## @package memonger # Module caffe2.python.memonger import networkx as nx import collections import time import copy from caffe2.python import workspace, core from caffe2.proto import caffe2_pb2 import enum import logging from future.utils import viewitems, viewvalues import caffe2.python._import_c_extension as C log = logging.getLogger("memonger") log.setLevel(logging.INFO) LiveRange = collections.namedtuple('LiveRange', ["defined", "used", "size"]) def share_grad_blobs( net, losses, param_grads, namescope, dont_share_blobs=None, share_activations=False, blob_shapes=None, ): ''' Implements similar optimization as Torch's shareGradInput(): for the gradients that are passed between layers, share blobs between operators when possible. This yields significant memory savings with deep networks. Returns an optimized protobuf (assign to net._net) ''' def is_grad_blob(b): name = str(b) # Note: need to look at _{namescope} pattern as it matches # to handle the auto-split gradients return name.endswith("_grad") and (name.startswith(namescope) or name.startswith("_" + namescope)) and name not in param_grads def is_grad_op(op): # TODO: something smarter for b in list(op.input) + list(op.output): if is_grad_blob(b): return True return False log.warn("NOTE: Executing memonger to optimize gradient memory") # Collect ops that have something to do with gradients if namescope != "" and not namescope.endswith("/"): namescope += "/" netproto = copy.deepcopy(net.Proto()) activations = [] external_output = set(net.Proto().external_output) # Hacky way to get activations, think of a better way for op in net.Proto().op: for b in op.output: if b + "_w" in op.input and b not in external_output: activations.append(b) # Remove last activations, as they are usually accessed externally activations = set(activations[:-2]) # Gradient ops grad_op_indices = [] for idx, op in enumerate(netproto.op): if (is_grad_op(op)): grad_op_indices.append(idx) shared_blobs = set() for op in net.Proto().op: for b in list(op.input) + list(op.output): if is_grad_blob(b) or (share_activations and b in activations): shared_blobs.add(b) start_time = time.time() optim_str = C.memonger_compute_blob_recycling_for_dag( netproto.SerializeToString(), [str(s).encode('utf-8') for s in losses], grad_op_indices, set(str(s).encode('utf-8') for s in shared_blobs), namescope.encode('utf-8'), set() if dont_share_blobs is None else dont_share_blobs, {} if blob_shapes is None else blob_shapes ) log.info("Memonger memory optimization took {} secs".format( time.time() - start_time), ) optim = caffe2_pb2.NetDef() optim.ParseFromString(optim_str) assert verify_graph_equality(net.Proto(), optim), \ "Memonger graph is not equal to original." assert verify_inplace_blobs(net.Proto(), optim), \ "Inplace assignments differ in memonger net." return optim def optimize_inference_for_dag(net, input_blobs, namescope=""): netproto = copy.deepcopy(net.Proto()) external_input = set(net.Proto().external_input) external_output = set(net.Proto().external_output) def is_activation_blob(b): return b not in external_input and b not in external_output activation_blobs = set() seen_as_output = set() ops = list(net.Proto().op) op_indices = [index for index, op in enumerate(net.Proto().op)] # Sanity check: check that all external inputs are properly accounted # and that no gradient ops are included in 'net' for op in ops: for b in op.input: if is_activation_blob(b): activation_blobs.add(b) if b not in seen_as_output: raise AssertionError("{} not in external input".format(b)) for b in op.output: if is_activation_blob(b): activation_blobs.add(b) seen_as_output = seen_as_output.union(set(op.output)) assert not op.is_gradient_op, \ "You can only pass inference-only nets to optimize_inference_for_dag" start_time = time.time() optim_str = C.memonger_compute_blob_recycling_for_dag( netproto.SerializeToString(), [str(s).encode('utf-8') for s in input_blobs], op_indices, set(str(s).encode('utf-8') for s in