## @package schema # Module caffe2.python.schema """ Defines a minimal set of data types that allow to represent datasets with arbitrary nested structure, including objects of variable length, such as maps and lists. This defines a columnar storage format for such datasets on top of caffe2 tensors. In terms of capacity of representation, it can represent most of the data types supported by Parquet, ORC, DWRF file formats. See comments in operator_test/dataset_ops_test.py for an example and walkthrough on how to use schema to store and iterate through a structured in-memory dataset. """ import logging import numpy as np from caffe2.python import core from caffe2.python import workspace from caffe2.python.core import BlobReference from collections import OrderedDict, namedtuple from past.builtins import basestring from future.utils import viewitems, viewkeys, viewvalues from itertools import islice from six import StringIO from typing import Sequence logger = logging.getLogger(__name__) FIELD_SEPARATOR = ':' def _join_field_name(prefix, suffix): if prefix and suffix: return '{}{}{}'.format(prefix, FIELD_SEPARATOR, suffix) elif prefix: return prefix elif suffix: return suffix else: return '' def _normalize_field(field_or_type_or_blob, keep_blobs=True): """Clones/normalizes a field before adding it to a container.""" if isinstance(field_or_type_or_blob, Field): return field_or_type_or_blob.clone(keep_blobs=keep_blobs) elif type(field_or_type_or_blob) in (type, np.dtype): return Scalar(dtype=field_or_type_or_blob) else: return Scalar(blob=field_or_type_or_blob) FeatureSpec = namedtuple( 'FeatureSpec', [ 'feature_type', 'feature_names', 'feature_ids', 'feature_is_request_only', 'desired_hash_size', 'feature_to_index', ] ) # pyre-fixme[16]: `FeatureSpec.__new__` has no attribute `__defaults__` FeatureSpec.__new__.__defaults__ = (None, None, None, None, None, None) class Metadata( namedtuple( 'Metadata', ['categorical_limit', 'expected_value', 'feature_specs'] ) ): """Represents additional information associated with a scalar in schema. `categorical_limit` - for fields of integral type that are guaranteed to be non-negative it specifies the maximum possible value plus one. It's often used as a size of an embedding table. `expected_value` - anticipated average value of elements in the field. Usually makes sense for length fields of lists. `feature_specs` - information about the features that contained in this field. For example if field have more than 1 feature it can have list of feature names contained in this field.""" __slots__: Sequence[str] = () # pyre-fixme[16]: `Metadata.__new__` has no attribute `__defaults__` Metadata.__new__.__defaults__ = (None, None, None) class Field(object): """Represents an abstract field type in a dataset. """ __slots__: Sequence[str] = ("_parent", "_field_offsets") def __init__(self, children): """Derived classes must call this after their initialization.""" self._parent = (None, 0) offset = 0 self._field_offsets = [] for child in children: self._field_offsets.append(offset) offset += len(child.field_names()) self._field_offsets.append(offset) def clone_schema(self): return self.clone(keep_blobs=False) def field_names(self): """Return the children field names for this field.""" raise NotImplementedError('Field is an abstract class.') def field_types(self): """Return the numpy.dtype for each of the children fields.""" raise NotImplementedError('Field is an abstract class.') def field_metadata(self): """Return the Metadata for each of the children fields.""" raise NotImplementedError('Field is an abstract class.') def field_blobs(self): """Return the list of blobs with contents for this Field. Values can either be all numpy.ndarray or BlobReference. If any of the fields doesn't have a blob, throws. """ raise NotImplementedError('Field is an abstract class.') def all_scalars(self): """Return the list of all Scalar instances in the Field. The order is the same as for field_names() or field_blobs()""" raise NotImplementedError('Field is an abstract class.') def has_blobs(self): """Return True if every scalar of this field has blobs.""" raise NotImplementedError('Field is an abstract class.') def clone(self, keep_blobs=True): """Clone this Field along with its children.""" raise NotImplementedError('Field is an abstract class.') def _set_parent(self, parent, relative_id): self._parent = (parent, relative_id) def slice(self): """ Returns a slice representing the range of field ids that belong to this field. This slice can be used to index a list of fields. E.g.: >>> s = Struct( >>> ('a', Scalar()), >>> ('b', Struct( >>> ('b1', Scalar()), >>> ('b2', Scalar()), >>> )), >>> ('c', Scalar()), >>> ) >>> field_data = ['da', 'db1', 'db2', 'dc'] >>> field_data[s.b.split()] ['db1', 'db2'] """ base_id = self._child_base_id() return slice(base_id, base_id + len(self.field_names())) def _child_base_id(self, child_index=None): """Get the base id of the given child""" p, i = self._parent pos = 0 if child_index is None else self._field_offsets[child_index] if p: pos += p._child_base_id(i) return pos def __eq__(self, other): """Equivalance of two schemas""" return ( (self.field_names() == other.field_names()) and (self.field_types() == other.field_types()) and (self.field_metadata() == other.field_metadata()) ) def _pprint_impl(self, indent, str_buffer): raise NotImplementedError('Field is an abstract class.') def __repr__(self): str_buffer = StringIO() self._pprint_impl(0, str_buffer) contents = str_buffer.getvalue() str_buffer.close() return contents class List(Field): """Represents a variable-length list. Values of a list can also be complex fields such as Lists and Structs. In addition to the fields exposed by its `values` field, a List exposes an additional `lengths` field, which will contain the size of each list under the parent domain. """ __slots__: Sequence[str] = ("lengths", "_items") def __init__(self, values, lengths_blob=None): if isinstance(lengths_blob, Field): assert isinstance(lengths_blob, Scalar) self.lengths = _normalize_field(lengths_blob) else: self.lengths = Scalar(np.int32, lengths_blob) self._items = _normalize_field(values) self.lengths._set_parent(self, 0) self._items._set_parent(self, 1) super(List, self).__init__([self.lengths, self._items]) def field_names(self): value_fields = self._items.field_names() return ( ['lengths'] + [_join_field_name('values', v) for v in value_fields] ) def field_types(self): return self.lengths.field_types() + self._items.field_types() def field_metadata(self): return self.lengths.field_metadata() + self._items.field_metadata() def field_blobs(self): return self.lengths.field_blobs() + self._items.field_blobs() def all_scalars(self): return self.lengths.all_scalars() + self._items.all_scalars() def has_blobs(self): return self.lengths.has_blobs() and self._items.has_blobs() def clone(self, keep_blobs=True): return type(self)( _normalize_field(self._items, keep_blobs=keep_blobs), _normalize_field(self.lengths, keep_blobs=keep_blobs) ) def _pprint_impl(self, indent, str_buffer): str_buffer.write(' ' * indent + "List(\n") str_buffer.write(' ' * (indent + 1) + "lengths=\n") self.lengths._pprint_impl(indent=indent + 2, str_buffer=str_buffer) str_buffer.write(' ' * (indent + 1) + "_items=\n") self._items._pprint_impl(indent=indent + 2, str_buffer=str_buffer) str_buffer.write(' ' * indent + ")\n") def __getattr__(self, item): """If the value of this list is a struct, allow to introspect directly into its fields.""" if item.startswith('__'): raise AttributeError(item) if isinstance(self._items, Struct): return getattr(self._items, item) elif item == 'value' or item == 'items': return self._items else: raise AttributeError('Field not found in list: %s.' % item) def __getitem__(self, item): names = item.split(FIELD_SEPARATOR, 1) if len(names) == 1: if item == 'lengths': return self.lengths elif item == 'values': return self._items else: if names[0] == 'values': return self._items[names[1]] raise KeyError('Field not found in list: %s.' % item) class ListWithEvicted(List): """ This class is similar with List, but containing extra field evicted_values for LRU Hashing. """ __slots__: Sequence[str] = ("_evicted_values",) def __init__(self, values, lengths_blob=None, evicted_values=None): if isinstance(evicted_values, Field): assert isinstance(evicted_values, Scalar) self._evicted_values = _normalize_field(evicted_values) else: self._evicted_values = Scalar(np.int64, evicted_values) super(ListWithEvicted, self).