
P-IndiGolog: An Integrated Agent Architecture

Programmer and User Manual

Beta Version 0.3

Sebastian Sardiña

May 2, 2005

1

Contents

1 OVERVIEW 3

2 DIRECTORY LOGICAL STRUCTURE 4
2.1 Libraries Provided . 4

3 THE CORE 5
3.1 The Top-Level Main Cycle . 5
3.2 EM: The Environment Manager . 8

3.2.1 The EM Interface . 9
3.2.2 EM Passive-mode Cycle . 10
3.2.3 Socket Communication and Messages . 11

4 TRANSITION SYSTEM AND TEMPORAL PROJECTOR 12
4.1 The Transition System . 12
4.2 The Temporal Projector . 13

5 DEVICE/ENVIRONMENT MANAGERS 14
5.1 Device Manager Operation . 15

5.1.1 How to Develop a New Device Manager . 17

6 DEVELOPING DOMAIN APPLICATION (USER MANUAL) 17
6.1 The Domain Axiomatization and High-Level Programs 18
6.2 The main file “main xxx.pl” . 18

6.2.1 Execution information: how to execute programs in the world? 19

7 TODO’s 21
7.1 A Full Example: The Wumpus World . 22

8 RELATED AND USEFUL LINKS 23

9 CONCLUSIONS 24

2

1 OVERVIEW

P-IndiGolog [8] is an agent architecture completely programmed in Prolog which intends to
realize the IndiGolog logic-based interleaved agent account of sensing, planning, and execution
[2, 11, 6, 4, 1, 12]. P-IndiGolog is based on LeGolog

citeLevesque00-Legolog, a logic-programming architecture for running Golog [7] agent programs
on the LEGO MINDSTORMS Robotic Invention System (RIS).1 P-IndiGolog, however, can be
used with any real robotic or virtual platform, provided the correct device managers are written.
At this point, we have used P-IndiGolog to control the LEGO MINDSTORM robot already
mentioned as well as the ER1 EVOLUTION robot2 and several Internet and System agents. We
plan to use it to control the RWI R21 robot too.3

This manuscript is intended to give a quick overview of the P-IndiGolog architecture inter-
nal implementation. Thus, it is mainly aimed for the programmer/developer of the architecture.
Nevertheless, the regular user may just jump directly to Section 6 in order to find instructions and
guidelines on how to develop domain applications for the P-IndiGolog agent system.

A quick graphical overview of the complete architecture is shown in Figure 1. The outline of
this manual is as follows:

Section 2: Describes the logical directory structure of P-IndiGolog. The architecture is modular
divided into many files and each file is placed in a particular directory depending on its role
within the framework.

Section 3: Discusses the core of the architecture, namely, the main top-level control cycle and the
module in charge of communicating with the external devices and environments.4

Section 4: Discusses the role of the evaluation procedure or temporal projector.

Section 5: Outlines the form and interface of the device managers, which are the modules in charge
of managing each external device or environment (e.g., a robot platform). After reading this
section, the reader should be able to design new device managers to operate new robots or
environments.

Section 6: Provides detailed guidelines on how to use P-IndiGolog for a real domain application.
This section amounts to the “User Manual” and should be sufficient for anybody wanting to
use P-IndiGolog.

Section 7: Discusses future improvements.

Section 8: Lists related pointers and references.

Section 9 Draws conclusions.

1See http://mindstorms.lego.com and http://www.cs.toronto.edu/cogrobo/Legolog/index.html
2See http://www.evolution.com/
3See http://www.irobot.com/rwi/p06.asp
4From now on, the external, real-world, systems that will interact with P-IndiGolog will be refer to devices (e.g.,

a real robotic platform) or environments (e.g., the Internet, a file system).

3

2 DIRECTORY LOGICAL STRUCTURE

The files conforming the whole implementation are scattered among many different directories.
Knowing the logical structure facilitates the task of finding files and locating specific code depending
on its nature. In order to use P-IndiGolog, the global environment variable PATH INDIGOLOG must
point to the architecture root directory (e.g., PATH INDIGOLOG=/home/ssardina/Code/indigolog).
Environment variable PATH INDIGOLOG is often used to localize libraries and specific files. From the
architecture initial directory, the logical directory structure is as follows:

Doc/ Documentation, manuals, guides, logos, etc. For instance, this manual is inside this directory.

Env/ All code related to the handling of the external environments. All device managers (see
Section 5) and the environment manager itself (see Section 3.2) are located in this directory.

Eval/ Temporal projectors or evaluation procedures (see Section 4).

Interpreters/ Top-level architecture module (see Section 3.1) and the any transition system
available.

Lib/ Compatibility and tool libraries, global definitions.

Examples/ Domain applications (e.g., elevator controller, delivery coffee robot, etc.). For legibility
and modularity, each application should be stored in its own subdirectory (Section 6).

Old/ Old code that is out of use but that we may want to keep.

Temp/ Temporal directory.

2.1 Libraries Provided

Among others, these are some of the libraries provided in directory Lib/:

• eclipse swi.pl: SWI library for compatibility with ECLIPSE Prolog.

• common.pl: Prolog independent common library.

• tools xxx.pl: tool library for Prolog xxx. Currently, we have special libraries for ECLIPSE
Prolog (tools ecl.pl) and SWI Prolog (tools swi.pl). These libraries usually include
library common.pl

• systemvar.pl: library used by domain applications’ main files to perform Prolog initial-
izations.

• er1actions.pl: library for translating ER1 actions to their low-level representations.

4

3 THE CORE

The core of the P-IndiGolog is made of two modules, namely, the top-level main cycle and the
environment manager. The former implements the main loop of the system which is based on
the well-known sense-think-act loop in the agent community [5]. The latter module provides the
interfaces with the external world, which is viewed as a set of different devices and environments.
So, for example, whenever the main cycle produces an action to be executed, it passes the action
to the environment manager which, in turn, will communicate with the corresponding device in
order to execute the action in question. Similarly, whenever a device or environment produces an
exogenous event, this is passed to the environment manager which, in turn, will pass it to the main
cycle as it corresponds.

3.1 The Top-Level Main Cycle

The top-level main cycle is intended to execute a sense-think-act interleaved loop in the spirit of
many state of the art agent systems [5]. In a nutshell the cycle repeats the following four steps
continuously: (i) roll forward the database if necessary; (ii) check for exogenous events that have
occurred; (iii) calculate the next program step; and (iv) if the step involves an action, execute the
action.

The execution of an agent program E is started in P-IndiGolog by calling predicate indigolog(E).
First, init/0 is called to perform some system-wide initializations. Then, the top-level main cycle
is started by calling indigo/2 with the main program and the empty history. When the cycle
terminates, fin/0 is called to perform system-wide finalization routines.