activation_blobs), namescope.encode('utf-8'), set(), {} ) log.info("Memonger memory optimization took {} secs".format( time.time() - start_time), ) optim = caffe2_pb2.NetDef() optim.ParseFromString(optim_str) assert verify_graph_equality(net.Proto(), optim), \ "Memonger graph is not equal to original." assert verify_inplace_blobs(net.Proto(), optim), \ "Inplace assignments differ in memonger net." return optim def estimate_memory_usage(protos, shapes, types, devicescope): import numpy as np ''' Estimate memory usage of a model. This is an estimate because we assume a single threaded execution and miss some internal memory usage of operators. Only estimates the memory for a given device scope. Also, currently it does not handle correctly if blob sizes vary during execution, as it uses only the final blob size. Returns (total, highwater, by op type) memory allocation in bytes. ''' sizeofs = { caffe2_pb2.TensorProto.DOUBLE: 8, caffe2_pb2.TensorProto.FLOAT: 4, caffe2_pb2.TensorProto.FLOAT16: 2, caffe2_pb2.TensorProto.INT32: 4, caffe2_pb2.TensorProto.INT8: 1, caffe2_pb2.TensorProto.UINT8: 1, caffe2_pb2.TensorProto.UINT16: 2, caffe2_pb2.TensorProto.INT16: 2, caffe2_pb2.TensorProto.BOOL: 1, caffe2_pb2.TensorProto.INT64: 8, } def split_net(proto): ops = [op for op in proto.op if op.device_option == devicescope or op.type in {"Free", "Alias"}] del proto.op[:] proto.op.extend(ops) return proto def num_bytes(blob): if blob not in shapes or blob not in types: log.warning("Unknown blob encountered: {}".format(blob)) return 0 sizeof = sizeofs[types[blob]] return sizeof * np.prod(shapes[blob]) protos = [split_net(proto) for proto in protos] allocs_by_ops = collections.defaultdict(lambda: 0) # Evaluate current_allocated = 0 max_allocated = 0 total_allocated = 0 allocated = set() for proto in protos: for op in proto.op: if op.type == "Free" or op.type == "Alias": for o in op.output: if o in allocated: current_allocated -= num_bytes(o) allocated.remove(o) else: for output in op.output: if output not in allocated: nbytes = num_bytes(output) total_allocated += nbytes current_allocated += nbytes max_allocated = max(max_allocated, current_allocated) allocated.add(output) allocs_by_ops[op.type] += nbytes return (total_allocated, max_allocated, allocs_by_ops) def release_blobs_when_used(netproto, dont_free_blobs, selector_fun=None): ''' Insert Free-ops after a blob has been used the last time, so that its memory can be reclaimed. Use this only with efficient caching memory managers (such as CUB, --caffe2_cuda_memory_pool=cub). Blobs used with Alias op won't be freed. @dont_free_blobs: is a set of blobs that should not be freed @selector_fun: optional lambda that return True if blob name can be released. Use for easy special filtering, like excluding blobs with "loss" in the name. Returns a new protobuffer. To use with a model, use: model.net._net = memonger.release_blobs_when_used(..) ''' input_blobs = set() can_release = set() alias_blobs = set() netproto = copy.deepcopy(netproto) for op in netproto.op: if op.type == 'Alias': alias_blobs.add(op.input[0]) continue for inp in op.input: input_blobs.add(inp) for outp in op.output: if outp not in input_blobs: if selector_fun is None or selector_fun(outp): can_release.add(outp) # Remove such blobs that are not input at all and external outputs can_release = can_release - set(netproto.external_output) can_release = can_release.intersection(input_blobs) can_release = can_release - dont_free_blobs can_release = can_release - alias_blobs ops = list(netproto.op) # .. then find last use of each can-release blob, and insert a Free op for j in reversed(range(0, len(netproto.op))): op = netproto.op[j] for inp in op.input: if inp in can_release: can_release.remove(inp) ops.insert(j + 1, core.CreateOperator("Free", [inp], [inp])) del netproto.op[:] netproto.op.extend(ops) return netproto def _find_source_nodes(g): ''' Return nodes without predecessors ''' ret = [] for cn in g: cur_pred = list(g.predecessors(cn)) if