% File : MAP.PL % Author : R.A.O'Keefe % Updated: 7 June 1984 % Purpose: Implement finite maps. % Needs : list_to_assoc from ASSOC.PL, ord_disjoint from ORDSET.PL /* A finite map is a function from terms to terms with a finite domain. This definition actually implies that its domain consists of ground terms, and the code below assumes that. The representation is similar to the representation for bags (indeed a bag could be regarded as a map from keys to integers), that is, the empty map is 'map' and any other map is map(Key,Val,Map) where Map is a finite map and Key is @< than every key in Map. */ /* :- public is_map/1, % map -> list_to_map/2, % list -> map map_agree/2, % map x map -> map_compose/3, % map x map -> map map_disjoint/2, % map x map -> map_domain/2, % map -> ordset map_exclude/3, % map x ordset -> map map_include/3, % map x ordset -> map map_invert/2, % map -> map map_map/3, % relation x map -> map map_range/2, % map -> ordset map_to_assoc/2, % map -> tree map_union/3, % map x map -> map map_update/3, % map x map -> map map_update/4, % map x key x val -> map map_value/3, % map x dom -> rng portray_map/1. % map -> :- mode is_map(+), is_map(+, +), list_to_map(+, ?), list_to_map_(+, ?), map_agree(+, +), map_agree(+, +, +, +, +, +, +), map_compose(+, +, ?), map_compose_(+, +, ?), map_compose_(+, +, +, +, +, +, +, ?), map_disjoint(+, +), map_domain(+, ?), map_exclude(+, +, ?), map_exclude(+, +, +, +, +, +, ?), map_include(+, +, ?), map_include(+, +, +, +, +, +, ?), map_invert(+, ?), map_invert_(+, -), map_map(+, +, ?), map_range(+, ?), map_range_(+, -), map_to_assoc(+, ?), map_to_list(+, ?), map_union(+, +, ?), map_union(+, +, +, +, +, +, +, ?), map_update(+, +, ?), map_update(+, +, +, +, +, +, +, ?), map_update(+, +, +, ?), map_update(+, +, +, +, +, +, ?), map_value(+, +, ?), map_value(+, +, +, +, ?), portray_map(+), portray_map(+, +). */ % is_map(Thing) % is true when Thing is a map. If you use the predicates in this % file, you have no way of constructing a map with an unbound tail, % so such structures are NOT recognised as bags (this avoids a % possible infinite loop. is_map(map). is_map(map(Key,_,Map)) :- nonvar(Map), is_map(Map, Key). is_map(map, _). is_map(map(Key,_,Map), PreviousKey) :- nonvar(Map), PreviousKey @< Key, is_map(Map, Key). % list_to_map(+KeyValList, ?Map) % takes a list of Key-Value pairs and orders them to form a representation % of a finite map. The list may not have two elements with the same Key. list_to_map(List, Map) :- keysort(List, Sorted), list_to_map_(Sorted, Map). list_to_map_([], map). list_to_map_([Key-Val|List], map(Key,Val,Map)) :- list_to_map_(List, Map). % map_agree(+Map1, Map2) % is true if whenever Map1 and Map2 have a key in common, they % agree on its value. If they have no keys in common they agree. map_agree(_, map) :- !. map_agree(map, _). map_agree(map(Key1,Val1,Map1), map(Key2,Val2,Map2)) :- compare(R, Key1, Key2), map_agree(R, Key1, Val1, Map1, Key2, Val2, Map2). map_agree(<, _, _, Map1, Key2, Val2, Map2) :- map_agree(Map1, map(Key2,Val2,Map2)). map_agree(>, Key1, Val1, Map1, _, _, Map2) :- map_agree(map(Key1,Val1,Map1), Map2). map_agree(=, _, Val, Map1, _, Val, Map2) :- map_agree(Map1, Map2). % map_compose(Map1, Map2, Composition) % constructs Map1 o Map2. That is, for each K-T in Map1 such that % there is a T-V in Map2, K-V is in Composition. The way this is % done requires the range of Map1 to be ground as well as the domains % of both maps, but then any fast composition has the same problem. map_compose(Map1, Map2, Composition) :- map_invert_(Map1, Inv0), keysort(Inv0, Inv1), map_compose_(Inv1, Map2, Mid0), keysort(Mid0, Mid1), list_to_map_(Mid1, Composition). map_compose_(_, map, []) :- !. map_compose_([], _, []). map_compose_([Val1-Key1|Map1], map(Key2,Val2,Map2), Composition) :- compare(R, Val1, Key2), map_compose_(R, Val1, Key1, Map1, Key2, Val2, Map2, Composition). map_compose_(<, _, _, Map1, Key2, Val2, Map2, Composition) :- map_compose_(Map1, map(Key2,Val2,Map2), Composition). map_compose_(>, Val1, Key1, Map1, _, _, Map2, Composition) :- map_compose_([Val1-Key1|Map1], Map2, Composition). map_compose_(=, Com, Key1, Map1, Com, Val2, Map2, [Key1-Val2|Composition]) :- map_compose_(Map1, map(Com,Val2,Map2), Composition). % map_disjoint(+Map1, +Map2) % is