So, indigo/2 implements the top-level cycle. It be found in file Interpreters/indigolog.pl

and is depicted in Figure 2. Roughly speaking, the cycle can be described as follows:

1. Perform mandatory rolling forward of the database by calling handle rolling/2 (e.g.,
whenever the history has grown excessively long).

2. Handle all pending exogenous events by calling handle exog/2.

3. Compute the next legal transition step by calling mayEvolve/5, which, in turn, uses the
underlying transition system. Depending on the outcome of this step, the cycle proceeds as
follows:

3.1. If the step was interrupted by an exogenous event before termination, then abort step
and jump to step (1) without changing the current configuration (i.e., the program and
history).

3.2. If the current configuration was found to be final, then terminate successfully the top-
level cycle. At this point, indigo/2 just succeeds.

3.3. If a legal transition step was indeed found, then do the following in priority order:

3.3.1. If the step found does not involve a new action (i.e., the history remains the same),
then restart the cycle in (1) with the new remaining program but the same history.

3.3.2. If the step found involves a simulated action (i.e., action of the form sim(A) for
some real action A), then ignore the action and restart the cycle in (1) with the new
remaining program but the same history.

5

3.3.3. If the step found is the waiting meta-action wait, then perform optional rolling for-
ward and, then, wait for an exogenous action to occur by using predicate doWaitForExog/2.
After an exogenous event happen, restart the cycle in (1) without including the ac-
tion wait.

3.3.4. If the step found is a show debug action, then start debugging by calling debug/3

projector tool. When finished, restart cycle in (1) without including the show debug

action.

3.3.5. If the step involves a halt exec action, then restart the cycle in (1) with the empty
program.

3.3.6. If the step involves an abort exec action, then restart the cycle in (1) with the
always failing program ?(false).

3.3.7. If the step involves an pause exec action, then a Prolog break point is inserted
to the main cycle. It is not possible to use the Prolog prompt to perform queries
(for debugging mainly) and restart the program execution by just typing Ctrl+D.

3.3.8. If the step found is a stop interrupts action, then just restart the cycle in (1).

3.3.9. Finally, if the step found involves a particular domain action, then execute the action
in question in the real world by calling indixeq/3 and, after that, restart the cycle
in (1) with the remaining program and the new updated history.

The main cycle makes use of the following auxiliary tools:

• now(-H): H is the current history in the system. All the actions in H have already been
executed.

• indi exog(-A): A is an exogenous action that has occurred but has not yet been handled,
i.e., has not been incorporated into the current history.

• doingStep/0: states whether a next-step-transition is being computed.

Predicate indigo/2 uses several important tools:

• handle rolling(+H, -H2): implements the mandatory rolling forward of history H to history
H2. The history must be rolled forward in certain circumstances (e.g., the history has grown
up to long). The predicate uses must roll/1 and roll db/2 from the temporal projector
(Section 4).

• pause or roll(+H, -H2): implements the optional rolling forward of current history H to
history H2. In this case, the history should be roll forward if there is sufficient time to do so.
The predicate uses can roll/1 and roll db/2 from the temporal projector (Section 4).

• handle exog(+H, -H2): handles the pending exogenous actions which are stored under clause
indi exog/1. Basically, this amounts to adding all pending exogenous actions into the current
history defined by now/1.

• indixeq(+A, +H, -S): execute domain action A at history H in the real world with sens-
ing outcome value S. The predicate interacts with the environment manager via predicate
execute action/4, which will order the execution of the action in the corresponding device

6

manager. If the sensing outcome is bound to term failed, then action failed/2 is called.
Otherwise, indixeq/3 updates the now/1 predicate by appending action A to the current
system history.

• mayEvolve(+E1,+H1,-E2,-H2,-S): this may be the most important predicate as it defines
the transition between one state of the system and the next one. In a nutshell, it says to
system configuration (E1,H1) can evolve to configuration (E2,H2) under step type S. If a
legal step could be found (i.e., S=trans), E2 would stand for the remaining program and H2

for the new history.

S=trans configuration (E1,H1) can legally advance one step to configuration (E2,H2) w.r.t.
the underlying transition system.

S=final configuration (E1,H1) can legally terminate successfully w.r.t. the underlying tran-
sition system. Variables E2 and H2 have no meaning here.

S=exog an exogenous event occurred during the computation of mayEvolve/5. So far, vari-
ables E2 and H2 have no meaning in this case. However, in the future, these variables may
be used as partial information regarding the computation performed by mayEvolve/5

up to the point of interruption.

S=failed the current configuration (E1,H1) cannot terminate and cannot make any legal
transition w.r.t. the underlying transition system. In this case, the configuration has
reached a so-called dead-end and the program is “stuck”. Variables E2 and H2 have no
meaning in this case.

As expected, predicate mayEvolve/5 depends on an underlying transition system. Such tran-
sition system should be defined by two predicates: trans/4 and final/2, which are imple-
mented in file Interpreters/transfinal.pl and have the following interpretation:

– trans(+E1,+H1,-E2,-H2) succeeds if there is a legal transition from configuration (E1,H1)

to configuration (E2,H2).

– final(+E,H) succeeds if (E,H) is a terminating configuration.

• indigo2/2: implements the second phase of the main cycle whenever a transition was found.
If the transition found involves no new action, then indigo/2 is called directly with the new
program. However, if the transition involves a new action, then there are two general cases. If
the action in question is a system action (i.e., an action that is not intended to be performed
by our agent, but one that carries some special meaning in the top-level loop), then some
particular task is performed and the main cycle is restarted by calling indigo/2. At the
moment, the following are considered system actions:

– Simulated actions: this is an action of the form sim() and it means that the action was
just used for simulation and it should not be actually performed. Hence, it the step is
just ignored and the indigo/2 is called.

– Wait for an exogenous action: this is an action called wait and it sets the system to just
wait until some exogenous action happens. Then, the main cycle is restarted.

– Call for debugging: this is an action called show debug. The debugging predicate debug/3
is called and the main cycle restarted.

7

– Halt/Abort system: this are meta-actions called halt exec and abort exec, respec-
tively, that causes the system to terminate abruptly either successfully or by failing
completely.

– Pause system: this is a meta-actions called pause exec that causes the top-level cycle to
pause by introducing a Prolog break point. It is possible then to perform queries using
the Prolog top-level prompt and return to the program execution by doing Ctrl+D.

– Stop interrupts: this is an action called stop interrupts and it is used to stop the
handling of high-level interrupts.

If the action corresponding to the transition is not one of the above system actions, then it
ought to be a domain specific action, i.e., one that the agent/robot should perform in the real
world. As a result, the action is sent for real execution using predicate indixeq/3 and the
main cycle is restarted after that.

• abortStep/0: this predicate is called when the main cycle is in the process of computing
an system evolution step (i.e., mayEvolve/5 is executing) and an exogenous event arrives
asynchronously. The predicate is generally coupled with the implementation for mayEvolve/5
by appealing to event handling mechanisms in order to interrupt the execution of a Prolog

goal. For example, abortStep/0 may throw an exception that mayEvolve/5 can recognize
and act upon.

