluent constraint.

4.2 Semanticsof BLR,

Each fluentf is assigned uniquely to a domalnm(f) in the following way:

o If fluent (f,v1,v2) € Dthendom(f) = {vi,v1 +1,...,v2}.

o If fluent (f,Set) € D, thendom(f) = Set.
Afunctionrv : F — Z U {1} is astateif v(f) € dom(f) forall f € F. For a number
n > 1, we define astate sequenceas a tupl€vy, . . ., v,) where eachy; is a state.

Let us consider a state sequencea stef < i < |7/, a fluent expressiop, and let

us define the concept ghlueof ¢ in & at stepi (denoted by (p, 1)):

e U(z,i) = xif x is a number

o U(f* 1) =v;_q(f)Iif la| <4, L otherwise

o U(abs(p),i) = abs(v(p,1))

o U(p1 © pa,1) = U(p1,1) ® (2, i)
We treat the interpretation of the variogsoperations and relations as strict w.uit.
Given a fluent constraing; op -, a state sequenceand atime) < ¢ < |7, the notion
of satisfactionv |=; ¢1 op 2 is defined a® |=; @1 0p 2 < D(p1,1) op D(p2,1).
If o(p1,1) or D(pa,i) is L, theni F~; o1 op pe. |=; can be generalized to the case
of propositional combinations of fluent constraints. Intgadar, 7(rei(C),i) = 1 if
v = C, elser(rei(C),i) = 0. The operations) andU on states are defined next:

n(f)if vi(f) = va(f) i
: vi(f) if vi(f) =va(f)
V1UV2(f): 1% (f) if v (f):J_ Vlml/g(f): 4
z/;(f) i Vi(f) _ {L otherwise

Let 7 be a state sequence; we say thas consistent if, for each < i < ||, and for
each static causal lavaused (C1, C2) we have thatv =, Cy = 7 |=; Cs.

Leta be an action and be a state sequence. The actiois executable iw at step
i (0 <i < |p| — 1) if there is an axiomexecutable (a,C') such thav |=; C.

Let us denote wittDyn(a) the set of dynamic causal law axioms for actiorThe
effects of executing at stepi in the state sequence denoted byEff (a, 7, 1), is

Eff(a,p,1) = /\{C | causes (a,C,Cy) € Dyn(a), v =i C1}

Furthermore, given a constraifit a state sequenceand a step, the reducRed(C, 7, 1)
is defined as the constraint

Red(C,,i) =CAN{f7 =vij(f)| feF1<j<i}

8

Let us denote wittbtat the set of static causal law axioms. We can defifie(7,) as
Clo(p,i) = /\{Ca | caused (Cy,Cs) € Stat,v |=; Cy }

A state sequenceis a valid trajectory if the following conditions hold:
o for each axiom of the forrnitial ~ (C) in the action theory we have that=, C
o for each axiom of the forngoal (C') we have that =;_; C
e foreach0 < i < || — 1 there is an action; such that
o actiona; is executable i at stepi
o we havethat,; 1 = cU(v;Nyiy1) (*) whereo is a solution of the constraint

Red(Eff(a;,v,i),0,i+ 1) A Clo(p,i+ 1)

Let us conclude with some comments on the relationship Eiviee semantics df
and of BI%.. First of all, the lack of backward referencesirallows us to analyze each
B transition independently. Conversely,/#{%. we need to keep track of the complete
trajectory—represented by a sequence of states.

In B, the effect of a static or dynamic causal law is to set théntuatiue of a flu-
ent. Hence, the set8 andClo can be deterministically determined (even if they can
be inconsistent) and the equation (1) takes care of thessdtgoand of the inertia. In
BYE., instead, less determined effects can be set. For instemegss (a, f gt 1,[]), if
dom(f) = {0, 1,2, 3}, admits two possible values f@rin the next state. One could ex-
tend the semantics of Sect. 2, by working on sets of set&'forClo. Instead, we have
chosen to encode the nondeterminism within the solutiotfssohtroduced constraints.
Equation (1) is therefore replaced by equatibhabove.

The concrete implementation &%, in SICStus Prolog is directly based on this
semantics. We omit the detailed description, which is dyfairechanical extension of
the implementation oF (in this case the main difference w.r.t. what done in Seds 3,
that the set of the admitted values for multivalued fluenteitieines the domain of the
CLP constrained variables), and relative proof of corresgdue to lack of space.

