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Abstract. Traditional object-oriented programming languages can be
difficult to use when working with ontologies, leading to the creation
of domain-specific languages designed specifically for ontology process-
ing. Prolog, with its logic-based, declarative semantics offers many ad-
vantages as a host programming language for querying and processing
OWL2 ontologies, and even for building applications. In particular, the
SWI-Prolog environment includes an RDF library and has been suc-
cessfully used to develop full-blown AJAX semantic web applications.
However, until now there has been a lack of any library providing direct
and complete support for OWL2.
We have developed Thea, a Prolog library that fills that need. Thea uses
an RDF library for parsing and serializing ontologies, but the core model
is independent of RDF and is based directly on the OWL2 functional-
style syntax, allowing direct manipulation of axioms from within Prolog.
Thea also offers additional capabilities including SWRL support, a bridge
to the java OWL API and translation of ontologies to Description Logic
programs.
In this paper we provide examples of using Thea for processing ontolo-
gies, and compare the results to alternative methods. Thea is available
from GitHub: http://github.com/vangelisv/thea/tree

1 Motivation

The OWL2 language provides a large variety of powerful constructs for building
and reasoning over ontologies. These ontologies are typically developed using
sophisticated editing environments by domain specialists rather than computer
scientists or programmers. However, there is frequently a need to access ontolo-
gies or knowledge bases programmatically - in order to perform scripting opera-
tions or to build applications. One popular approach is to use RDF toolchains,
which provide access at the triple level. There are a variety of such tools for
a variety of programming languages. This approach works well for lightly ax-
iomatized linked-data collections, but for working with the TBoxes of heavily
axiomatized OWL2 ontologies the triple view can be too low level.

The OWL API[5] is an example of an alternative approach in which the pro-
grammer works directly with OWL2 constructs from an axiom-oriented perspec-
tive. The API closely follows the OWL specification, making it a natural fit for
working with the TBox of complex ontologies. The OWL API is implemented in
Java, the language of choice for many enterprise applications. However, there is
something of an impedance mismatch between object-oriented (OO) languages



and logical axioms (similar to the much-noted impedance mismatch between
OO and relational databases). This has motivated the development of domain-
specific languages (DSLs)[8] for manipulating ontologies, including the Ontology
Pre-Processing Language (OPPL)[2].

However, the creation of a DSL is an onerous task, and it can be difficult to
get the balance between expressivity and simplicit correct. An alternative ap-
proach is to use an existing high-level declarative language. Ideally this language
should be Turing-complete, and should offer pattern-matching and querying ca-
pabilities. Here we explore the use of prolog as one such language.

2 Prolog as an Ontology Processing Language

Prolog offers many advantages as a host programming language for working
with ontologies, due to it’s declarative features and pattern-matching styles of
programming[1].

A prolog program is a collection of horn clauses, rules of the form Head:-
Body , where Head is a single goal Body consists of a number of subgoals
joined by conjunctions or disjunctions (written “, ” or “; ” respectively) . A
clause with an empty body is known as a fact. A collection of facts is called a
database. Each goal is a predicate combined with zero or more arguments, where
the arguments can be variables (which are written using a leading upper-case
character), atoms or compound terms. Prolog predicates are typically referenced
in Predicate/Arity , where Arity is the number of arguments taken by the
predicate. Prolog programs make the closed world assumption and implements
negation-as-failure.

Prolog goals are typically resolved by chronological backtracking (although
other resolution strategies are possible). Prolog has other impure non-logical fea-
tures such as the cut predicate, as well as meta-logical predicates for performing
aggregate operations.

Prolog belongs to a family of rule-oriented languages which have been ex-
plored as an alternative basis for the semantic web and reasoning, an approach
that has been criticised by some in the OWL community[7]. However, here we
are more concerned with Prolog as a programming language for working with
ontologies rather than a direct substrate for ontologies with logic programming
semantics.

There are a number of different Prolog implementations. In considering a
system for performing programmatic tasks on ontologies certain considerations
such as supporting libraries are important. The SWI-Prolog environment[18] has
the advantage of providing both RDF/XML parsers and an efficient in-memory
triplestore in the form of the semweb library[19]. SWI-Prolog has been used to
build fully-fledged semantic web applications.



3 Thea: a library for OWL2

3.1 Design Decisions

Our goal was to build a programming library that supported OWL2 directly
through the prolog database, rather than indirectly via RDF triples. This was
the approach taken by the first version of Thea, developed in 2005 to support
OWL as a complement to the SWI-Prolog semweb library.