__init__(values, lengths_blob=lengths_blob) def field_names(self): value_fields = self._items.field_names() return ( ['lengths'] + [_join_field_name('values', v) for v in value_fields] + ["_evicted_values"] ) def field_types(self): return self.lengths.field_types() + self._items.field_types() + self._evicted_values.field_types() def field_metadata(self): return self.lengths.field_metadata() + self._items.field_metadata() + self._evicted_values.field_metadata() def field_blobs(self): return self.lengths.field_blobs() + self._items.field_blobs() + self._evicted_values.field_blobs() def all_scalars(self): return self.lengths.all_scalars() + self._items.all_scalars() + self._evicted_values.all_scalars() def has_blobs(self): return self.lengths.has_blobs() and self._items.has_blobs() + self._evicted_values.has_blobs() def clone(self, keep_blobs=True): return type(self)( _normalize_field(self._items, keep_blobs=keep_blobs), _normalize_field(self.lengths, keep_blobs=keep_blobs), _normalize_field(self._evicted_values, keep_blobs=keep_blobs) ) def _pprint_impl(self, indent, str_buffer): str_buffer.write(' ' * indent + "ListWithEvicted(\n") str_buffer.write(' ' * (indent + 1) + "lengths=\n") self.lengths._pprint_impl(indent=indent + 2, str_buffer=str_buffer) str_buffer.write(' ' * (indent + 1) + "_items=\n") self._items._pprint_impl(indent=indent + 2, str_buffer=str_buffer) str_buffer.write(' ' * (indent + 1) + "_evicted_values=\n") self._evicted_values._pprint_impl(indent=indent + 2, str_buffer=str_buffer) str_buffer.write(' ' * indent + ")\n") def __getattr__(self, item): """If the value of this list is a struct, allow to introspect directly into its fields.""" if item.startswith('__'): raise AttributeError(item) if item == "_evicted_values": return self._evicted_values if isinstance(self._items, Struct): return getattr(self._items, item) elif item == 'value' or item == 'items': return self._items else: raise AttributeError('Field not found in list: %s.' % item) def __getitem__(self, item): names = item.split(FIELD_SEPARATOR, 1) if len(names) == 1: if item == 'lengths': return self.lengths elif item == 'values': return self._items elif item == '_evicted_values': return self._evicted_values else: if names[0] == 'values': return self._items[names[1]] raise KeyError('Field not found in list: %s.' % item) class Struct(Field): """Represents a named list of fields sharing the same domain. """ __slots__: Sequence[str] = ("fields", "_frozen") def __init__(self, *fields): """ fields is a list of tuples in format of (name, field). The name is a string of nested name, e.g., `a`, `a:b`, `a:b:c`. For example Struct( ('a', Scalar()), ('b:c', Scalar()), ('b:d:e', Scalar()), ('b', Struct( ('f', Scalar()), )), ) is equal to Struct( ('a', Scalar()), ('b', Struct( ('c', Scalar()), ('d', Struct(('e', Scalar()))), ('f', Scalar()), )), ) """ for field in fields: assert len(field) == 2 assert field[0], 'Field names cannot be empty' assert field[0] != 'lengths', ( 'Struct cannot contain a field named `lengths`.' ) fields = [(name, _normalize_field(field)) for name, field in fields] self.fields = OrderedDict() for name, field in fields: if FIELD_SEPARATOR in name: name, field = self._struct_from_nested_name(name, field) if name not in self.fields: self.fields[name] = field continue if ( not isinstance(field, Struct) or not isinstance(self.fields[name], Struct) ): raise ValueError('Duplicate field name: %s' % name) self.fields[name] = self.fields[name] + field for id, (_, field) in enumerate(viewitems(self.fields)): field._set_parent(self, id) super(Struct, self).__init__(viewvalues(self.fields)) self._frozen = True def _struct_from_nested_name(self, nested_name, field): def create_internal(nested_name, field): names = nested_name.split(FIELD_SEPARATOR, 1) if len(names) == 1: added_field = field else: added_field = create_internal(names[1], field) return Struct((names[0], added_field)) names = nested_name.split(FIELD_SEPARATOR, 1) assert len(names) >= 2 return names[0], create_internal(names[1], field) def get_children(self): return list(viewitems(self.fields)) def field_names(self): names = [] for name, field in viewitems(self.fields): names += [_join_field_name(name, f) for f in field.field_names()] return names def field_types(self): types = [] for _, field in viewitems(self.fields): types += field.field_types() return types def field_metadata(self): metadata = [] for _, field in viewitems(self.fields): metadata += field.field_metadata() return metadata def field_blobs(self): blobs = [] for _, field in viewitems(self.fields): blobs += field.field_blobs() return