Answer Set Programming with Constraints using Lazy Grounding - Proofs

A. Dal Palù¹, A. Dovier², E. Pontelli³, and G. Rossi¹

¹ Dip. Matematica, Univ. Parma,

 $\{alessandro.dalpalu|gianfranco.rossi\}@unipr.it$

² Dip. Matematica e Informatica, Univ. Udine, dovier@dimi.uniud.it

 $^3\,$ Dept. Computer Science, New Mexico State Univ., <code>epontell@cs.nmsu.edu</code>

1 Correctness and Completeness of GASP computations

This paper shows the proofs omitted in the paper appeared in [1]. For details and complete notation descriptions, please refer to that paper.

1.1 Definitions recall

A GASP-program can be seen as a syntactic shorthand for an ASP program where any non-ground GASP-rule represents a family of ground ASP rules. Let \mathcal{A} be a collection of propositional atoms. An ASP rule has the form:

$$p \leftarrow p_0, \ldots, p_n, \mathbf{not} \ p_{n+1}, \ldots, \mathbf{not} \ p_m$$

where $\{p, p_0, \ldots, p_n, p_{n+1}, \ldots, p_m\} \subseteq \mathcal{A}$. An ASP program P is a collection of ASP rules.

An ASP model for a program P can be described by a 3-interpretation I, i.e., a pair $\langle I^+, I^- \rangle$ such $I^+ \cup I^- \subseteq \mathcal{A}$ and $I^+ \cap I^- = \emptyset$. I^+ denotes the atoms that are known to be true while I^- denotes those atoms that are known to be false.

Given an ASP program P and a 3-interpretation I, we denote with $P\cup I$ the program

 $P \cup I = (P \setminus \{r \in P \mid head(r) \in I^{-}\}) \cup I^{+}.$

Intuitively, $P \cup I$ is the program P modified in such a way to guarantee that all elements in I^+ are true and all elements in I^- are false.

Definition 1 (GASP-computation). A GASP-computation of a program P is a sequence of 3-interpretations I_0, I_1, I_2, \ldots that satisfies the following properties:

- $I_0 = wf(P)$
- $I_i \subseteq I_{i+1}$ for all $i \ge 0$ (Persistence of Beliefs)
- if $I = \bigcup_{i=0}^{\infty} I_i$, then $\langle I^+, \mathcal{A} \setminus I^+ \rangle$ is a model of P (Convergence)
- for each $i \ge 0$ there exists a rule $a \leftarrow body$ in P that is applicable w.r.t. I_i and $I_{i+1} = wf(P \cup I_i \cup \langle body^+, body^- \rangle)$ (Revision)
- if $a \in I_{i+1}^+ \setminus I_i^+$ then there is a rule $a \leftarrow body$ in P which is applicable w.r.t. I_j , for each $j \ge i$ (Persistence of Reason).

1.2 Proofs

Theorem 1 (correctness). Given a program P, if there exists a GASP-computation that converges to a 3-interpretation I, then I is an answer set of P.

Proof Sketch. The proof of correctness can be derived from a simple rewriting of a GASP-computation to an ASP computation as defined in [?]. Each step from I_i to I_{i+1} requires a well-founded model computation, that can be captured as a sequence of steps in the simpler notion of ASP computation.

The proof of completeness of the GASP-computation can be derived with simple modifications from the analogous proof for the completeness of the basic algorithm used by SMODELS [?]. First of all, we can show that the basic step which moves from one step of the computation I_i to the successive one I_{i+1} preserves answer sets w.r.t. the body of the rule being applied.

Lemma 1. Let us consider a 3-interpretation I and let $a \leftarrow body$ be a rule applicable w.r.t. I. Then $I' = wf(P \cup I \cup \langle body^+, body^- \rangle)$ satisfies the following properties

 $\circ I \subseteq I'$

• if M is an answer set of P such that $I \cup \langle body^+, body^- \rangle \subseteq M$, then $I' \subseteq M$.

This result is an immediate consequence of the properties of the well-founded model of a program. The next result justifies the existence of a computation starting from a consistent point in the computation. Let us refer to a A-GASP-computation as a GASP-computation whose starting point I_0 is A.

Lemma 2. Let M be an answer set of P and let A be a partial 3-interpretation such that $wf(A \cup P) \subseteq M$. There exists a $wf(A \cup P)$ -GASP-computation that converges to M.

Proof Sketch: Let us denote with $Atoms(A) = A^+ \cup A^-$. We can prove this result by induction on the number $n = A \setminus Atoms(A)$.

If n = 0 then this means A = M; in this case wf $(P \cup A) = A = M$, thus there is a wf $(P \cup A)$ -GASP-computation (composed of the single step I_0).

Let us consider the induction step. Since n > 0, this means that there are some atoms in M and not in A. First of all observe that if $M^+ = A^+$, then wf $(A \cup P) = M$, and the result is immediate (there is a one-step wf $(A \cup P)$ -GASP-computation).

Let us consider the case where $M^+ \neq A^+$, and let $a \in M^+ \setminus A^+$. Clearly, there must be a rule $a \leftarrow body$ such that $M \models body$. Note that $\mathsf{wf}(A \cup P \cup \langle body^+, body^- \rangle)$ is a subset of M. From the inductive hypothesis, we know that there is a $\mathsf{wf}(A \cup P \cup \langle body^+, body^- \rangle)$ -GASP-computation that converges to M. This can be extended to a computation that starts from $\mathsf{wf}(P \cup A)$ by adding an initial step that makes use of the rule $a \leftarrow body$.

Theorem 2 (completeness). Given a program P and an answer set I of P, there exists a GASP-computation that converges to I.

Proof. Immediate from lemma 2 by considering $A = \emptyset$.

References

1. A. Dal Palù, A. Dovier, G. Rossi, and E. Pontelli. Answer Set Programming with Constraints using Lazy Grounding. *ICLP 2009*, Proceedings of the International conference of Logic Programming.