4.3 Some Concrete Extensions

The languagesl?. described above has been implemented using SICStus Pesog,
a fairly direct generalization of the encoding describedtfe Boolean case. In addi-
tion, we have introduced in the implementation some adubti@yntactic extensions,
to facilitate the encoding of recurring problem features.

Itis possible to add information about thestof each action, fluent, and about the
global cost of a plan. This can be done by writing rules of tivenf:

o action _cost(action,VAL) (if no information is given, the default cost is 1).

o state _cost(FE) (if no information is given, the default cost is 1) is the cofta
state, wherg"' E is a fluent expression built on current fluents.

o plan _cost(plan op n) wherenis anumber, adds the information about the global
cost admitted for the sequence of actions.

o goal _cost(goal op NUM) adds a constraint about the global cost admitted for the
sequence of states.

o minimize _action to constrain the search to a plan with minimal global actiostc
o minimize _state which forces the search of a plan with minimal goal state.cost

The implementation of these cost-based constraints refighe optimization features
offered by SICStus’ labeling predicate: the labeling phiasguided by imposing an
objective function to be optimized.

The language allows the definitionalbsolute temporal constraintise., constraints
that refer to specific time instances in the trajectory. Wingea timed fluent as a pair
FLUENT @ TIMETimed fluents are used to build timed fluent expressions @)
timed primitive constraints (TC). E.gcpntains(5) @ 2 leq contains(5) @ 4
states that, at time 2, barrel 5 contains at most the samergmbwater as at time 4.
contains(12) @ 2 eq 3 states that, at time 3, barrel 12 contains 3 liters of water.
These constructs can be used in the following expressions:

o cross _constraint(TC) imposes the timed constrainC to hold.

o holds(FC,StateNumber) Itis a simplification of the above constraint. states that
the primitive fluent constraint'C' holds at the desired State Number (0 is the num-
ber of the initial state). It is therefore a generalizatidthe initially primitive.

It allows to drive the plan search with some point informatio

o always(FC) states that the fluent constrait€ holds in all the states. Current

fluents must be used in order to avoid negative references.

The semantics can be easily extended by conjoining thesecapstraints to the
formulae of the previous subsection.

4.4 An Extended BYR, Language: Looking into the Future

We propose to exten8{%. to allow constraints that reason about future steps of the
trajectory (along lines similar to [3]).

Syntax: Let us generalize the syntax presented earlier as followsinamotated fluent
is of the form f¢, where f € Z. Constructing fluent formulae and fluent constraints
now implies the ability of looking into the future steps ofnsputation. In addition,
we introduce another fluent constraint, that will help usagticg interesting problems:
incr(f®,n) where f* is an annotated fluent andis a number. Théncr constraint
provides a simplified view of additive fluents [9].

Semantics. The definition of the semantics becomes a process of “vatigat se-
quence of states to verify their fitness to serve as a trajgc@iven a fluent for-
mula/constrainp and a time step, we define the conceptbsolute(yp, i) as follows:
o if ¢ = nthenAbsolute(p,i) =n
if o = f*thenAbsolute(p,i) = fite
if © = 1 @ po thenAbsolute(p,i) = Absolute(ps,i) ® Absolute(ps, i)
if © = abs(ip1) thenAbsolute(p,i) = abs(Absolute(p1,1))
if ¢ = rei(v1) thenAbsolute(yp,i) = rei(Absolute(p1,1))
if ¢ = 1 0p @2 thenAbsolute(p,i) = Absolute(p,1) op Absolute(pa, 1)
if ¢ = incr(p1,n) thenAbsolute(p, 1) = incr(Absolute(py,i),n)

O O O O O O

10

For a sequence of states= (vy, . . ., v,) and actions = {(ao, . . .,a,—1), let us define

n—1
Global(a,v) = /\ Absolute(Eff (a;, v,1),i+ 1)
i=0

The sequence of stateds a trajectory if
o for each axiom of the forrinitial ~ (C) in the action theory we have that=, C
o for each axiom of the forngoal (C') in the action theory we have that= ;| _; C
e thereis a sequence of actiohs= (ag, a1, . . ., a,—1) With the following properties:
for each0 < i < n we have thats; is executable at stepof 7 andv;.; =
oU(v;Nvi11), whereo is a solution ofRed(Global(a, v), 7, i+ 1) AClo(D,i+1).
In particular, if Incr(C, i) = {n | incr(f*,n) € C} are all theincr constraints for an
annotated fluent”, thend is a solution of it w.r.t. a sequence of statesf v;(f) =

Vi—1 (f) + Znelncr(C,i) n.