blobs def all_scalars(self): scalars = [] for _, field in viewitems(self.fields): scalars += field.all_scalars() return scalars def has_blobs(self): return all(field.has_blobs() for field in viewvalues(self.fields)) def clone(self, keep_blobs=True): normalized_fields = [ (k, _normalize_field(v, keep_blobs=keep_blobs)) for k, v in viewitems(self.fields) ] return type(self)(*normalized_fields) def _get_field_by_nested_name(self, nested_name): names = nested_name.split(FIELD_SEPARATOR, 1) field = self.fields.get(names[0], None) if field is None: return None if len(names) == 1: return field try: return field[names[1]] except (KeyError, TypeError): return None def _pprint_impl(self, indent, str_buffer): str_buffer.write(' ' * indent + "Struct( \n") for name, field in viewitems(self.fields): str_buffer.write(' ' * (indent + 1) + "{}=".format(name) + "\n") field._pprint_impl(indent=indent + 2, str_buffer=str_buffer) str_buffer.write(' ' * indent + ") \n") def __contains__(self, item): field = self._get_field_by_nested_name(item) return field is not None def __len__(self): return len(self.fields) def __getitem__(self, item): """ item can be a tuple or list of ints or strings, or a single int or string. String item is a nested field name, e.g., "a", "a:b", "a:b:c". Int item is the index of a field at the first level of the Struct. """ if isinstance(item, list) or isinstance(item, tuple): keys = list(viewkeys(self.fields)) return Struct( * [ ( keys[k] if isinstance(k, int) else k, self[k] ) for k in item ] ) elif isinstance(item, int): return next(islice(viewvalues(self.fields), item, None)) else: field = self._get_field_by_nested_name(item) if field is None: raise KeyError('field "%s" not found' % (item)) return field def get(self, item, default_value): """ similar to python's dictionary get method, return field of item if found (i.e. self.item is valid) or otherwise return default_value it's a syntax suger of python's builtin getattr method """ return getattr(self, item, default_value) def __getattr__(self, item): if item.startswith('__'): raise AttributeError(item) try: return super(Struct, self).__getattribute__("fields")[item] except KeyError: raise AttributeError(item) def __setattr__(self, key, value): # Disable setting attributes after initialization to prevent false # impression of being able to overwrite a field. # Allowing setting internal states mainly so that _parent can be set # post initialization. if getattr(self, '_frozen', None) and not key.startswith('_'): raise TypeError('Struct.__setattr__() is disabled after __init__()') super(Struct, self).__setattr__(key, value) def __add__(self, other): """ Allows to merge fields of two schema.Struct using '+' operator. If two Struct have common field names, the merge is conducted recursively. Here are examples: Example 1 s1 = Struct(('a', Scalar())) s2 = Struct(('b', Scalar())) s1 + s2 == Struct( ('a', Scalar()), ('b', Scalar()), ) Example 2 s1 = Struct( ('a', Scalar()), ('b', Struct(('c', Scalar()))), ) s2 = Struct(('b', Struct(('d', Scalar())))) s1 + s2 == Struct( ('a', Scalar()), ('b', Struct( ('c', Scalar()), ('d', Scalar()), )), ) """ if not isinstance(other, Struct): return NotImplemented children = OrderedDict(self.get_children()) for name, right_field in other.get_children(): if name not in children: children[name] = right_field continue left_field = children[name] if not (isinstance(left_field, Struct) and isinstance(right_field, Struct)): raise TypeError( "Type of left_field, " + str(type(left_field)) + ", and type of right_field, " + str(type(right_field)) + ", must both the Struct to allow merging of the field, " + name) children[name] = left_field + right_field return Struct(*(viewitems(children))) def __sub__(self, other): """ Allows to remove common fields of two schema.Struct from self by using '-' operator. If two Struct have common field names, the removal is conducted recursively. If a child struct has no fields inside, it will be removed from its parent. Here are examples: Example 1 s1 = Struct( ('a', Scalar()), ('b', Scalar()), ) s2 = Struct(('a', Scalar())) s1 - s2 == Struct(('b', Scalar())) Example 2 s1 = Struct( ('b', Struct( ('c', Scalar()), ('d', Scalar()), )) ) s2 = Struct( ('b', Struct(('c', Scalar()))), ) s1 - s2 == Struct( ('b', Struct( ('d', Scalar()), )), ) Example 3 s1 = Struct( ('a', Scalar()), ('b', Struct( ('d', Scalar()), )) ) s2 = Struct( ('b', Struct( ('c', Scalar()) ('d', Scalar()) )), ) s1 - s2 == Struct( ('a', Scalar()), ) """ if not isinstance(other, Struct): return NotImplemented children = OrderedDict(self.get_children()) for name, right_field in other.get_children(): if name in children: left_field = children[name] if type(left_field) == type(right_field): if isinstance(left_field, Struct): child = left_field - right_field if child.get_children(): children[name] = child continue children.pop(name) else: raise TypeError( "Type of left_field, " + str(type(left_field)) + ", is not the same as that of right_field, " + str(type(right_field)) + ", yet they have the same field name, " + name) return Struct(*(children.items())) class Scalar(Field): """Represents a typed scalar or tensor of fixed shape. A Scalar is a leaf in a schema tree, translating to exactly one tensor in the dataset's underlying storage. Usually, the tensor storing the actual values of this field is a 1D tensor, representing a series of values in its domain. It is possible however to have higher rank values stored as a Scalar, as long as all entries have the same shape. E.g.: Scalar(np.float64) Scalar field of type float64. Caffe2 will expect readers and datasets to expose it as a 1D tensor of doubles (vector), where the size of the vector is determined by this fields' domain. Scalar((np.int32, 5)) Tensor field of type int32. Caffe2 will expect readers and datasets to implement it as a 2D tensor (matrix) of shape (L, 5), where L is determined by this fields' domain. Scalar((str, (10, 20))) Tensor field of type str. Caffe2 will expect readers and datasets to implement it as a 3D tensor of shape (L, 10, 20), where L is determined by this fields' domain. If the field type is unknown at construction time, call Scalar(), that will default to np.void as its dtype. It is an error to pass a structured dtype to Scalar, since it would contain more than one field. Instead, use from_dtype, which will construct a nested `Struct` field reflecting the given dtype's structure. A Scalar can also contain a blob, which represents the value of this Scalar. A blob can be either a numpy.ndarray, in which case it contain the actual contents of the Scalar, or a BlobReference, which represents a blob living in a caffe2 Workspace. If blob of different types are passed, a conversion to numpy.ndarray is attempted. """ __slots__: Sequence[str] = ("_metadata", "dtype", "_original_dtype", "_blob") def __init__(self, dtype=None, blob=None, metadata=None): self._metadata = None self.set(dtype, blob, metadata, unsafe=True) super(Scalar, self).__init__([]) def field_names(self): return [''] def field_type(self): return self.dtype def field_types(self): return [self.dtype] def field_metadata(self): return [self._metadata] def has_blobs(self): return self._blob is not None def field_blobs(self): assert self._blob is not None, 'Value is not set for this field.' return [self._blob] def all_scalars(self): return [self] def clone(self, keep_blobs=True): return Scalar( dtype=self._original_dtype, blob=self._blob if keep_blobs else None, metadata=self._metadata ) def get(self): """Gets the current blob of this Scalar field.""" assert self._blob is not None, 'Value is not set for this field.' return self._blob def __call__(self): """Shortcut for self.get()""" return self.get() @property def metadata(self): return self._metadata def set_metadata(self, value): assert isinstance(value, Metadata), \ 'metadata must be Metadata, got {}'.format(type(value)) self._metadata = value self._validate_metadata() def _validate_metadata(self): if self._metadata is None: return if (self._metadata.categorical_limit is not None and self.dtype is not None): assert np.issubdtype(self.dtype, np.integer), \ "`categorical_limit` can be specified only in integral " + \ "fields but got {}".format(self.dtype) def set_value(self, blob, throw_on_type_mismatch=False, unsafe=False): """Sets only the blob field still validating the existing dtype""" if self.dtype.base != np.void and throw_on_type_mismatch: assert isinstance(blob, np.ndarray), "Got {!r}".format(blob) assert blob.dtype.base == self.dtype.base, ( "Expected {}, got {}".format(self.dtype.base, blob.dtype.base)) self.set(dtype=self._original_dtype, blob=blob, unsafe=unsafe) def set(self, dtype=None, blob=None, metadata=None, unsafe=False): """Set