3.2 EM: The Environment Manager

The environment manager (EM) is tightly coupled with the main cycle and provides a complete
interface with all the external devices, platforms, and real-world environments. In a nutshell, the
EM is responsible of executing actions in the real world and gathering information from it in the
form of sensing outcome and exogenous events. The full EM implementation can be found at
Env/env man.pl

Given a domain high-level action, the EM is in charge of: (i) deciding which device should
execute the action; (ii) order its execution to the appropriate device manager; and (iii) collect the
corresponding sensing outcome. Furthermore, the EM is continuously listening to the devices for
the occurrence of exogenous events.

When the system starts, the EM starts up all device managers required by the application
and sets up communications channels to them using TCP/IP stream sockets. Recall that each real
world device or environment has to have a corresponding device manager that understands it. After
this initialization process, the EM enters into a passive mode in which it asynchronously listens for
messages arriving from the various devices managers. This passive mode should allow the top-level
main cycle to execute without interruption until a message arrives from some device manager. In
general, a message can be an exogenous event, a sensing outcome of some recently executed action,
or a system message (e.g., a device being closed unexpectedly). The incoming message should be
read and handled in an appropriate way, and, in some cases, the top-level main cycle should be
notified of the occurred event.

Three different implementations are provided via env man cycle/1 for realizing this passive
mode. The first implementation is based on software signals or interrupts; the second one is
based on systematic after-events; and the the third one is based on multi-threading. Whereas

8

the third one works on BSD systems only (e.g., Unix, Linux, etc), the second one works with
Prolog implementations supporting after-events (e.g., ECLIPSE Prolog), and the first one
works only on multi-threading Prolog implementations (e.g., SWI-Prolog). More details on
these implementations are described below.

3.2.1 The EM Interface

We now list and explain the predicates which conform the EM interface to the main top-level cycle
of the architecture.

• initializeEM/0: this predicate is called just once to start the EM. Generally, this is done at
the very beginning of the architecture initialization. Basically, it performs the following two
steps:

1. Initializes all the device managers required for running the application using start env/2.
The domain application specifies which devices are required to load by using predicate
load environment/3 (see Section 6). This process involves, among other things, estab-
lishing a socket connection with each device manager in order to be able to communicate
with them during the complete execution.

2. Starts the EM passive-mode cycle using start env cycle/1 depending on they kind of
implementation chosen: threads, after-events, or signals/interrupts. The passive mode
cycle is responsible of watching, passively, the connections to the various device man-
agers for asynchronous messages (e.g., exogenous events, sensing outcomes, and system
messages). This task should be programmed in such a way that an asynchronous event
coming from any device manager could eventually interrupt the top-level execution if
required. More information on how this cycle is implemented is given in the following
section.

• finalizeEM/0: this predicate is the counterpart of initializeEM/0 and is called when the
application has completely finished. The predicate performs the following sequence of actions:

1. Closes all open device managers by calling close dev/1, which, in turn, sends each
device a specific “closing” message.

2. Terminates the EM passive-mode cycle using finish env cycle/1.

• execute action(+A, +H, +T, -S): this predicate is called by the top-level main cycle when-
ever an action needs to be executed in the real world, i.e., in one of the opened devices. The
following actions are performed in sequence:

1. execute action/4 finds out which device manager is in charge of the actual execution of
the action in question. In principle, each action must only be executed by one, and only
one, device specified by the application via predicate how to execute/3 (see Section 6).
Such predicate should also specify the code associated with the corresponding domain
action (e.g., the high-level action rotateLeft may correspond to action number id 3).

2. Once the device in question is found, a special message of the form [execute, N, T,

Code] is sent to its corresponding device manager to order the action execution. Code is

9

the action id code, T is the action type (sensing, nonsensing, etc.), and N is the current
action number sequence.5

3. execute action/4 predicate waits until the action sensing outcome is received from the
corresponding device manager. This will happen, asynchronously, when got sensing(N,

Outcome) is asserted into the database.6 Finally, the sensing outcome is bound to
variable S and the predicate succeeds.

3.2.2 EM Passive-mode Cycle

There are currently three different implementations for realizing the EM passive-mode cycle. How-
ever, the three are based on a single predicate em one cycle/1 which performs one single interation
waiting for data comming from the open devices. Predicate em one cycle/1 takes as input the num-
bers of seconds it should wait for incomming data and basically it waits that much for incomming
data from the device managers and if any handle levents/1 is called to handle these data (see
below). So, there are three ways to use predicate em one cycle/1:

(a) Threads: an independent thread is in charge of executing em one cycle/1 with ID (alias)
em thread. In that way, the main thread can continue the execution of the agent program
independently. The thread em thread calls em one cycle/1 with parameter block which
means to wait indefinitely so that the thread in question would block itself waiting for data
to arrive at any of the device managers’ sockets. When a message arrives at any of these
sockets, the special thread reads them all, calls handle levents/1 and, finally, restart its
cycle again.

(b) After-events: an event-after mechanism provided by some Prolog implementations like
ECLIPSE is used. An after-event is a syncrhonous Prolog event that is triggered systemat-
ically after some fixed period of time (e.g., 1 second). A predicate is associated with an event
to handle it. So, this EM implementation defines a special event-after em cycle eventAfter

to be fired every 2 seconds. The event is handled by clause em cycle eventAfter handler/0

which is basically a call to em one cycle/1 with waiting of 0 seconds so that the process does
not block at all. So, if no message from the device managers is waiting, the handler succeeds
immediately. If, however, there are messages waiting at any of the corresponding sockets,
they are collected and passed to handle levents/1 to be processed. Notice that the event
handler must always succeed.

(a) Signals: a special input-output interrupt hanlder is defined to asynchronously handle the
messages coming from the device mangers. The handler predicate is called handle io/0,
which is asynchronously called whenever a message arrives to any socket associated with a
device manager. Predicate handle io/0 then calls em one cycle/1 without blocking; in this
case it is know already that some message is waiting at some socket so the messages will
be callected and processed with handle levents/1. Notice that this implementation is not
recommended as it relies on interrupts and only works in BSD systems.

5The EM carries a counter of executed actions.
6Notice that this approach assumes that sensing outcome is received sufficiently quickly after ordering the execution

of an action.

10

The kind of EM to be used can be specified by the domain application by using set option/2

with option type EM. The different types can be thread, eventafter, or signal. By default,
the thread implementation is used. The type of the EM can always be accessed by querying
type manager/1.

Now, whenever there is some data waiting to be read from one or more device managers,
predicate em one cycle/1 will collect all of them into a single list and call handle levents/1 to
handle them as it corresponds. Predicate handle levents/1 uses handle events/1 to handle each
individual message at a time in the following prioritized way:

1. First, all messages corresponding to a sensing outcomes are handled. The sensing outcome
is translated if needed using translateSensing/3 and asserted into the database with a
got sensing/2 clause.