5 Experimental Analysis

The prototype, implemented on an AMD Opteron 2.2GHz Linuxchiae, has been
validated on a number of benchmarks. Extensive testing kas performed on the
CLP encoding of3, and additional results can be foundvatw.dimi.uniud.it/
dovier/CLPASP . Here we concentrate on two representative examples.

5.1 Threebarrel Problem

We experimented with different encodings of the three-ddgoroblem. There are three
barrels of capacityV (even number)N/2 + 1, and N/2 — 1, respectively. At the
beginning the largest barrel is full of wine, the other twe ampty. We wish to reach
a state in which the two larger barrels contain the same atnouwine. The only
permissible action is to pour wine from one barrel to anqgthetil the latter is full

or the former is empty. Figure 4 shows the encodings of thélpro (for N = 12)

in B (where, it is also required that the smallest barrel is enapthe end) and3’%,.
Table 1 provides the execution times (in seconds) for difievalues ofV and different
plan lengths. Thé& encoding has been processed by our CLP(FD) implementatidn a
by two ASP solvers (Smodels and Cmodels)—the encoding3éetion description in
ASP is natural (see [5]). The! %, descriptions have been solved using SICStus Prolog.

5.2 2-Dimensional Protein Folding Problem

The problem we have encoded is a simplification of the praincture folding prob-
lem. The input is a chainjas - - - a,, with a; € {0, 1}, initially placed in a vertical
position, as in Fig. 3-left. We will refer to each as anamino acid The permissible
actions are the counterclockwise/clockwigeot movesOnce one point of the chain
is selected, the points,, as, .. ., a; will remain fixed, while the points,;,1,...,a,
will perform a rigid counterclockwise/clockwise rotatioBach conformation must be

11

Barrels’ |Len/Ans, B B

capacities Iparse|Smodel$Cmodels CLP(FD) “”;lc;féfged Cogit;'l'r‘::tﬁigg)‘m
853 | 6 | N 8.95 0.10 0.85 0.16+0.3¢6 0.02+0.11 (70) 0.01+0.10
853 | 7]|Y 8.94 0.28 1.34 0.19+0.47 0.02+0.13 (70) 0.03+0.18
853 |8]|Y 9.1§ 0.39 2.07 0.18+2.66 0.03+0.8% (70) 0.01+0.79
853 |9 |Y 9.22 0.39 8.11 0.22+1.0%5 0.02+0.28 (70) 0.05+0.28
12-7-5 | 10| N | 35.63 18.31 325.28 0.45+26.86 0.05+7.79 (90) 0.03+6.78
12-7-5 11| Y | 35.70 45.91 781.28 0.52+28.87 0.05+9.46 (90) 0.04+5.08
12-7-5 | 12| Y | 35,58 81.12 4692.08 0.58+203.34 0.06+57.42(100) 0.04+35.31L
12-7-5 | 13| Y | 35.61 18.87 1581.49 0.66+66.52 0.06+25.65100) 0.03+23.2p
16-9-7 | 14| N |114.162018.64 —| 1.28+2560.9D 0.07+564.68170) 0.07+518.7]8
16-9-7 | 15| Y |113.53 2493.61 —| 1.29+2833.9F 0.07+688.84(170) 0.07+520.14
16-9-7 | 16 | Y |115.366801.36 —[1.37+17765.6/D.06+4282.8§170) 0.04+1904.17
16-9-7 | 17 | Y |114.04 2294.11 —| 1.55+6289.08.06+1571.78200) 0.06+1389.27
Table 1. Experimental results with various instances of the thraedbs problem (For CLP(FD)

and B4 we reported the time required for the constrain and the laiggbhases).

+ v =l + T+
19 @ - pivot(2,clock) FHd-l-F+d
e pivot(3,clock) Fiaie Instance|Lengthl Answe BER
PN pivol(3,clock) Fiaorn T2 | 4 | N | 0080.00
b S pivot(8,clock) Fra-—rr- - : :
L : ; bt 4 17-2 5 Y 0.10+0.00
e pivot(7,antick) BLd--bdy 134 | 4 N 0.46+13.18
|_ . pivot(6,clock) I_ L 13' . .
_ ivot(4,antick [N 13-4 5 Y 0.64+25.58
[nl Suint pivot(4,antick) Fra-—rTd
i pivot(5,clock) bty i 1(001f-2| 4 N 0.08+0.05
10 + 4o 10+ L 4 1(001¢-2| 5 Y 0.11+0.01
Fre- F e 4 1(001p-4| 8 | N |0.49+8882.13
- 1(001) -4 Frorer 1(001p-4| 9 | Y | 0.58+862.84
10 10