the type and/or blob of this scalar. See __init__ for details. Args: dtype: can be any numpy type. If not provided and `blob` is provided, it will be inferred. If no argument is provided, this Scalar will be of type np.void. blob: if provided, can be either a BlobReference or a numpy.ndarray. If a value of different type is passed, a conversion to numpy.ndarray is attempted. Strings aren't accepted, since they can be ambiguous. If you want to pass a string, to either BlobReference(blob) or np.array(blob). metadata: optional instance of Metadata, if provided overrides the metadata information of the scalar """ if not unsafe: logger.warning( "Scalar should be considered immutable. Only call Scalar.set() " "on newly created Scalar with unsafe=True. This will become an " "error soon." ) if blob is not None and isinstance(blob, basestring): raise ValueError( 'Passing str blob to Scalar.set() is ambiguous. ' 'Do either set(blob=np.array(blob)) or ' 'set(blob=BlobReference(blob))' ) self._original_dtype = dtype # Numpy will collapse a shape of 1 into an unindexed data array (shape = ()), # which betrays the docstring of this class (which expects shape = (1,)). # >>> import numpy as np # >> np.dtype((np.int32, 1)) # dtype('int32') # >>> np.dtype((np.int32, 5)) # dtype((' 1 and dtype is not None and dtype.base != np.void): dtype = np.dtype((dtype.base, blob.shape[1:])) # if we were still unable to infer the dtype if dtype is None: dtype = np.dtype(np.void) assert not dtype.fields, ( 'Cannot create Scalar with a structured dtype. ' + 'Use from_dtype instead.' ) self.dtype = dtype self._blob = blob if metadata is not None: self.set_metadata(metadata) self._validate_metadata() def set_type(self, dtype): self._original_dtype = dtype if dtype is not None: self.dtype = np.dtype(dtype) else: self.dtype = np.dtype(np.void) self._validate_metadata() def _pprint_impl(self, indent, str_buffer): str_buffer.write(' ' * (indent) + 'Scalar({!r}, {!r}, {!r})'.format( self.dtype, self._blob, self._metadata) + "\n") def id(self): """ Return the zero-indexed position of this scalar field in its schema. Used in order to index into the field_blob list returned by readers or accepted by writers. """ return self._child_base_id() def Map( keys, values, keys_name='keys', values_name='values', lengths_blob=None ): """A map is a List of Struct containing keys and values fields. Optionally, you can provide custom name for the key and value fields. """ return List( Struct((keys_name, keys), (values_name, values)), lengths_blob=lengths_blob ) def MapWithEvicted( keys, values, keys_name='keys', values_name='values', lengths_blob=None, evicted_values=None ): """A map with extra field evicted_values """ return ListWithEvicted( Struct((keys_name, keys), (values_name, values)), lengths_blob=lengths_blob, evicted_values=evicted_values ) def NamedTuple(name_prefix, *fields): return Struct(* [('%s_%d' % (name_prefix, i), field) for i, field in enumerate(fields)]) def Tuple(*fields): """ Creates a Struct with default, sequential, field names of given types. """ return NamedTuple('field', *fields) def RawTuple(num_fields, name_prefix='field'): """ Creates a tuple of `num_field` untyped scalars. """ assert isinstance(num_fields, int) assert num_fields >= 0 return NamedTuple(name_prefix, *([np.void] * num_fields)) def from_dtype(dtype, _outer_shape=()): """Constructs a Caffe2 schema from the given numpy's dtype. Numpy supports scalar, array-like and structured datatypes, as long as all the shapes are fixed. This function breaks down the given dtype into a Caffe2 schema containing `Struct` and `Scalar` types. Fields containing byte offsets are not currently supported. """ if not isinstance(dtype, np.dtype): # wrap into a ndtype shape = _outer_shape dtype = np.dtype((dtype, _outer_shape)) else: # concatenate shapes if necessary shape = _outer_shape + dtype.shape if shape != dtype.shape: dtype = np.dtype((dtype.base, shape)) if not dtype.fields: return Scalar(dtype) struct_fields = [] for name, (fdtype, offset) in dtype.fields: assert offset == 0, ('Fields with byte offsets are not supported.') struct_fields += (name, from_dtype(fdtype, _outer_shape=shape)) return Struct(*struct_fields) class _SchemaNode(object): """This is a private class used to represent a Schema Node""" __slots__: Sequence[str] = ("name", "children", "type_str", "field") def __init__(self, name, type_str=''): self.name = name self.children = [] self.type_str = type_str self.field = None def add_child(self, name, type_str=''): for child in self.children: if child.name == name and child.type_str == type_str: return child child = _SchemaNode(name, type_str) self.children.append(child) return child def get_field(self): list_names = ['lengths', 'values'] map_names = ['lengths', 'keys', 'values'] if len(self.children) == 0 or self.field is not None: if self.field is None: return Struct() else: return self.field child_names = [] for child in self.children: child_names.append(child.name) if (set(child_names) == set(list_names)): for child in self.children: if child.name == 'values': values_field = child.get_field() else: lengths_field = child.get_field() self.field = List( values_field, lengths_blob=lengths_field ) self.type_str = "List" return self.field elif (set(child_names) == set(map_names)): for child in self.children: if child.name == 'keys': key_field = child.get_field() elif child.name == 'values': values_field = child.get_field() else: lengths_field = child.get_field() self.field = Map( key_field, values_field, lengths_blob=lengths_field ) self.type_str = "Map" return self.field else: struct_fields = [] for child in self.children: struct_fields.append((child.name, child.get_field())) self.field = Struct(*struct_fields) self.type_str = "Struct" return self.field def print_recursively(self): for child in self.children: child.print_recursively() logger.info("Printing node: Name and type") logger.info(self.name) logger.info(self.type_str) def from_column_list( col_names, col_types=None, col_blobs=None, col_metadata=None ): """ Given a list of names, types, and optionally values, construct a Schema. """ if col_types is None: col_types = [None] * len(col_names) if col_metadata is None: col_metadata = [None] * len(col_names) if col_blobs is None: col_blobs = [None] * len(col_names) assert len(col_names) == len(col_types), ( 'col_names and col_types must have the same length.' ) assert len(col_names) == len(col_metadata), ( 'col_names and col_metadata must have the same length.' ) assert len(col_names) == len(col_blobs), ( 'col_names and col_blobs must have the same length.' ) root = _SchemaNode('root', 'Struct') for col_name, col_type, col_blob, col_metadata in zip( col_names, col_types, col_blobs, col_metadata ): columns = col_name.split(FIELD_SEPARATOR) current = root for i in range(len(columns)): name = columns[i] type_str = '' field = None if i == len(columns) - 1: type_str = col_type field = Scalar( dtype=col_type, blob=col_blob, metadata=col_metadata ) next = current.add_child(name, type_str) if field is not None: next.field = field current = next return root.get_field() def from_blob_list(schema, values, throw_on_type_mismatch=False): """ Create a schema that clones the given schema, but containing the given list of values. """ assert isinstance(schema, Field), 'Argument `schema` must be a Field.' if isinstance(values, BlobReference): values = [values] record = schema.clone_schema() scalars = record.all_scalars() assert len(scalars) == len(values), ( 'Values must have %d elements, got %d.' % (len(scalars), len(values)) ) for scalar, value in zip(scalars, values): scalar.set_value(value, throw_on_type_mismatch, unsafe=True) return record def as_record(value): if isinstance(value, Field): return value elif isinstance(value, list) or isinstance(value, tuple): is_field_list = all( f is tuple and len(f) == 2 and isinstance(f[0], basestring) for f in value ) if is_field_list: return Struct(* [(k, as_record(v)) for k, v in value]) else: return Tuple(* [as_record(f) for f in value]) elif isinstance(value, dict): return Struct(* [(k, as_record(v)) for k, v in viewitems(value)]) else: return _normalize_field(value) def FetchRecord(blob_record, ws=None, throw_on_type_mismatch=False): """ Given a record containing BlobReferences, return a new record with same schema, containing numpy arrays, fetched from the current active workspace. """ def fetch(v): if ws is None: return workspace.FetchBlob(str(v)) else: return ws.blobs[str(v)].fetch() assert isinstance(blob_record, Field) field_blobs = blob_record.field_blobs() assert all(isinstance(v, BlobReference) for v in field_blobs) field_arrays = [fetch(value) for value in field_blobs] return