However, this first version took a “frame-oriented” approach, providing a
small number of predicates to support the basic entities - classes, properties
and individuals. In redesigning Thea to support OWL2 we decided to opt for
an “axiom-oriented” approach, and in particular to follow the OWL2 structural
syntax[11] specification precisely. Here, every axiom in the ontology would cor-
respond on a one-to-one basis with facts in the prolog database.

3.2 Model

Our model directly corresponds to the OWL2 structural syntax[11] specification,
with only minor variations between the two. For example, a simple subclass
axiom between two named classes (Human and Mammal) is written using a
subClassOf/2 fact:

subClassOf(’http://example.org#Human’,’http://example.org#Mammal’).

In contrast to many programming languages, there is no need for an exten-
sive API for interrogating these structures, as we can directly query the prolog
database using goals with variables as arguments. For example, to find all direct
superclasses of Human we would use a variable in the second argument position:

?- subClassOf(’http://example.org#Human’,X).
X = ’http://example.org#Mammal’

In the cases where arguments are not named entities, we use prolog terms
corresponding to expressions, again with a direct correspondence between the
OWL2 specification and prolog functors and arguments. See table1 for a com-
parison of an axiom stated using both OWL2 structural syntax and in the native
prolog form.

Thea2 also allows an optional alternate style called plsyn, taking advantage of
the ability to define infix operators in Prolog syntax, yielding something similar
to Manchester syntax yet native prolog terms (see table1).

Thea also allows for ontology interrogation using strongly-typed predicates
such as subOjectPropertyOf/2 and subDataPropertyOf/2 . These are
implemented as prolog rules.

Thea has support from the Semantic Web Rule Language (SWRL). SWRL
antecedent-consequent rules are represented in the prolog database as facts using
a two-argument implies/2 predicate, rather than directly as prolog rules.



OWL2

EquivalentClasses(

forebrain_neuron

intersectionOf(neuron

someValuesFrom(partOf forebrain)))

Prolog

equivalentClasses(

[ forebrain_neuron,

intersectionOf([ neuron,

someValuesFrom(partOf, forebrain) ]) ]).

Plsyn

forebrain_neuron == neuron and partOf some forebrain.

Table 1. Comparison of the representation of an OWL axiom in both OWL2 structural
syntax and the native form asserted in the prolog database. Note the minor difference
in that where the OWL2 spec allows n-ary predicates to represent sets or lists, we use
explicit prolog list syntax (denoted by the square brackets). We also show a more com-
pact prolog representation taking advantage of the ability to declare some predicates
as infix in Prolog. Full IRIs are truncated for brevity.

3.3 Concrete Representations: Parsing and Serialization

The OWL2 language has a number of alternative concrete forms, the normative
one being RDF/XML, which can be parsed and serialized using the SWI-Prolog
semweb library. Thea includes prolog rules for translating between these RDF
graphs and the axiom-oriented representation; these rules are based directly on
the OWL2 RDF Mapping[3]. There are also parsers and serializers for SWRL
and OWL2-XML[10].

In addition it can be very convenient and efficient to read from or write to a
native prolog representation, so Thea provides this capability too.

3.4 Reasoning

With Thea it is possible to reason using either Logic Programming techniques,
or by bridging to external reasoners.

Description Logic Programs The primary motivation for using Prolog is
the declarative programmatic style rather than an alternative fragment of first
order logic. However, certain logic programming engines offer useful reasoning
capabilities that complement description logic reasoning.

The intersection of logic programming and description logics is known as
DLP[4] and used in systems such as KAON2[9]. SWRL rules are also translated



directly into prolog . We have implemented this translation as part of Thea,
and extended it for certain OWL2 features such as property chain axioms. The
resulting logic programs can be evaluated using systems such as XSB, Yap or
B-Prolog.

Backward-chaining Many prolog engines use backtracking to evaluate goals.
One problem here is that it is possible to write non-terminating programs. Nev-
ertheless there are some circumstances where backtracking can be use safely: for
example, if an ontology consists entirely of proper subclass axioms between either
named classes or existential restrictions, then backtracking can be a convenient
way of interrogating the TBox, even for large ontologies.

Thea provides the ability to do this kind of “scruffy” backward-chaining
based reasoning.