2. Second, all messages corresponding to a exogenous events are handled. The message is trans-
lated with translateExogAction/2 if nedded and asserted, temporarily, into the database
with clause got exogenous/1.

3. Third, all other messages are processed (e.g., device managers that have closed or unknown
events).

4. Finally, if there was indeed or or more exogenous actions they are callected and passed to
the top-level cycle predicate exog action occurred/1 which would decide what to do with
them.

As can be seen, the EM uses some sophisticated system tools which are only present in advance
Prolog implementations. First, it appeals to TCP/IP sockets to communicate with the various
device managers. Second, it either uses interrupt handling, multi-threading, or synchrounous events
capabilities to implement the passive mode cycle. We think that this is not a major problem as
most recent Prolog implementations (e.g., ECLIPSE, SWI, SICSTUS, etc.), support at least some
of these features.

3.2.3 Socket Communication and Messages

As already explained, the communication between the EM and all device managers is achieved using
TCP/IP sockets. The EM itself registers its own socket with id em socket. A special socket will
also be opened for each device manager. Each socket would carry the device manager own name as
alias, which will be stored as the third argument in clause env data/3. Two predicates, provided as
part of a library, are provided to perform all communication along the sockets: send data socket/2

and receive list data socket/2.
The messages exchanged between the EM and the device managers are terms of the following

form:
[SenderId, Message]

where SenderID identifies the sender of the message (either with its socket id or with a symbolic
high-level name), and Message is a list containing the actual message. So far, there are four
messages types recognized by the EM; two of them for reporting exogenous events and sensing
outcomes and two others for reporting system messages. Given that the messages used are of a
uniform form, tools for sending and reading messages from sockets are provided as part of library

11

tools xxx. In concrete, send data socket/2 is used to send a message via a socket; whereas
receive list data socket/2 is used to read all messages waiting at a socket.

In the presence of one or more messages from the device managers, the EM collects all messages
into a list of current events and calls handle levents/1 to handle all them. A message can be one
of the followings:

[SenderId, [end of file]] Device SenderId has been closed unexpectedly. The device is,
therefore, deleted from the set of opened devices.

[SenderId, [sensing, N, CodeO]] Device SenderId has reported the sensing outcome repre-
sented by code CodeO corresponding to the recently executed action number N. After translat-
ing the code into the domain representation using translateSensing/3, the corresponding
got sensing/2 clause is asserted into the database.

[SenderId, [exog action, CodeA]] Device SenderId has reported the exogenous event rep-
resented by code CodeA. After translating the code into its domain representation using
translateExogAction/2, the corresponding got exogenous/1 is asserted into the database.

After handling all messages as just described, the EM performs one final task before setting itself
into its (default) passive mode. Namely, if at least one of the messages received was an exogenous
event, it collects all of them and calls clause exog action occurred/1 from the top-level main
cycle. The top-level main cycle is, hence, responsible of handling all these exogenous events as it
corresponds. For example, if the top-level is in process of computing a next step (i.e., doingStep/0
succeeds), it may decide to abort it by calling abortStep/0.

4 TRANSITION SYSTEM AND TEMPORAL PROJECTOR

In this section, we quickly explain two other modules that, though not technically part of the
architecture’s core, are very important and mandatory for the evolution of the main cycle execution.
These are the transition system and the temporal projector. The former is used to compute the
evolution of the high-level program, whereas the latter is in charge of the projection task.

4.1 The Transition System

A configuration in P-IndiGolog is a formed by the current high-level program and the current
history. A transition system states the rules under which a configuration may evolve to another
configuration. The evolution may or may not involve a new domain action, which is consequently
executed in the right device or environment. As noted in Section 3.1, computing this evolution step
is required in step 3 of the top-level main cycle.

Every transition system must provide an implementation for the following two predicates:

• trans(P,H,P2,H2): configuration (P,H) can perform a single step to configuration (P2,H2).

• final(P,H): configuration (P,H) is terminating.

Optionally, the transition system could also provide the following transitive closures of the above
two predicates:

12

• ttrans/4: reflexive transitive closure of trans/4.

• ttrans/5: finite reflexive transitive closure of trans/4 with an upper bound on the number
of transitions stated by the last argument.

• tfinal(P,H): transitive closure of trans/4 and tfinal combined. Notice all transitions
should involve no action whatsoever.

Every transition system implementation should be stored in directory Interpreters. The de-
fault transition system provided in file transfinal.pl corresponds to the agent language IndiGolog,
an extension of ConGolog to support incremental execution of programs.

4.2 The Temporal Projector

The temporal projector or evaluation procedure is in charge of evaluating formulas w.r.t. some
system histories. To that end, every projector should provide a clause eval/3 as its main predicate.
A goal eval(+F,+H,?B) is meant to say that formula F has truth value B (usually true or false)
at history H.

In the context of the situation calculus, there are many evaluation procedures available de-
pending on the type of action theory chosen (basic action theory [9], guarded theories [3], fluent
calculus theories [13], etc.). For the sake of uniformity, each projectors are meant to be inside di-
rectory Eval and with name eval ttt.pl where ttt stands for the type of projector. For example,
eval bat.pl is the basic action theory evaluation procedure and eval gat.pl is a guarded action
theory projector.

The temporal projector is used in two places. First, it is heavily used by the transition system
to compute the system evolution. Second, the evaluation procedure provides a number of tools
which are called from the top-level main cycle of the architecture to perform some bookkeeping
tasks.

Besides eval/3, the following list shows the predicates that should be provided by any evaluation
procedure. We first list the predicates that will be used by the top-level main cycle:

• initializeDB/0: initializes the projector.

• finalizeDB/0: finalize the projector.

• must roll(+H1): succeeds if it is completely necessary to roll forward.

• can roll(+H1): succeeds if it is worth rolling forward in case of sufficient idle time.

• roll db(+H1, -H2): rolls forward the database from history H1 into the new history H2.

• handle sensing(+A, +H, +S, -H2): H2 is H plus new action A with sensing result S.

• debug(+A, +H, -S): perform debug task with current action A, sensing outcome S, and his-
tory H.

• system action(+A): action A is system action for the projector (e.g., the action e(A,S) is
used to store sensing outcomes inside the history).