from_blob_list(blob_record, field_arrays, throw_on_type_mismatch) def FeedRecord(blob_record, arrays, ws=None): """ Given a Record containing blob_references and arrays, which is either a list of numpy arrays or a Record containing numpy arrays, feeds the record to the current workspace. """ def feed(b, v): if ws is None: workspace.FeedBlob(str(b), v) else: ws.create_blob(str(b)) ws.blobs[str(b)].feed(v) assert isinstance(blob_record, Field) field_blobs = blob_record.field_blobs() assert all(isinstance(v, BlobReference) for v in field_blobs) if isinstance(arrays, Field): # TODO: check schema arrays = arrays.field_blobs() assert len(arrays) == len(field_blobs), ( 'Values must contain exactly %d ndarrays.' % len(field_blobs) ) for blob, array in zip(field_blobs, arrays): feed(blob, array) def NewRecord(net, schema): """ Given a record of np.arrays, create a BlobReference for each one of them, returning a record containing BlobReferences. The name of each returned blob is NextScopedBlob(field_name), which guarantees unique name in the current net. Use NameScope explicitly to avoid name conflictions between different nets. """ if isinstance(schema, Scalar): result = schema.clone() result.set_value( blob=net.NextScopedBlob('unnamed_scalar'), unsafe=True, ) return result assert isinstance(schema, Field), 'Record must be a schema.Field instance.' blob_refs = [ net.NextScopedBlob(prefix=name) for name in schema.field_names() ] return from_blob_list(schema, blob_refs) def ConstRecord(net, array_record): """ Given a record of arrays, returns a record of blobs, initialized with net.Const. """ blob_record = NewRecord(net, array_record) for blob, array in zip( blob_record.field_blobs(), array_record.field_blobs() ): net.Const(array, blob) return blob_record def InitEmptyRecord(net, schema_or_record, enforce_types=False): if not schema_or_record.has_blobs(): record = NewRecord(net, schema_or_record) else: record = schema_or_record for blob_type, blob in zip(record.field_types(), record.field_blobs()): try: data_type = data_type_for_dtype(blob_type) shape = [0] + list(blob_type.shape) net.ConstantFill([], blob, shape=shape, dtype=data_type) except TypeError: logger.warning("Blob {} has type error".format(blob)) # If data_type_for_dtype doesn't know how to resolve given numpy # type to core.DataType, that function can throw type error (for # example that would happen for cases of unknown types such as # np.void). This is not a problem for cases when the record if going # to be overwritten by some operator later, though it might be an # issue for type/shape inference. if enforce_types: raise # If we don't enforce types for all items we'll create a blob with # the default ConstantFill (FLOAT, no shape) net.ConstantFill([], blob, shape=[0]) return record _DATA_TYPE_FOR_DTYPE = [ (np.str, core.DataType.STRING), (np.float16, core.DataType.FLOAT16), (np.float32, core.DataType.FLOAT), (np.float64, core.DataType.DOUBLE), (np.bool, core.DataType.BOOL), (np.int8, core.DataType.INT8), (np.int16, core.DataType.INT16), (np.int32, core.DataType.INT32), (np.int64, core.DataType.INT64), (np.uint8, core.DataType.UINT8), (np.uint16, core.DataType.UINT16), ] def is_schema_subset(schema, original_schema): # TODO add more checks return set(schema.field_names()).issubset( set(original_schema.field_names())) def equal_schemas(schema, original_schema, check_field_names=True, check_field_types=True, check_field_metas=False): assert isinstance(schema, Field) assert isinstance(original_schema, Field) if check_field_names and ( schema.field_names() != original_schema.field_names()): return False if check_field_types and ( schema.field_types() != original_schema.field_types()): return False if check_field_metas and ( schema.field_metadata() != original_schema.field_metadata()): return False return True def schema_check(schema, previous=None): record = as_record(schema) if previous is not None: assert equal_schemas(schema, previous) return record def data_type_for_dtype(dtype): for np_type, dt in _DATA_TYPE_FOR_DTYPE: if dtype.base == np_type: return dt raise TypeError('Unknown dtype: ' + str(dtype.base)) def dtype_for_core_type(core_type): for np_type, dt in _DATA_TYPE_FOR_DTYPE: if dt == core_type: return np_type raise TypeError('Unknown core type: ' + str(core_type)) def attach_metadata_to_scalars(field, metadata): for f in field.all_scalars(): f.set_metadata(metadata)