not cur_pred: ret.append(cn) return ret def _find_target_nodes(g): ''' Return nodes without successors ''' ret = [] for cn in g: cur_succ = list(g.successors(cn)) if not cur_succ: ret.append(cn) return ret def _add_single_target_ifneeded(g): targets = _find_target_nodes(g) assert len(targets) >= 1 if len(targets) == 1: return g ret = copy.deepcopy(g) def _next_available_idx(g): ret = -1 for cn in g: if cn > ret: ret = cn ret += 1 return ret target_node_idx = _next_available_idx(g) ret.add_node(target_node_idx) for cn in targets: ret.add_edge(cn, target_node_idx) return ret def _get_path(pred_list, dist_list): ''' Get the path from nx.bellman_ford()'s output ''' # distances are negative assert all(dist_list[x] <= 0 for x in dist_list) # node with longest distance to source is the target target = min(dist_list, key=lambda x: dist_list[x]) ret = [] cur = target while cur is not None: ret.append(cur) # Hack to get networkx 2.0 happy: it uses list in pred. # TODO(tulloch): are there cases with multiple predecessors? try: cur = pred_list[cur][0] if pred_list[cur] else None except TypeError: cur = pred_list[cur] return list(reversed(ret)) def _get_longest_paths(g, source_nodes): ''' Get the longest path for nodes in 'source_nodes' Find with bellman_ford() by setting weight = -1 ''' ng = copy.deepcopy(g) for u, v in ng.edges(): ng[u][v]["weight"] = -1 ret = {} for cn in source_nodes: pred, dist = nx.bellman_ford_predecessor_and_distance(ng, cn, weight="weight") path = _get_path(pred, dist) assert path[0] == cn assert len(path) - 1 == -dist[path[-1]] ret[cn] = path return ret def _build_tree(paths): ''' Build a tree for given paths based on common elements. Last elements of all paths are the same, which is the root of the tree. ''' assert all(cp[-1] == paths[0][-1] for cp in paths) g = nx.DiGraph() node_set = {y for x in paths for y in x} g.add_nodes_from(node_set) for cp in paths: for ce in zip(cp[0:-1], cp[1:]): g.add_edge(ce[1], ce[0]) root = paths[0][-1] _compute_tree_height(g, root) return (g, root) def _compute_tree_height(g, root): ''' Compute the heights of the tree for all nodes Height of leaves are 0 ''' def _get_height(root): children = list(g.successors(root)) height = 0 if children: child_heights = [_get_height(x) for x in children] height = max(child_heights) + 1 g.nodes[root]["height"] = height return height _get_height(root) def _sort_tree_leaves(g, root): ''' For each node, sort its child nodes based on the height of the nodes. Return the leaf nodes of the tree after sorting. ''' def _get_height(root): return g.nodes[root]["height"] def _get_sorted_leaves(root): children = list(g.successors(root)) if not children: return [root] child_heights = [_get_height(x) for x in children] order = sorted(range(len(children)), key=lambda x: child_heights[x]) ret = [] for co in order: cr = children[co] ret += _get_sorted_leaves(cr) return ret return _get_sorted_leaves(root) def topological_sort_traversal_longest_path(g): ''' The graph 'g' may contain several source nodes (nodes without incoming edge), which could be in any order and still be a valid topological sorting result. We would like to arrange these source nodes so that the average live spans of the computed blobs are shorter. The idea is to sort the source nodes based on the length of their path to the target node so that the one with longer path is used first. This is done by: - Add a single target node if there are multiple target nodes in 'g'. - Find the longest path between each source and the target node. - Convert the longest paths to a tree with the target node being the root and source nodes being the leaves. - Sort the nodes of the tree based on the height of the tree. ''' gt = _add_single_target_ifneeded(g) source_nodes = _find_source_nodes(gt) lpaths = _get_longest_paths(gt, source_nodes) tree, root = _build_tree(list(viewvalues(lpaths))) sorted_sources = _sort_tree_leaves(tree, root) assert(sorted(sorted_sources) == sorted(source_nodes)) if nx.