13

Finally, the following predicates shall be used, in general, by the underlying transition system
to compute evolutions of the high-level program being executed:

• eval(+F, +H, -B): formula F has truth value B at history H

• sensing(+A, -L): action A is a sensing action with a list L of possible outcomes

• sensed(+A, -S, +H): action A, when executed at history H, got sensing result S

• inconsistent(+H): last action turned history H inconsistent, i.e., impossible

• domain(-V, +D): object V is an element of domain D

• getdomain(+D, -L) : L is the list representing domain D

• calc arg(+A1, -A2, +H) : action A2 is action A1 with its arguments replaced at history H

• before(+H1, +H2): history H1 is a prefix (i.e., previous) of history H2

• assume(+F, +V, +H1, -H2): H2 is the history resulting from assuming fluent F to have value
V at history H1

We finally note that the evaluation procedure to be used has substantial impact on the way that
a domain application is specified. Therefore, the user should refer to each evaluation procedure in
order to learn how to axiomatize a specific domain. In fact, different domains may require different
temporal projectors.

5 DEVICE/ENVIRONMENT MANAGERS

A P-IndiGolog application will generally operate in complex scenarios by interacting with differ-
ent devices (e.g, a robot) and environments (e.g., the Internet). For instance, opening a door may
be performed by some real robot, whereas opening a web page may be performed by some software
agent in charge of downloading multimedia files.

Each external device or environment (e.g., a robot platform, the Internet network, or just a
simulator device) can be available to a P-IndiGolog domain application by simply implementing
a so-called device manager. A device manager is analogous to software drivers in operating systems.
As it is well-known, a driver is a program that determines how a computer will communicate with
a peripheral device. Similarly, a device manager is a program that determines how P-IndiGolog

will communicate with an external device or environment. Therefore, P-IndiGolog “talks” to the
real artifact/environment via its specific device manager.

Basically, a device manager should be able to perform the following three tasks:

1. Execute domain actions in the device.

2. Gather actions’ sensing outcomes from the device.

3. Gather exogenous events generated from the device and potentially generate them itself.

14

All device managers are programmed in Prolog and are meant to execute independently (i.e.,
as a separate independent process) of the P-IndiGolog core. In order to facilitate the creation of
new device managers, the general structure of the managers is fixed in advance. Hence, all device
managers have a common structure specified in file env gen.pl and a private, local, implementation
with a fixed and clear interface. In the common structure, a device manager interface is composed
of just two predicates, namely, start/0 and finalize/0. The former is in charge of starting up
the device manager, whereas the latter is in charge of terminating it.

There are three important issues to understand about how device manager operate:

• As explained before, device managers communicate with the EM using TCP/IP sockets.
Hence, a device manager needs to be told, when started, the specific address where the
EM will be listening for messages. To that end, device managers should be called with two
arguments of the form host=<host-id> and port=<n>, where <host-id> and <n> stand for
the host address (e.g., an IP or a host domain name) and the port number, respectively,
where the EM’s communication socket is.

• Device managers usually print debugging information as they execute and may potentially in-
teract with the user (e.g., the simulator device asks the user for the actions’ sensing outcomes).
Therefore, device managers need a terminal window to print information and potentially in-
teract with the user.

• A device manager must be called so that the goal start/0 is automatically started.

To better explain these three issues, let us consider a typical device manager initialization as
performed by the EM:

xterm -e ‘‘pl host=192.168.9.1 port=8023 -b Env/env_rcx.pl -e start’’

This command opens a Unix xterm window in which an SWI-Prolog engine is executed with
file env rcx.pl, the device manager of the LEGO MINDSTORM RCX robot, being consulted.
The Prolog engine receives two command line parameters, namely, “host=192.168.9.1” and “
port=8023” defining the EM’s socket address at 192.168.9.1:8023. Finally, goal start is set as the
top-level goal for the Prolog engine. If everything goes as expected, an xterm window should be
opened, a Prolog engine should be started there, Prolog code env rcx.pl ought to be consulted,
and goal start must be started.

5.1 Device Manager Operation

In this section, we briefly give an overview of how device managers function. This corresponds,
actually, to the core of every device manager which is fixed in advance and is, mainly, device
independent.

When goal start/0 is started, it first collects the socket address of the EM that was passed
as command line argument and stores it for future reference by asserting a env manager/2 clause.
Then, the optional debug command line argument is read, if available, and the corresponding debug
level for the device manager is set. Finally, start/0 sets up a permanent socket connection to EM
by creating a socket connection with id env manager to the above address. Predicate start/0

continues by collecting any other command line argument of the form namearg=value into a list L
and calls initializeInterfaces/1 which is in charge of the initialization of any device manager
specific interface or process required by the such as a TCL/TK window or the RCX listener process.

15

In general, a device manager will open several stream-connections (sockets, pipes, etc) to com-
municate with various other processes. At least, there will be one such stream to communicate with
the EM, but there may be others to communicate with TCL/TK windows, remote processes (e.g.,
the ER1 server), or local processes (e.g., a process downloading a file). In order to communicate
with all these processes in an asynchronously fashion, each stream is is registered to the device
manager by asserting a listen to/3 fact into the database.7 In concrete, a clause listen to(T,

Name, S) states that the channel-stream S of type T=stream/socket, and identification Name must
be listened to in an asynchronously. As expected, one of the channels to watch for is the socket
env man corresponding to the connection with the EM. In general, the channels to watch for are set
at the outset of the device manager and released at the end of it. Nonetheless, there may be cases
where a device appeals to dynamic streams that are active only for a short period of time (e.g., a
temporal process implementing the action of downloading a file from the Internet). Hence, in the
general case, clauses listen to/3 are asserted and retracted from the database dynamically.

After all interfaces and processes required to run the device manager are initialized, start/0
enters into its passive-mode cycle by calling predicate main cycle/0. In a nutshell, main cycle/0

waits for messages to arrive at one of the channels being listened to (e.g., a device interface/process
socket or the socket associated to the EM). At that point, predicate handle streams/1 is called
with each “ready” channel-stream.

The only provided handler common to all device managers is the one corresponding to the
stream associated to the EM. In other words, handle stream(env manager) is fixed in advance
and already provided. The most important message comming from the EM is the one of the
form [execute, N, Type,CodeAction]. Such a message is ordering the device manager to ex-
ecute the action CodeAction of type Type and number N. Upon receiving this special message,
handle stream(env manager) would first call the device-specific predicate execute/4 to per-
form the actual execution of the action in the device, and, after that, it will send a [sensing,

N, S] message to the EM to report the corresponding sensing outcome S by appealing to tool
report sensing/4.

The device-manager local predicate execute(+Action, +Type, +N, -S) is responsible of the
actual execution of Action as well as of returning the action sensing result in variable S. For
example, if the device in question corresponds to the simulation environment, executing the action
would simply amount to printing the action term to standard output, and reading its outcome
would reduce to reading the sensing outcome from the user. On the other hand, if the device
corresponds to the LEGO RCX brick, the predicate would send the action to the brick via infrared
communication and receive its sensing result from it too.

Another important message that a device manager can receive from the EM is [terminate].
Such a message is ordering the device manager to terminate its execution. In that case, the cor-
responding handler handle stream(env manager) calls predicate finalize/0, which is in charge
of cleanly terminating the device manager. This involves closing and deregistering all streams (in-
cluding the one associated with the EM), finalizing all local interfaces and processes, and finally
halting the execution.

