## @package task # Module caffe2.python.task from caffe2.python import core, context from caffe2.python.schema import Field, from_blob_list from collections import defaultdict from copy import copy from future.utils import viewitems def _merge_node_kwargs(a, b): # TODO(azzolini): consistency checks if a is None: return b if b is None: return a c = copy(a) c.update(b) return c class Cluster(context.DefaultManaged): """ Context that keeps track of all the node names used. Users shouldn't have to use them directly, since a Cluster is automatically generated at the first usage of 'Node'. """ def __init__(self): # list instead of set to keep order self._nodes = [] self._node_kwargs = {} def add_node(self, node): if str(node) not in self._nodes: self._nodes.append(str(node)) self._node_kwargs[str(node)] = _merge_node_kwargs( node.kwargs(), self._node_kwargs.get(str(node))) def nodes(self): """ Returns the list of unique node names used within this context. """ return self._nodes def node_kwargs(self): return self._node_kwargs def __repr__(self): return "Cluster(nodes={}, node_kwargs={})".format( self.nodes(), self.node_kwargs()) class Node(context.DefaultManaged): """ A Node context is used to indicate that all Tasks instantiated within will run on the given node name. (Only the name of the node actually counts.) Example: with TaskGroup() as tg: with Node('node1'): s1 = execution_step(...) Task(step=s1) with Node('node2'): s2 = execution_step(...) with Node('node1'): s3 = execution_step(...) In this example, all three execution steps will run in parallel. Moreover, s1 and s3 will run on the same node, and can see each others blobs. Additionally, a Node can be passed implementation-specific kwargs, in order to specify properties of the node. """ def __init__(self, node='local', **kwargs): self._name = str(node) self._kwargs = kwargs Cluster.current().add_node(self) def __str__(self): return self._name def __repr__(self): return "Node(name={}, kwargs={})".format(self._name, self._kwargs) def kwargs(self): return self._kwargs class WorkspaceType(object): """ Determines whether tasks of a TaskGroup will run directly at the global workspace, which is kept alive across runs, or whether a new child workspace will be created for the run and destroyed afterwards. """ PRIVATE = 'private' GLOBAL = 'global' def get_setup_nets(key, steps_or_nets, target): init_net = core.Net(key + '/init') exit_net = core.Net(key + '/exit') init_nets = [] exit_nets = [] objs = [] for step_or_net in steps_or_nets: if hasattr(step_or_net, 'get_all_attributes'): objs += step_or_net.get_all_attributes(key) elif hasattr(step_or_net, 'get_attributes'): objs += step_or_net.get_attributes(key) for obj in objs: # these are needed in order to allow nesting of TaskGroup, which # is a feature not yet implemented. if hasattr(obj, '_setup_used') and obj._setup_used: continue if hasattr(obj, '_setup_target') and obj._setup_target != target: continue if hasattr(obj, 'setup'): nets = obj.setup(init_net) if isinstance(nets, (list, tuple)): init_nets += nets elif isinstance(nets, (core.Net, core.ExecutionStep)): init_nets.append(nets) elif nets is not None: raise TypeError('Unsupported type for setup: %s' % type(nets)) obj._setup_used = True if hasattr(obj, 'exit'): nets = obj.exit(exit_net) if isinstance(nets, (list, tuple)): exit_nets += nets elif isinstance(nets, (core.Net, core.ExecutionStep)): exit_nets.append(nets) elif nets is not None: raise TypeError('Unsupported type for setup: %s' % type(nets)) obj._setup_used = True if len(init_net.Proto().op) > 0: init_nets.insert(0, init_net) if len(exit_net.Proto().op) > 0: exit_nets.insert(0, exit_net) return init_nets, exit_nets def add_setup_steps(step, init_nets, exit_nets, name): if not init_nets and not exit_nets: return step steps = [] if init_nets: steps.append(core.execution_step('%s:init' % name, init_nets)) steps.append(step) if len(exit_nets) > 0: steps.append(core.execution_step('%s:exit' % name, exit_nets)) return core.execution_step(name, steps) class TaskGroup(context.Managed): """ Context that gathers tasks which will run concurrently, potentially on multiple nodes. All tasks in the same node will share the same workspace and thus can share blobs, while tasks running in different nodes won't be able