true when the two maps have no domain elements in common. % That is, if K-V1 is in Map1, there is no K-V2 in Map2 and conversely. % This implementation assumes you have loaded the ordered sets package. map_disjoint(Map1, Map2) :- map_domain(Map1, Dom1), map_domain(Map2, Dom2), ord_disjoint(Dom1, Dom2). % map_domain(+Map, ?Domain) % unifies Domain with the ordered set representation of the domain % of the finite map Map. As the keys (domain elements) of Map are % in ascending order and there are no duplicates, this is trivial. map_domain(map, []). map_domain(map(Key,_,Map), [Key|Domain]) :- map_domain(Map, Domain). % map_exclude(+Map, +Set, ?Restricted) % constructs a restriction of the Map by dropping members of the Set % from the Restricted map's domain. That is, Restricted and Map agree, % but domain(Restricted) = domain(Map)\Set. % Set must be an *ordered* set. map_exclude(Map, [], Map) :- !. map_exclude(map, _, map). map_exclude(map(Key,Val,Map), [Elt|Set], Restricted) :- compare(R, Key, Elt), map_exclude(R, Key, Val, Map, Elt, Set, Restricted). map_exclude(<, Key, Val, Map, Elt, Set, map(Key,Val,Restricted)) :- map_exclude(Map, [Elt|Set], Restricted). map_exclude(>, Key, Val, Map, _, Set, Restricted) :- map_exclude(map(Key,Val,Map), Set, Restricted). map_exclude(=, _, _, Map, _, Set, Restricted) :- map_exclude(Map, Set, Restricted). % map_include(+Map, +Set, ?Restricted) % constructs a restriction of the Map by dropping everything which is % NOT a member of Set from the restricted map's domain. That is, the % Restricted and original Map agree, but % domain(Restricted) = domain(Map) intersection Set. % Set must be an *ordered* set. map_include(Map, [], Map) :- !. map_include(map, _, map). map_include(map(Key,Val,Map), [Elt|Set], Restricted) :- compare(R, Key, Elt), map_include(R, Key, Val, Map, Elt, Set, Restricted). map_include(<, _, _, Map, Elt, Set, Restricted) :- map_include(Map, [Elt|Set], Restricted). map_include(>, Key, Val, Map, _, Set, Restricted) :- map_include(map(Key,Val,Map), Set, Restricted). map_include(=, Key, Val, Map, _, Set, map(Key,Val,Restricted)) :- map_include(Map, Set, Restricted). % map_invert(+Map, ?Inverse) % unifies Inverse with the inverse of a finite invertible map. % All we do is swap the pairs round, sort, and check that the % result is indeed a map. map_invert(Map, Inverse) :- map_invert_(Map, Inv0), keysort(Inv0, Inv1), list_to_map_(Inv1, Inverse). % map_invert_ takes a list of key-value pairs and swaps the pairs around. map_invert_(map, []). map_invert_(map(Key,Val,Map), [Val-Key|Inv]) :- map_invert_(Map, Inv). % map_map(+Predicate, +Map1, ?Map2) % composes Map1 with the Predicate, so that K-V2 is in Map2 if % K-V1 is in Map1 and Predicate(V1,V2). Really, the predicate % should come second, but there is this convention that the % predicate being mapped always comes first. It doesn't do % marvels for Dec-10 Prolog's indexing either. map_map(_, map, map). map_map(Pred, map(K,V1,Map1), map(K,V2,Map2)) :- apply(Pred, [V1,V2]), map_map(Pred, Map1, Map2). % map_range(+Map, ?Range) % unifies Range with the ordered set representation of the range of the % finite map Map. Note that the cardinality (length) of the domain and % the range are seldom equal, except of course for invertible maps. map_range(Map, Range) :- map_range_(Map, Random), sort(Random, Range). map_range_(map, []). map_range_(map(_,Val,Map), [Val|Range]) :- map_range_(Map, Range). % map_to_assoc(+Map, ?Assoc) % converts a finite map held as an ordered list of Key-Val pairs to % an ordered binary tree such as the library file ASSOC works on. % This predicate calls an internal routine of that file, so both % must be compiled or both interpreted. Eventually the two files % should be