7Notice that this database is totally independent of the P-IndiGolog core module as each device manager runs
in its own Prolog engine.

16

5.1.1 How to Develop a New Device Manager

As already said, the core of any device manager is fixed by the architecture and common to all device
managers. Here we explain what code should be appended to the static code already provided in
order to develop a new device manager for some new device or environment. To that end, the
programmer should provide the following extra predicates:8

• initialize interfaces/0: starts up all the necessary interfaces and processes that are re-
quired for the device manager. We recall that for every channel-stream used, a corresponding
listen to/3 fact has to be registered in the database. The fact in question would usually
store the type of channel (stream or socket), the channel identifier, and a symbolic name.

• finalize interfaces/0: ends up all local open interfaces and active processes (e.g., close a
TCL/TK window and sends special terminating codes to the RCX brick.). The corresponding
listen to/3 clauses should also be removed from the database.

• execute(+A, +T, +N, -S): executes action A of type T and number N in the device. Variable
S is then bound to the action’s sensing outcome. If the action fails to execute, then S should
be bound to atom failed.

• handle stream(+C): specifies how to handle messages from the registered channel C. There
must be one handle stream/1 clause for each registered channel.

• name dev(+NameDev): this is a fact defining the name of the device manager to be NameDev

(e.g., er1 for the ER1’s device manager and sim for the simulator environment).

In order to report exogenous events and sensing outcomes to the EM, the programmer must
make use of the following two special tools already defined in the static part of every device manager
(i.e., in file env gen.pl):

• report exog event(+A, ?M): reports the occurrence of exogenous action A to the EM. Op-
tionally, if bound to some ground atom, message M is printed in the device manager’s standard
output.

• report sensing(+A, +N, +S, ?M): reports sensing outcome S for action A with number N

to the EM. Optionally, if bound to some ground atom, message M is printed in the device
manager’s standard output. If the device manager wants to report a failure on the action
execution, it can do so by reporting the term failed as sensing outcome.

6 DEVELOPING DOMAIN APPLICATION (USER MANUAL)

Probably the most relevant thing to learn for the P-IndiGolog user is how to specify and develop
a real-world domain application. We shall address this issue here. Any domain application must
specify three well-defined sections:

1. An axiomatization of the dynamics of the world. This axiomatization would strongly depend
on the temporal projector to be used (see Section 4).

8These predicates are provided in a separated file, usually named env xxx.pl, which would include file env gen.pl

17

2. One or more high-level agent programs that will dictate the different agent behaviors available.
These programs depend on the transition system to be used (e.g., IndiGolog).

3. Execution information stating how to run the domain application in the real-world devices.
This accounts to providing what external devices the application relies on (e.g., the device
manager for the ER1 robot), and defining how high-level actions are actually executed in
these devices (e.g., what device is in charge of performing each high-level action). In addition,
information on how to translate high-level symbolic actions and sensing results into the device
manager codes, and vice-versa, could be provided.

An application would generally consist of two files inside a special subdirectory in directory
Examples (e.g., Examples/Elevator/). One file would be called the main file and would be
Prolog-dependent. A main file is usually named main xxx.pl where xxx stands for the Prolog

to be used (e.g., swi for SWI-Prolog). The main file would contain all information described in
point (3) above. The other file would be the application file and it would contain above points (1)
and (2) (e.g., Examples/Elevator/elevator.pl).

6.1 The Domain Axiomatization and High-Level Programs

The user should write a domain axiomatization for the application in accordance with the the
evaluation procedure to be used. Both the axiomatization and the high-level programs should be
stored in a single file with a name referring to the application (e.g., elevator.pl).

By convention, we assume that all high-level controllers will be defined as procedures with
names of the form mainControl(ID), where ID stands for the unique identification of a controller
(e.g., an application may have two controllers defined: mainControl(0) and mainControl(1)).

6.2 The main file “main xxx.pl”

As expected, the “main file” is the head file of a domain application. It is the file to be loaded by
the user and the one responsible of loading all required files to run the application. In general, this
file will be sensitive to the Prolog implementation and should be named main xxx.pl where xxx

stands for the Prolog platform.
The main file starts by including a common library named systemvar.pl which provides global

variable definitions and Prolog-dependent initializations (e.g., loading specific Prolog-dependent
libraries) that are required by the whole architecture. After that, the main file loads the following
modules/files:

1. Extra libraries required to run the specific application (e.g., constraint libraries, etc.);

2. the top-level main cycle (i.e., Interpreter/indigolog.pl);9

3. the environment manager (i.e., Env/env man.pl);

4. the evaluation procedure to be used (i.e., Eval/eval bat.pl);

5. the application specification, that is, the domain axiomatization and the high-level programs
to be used.

9Currently, the main cycle would also load the transition system, but it could eventually be loaded independently.

18

In addition, the main file should provide the following three extra predicates:

• type prolog(-T) specifies the Prolog platform to be used (so far, SWI (swi), ECLIPSE
(ecl), and “vanilla” Prolog (van) are recognized). Currently, this predicate is implemented
in the systemvar library.

• server port(-N) specifies N to be the port number for the EM socket. Some Prolog socket
implementations, like ECLIPSE and SWI’s one, are able to automatically find a free port and
N can be left unbound. Other Prolog platforms, however, may require a concrete specific
port number.

• main/0 collects all procedures with name of the form mainControl(ID) and asks the user to
determine which controller to start. Then, the corresponding high-level program is started
with the empty history.

Lastly, global Prolog-dependent settings may be stated in this file. Examples of these settings
are compilation directives, garbage collector options, variable representation scheme, etc.

6.2.1 Execution information: how to execute programs in the world?

The main file also contains all information required to execute the high-level programs into the
real-world devices and environments. This amounts, basically, to the specification of which device
managers should be loaded at the outset of the architecture initialization, which device manager
executes each high-level domain action, and the translation between high-level domain action names
and sensing outcomes to their low-level device manager representations.

The main file must specify the following predicates:

• load device(+Name, -Command, [+Host, +Port]): device manager Name must be loaded
using the shell system command Command. Host and Port provide the EM socket address.

The command line should be designed such that: (i) a terminal is provided to the device
manager (e.g., an xterm); (ii) the socket address of the EM provided in variables Host and
Port are passed as two arguments of the form host=<Host> and port=<Port>; and (iii) the
start/0 predicate should be set as the entrance goal. Optionally, an argument of the form
debug=n could be used to set the debug level of the device manager to level n.