__version__ < '2.0': ret = nx.topological_sort(g, sorted_sources) else: # Manually making a sorted descendent list dependency_order = list(sorted_sources) seen_nodes = set(sorted_sources) for s in sorted_sources: desc = nx.descendants(g, s) for d in desc: if d not in seen_nodes: seen_nodes.add(d) dependency_order.append(d) sort_key = dict((v, len(dependency_order) - i) for i, v in enumerate(dependency_order)) ret = nx.algorithms.dag.lexicographical_topological_sort( g, key=lambda x: sort_key[x]) ret = list(ret) assert(len(ret) == len(g.nodes)) return ret def topological_sort_traversal(g): return list(nx.topological_sort(g)) def compute_ranges(linearized_ops, blob_sizes=None): if not blob_sizes: log.warning('Provide blob sizes to get more accurate assignments.') blobs = collections.defaultdict( lambda: LiveRange(defined=None, used=None, size=None)) for i, op in enumerate(linearized_ops): for blob in op.input: used = blobs[blob].used if used is None: used = i else: used = max(used, i) blobs[blob] = blobs[blob]._replace(used=used) blob_size = blob_sizes[blob] if blob_sizes else None assert not blob_sizes or blob_size is not None blobs[blob] = blobs[blob]._replace(size=blob_size) for blob in op.output: defined = blobs[blob].defined if defined is None: defined = i else: defined = min(defined, i) blobs[blob] = blobs[blob]._replace(defined=defined) blob_size = blob_sizes[blob] if blob_sizes else None assert not blob_sizes or blob_size is not None blobs[blob] = blobs[blob]._replace(size=blob_size) return blobs def is_compatible(candidate_range, assignment, static_blobs): (name, range_) = assignment[-1] if name in static_blobs: return False if candidate_range.defined is None or range_.defined is None \ or range_.used is None: return False return candidate_range.defined > range_.used def compute_blob_assignments(assignments): blob_assignments = {} for assignment in assignments: if len(assignment) == 1: continue last_blob, _ = assignment[-1] for (blob, _) in assignment: blob_assignments[blob] = last_blob return blob_assignments def _get_max_size(assignment): if not assignment: return 0 ret = max([x[1].size for x in assignment]) ret = 0 if ret is None else ret return ret def get_memory_usage(assignments): ret = 0 for cur in assignments: ret += _get_max_size(cur) return ret def compute_assignments_greedy(ranges_sorted, init_assignments=None): assignments = init_assignments or [] visited = {y[0] for x in assignments for y in x} for (name, range_) in ranges_sorted: if name in visited: continue assigned = False best_assignment = 0 min_dist = float("inf") candidate_size = range_.size or 0 for idx, assignment in enumerate(assignments): if is_compatible(range_, assignment, []): assigned = True dist = abs(_get_max_size(assignment) - candidate_size) if dist < min_dist: min_dist = dist best_assignment = idx if assigned: assignment = assignments[best_assignment] assignment.append((name, range_)) else: assignments.append([(name, range_)]) return assignments def _get_count(assignments): ''' Return number of blobs in assignments ''' if assignments: return sum([len(x) for x in assignments]) return 0 def compute_assignments_dp(ranges_sorted, init_assignment, counter=None): ''' Compute assignment for blobs in 'ranges_sorted' on top of 'init_assignment' using dynamic programming + recursion. ranges_sorted: blobs sorted by 'used' init_assignment: assignment to start with, blobs in 'ranges_sorted' should not be used in 'init_assignment' Using f(b, k, init) to represent the best assignment for blobs b[0:k] given initial assignment 'init', we have f(b, k, init) = f(b, j, init) + find_best(b[j:k], f(b, j, init)) where j is the index of the last best assignment that is independent of blob b[k - 1] (b[k - 1] is compatible with all assignments in f(b, j, init)), and find_best(b1, init1) gives the best assignment for blobs in 'b1' based on the initial assignment 'init1', and blobs b1[0:-1] should be incompatible with b1[-1]. f(b, len(b), []) gives