combined. map_to_assoc(Map, Assoc) :- map_to_list(Map, List), length(List, N), list_to_assoc(N, List, Assoc, []). % map_to_list(+Map, ?KeyValList) % converts a map from its compact form to a list of Key-Val pairs % such as keysort yields or list_to_assoc wants. map_to_list(map, []). map_to_list(map(Key,Val,Map), [Key-Val|List]) :- map_to_list(Map, List). % map_union(+Map1, +Map2, ?Union) % forms the union of the two given maps. That is Union(X) = % Map1(X) if it is defined, or Map2(X) if that is defined. % But when both are defined, both must agree. (See map_update % for a version where Map2 overrides Map1.) map_union(Map, map, Map) :- !. map_union(map, Map, Map). map_union(map(Key1,Val1,Map1), map(Key2,Val2,Map2), Union) :- compare(R, Key1, Key2), map_union(R, Key1, Val1, Map1, Key2, Val2, Map2, Union). map_union(<, Key1, Val1, Map1, Key2, Val2, Map2, map(Key1,Val1,Union)) :- map_union(Map1, map(Key2,Val2,Map2), Union). map_union(>, Key1, Val1, Map1, Key2, Val2, Map2, map(Key2,Val2,Union)) :- map_union(map(Key1,Val1,Map1), Map2, Union). map_union(=, Key, Val, Map1, Key, Val, Map2, map(Key,Val,Union)) :- map_union(Map1, Map2, Union). % map_update(+Base, +Overlay, ?Updated) % combines the finite maps Base and Overlay as map_union does, % except that when both define values for the same key, the % Overlay value is taken regardless of the Base value. This % is useful for changing maps (you may know it as the "mu" function). map_update(Map, map, Map) :- !. map_update(map, Map, Map). map_update(map(Key1,Val1,Map1), map(Key2,Val2,Map2), Updated) :- compare(R, Key1, Key2), map_update(R, Key1, Val1, Map1, Key2, Val2, Map2, Updated). map_update(<, Key1, Val1, Map1, Key2, Val2, Map2, map(Key1,Val1,Updated)) :- map_update(Map1, map(Key2,Val2,Map2), Updated). map_update(>, Key1, Val1, Map1, Key2, Val2, Map2, map(Key2,Val2,Updated)) :- map_update(map(Key1,Val1,Map1), Map2, Updated). map_update(=, _, _, Map1, Key, Val, Map2, map(Key,Val,Updated)) :- map_update(Map1, Map2, Updated). % map_update(+Map, +Key, +Val, ?Updated) % computes an Updated map which is the same as Map except that the % image of Key is Val, rather than the image it had under Map if any. % This is an O(N) operation, not O(1). By using trees we could get % O(lgN). Eventually this package should be merged with ASSOC.PL. map_update(map, Key, Val, map(Key,Val,map)). map_update(map(Key1,Val1,Map), Key, Val, Updated) :- compare(R, Key1, Key), map_update(R, Key1, Val1, Map, Key, Val, Updated). map_update(<, Key1, Val1, Map, Key, Val, map(Key1,Val1,Updated)) :- map_update(Map, Key, Val, Updated). map_update(=, _, _, Map, Key, Val, map(Key,Val,Map)). map_update(>, Key1, Val1, Map, Key, Val, map(Key,Val,map(Key1,Val1,Map))). % map_value(+Map, +Arg, ?Result) % applies the finite map Map to an argument, and unifies Result with % the answer. It fails if Arg is not in the domain of Map, or if the % value does not unify with Result. Note that this operation is O(N) % like all the others; this package is really meant for working on % maps as wholes. We can achieve O(lgN) by using trees (as in ASSOC), % and eventually MAP and ASSOC should be merged. In the mean time, % use map_to_assoc to convert a map to a tree for faster lookup. map_value(map(Key,Val,Map), Arg, Result) :- compare(R, Key, Arg), map_value(R, Val, Map, Arg, Result). map_value(<, _, Map, Arg, Result) :- !, map_value(Map, Arg, Result). map_value(=, Result, _, _, Result). % portray_map(+Map) % writes a finite Map to the current output stream in a pretty % form so that you can easily see what it is. Note that a map % written out this way can NOT be read back in. The point of % this predicate is that you can add a clause % portray(X) :- is_map(X), !, portray_map(X). % to get maps displayed nicely by print/1. portray_map(map) :- !, write('map{'), write('}'). portray_map(Map) :- portray_map(Map, 'map{'). portray_map(map, _) :- write('}'). portray_map(map(Key,Val,Map), Prefix) :- write(Prefix), print(Key), write('->'), print(Val), !, portray_map(Map, ', '). map_defined( Map, Key ) :- map_value( Map, Key, Val ).