A typical ECLIPSE and SWI commands under Unix/Linux would look as follows:

xterm -e ‘‘eclipse host=<Host> port=<Port> -b Env/env_sim.pl -e start’’

xterm -e ‘‘pl -t start -f Env/env_sim.pl host=<Host> port=<Port> debug=1’’

Some device managers, like the one for the ER1 robot, may require extra, device manager
dependent, parameters to be passed along (e.g., the robot’s own socket address):

xterm -e ‘‘eclipse host=Host port=Port \

er1host=’er1.cs.toronto.edu’ er1port=9000 \

-b Env/env_er1.pl -e start’’

19

The corresponding clauses for the device managers in charge of the RCX and the ER1 robots
would look are given bellow. Notice that both device managers are meant to run in indepen-
dent ECLIPSE Prolog processes.

load_environment(rcx, Command, [Host, Port]):-

concat_atom([’xterm -e ’, ’eclipse -g 10M’,

’ host=’, Host, ’ port=’, Port,

’ -b Env/env_rcx.pl’, ’ -e ’, ’ start’], Command).

load_environment(er1, Command, [Host, Port]):-

concat_atom([’xterm -e ’, ’eclipse -g 10M’,

’ host=’, Host, ’ port=’, Port,

’ er1host=’, ’er1.cs.toronto.edu’, ’ er1port=’,’9000’,

’ -b Env/env_er1.pl’, ’ -e ’, ’ start’], Command).

To be able to reuse code, a file Env/dev managers.pl is provided in order to predefine a set
of device managers that can be used in multiple domain applications.10 In concrete, the file
contains definitions for predicate device manager(+Env, +P, -C, [+Host, +Port]) with
the following interpretation: device manager Env on Prolog platform P (swi or ecl) should
be loaded using command C with EM socket address Host/Port. Hence, one can promptly
reused these definitions and define load device/3 as follows:

% Load simulator, RCX and internet device managers

load_device(Env, Command, Address) :-

member((Env,Type), [(simulator,ecl), (rcx,ecl),(internet,swi)]),

(var(Address) ->

Host=null, Port=null

;

Address = [Host, Port]),

device_manager(Env, Type, Command, [Host, Port]).

This definition would dictate to load three device managers: the simulator and LEGO RCX
devices under ECLIPSE Prolog, and the Internet environment under SWI Prolog.

• how to execute(+A, -Env, -Code): ground high-level domain action A is to be executed by
device manager Env under the low-level code Code. The name Env of the device manager
must correspond exactly to one of the devices specified with load device/3. Otherwise, the
EM will not be able to order the execution of the action in question to any device manager.

For instance, if the action lift arm is intended to be executed on the RCX robot under code
23, whereas action moveFwd(Dist) is intended to be executed on the ER1 platform under the
low-level representation ’move <Dist> cm’, the following facts should be asserted:

10Currently, there are device managers for a simulator environment; the RCX LEGO robot; an internet-web,
file-system and speech environment; the EVOLUTION ER1 robot; and a Wumpus World simulator.

20

how_to_execute(lift_arm, rcx, 23).

how_to_execute(moveFwd(Distance), er1, X) :-

concat_atom([’move ’,Distance,’ cm’], X).

• translateExogAction(+CodeAction, -Action): CodeAction is the low-level device man-
ager representation for high-level domain action Action. If no translation is found, the
high-level and low-level representations are assumed to coincide.

For example, the ER1 exogenous event “move done” generated by its device manager should
be translated into the high-level exogenous action arrive:

translateExogAction(’move done’, arrive).

• translateSensing(+Action, +SensorCode, ?Value): low-level sensing outcome represen-
tation SensorCode for a high-level action Action stands for the high-level sensing outcome
representation Value. Again, if no translation is found, SensorCode and Value are assumed
to coincide.

For instance, the following two clauses translate a thermometer reading into a high-level
boolean value representing whether it is hot or not:

translateSensing(senseHot, N, true) :- N>30.

translateSensing(senseHot, N, false) :- N<=30.

7 TODO’s

The following issues should need to be addressed:

1. The RCX’s device manager provided in Env/env rcx.pl may end up never consulting the
RCX for exogenous events. This happens if the device is always required to execute an action.
This is because execution of actions have, implicitly, more priority than the periodic query
for exogenous events.

This problem arises, for instance, with the elevator application where an action ring is, at
some point, ordered to be executed continuously after some reset exogenous event is read.
In that case, the device manager keeps sending execution commands to the RCX without
ever querying for exogenous events.

2. Several improvements should be performed on predicate abortStep/0. Such predicate is the
one called whenever an exogenous event occurs while IndiGolog is computing the next tran-
sition. So far, the predicate merely aborts the transition computation, so that the top-cycle
can be re-initiated. However, if one wants to implement more “intelligent” behaviors (such
us evaluating and, maybe transforming, the computation computed so far), extra parameters
should be passed along (e.g., current program, current history, time, etc.)

3. Describe the action state in the device managers.

21

4. Talk about string compatibility between the environment manager and the device controllers.

5. Develop a more robust environment manager that deals with incomplete actions, no response
from device managers, etc. The environment manager may query the devices for the state of
certain incomplete actions.

6. When the main cycle hits a “wait” action it calls “doWaitForExog/0” which waits for an
exogenous action to occur. The problem is that such predicate does a busy cycle looking for
a new exogenous action entrance with indi exog/1. It would be better to avoid the polling
and instead use a socket at which the top level can just block.

7.1 A Full Example: The Wumpus World

Inside directory Examples/Wumpus, one can find the code for implementing the Wumpus World
domain [10, Chapter 7]. The Wumpus World is a well-known example for reasoning and acting
with incomplete knowledge. According to the scenario, the agent enters a dungeon in which each
location may contain the Wumpus (a deadly monster), a bottomless pit, or a piece of gold. The
agent moves around looking for gold and avoiding death caused by moving into the location of a pit
or the Wumpus. The agent has an arrow which she can throw as an attempt to kill the Wumpus.
Also, the agent can sense the world to get clues about the extent of the dungeon, as well as the
location of pits, gold pieces, and the Wumpus.

To implement the domain, the following specific files are used:

Examples/Wumpus/main swi.pl: This is the main file for the example.

Examples/Wumpus/wumpus.pl: This file contains the axiomatization for the domain and the dif-
ferent agent controllers in the IndiGolog programming language.

Env/env wumpus.pl: This is the device manager for a virtual wumpus world. It provides an inter-
face to execute the domain actions (e.g., turn, go, smell, shoot, etc.) as well as to produce
sensing outcomes and exogenous events. In addition, the simulator can display the virtual
domain using a Java Applet.

Examples/Wumpus/WumpusApplet/WumpusApplet.java: This file provides a Java-based graphical
interface for displaying the behaviour of the agent within the Wumpus World.

lib/alpha star: This file is a library providing path-planning algorithms which is used to program
the agent’s controller.

