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1 Correctness and Completeness of GASP computations

This paper shows the proofs omitted in the paper appeared in [1]. For details
and complete notation descriptions, please refer to that paper.

1.1 Definitions recall

A GASP-program can be seen as a syntactic shorthand for an ASP program
where any non-ground GASP-rule represents a family of ground ASP rules. Let
A be a collection of propositional atoms. An ASP rule has the form:

p← p0, . . . , pn,not pn+1, . . . ,not pm

where {p, p0, . . . , pn, pn+1, . . . , pm} ⊆ A. An ASP program P is a collection of
ASP rules.

An ASP model for a program P can be described by a 3-interpretation I,
i.e., a pair 〈I+, I−〉 such I+ ∪ I− ⊆ A and I+ ∩ I− = ∅. I+ denotes the atoms
that are known to be true while I− denotes those atoms that are known to be
false.

Given an ASP program P and a 3-interpretation I, we denote with P ∪I the
program

P ∪ I = (P \ {r ∈ P | head(r) ∈ I−}) ∪ I+.

Intuitively, P ∪ I is the program P modified in such a way to guarantee that all
elements in I+ are true and all elements in I− are false.

Definition 1 (GASP-computation). A GASP-computation of a program P is
a sequence of 3-interpretations I0, I1, I2, . . . that satisfies the following properties:

• I0 = wf(P )

• Ii ⊆ Ii+1 for all i ≥ 0 (Persistence of Beliefs)

• if I =
⋃

∞

i=0
Ii, then 〈I+,A \ I+〉 is a model of P (Convergence)

• for each i ≥ 0 there exists a rule a← body in P that is applicable w.r.t. Ii

and Ii+1 = wf(P ∪ Ii ∪ 〈body+, body−〉) (Revision)

• if a ∈ I+

i+1
\ I+

i then there is a rule a← body in P which is applicable w.r.t.
Ij , for each j ≥ i (Persistence of Reason).



1.2 Proofs

Theorem 1 (correctness). Given a program P , if there exists a GASP-computation
that converges to a 3-interpretation I, then I is an answer set of P .

Proof Sketch. The proof of correctness can be derived from a simple rewriting
of a GASP-computation to an ASP computation as defined in [?]. Each step from
Ii to Ii+1 requires a well-founded model computation, that can be captured as
a sequence of steps in the simpler notion of ASP computation. 2

The proof of completeness of the GASP-computation can be derived with
simple modifications from the analogous proof for the completeness of the basic
algorithm used by Smodels [?]. First of all, we can show that the basic step
which moves from one step of the computation Ii to the successive one Ii+1

preserves answer sets w.r.t. the body of the rule being applied.

Lemma 1. Let us consider a 3-interpretation I and let a ← body be a rule
applicable w.r.t. I. Then I ′ = wf(P ∪ I ∪ 〈body+, body−〉) satisfies the following
properties

◦ I ⊆ I ′

◦ if M is an answer set of P such that I ∪〈body+, body−〉 ⊆M , then I ′ ⊆M .

This result is an immediate consequence of the properties of the well-founded
model of a program. The next result justifies the existence of a computation
starting from a consistent point in the computation. Let us refer to a A-GASP-
computation as a GASP-computation whose starting point I0 is A.

Lemma 2. Let M be an answer set of P and let A be a partial 3-interpretation
such that wf(A ∪ P ) ⊆ M . There exists a wf(A ∪ P )-GASP-computation that
converges to M .

Proof Sketch: Let us denote with Atoms(A) = A+ ∪ A−. We can prove this
result by induction on the number n = A \Atoms(A).

If n = 0 then this means A = M ; in this case wf(P ∪ A) = A = M , thus
there is a wf(P ∪A)-GASP-computation (composed of the single step I0).

Let us consider the induction step. Since n > 0, this means that there are
some atoms in M and not in A. First of all observe that if M+ = A+, then
wf(A ∪ P ) = M , and the result is immediate (there is a one-step wf(A ∪ P )-
GASP-computation).

Let us consider the case where M+ 6= A+, and let a ∈ M+ \ A+. Clearly,
there must be a rule a ← body such that M |= body. Note that wf(A ∪ P ∪
〈body+, body−〉) is a subset of M . From the inductive hypothesis, we know that
there is a wf(A ∪ P ∪ 〈body+, body−〉)-GASP-computation that converges to M .
This can be extended to a computation that starts from wf(P ∪ A) by adding
an initial step that makes use of the rule a← body. 2

Theorem 2 (completeness). Given a program P and an answer set I of P ,
there exists a GASP-computation that converges to I.

Proof. Immediate from lemma 2 by considering A = ∅. 2
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