Fig. 3. On the left: Initial configuration, a plan, and final configiima with 4 contacts between
1-amino acids. On the right: some results for different seqes, energy levels, and plan lengths.

a self-avoiding-walki.e., no two amino acids are in the same position. Moredfier,
chain cannot be broken—i.e., two consecutive amino acigalavays at points at dis-
tance 1 (i.e., in contact). The goal is to perform a sequefpé/ot moves leading to
a configuration where at leaktnon-consecutive amino acids of value 1 are in contact.
Fig. 3 shows a possible plan to reach a configuration with 4ame. The figure also
reports some execution times. Fig. 5 reports{g;, action description encoding this
problem. Since the goal is based on the notion of cost of angitege, for which reified
constraints are used extensively, a direct encodiri§ does not appear viable.

Let us consider the resolution of the problem starting fromitput chairi001001001.
If N = 10, asking for a plan o8 moves and for a solution with cost 4, our planner
finds the plan shown in Fig. 3-center in 862.84s. Notice tnagdding the pair of con-
straintsholds(x(3) eq 11,1) andholds(y(3) eq 11,1) the time is reduced to
61.05s, and with the constrairttolds(x(4) eq 11,2). holds(y(4) eq 10,2).
the plan is found in only 5.11s. In this case, multivaluedritseand the ability to intro-
duce domain knowledge allow %, to effectively converge to a solution.

12

1) barrel(5). barrel(7). barrel(12).

) liter(0). liter(1). liter(2). ... liter(11). liter(12).
3) fluent(cont(B,L)):- barrel(B),liter(L),L =< B.

(4) action(fill(X,Y)):- barrel(X),barrel(Y), neq(X,Y).

(5) causes(fill(X,Y),cont(X,0),[cont(X,LX),cont(Y,LY -

(6) action(fill(X,Y)), fluent(cont(X,LX)),

@) fluent(cont(Y,LY)), Y-LY >= LX.

(8) causes(fill(X,Y),cont(Y,LYnew),[cont(X,LX),cont(Y,LY)]):-
9) action(fill(X,Y)), fluent(cont(X,LX)),

(10) fluent(cont(Y,LY)), Y-LY >= LX, LYnew is LX + LY.

(11) causes(fill(X,Y),cont(X,LXnew),[cont(X,LX),cont (Y,.LY)]):-
(12) action(fill(X,Y)), fluent(cont(X,LX)),

(13) fluent(cont(Y,LY)), LX >= Y-LY, LXnew is LX-Y+LY.

(14) causes(fill(X,Y),cont(Y,Y),[cont(X,LX),cont(Y,L Y)D:-
(15) action(fill(X,Y)), fluent(cont(X,LX)),

(16) fluent(cont(Y,LY)), LX >= Y-LY.

(17) executable(fill(X,Y),[cont(X,LX),cont(Y,LY)]) :-

(18) action(fill(X,Y)), fluent(cont(X,LX)),

(19) fluent(cont(Y,LY)), LX > 0, LY < Y.

(20) caused([cont(X,LX)], neg(cont(X,LY))) :-

(21) fluent(cont(X,LX)), fluent(cont(X,LY)),

(22) botte(X),liter(LX),liter(LY),neq(LX,LY).

(23) initially(cont(12,12)). initially(cont(7,0)). ini tially(cont(5,0)).
(24) goal(cont(12,6)). goal(cont(7,6)). goal(cont(5,0)).

1) barrel(5). barrel(7). barrel(12).

2) fluent(cont(B),0,B):- barrel(B).

3) action(fill(X,Y)):- barrel(X),barrel(Y), neq(X,Y).

(4) causes(fill(X,Y), cont(X) eq 0, [Y-cont(Y) geq cont(X) -
(5) action(fill(X,Y)).

(6) causes(fill(X,Y), cont(Y) eq cont(Y)'(-1) + cont(X)"(-1),
@) [Y-cont(Y) geq cont(X)]):- action(fill(X,Y)).

(8) causes(fill(X,Y), cont(Y) eq Y, [Y-cont(Y) It cont(X)]):-
9) action(fill(X,Y)).