The example main file main swi.pl is in charge of consulting the following files: (i) the main-
cycle and transition system indigolog.pl; (ii) the temporal projector eval know.pl; (iii) the
environment manager eval man.pl; (iv) the wumpus world axiomatization wumpus.pl. Further-
more, the main file states that the device virtual wumpus should be loaded as follows:

load_device(Env, Command, Address) :-

member((Env,Type), [(virtual_wumpus, swi)]),

(var(Address) -> Host=null, Port=null ; Address = [Host,Port]),

device_manager(Env, Type, Command, [Host, Port]).

The corresponding clause for device manager/4 is defined in file Env/dev managers.pl as follows:

22

device_manager(virtual_wumpus_silent, swi, Command, [Host, Port]):-

main_dir(Dir),

wumpus_location(IPW, PORTW),

wumpus_config(TIDRun,Size,PPits,NoGolds,TIDScenario),

term_to_atom(TIDRun, IDRun),

term_to_atom(TIDScenario, IDScenario),

concat_atom([Dir,’Env/env_wumpus.pl’], File),

concat_atom([’pl ’, ’ -t ’, ’ start’, ’ -f ’, File,

’ host=’, Host, ’ port=’, Port,’ debug=1’,

’ ipwumpus=’, IPW, ’ portwumpus=’, PORTW,

’ ppits=’, PPits, ’ nogolds=’, NoGolds, ’ size=’, Size,

’ idrun=\’’, IDRun, ’\’ idscenario=\’’, IDScenario,’\’’,

’ 1>/dev/null 2>/dev/null’], Command).

Notice that the definition of the virtual Wumpus simulator relies on several options defined via
predicates wumpus location/2 and wumpus config/5 which are both defined also in central file
main swi.pl.

Finally, the main file also contains the following two directives to set-up the debug level and
the waiting step option to zero:

:- set_option(debug_level,0).

:- set_option(wait_step,0).

8 RELATED AND USEFUL LINKS

Robot platforms:

EVOLUTION Robotics: http://www.evolution.com/

B21 RWI robot: http://www.irobot.com/rwi/p06.asp

AIBO (Sony Dogs): http://www.us.aibo.com/

LEGO MINDSTORMS:

http://mindstorms.lego.com/eng/default.asp

http://www.vorlesungen.uni-osnabrueck.de/informatik/robot00/ftp/lego.html

http://www.crynwr.com/lego-robotics/

Prolog Systems:

SWI Prolog http://www.swi-prolog.org/

ECLIPSE Prolog http://www.icparc.ic.ac.uk/eclipse

SICSTUS Prolog http://www.sics.se/sicstus/

Agent Systems:

Golog/ConGolog/IndiGolog: http://www.cs.toronto.edu/cogrobo/systems.html

3APL: http://www.cs.uu.nl/3apl/

Fluent Calculus and FLUX: http://www.fluxagent.org/

CologNet: http://mas.colognet.org/implementation.html

23

9 CONCLUSIONS

References

[1] Giuseppe De Giacomo, Yves Lespérance, Hector Levesque, and Sebastian Sardiña. On the
semantics of deliberation in IndiGolog – from theory to implementation. In .F̃ensel, F.
Giunchiglia, D. McGuinness, and M. A. Williams, editors, Proceedings of Eighth International
Conference in Principles of Knowledge Representation and Reasoning (KR-2002), pages 603–
614, Toulouse, France, April 2002. Morgan Kaufmann. 3

[2] Giuseppe De Giacomo and Hector Levesque. An incremental interpreter for high-level programs
with sensing. In Hector J. Levesque and Fiora Pirri, editors, Logical foundation for cognitive
agents: contributions in honor of Ray Reiter, pages 86–102. Springer, Berlin, 1999. 3

[3] Giuseppe De Giacomo and Hector Levesque. Projection using regression and sensors. In
Proceedingsof the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-
99), pages 160–165, Stockholm, Sweden, 1999. 13

[4] Giuseppe De Giacomo, Hector J. Levesque, and Sebastian Sardiña. Incremental execution of
guarded theories. ACM Transactions on Computational Logic (TOCL), 2(4):495–525, October
2001. 3

[5] R. A. Kowalski. Using meta-logic to reconcile reactive with rational agents. In K. R. Apt and
F. Turini, editors, Meta-Logics and Logic Programming, pages 227–242. MIT Press, 1995. 5

[6] Yves Lespérance and Ho-Kong Ng. Integrating planning into reactive high-level robot pro-
grams. In In Proceedings of the Second International Cognitive Robotics Workshop, pages
49–54, Berlin, Germany, August 2000. 3

[7] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. GOLOG: A logic programming
language for dynamic domains. Journal of Logic Programming, 31:59–84, 1997. 3

[8] Hector Levesque and Maurice Pagnucco. LeGolog: Inexpensive experiments in cognitive
robotics. In Proceedings of the Second International Cognitive Robotics Workshop, Berlin,
Germany, August 2000. 3

[9] Fiora Pirri and Ray Reiter. Some contributions to the metatheory of the situation calculus.
Journal of the ACM, 46(3):261–325, 1999. 13

[10] Stuart Russell and Peter Norving. Artificial Intelligence: A Modern Approach. Prentice Hall,
second edition, 2003. 22

[11] Sebastian Sardina. IndiGolog: Execution of Guarded Action Theories. Master’s thesis, Dept.
Computer Science, University of Toronto, 2000. 3

[12] Sebastian Sardina. Deliberation in Agent Programming Languages. PhD thesis, Dept. of
Computer Science, University of Toronto, 2005. 3

24

[13] Michael Thielscher. The fluent calculus. Technical Report CL-2000-01, Computational Logic
Group, Artificial Intelligence Institute, Department of Computer Science, Dresden University
of Technology, April 2000. 13

25

Figure 1: The P-IndiGolog architecture

26

PSfrag replacements
Mandatory rolling forward

Handle exogenous events

Calculate next step

Computation terminated!

Exog.
event
occurred!

Handle exogenous events

Wait for
exog. event

Execute
action

Type
of
step?

test/simulated action

domain
action

wait action

final

trans

Figure 2: The P-IndiGolog top-level cycle

27

	OVERVIEW
	DIRECTORY LOGICAL STRUCTURE
	Libraries Provided

	THE CORE
	The Top-Level Main Cycle
	EM: The Environment Manager
	The EM Interface
	EM Passive-mode Cycle
	Socket Communication and Messages

	TRANSITION SYSTEM AND TEMPORAL PROJECTOR
	The Transition System
	The Temporal Projector

	DEVICE/ENVIRONMENT MANAGERS
	Device Manager Operation
	How to Develop a New Device Manager

	DEVELOPING DOMAIN APPLICATION (USER MANUAL)
	The Domain Axiomatization and High-Level Programs
	The main file ``main_xxx.pl''
	Execution information: how to execute programs in the world?

	TODO's
	A Full Example: The Wumpus World

	RELATED AND USEFUL LINKS
	CONCLUSIONS