the best assignment for blobs 'b'. For find_best(b, init), since b[0:-1] are not compatible with b[-1], we could reduce it to a smaller problem to find best assignment for b[0:-1] as find_best(b, init) = min { f(b[0:-1], len(b) - 1, init - x) + [x, b[-1]] for x in init, or f(b[0:-1], len(b) - 1, init) + [b[-1]] } where min{} gives the assignment with minimum memory usage. ''' def _get_compatible_prev(candidate_range, best_assignments, cur_idx): ''' Find closest position k of best_assignments that is independent of candidate_range that candiate_range is compatible with all assignments in best_assignments[k]. Return -1 if not found. ''' def is_compatible_all(candidate_range, assignments): ''' return true if compatible for all assignments in assignments ''' return all([is_compatible(candidate_range[1], x, []) for x in assignments]) ii = cur_idx - 1 while ii >= 0: cba = best_assignments[ii] if is_compatible_all(candidate_range, cba): return ii ii -= 1 return -1 def _find_best(ranges, init_assignment, prev_best_assignment, counter): ''' Find the best assignment for blobs 'ranges' given an initialized assignment 'init_assignment'. Blobs in ranges[0:-1] should be incompatible with blob range[-1]. 'prev_best_assignment': best assignment for blobs in ranges[:-1] By assigning ranges[-1] to each assignment k in 'init_assignment' or in a new assignment, the problem becomes a smaller problem to find the best assignment for ranges[0:-1] given the initial assignment init_assigment[0:k, (k+1):-1]. ''' # Blob to check find_range = ranges[-1] # Blobs in ranges[0:-1] are incompatible with ranges[-1] so that we can # reduce it to a smaller problem. assert all(not is_compatible(x[1], [find_range], []) for x in ranges[0:-1]) sz = len(init_assignment) best_candidates = [] # Try to assign 'find_range' to each assignment in init_assignment for ii in range(sz): if not is_compatible(find_range[1], init_assignment[ii], []): continue cur_best = copy.deepcopy(init_assignment) cur_best[ii].append(find_range) if len(ranges) > 1: cur_best_tmp = [x for i, x in enumerate(cur_best) if i != ii] # reduce to a smaller dp problem cur_best_tmp = compute_assignments_dp( ranges[:-1], cur_best_tmp, counter) cur_best = cur_best_tmp + [cur_best[ii]] best_candidates.append(cur_best) # Try to put 'find_range' in a new assignment best_candidates.append(prev_best_assignment + [[find_range]]) ret = min(best_candidates, key=lambda x: get_memory_usage(x)) return ret if not counter: counter = [0] counter[0] += 1 if counter and counter[0] % 5000 == 0: rs = [ranges_sorted[0][1].defined, ranges_sorted[-1][1].used] log.info('Finding assignments {} ({} -> {})...'.format( counter[0], rs[0], rs[1])) init_assignment = init_assignment or [] # best_assignments[k]: best assignments for first k blobs ranges_sorted[0:(k+1)] best_assignments = [] # Find best assignment for blobs ranges_sorted[0:ii] for ii, cur_range in enumerate(ranges_sorted): # closest best_assignment that is independent of ranges_sorted[ii] prev_idx = _get_compatible_prev(cur_range, best_assignments, ii) prev_best = copy.deepcopy(init_assignment) if prev_idx < 0 else \ copy.deepcopy(best_assignments[prev_idx]) # Need to find best assignment for blobs in 'ranges_part' ranges_part = ranges_sorted[(prev_idx + 1):(ii + 1)] cur_best = _find_best( ranges_part, prev_best, best_assignments[-1] if best_assignments else init_assignment, counter) assert _get_count(cur_best) == _get_count(prev_best) + len(ranges_part) best_assignments.append(copy.deepcopy(cur_best)) assert len(best_assignments) == len(ranges_sorted) best = best_assignments[-1] return best def get_updated_ranges(ranges, max_live=None): ''' Set LiveRange.defined = -1 if it is None Set LiveRange.used = max_live if it is None Set LiveRanee.size = 1 if it is None ''' def _get_max_live(ranges): max_live = max(x[1].used for x in ranges if x[1].used) + 1 return max_live def _update_range(x, max_live, size): cx = x if x[1].defined is None: cx = (cx[0], cx[1]._replace(defined=-1)) if