(10) causes(fill(X,Y), cont(X) eq cont(X)(-1)-Y+cont(Y) (-1),
(11) [Y-cont(Y) It cont(X)]):- action(fill(X,Y)).

(12) executable(fill(X,Y), [cont(X) gt O, cont(Y) It Y]):-

(13) action(fill(X,Y)).

(14) caused([], cont(12) eq 12-cont(5)-cont(7)).
(15) initially(cont(12) eq 12).
(16) goal(cont(12) eq cont(7)).

Fig. 4. B description (above) an8%%. description (below) of the 12-7-5 barrels problem

5.3 Other Examples

We report results from two other planning problems. The {i8st3-puzzle) is an en-
coding of the 8-tile puzzle problem, where the goal is to firgkguence of moves to
re-order the 8 tiles, starting from a random initial posititn theCommunityM prob-
lem, there areV! persons, identified by the numbers2, ..., M. At each time step,
one of the persons, sgy provided (s)he owns more thgndollars, givesj dollars to
someone else. The goal consists of reaching a state in whéch are no two persons
i andj such that the difference between what is owned layd j is greater than 1.
Table 2 lists some results fad = 5 and for two variants of the problem: The person
initially ownsi + 1 dollars ¢nst1) or 2 i dollars (nst2).

13

1) length(10).

2) amino(A) :- length(N), interval(A,1,N).

3) direction(clock). direction(antick).

(4) fluent(x(A),1,M) :- length(N), M is 2 *N, amino(A).

(5) fluent(y(A),1,M) :- length(N), M is 2 *N, amino(A).

(6) fluent(type(A),0,1) :- amino(A).

@) fluent(saw,0,1).

(8) action(pivot(A,D)):- length(N), amino(A), 1<A,A<N, d irection(D).
9) executable(pivot(A,D),[]) :- action(pivot(A,D)).

(10) causes(pivot(A,clock),x(B) eq x(A)'(-1) +y(B)*(-1) -y(A)(-1),[):-
(11) action(pivot(A,clock)),amino(B),B > A.

(12) causes(pivot(A,clock),y(B) eq y(A) (-1)+x(A) (-1) -x(B)*(-1),[D):-

(13) action(pivot(A,clock)),amino(B),B > A.

(14) causes(pivot(A,antick),x(B) eq x(A) (-1)-y(B)*(-1)+Y(A)(-1),[0):-
(15) action(pivot(A,antick)),amino(B),B > A.

(16) causes(pivot(A,antick),y(B) eq y(A)*(-1)-x(A) (-1)+x(B)"(-1),0):-
17) action(pivot(A,antick)),amino(B),B > A.

(18) caused([x(A) eq x(B), y(A) eq y(B)],saw eq 0) :-

(19) amino(A),amino(B),A<B.

(20) initially(saw eq 1).

(21) initially(x(A) eg N) :- length(N), amino(A).

(22) initially(y(A) eq Y) :- length(N), amino(A),Y is N+A-1
(23) initially(type(X) eq 1) :- amino(X), X mod 3 == 1.
(24) initially(type(X) eq 0) :- amino(X), X mod 3 =\= 1.
(25) goal(saw gt 0).

(26) state _cost(FE) :- length(N), auxc(1,4,N,FE).
(27) auxc(l,J,N,0) :- I > N - 3,1

(28) auxc(l,J,N,FE) :- J > N,LI1 is [+1,J1 is 11+3,auxc(l1, J1,N,FE).
(29) auxc(l,J,N,FE1+type(l) *type(d) =

(30) rei(abs(x(1)-x(J))+abs(y(1)-y(J)) eq 1)):-

(31) J1lis J + 2, auxc(l,J1,N,FEL).

(32) always(x(1) eq 10). always(y(1) eq 10).
(33) always(x(2) eq 10). always(y(2) eq 11).
(34) goal _cost(goal geq 4).

Fig.5. BY%- Encoding of the HP-protein folding problem with pivot mow@sinput of the form
1001001001... starting from a vertical straight line.