External reasoners Thea also includes as an optional component a bridge
to the OWL API using the SWI JPL package. This allows seamless access to
the extensive capabilities of the OWL API, including access to powerful DL
reasoners such as Pellet[16] and FaCT++[17].

Thea also has an interface to DIG servers.

4 Applications of Logic Programming to Ontologies

The use of high level declarative programming languages can be advantageous
when working with rich and complex ontology models. Here we present some
examples of using prolog plus Thea to perform different tasks.

4.1 Ontology Querying

As noted previously, there is no specific API for interrogating or manipulating
OWL2 ontologies using Thea2. The declarative pattern matching and symbol
manipulation features of Prolog suffice. In addition it is simple to create new
rules, effectively naming queries.

For example, we can define a predicate for determining the least common
ancestor (LCA) over the SubClassOf axiom:

common_ancestor(X,Y,A) :-
entailed(subClassOf(X,A)),
entailed(subClassOf(Y,A)).

least_common_ancestor(X,Y,A) :-
common_ancestor(X,Y,A),
\+ ((common_ancestor(X,Y,A2),

A2\=A,
entailed(subClassOf(A2,A)))).



The least common ancestor/3 predicate can then be re-used in subse-
quent queries.

Another powerful feature of prolog is the ability to perform meta-logical
queries involving aggregation. For example, if we want to summarise all classes
by the number of instances asserted to be types of that class we can do this
using aggregate/4 :

class(C),aggregate(count,I,classAssertion(C,I),Num).

This goal would succeed once for every class C , unifying Num with the
number of individuals in class C .

By combining the LCA predicate with aggregate queries it becomes very
simple to write semantic similarity applications, a popular use of biological on-
tologies[14]. Thea includes a sample application for calculating these metrics for
OWL knowledgebases.

4.2 Ontology Processing

Ontologies are typically created and maintained using development environments
such as Protege[13], which provide a graphical user interface to allow domain
experts to view, create and edit axioms. In addition to these end-user oriented
tools, there is frequently a need to do programmatic processing or scripting of
ontologies for tasks that would be tedious and repetitive to do by hand.

Consider a hypothetical ontology that by default follows a strict jointly-
exhaustive pairwise-disjoint paradigm, but with occasional exceptions that are
explicitly declared using a specified annotation property. We can automate the
generation of these axioms using the following goal, which can be evaluated in
a failure-driven loop:

setof(X,(subClassOf(X,Y),
\+ annotationAssertion(status,X,unvetted)),

Xs),
assert_axiom(disjointUnion(Y,Xs))

Of course it is possible to write a program to do this in a language such
as java using the OWL API, which may be preferable in many circumstances.
However, if this a need to perform multiple scripting tasks on ad-hoc basis then
a declarative means of processing ontologies can be a useful complementary
technique.

The examples directory in the Thea distibution contains many recipes such
as this one.

4.3 Label generation

One of the challenges in ontology development is maintaining consistent class
labels that conform to community norms[15]. Given the appropriate equivalence
axioms it should be possible to auto-generate labels or suggestions for labels.



Prolog Definite Clause Grammars (DCGs) allow for simple configuration of
community-specific class labeling rules. For example, given an OWL class ex-
pression (here specified using plsyn infix):

length and qualityOf some (axon and partOf some pyramidal_neuron)

We may like to derive a more user-friendly label such as length of pyramidal
neuron axon. This label contains less information than the class expression, but
is usually sufficient for humans to understand.

We can do this using the following DCG:

% non-terminals - class expressions
term(T) --> qual_expr(T) ; anat_expr(T).
qual_expr(Q and qualityOf some A) --> qual(Q),[of],anat_expr(A).
anat_expr(P and partOf some W) --> anat(W),anat_expr(P).
anat_expr(A) --> anat(A).

% terminals - named classes
anat(A) -->

{entailed(subClassOf(A,anatomical_entity)),
labelAnnotation_value(A,Label)},
[Label].

qual(Q) -->
{entailed(subClassOf(Q,quality)),
labelAnnotation_value(Q,Label)},
[Label].

We can exploit the non-determinisim of prolog to generate multiple values.
For example, if a class has two labels pyramidal neuron and pyramidal cell then
multiple compositional class labels will be generated. This can be very useful for
automatically generating labels to be indexed for text search.

The same grammars can be used to parse controlled natural language ex-
pressions. This technique has been used for both parsing and label generation in
many biological ontologies using Obol grammars[12].

The Thea distribution comes with some examples geared towards biological
ontologies.