x[1].used is None: cx = (cx[0], cx[1]._replace(used=max_live)) if x[1].size is None: cx = (cx[0], cx[1]._replace(size=size)) return cx if max_live is None: max_live = _get_max_live(ranges) ranges = [_update_range(x, max_live, 1) for x in ranges] return ranges def compute_assignments(ranges, static_blobs, algo): ''' algo: Method used to find assignments (AssignmentAlgorithm.GREEDY or AssignmentAlgorithm.DYNAMIC_PROGRAMMING). AssignmentAlgorithm.DYNAMIC_PROGRAMMING gives optimal solution at the cost of more computation. AssignmentAlgorithm.GREEDY may be better in the case 'blob_sizes' is not provided. ''' # Sort the ranges based on when they are last used. # If LiveRange.used is None, then the blob is never used and could # be consumed externally. Sort these to the end of the list as opposed # to the beginning so that they can be shared as well. ranges = sorted( viewitems(ranges), key=lambda p: (p[1].used is None, p[1].used), ) # Update None values ranges = get_updated_ranges(ranges) # Sharable blobs ranges_sharable = [x for x in ranges if x[0] not in static_blobs] # Static blobs, not sharable ranges_static = [x for x in ranges if x[0] in static_blobs] log.info("Total sharable blobs {}".format(len(ranges_sharable))) best_assignment = [] if algo == AssignmentAlgorithm.DYNAMIC_PROGRAMMING: best_assignment = compute_assignments_dp(ranges_sharable, []) elif algo == AssignmentAlgorithm.GREEDY: best_assignment = compute_assignments_greedy(ranges_sharable, []) else: assert "Invalid algo name {}".format(algo) best_assignment += [[x] for x in ranges_static] # verify_assignments(best_assignment) return best_assignment def verify_assignments(assignments): for cur in assignments: for x, y in zip(cur[0:-1], cur[1:]): assert x[1].used < y[1].defined def compute_interference_graph(ops): g = nx.DiGraph() for i, op in enumerate(ops): g.add_node(i, op=op) for i, parent_op in enumerate(ops): for j, child_op in enumerate(ops): if i >= j: continue if any(output in child_op.input for output in parent_op.output): deps = set(child_op.input).intersection(parent_op.output) g.add_edge(i, j, deps=deps) assert nx.is_directed_acyclic_graph(g), child_op return g Optimization = collections.namedtuple( 'Optimization', ['net', 'assignments', 'blob_assignments']) def apply_assignments(net, blob_assignments): def canonical_name(blob): if blob not in blob_assignments: return blob return blob_assignments[blob] for op in net.op: # Descend into subnets of the recurrent network if op.type.startswith('RecurrentNetwork'): apply_recurrent_blob_assignments(op, blob_assignments, canonical_name) for i, input_ in enumerate(op.input): op.input[i] = canonical_name(input_) for i, output in enumerate(op.output): op.output[i] = canonical_name(output) def apply_recurrent_blob_assignments(op, blob_assignments, canonical_name): log.debug("Applying assignments to recurrent op: {}".format(op.type)) step_args = [a for a in op.arg if a.name.endswith("step_net")] for step_arg in step_args: apply_assignments(step_arg.n, blob_assignments) for i, einp in enumerate(step_arg.n.external_input): if einp in blob_assignments: step_arg.n.external_input[i] = canonical_name(einp) # Store renamings for blob, renamed in viewitems(blob_assignments): if blob in list(op.input) + list(op.output): a = caffe2_pb2.Argument() a.name = blob + ".rename" a.s = str(renamed).encode("ascii") op.arg.extend([a]) class AssignmentAlgorithm(enum.Enum): GREEDY = 0 DYNAMIC_PROGRAMMING = 1 def optimize_inference_fast(net, static_blobs): optim = caffe2_pb2.NetDef() optim_str = C.memonger_optimize_inference_net( net.SerializeToString(), [str(s).encode('utf-8') for s in static_blobs] ) optim.ParseFromString(optim_str) return optim def optimize_interference(net, static_blobs, ordering_function=topological_sort_traversal, blob_sizes=None, algo=AssignmentAlgorithm.GREEDY): """ ordering_function: topological_sort_traversal or topological_sort_traversal_longest_path. topological_sort_traversal_longest_path gives better results but needs a bit more computation. algo: Method used to find assignments (AssignmentAlgorithm.GREEDY or AssignmentAlgorithm.DYNAMIC_PROGRAMMING). AssignmentAlgorithm.DYNAMIC_PROGRAMMING gives optimal solution at the cost of more computation. AssignmentAlgorithm.GREEDY may be better in the case 'blob_sizes' is not provided. """ """ 1) Use a BFS traversal of the execution graph to generate an ordering of the node executions. 