6 Conclusionsand Future Work

The objective of this paper was to initiate an investigatidrusing constraint logic
programming techniques in handling action descriptiomgleages and planning prob-
lems. In particular, we presented an implementation ofahgliagds using CLP(FD),
and reported on its performance. We also presented thendefiguage3; 7., which

Instance |LengthAnswer B BED
Iparse|SmodelsCmodels CLP(FD) ””;g:féfs'?e

45.18 0.83 1.96 0.68+9.230.32+11.9
45.59 1.85 2.350.70+24.100.34+27.34

3x3-puzzle 10 b
1
208.39 96.71 3.552.70+73.910.02+34.86
D

3x3-puzzle 11
Community-5,s:1| 6
Community-5,s:1| 7 205.48 10.57 2.45 3.17+0.18 0.04+0.03
Community-5,.s:2| 6 204.40 54.2Q 3.152.67+61.680.03+19.4
Community-5,st2| 7 208.44 3.69 1.07 3.17+0.17 0.04+0.01
Table 2. Excerpt of experimental results with different instancésvarious problems (For

CLP(FD) andB% %, we reported the time required for the constrain and the liaggphases).

<Z2<<zZ2<2Z2

14

allows the use of multivalued fluents and the use of congsrais conditions and con-
sequences of actions. We illustrated the applicatioi{gf, to two planning problems.
Both languages have been implemented using SICStus Prolog.

The encoding in CLP(FD) allow us to think of extensions inesaVdirections, such
as encoding of qualitative and quantitative preferencgeéiiminary study has been
presented in [12]), introduction of global action congttaifor improving efficiency
(e.g., alldifferent among states), and use of constraintggresent incomplete states—
e.g., to determine most general conditions for the exig@ia plan and to conduct
conformant planning [13]. We also believe that significanpiovements in efficiency
could be achieved by delegating parts of the constrainirsglprocess to a dedicated
solver (e.g., encoded using a constraint platform such aS@BE).

Acknowledgments This work is partially supported by MIUR projects PRINO55381 and
FIRB03-RBNEO3B8KK, and by NSF grants 0220590, 0454066,0&k&0407. The authors wish
to thank Tran Cao Son for the useful discussions and suggesti

References

[1] K. Apt. Principles of Constraint Programmingambridge University Press, 2003.
[2] C. Baral. Knowledge representation, reasoning and declarative lgmbsolving Cam-
bridge University Press, 2003.
[3] C.Baral, T.C. Son, and L.C. Tuan. A Transition Functi@sbed Characterization of Actions
with Delayed and Continuous Effect§RR Morgan Kaufmann, 2002.
[4] A. Dovier, A. Formisano, and E. Pontelli. A Comparison@fP(FD) and ASP Solutions
to NP-Complete Problems. In Proc.I6&fLP05 LNCS 3668, pp. 67-82, 2005.
[5] A. Dovier, A. Formisano, and E. Pontelli. An Empiricalusty of CLP and ASP Solutions
of Combinatorial Problemsl. of Experimental & Theoretical Artificial Intelligenc007.
[6] M. Gelfond and V. Lifschitz. Action LanguageBlect. Trans. Artif. Intell2:193-210, 1998.
[7] E. Giunchiglia, Y. Lierler, and M. Maratea. SAT-Based#wer Set Programming. In Proc.
of AAAI'04, pp. 61-66, AAAI/Mit Press, 2004.
[8] A.K. Jonsson, P.H. Morris, N. Muscettola, K. Rajan, andBSmith. Planning in Inter-
planetary Space: Theory and Practice AlRS 2002.
[9] J. Lee and V. Lifschitz. Describing Additive Fluents ircthon Language C+LJCAI, 2003.
[10] A. Lopez and F. Bacchus. Generalizing GraphPlan by kEdating Planning as a CSP. In
Proc. of IJCAI, 2003.
[11] K. Marriott and P. J. Stuckeyrogramming with ConstraintMIT Press, 1998.
[12] T. Phan, T.C. Son, E. Pontelli. CPP: a Constraint LogimgyPamming based Planner with
PreferencesLPNMR Springer Verlag, 2007.
[13] T. Phan, T.C.Son, C. Baral. Planning with Sensing Awidncomplete Information, and
Static Causal Laws using Logic Programmifid?LP (to appear).
[14] R. Reiter.Knowledge in Action: Logical Foundations for Describingdaimplementing
Dynamical System$IT Press, 2001.
[15] P. Simons. Extending and Implementing the Stable M&&ehantics. Doctoral dissertation.
Report 58, Helsinki University of Technology, 2000.
[16] T.C. Son, C. Baral, and S.A. Mcllraith. Planning wittifdrent forms of domain-dependent
control knowledgeLPNMR Springer Verlag, pp. 226—-239, 2001.
[17] M. Thielscher. Reasoning about Actions with CHRs anditEiDomain Constraints. In
Proc. ofICLP02, LNCS 2401, pp. 70-84, 2002.

15