4.4 Translating to and from other sources

Ontologies can be constructed both manually and automatically. In the latter
case, the ontology may be constructed from some other data sources: flat files,
XML or relational data.

The pattern matching and rule-driven nature of Prolog make it a good match
for data translation tasks.

To take a biological example, given a two-column table mapping types of
cell to the markers expressed on the surface of that cell, we can specify the
translation to a complex OWL axiom using a single rule:



CellType < hasPart some (surface and hasPart some Marker) :-
cell_marker(CellType,Marker).

Many prolog implementations also provide libraries for XML processing and
for database connectivity, which means that similar declarative rules such as
the above can be specified for these sources too. The Thea distribution includes
examples of both.

4.5 Ontology Web Applications and Web Services

In addition to providing an expressive means of querying, processing and per-
forming translations on ontologies, it is possible to write full blown applications
using Thea2 via the SWI-Prolog http library. The Thea distribution contains
some simple examples, including a basic web-based axiom browser.

5 Comparison with other systems

5.1 SPARQL

The SPARQL language is commonly used for querying ontology-centric linked
data, and sometimes for querying the ontology itself (TBox querying). Thus
there is some overlap with the querying capabilities of prolog+Thea. However,
SPARQL suffers from certain limitations in certain circumstances:

– No means of updating data
– Too RDF-centric for querying complex TBoxes
– Lack of ability to name queries (as in relational views)
– Lack of aggregate queries
– Lack of programmability

There are various extensions to overcome these limitations: SPARUL for up-
dates, SPARQL-DL for OWL-level querying of TBoxes. In addition SPARQL
enjoys the distinction of being a W3C standard and is supported by most triple-
stores. SPARQL engines may also provide efficient query optimization. Neverthe-
less, sometimes SPARQL does not offer the requisite features to perform certain
kinds of queries or translations, such as the ones described in this paper. In these
cases the ability to perform queries via Prolog offers a useful complementary tool
in the semantic web developers arsenal.

5.2 OPPL

Another means of processing ontologies is using OPPL, a Domain Specific Lan-
guage designed specifically for this task. The OPPL documentation provides the
following example for imposing that all subclasses of gender are disjoint:



?x:CLASS, ?y:CLASS
SELECT ?x subClassOf gender,
?y subClassOf gender
WHERE ?x!=?y
BEGIN
ADD ?x disjointWith ?y
END;

We can do the same thing using a failure driver loop in Thea:

subClassOf(X,gender),
subClassOf(Y,gender),
X\=Y,
assert_axiom(disjointClasses([X,Y]))

In this case we can see a close correspondence, with minor syntactic differ-
ences. OPPL is perhaps easier to teach, being smaller, and having a familiar
SQL-like syntax. OPPL also has the significant practical advantage of currently
being integrated with the Protege 4 environment.

However, prolog offers many advantages such as higher expressivity, Tur-
ing completeness, the ability to name queries, meta-logical predicates, well-
understood semantics etc. Although we are not aware of a full formal speci-
fication of OPPL, it appears from the grammar that there are many examples
presented in this document that would require some kind of extension to OPPL.

5.3 The OWL API

Without any doubt the most fully featured programmatic interface to OWL2
is the OWL API. Thea offers considerably less capabilities, and in addition the
OWL API is a better choice for many software developers, being implemented
in Java. However, we believe that for a certain subset of tasks, prolog offers a
number of advantages in terms of declarative programming.

One option is to use the OWL API in conjunction with a more declarative
JVM language. This is the approach taken by the Lisp Semantic Web (LSW)
library1, which runs on the JVM. In fact Thea also provides a bridge to the
OWL API, although this is optional, and the user can work directly with axioms
expressed natively in a prolog database.

6 Conclusions

Thea offers support for OWL2 within a Prolog environment. The full structural
syntax is supported. Thea can be used to simplify many programmatic tasks
associated with ontologies, including ontology querying and processing. In addi-
tion, Thea can be used to construct full applications that have dependencies on
complex ontologies.
1 http://svn.mumble.net:8080/svn/lsw/trunk/



Thea is available from GitHub (http://github.com/vangelisv/thea/tree) and
from the Thea website (http://www.semanticweb.gr/TheaOWLLib/). At this
time use of the full library requires SWI-Prolog, although we hope to soon offer
full support for Yap prolog. A subset of features (excluding RDF/XML reading
and writing) are available to any ISO-compliant Prolog implementatin
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