2) Generate use-def ranges for each `blob` in the BFS traversal order. 3) Assign blobs to `canonical blobs` 4) Rename blobs to canonical blobs """ net = copy.deepcopy(net) g = compute_interference_graph(net.op) ordering = ordering_function(g) linearized_ops = [net.op[i] for i in ordering] # Reorder ops in net based on the computed linearlized order. # If the graph has multiple topological orderings and if the NetDef's # ordering differs from the order used to compute ranges, then the # runtime might end up overwriting blobs before they are used. del net.op[:] net.op.extend(linearized_ops) ranges = compute_ranges(linearized_ops, blob_sizes) assignments = compute_assignments(ranges, static_blobs, algo) blob_assignments = compute_blob_assignments(assignments) apply_assignments(net, blob_assignments) return Optimization( net=net, blob_assignments=blob_assignments, assignments=assignments) def verify_inplace_blobs(net_a, net_b): """ Verifies that net_a and net_b have the same in-place blob assignments. Particularly, that memonger did not add an in-place assignment when that did not exist before. """ def get_inplaces(op): out = list(op.output) inplaces = [] for j, inp in enumerate(op.input): if inp in out: inplaces.append([j, out.index(inp)]) return inplaces for op_a, op_b in zip(net_a.op, net_b.op): if op_a.type != op_b.type: return False if get_inplaces(op_a) != get_inplaces(op_b): return False return True def verify_graph_equality(net_a, net_b): """ Determines if the execution of two graphs are identical. That is, all inputs blobs are mapped to the same output blobs for each operator in their respective positions. This is meant to check the output of memonger with the original graph. It assumes that the nets have same external input and output. O(E) runtime + O(1) amortized cost to hash for python dict """ def parent_list(ops): parent_list = [[] for _ in ops] edge_owner = {} for i, op in enumerate(ops): for blob in op.input: parent_id = edge_owner.get(blob) if parent_id is not None: parent_list[i].append(parent_id) for blob in op.output: edge_owner[blob] = i return parent_list # Operator wise equality checks if (len(net_a.op) != len(net_b.op)): return False for op_a, op_b in zip(net_a.op, net_b.op): if (op_a.type != op_b.type or op_a.device_option != op_b.device_option or op_a.engine != op_b.engine): return False # Print debug info parent_list_a = parent_list(net_a.op) parent_list_b = parent_list(net_b.op) if parent_list_a != parent_list_b: j = 0 for a, b in zip(parent_list_a, parent_list_b): if a != b: print("Difference {} vs {} \n {}".format( j, net_a.op[j], net_b.op[j])) print("Parents: {} vs {}".format(a, b)) j += 1 # Net wise equality check return parent_list_a == parent_list_b Statistics = collections.namedtuple( 'Statistics', ['baseline_nbytes', 'optimized_nbytes']) def blob_nbytes(blob): sz = 0 try: sz = workspace.FetchBlob(blob).nbytes except Exception: log.warning('Error when fetching blob {}'.format(blob)) return sz def compute_statistics(assignments): blob_bytes = { blob: blob_nbytes(blob) for assignment in assignments for (blob, _) in assignment} baseline_nbytes = sum(viewvalues(blob_bytes)) optimized_nbytes = sum( max(blob_bytes[blob] for (blob, _) in assignment) for assignment in assignments) return Statistics( baseline_nbytes=baseline_nbytes, optimized_nbytes=optimized_nbytes) def collect_blob_sizes(net): blobs = {} for op in net.op: for blob in op.input: blobs[blob] = blob_nbytes(blob) for blob in op.output: blobs[blob] = blob_nbytes(blob) return blobs