to directly share data. All tasks of the task group will start concurrently, and the task group will finish execution when the last task of the group finishes. Example: # suppose that s1 ... s5 are execution steps or nets. with TaskGroup() as tg: # these tasks go to default node 'local' Task(step=s1) Task(step=s2) with Node('n2'): Task(step=s3) with Node('n1'): Task(step=s4) with Node('n2'): Task(step=s5) # this will run all steps in parallel. # s1 and s2 will run at default node 'local' # s3 and s5 will run at node 'n2' # s4 will run at node 'n1' session.run(tg) """ LOCAL_SETUP = 'local_setup' def __init__(self, workspace_type=None): self._plan_cache = None self._tasks = [] self._already_used = False self._prev_active = None self._tasks_to_add = [] self._report_nets = {} self._report_steps = [] self._workspace_type = workspace_type self._tasks_by_node = None self._remote_nets = [] def add_remote_net(self, net): self._remote_nets.append(net) def remote_nets(self): return self._remote_nets def add(self, task): assert not self._already_used, ( 'Cannot add Task to an already used TaskGroup.') assert ( self._workspace_type is None or task._workspace_type is None or self._workspace_type == task._workspace_type) if task._workspace_type is None: task._workspace_type = ( self._workspace_type or WorkspaceType.PRIVATE) if self._workspace_type is None: self._workspace_type = task._workspace_type task._notify_used() self._tasks.append(task) def tasks(self): for task in self._tasks_to_add: self.add(task) self._tasks_to_add = [] self._already_used = True return self._tasks def num_registered_tasks(self): return len(self._tasks_to_add) + len(self._tasks) def used_nodes(self): # use list to keep order used = [] for task in self._tasks + self._tasks_to_add: if task.node not in used: used.append(task.node) return used def report_step(self, step=None, node=None, interval_ms=1000): """ Add a "report step" to this TaskGroup. This step will run repeatedly every `interval_ms` milliseconds for the duration of the TaskGroup execution on each of the nodes. It is guaranteed that this step will be run at least once after every Task in the node has finished. """ step = core.to_execution_step(step) step.RunEveryMillis(interval_ms) self._report_steps.append((str(node or Node.current(node)), step)) def report_net(self, net=None, node=None, report_interval=5): """ DEPRECATED. Use report_step instead. """ node = str(node or Node.current(node)) assert net is None or node not in self._report_nets if node not in self._report_nets: self._report_nets[node] = ( net if net else core.Net('%s/reporter' % node), report_interval) return self._report_nets[node][0] def tasks_by_node(self, node_remap=None): # tasks_by_node can't be called twice because the setup won't # work properly a second time. node_map = {} for task in self.tasks(): node_map[task.node] =\ node_remap(task.node) if node_remap else task.node if self._tasks_by_node is not None: tasks_by_node, prev_node_map = self._tasks_by_node assert prev_node_map == node_map, ( 'Cannot call tasks_by_node multiple times.') return tasks_by_node # now we have report_steps. report_net is deprecated for node, (net, interval) in viewitems(self._report_nets): self.report_step(net, node=node, interval_ms=interval * 1000) self._report_nets = {} tasks_by_node = defaultdict(list) for task in self.tasks(): mapped_node = node_map[task.node] tasks_by_node[mapped_node].append(task) report_steps_by_node = defaultdict(list) for original_node, step in self._report_steps: report_steps_by_node[node_map[original_node]].append(step) grouped_by_node = TaskGroup() for node, tasks in viewitems(tasks_by_node): report_steps = report_steps_by_node[node] node_inits, node_exits = get_setup_nets( TaskGroup.LOCAL_SETUP, [t.get_step() for t in tasks] + report_steps, self) # shortcut for single task with no queue steps = report_steps outputs = [] grouped_workspace_type = WorkspaceType.PRIVATE for task in tasks: step = task.get_step() step.SetCreateWorkspace( task.workspace_type() == WorkspaceType.PRIVATE) if step is not None: steps.append(step) outputs += task.outputs() # If any of the tasks in the node uses the global workspace, # then set the grouped task to use the global workspace as well if task.workspace_type() == WorkspaceType.GLOBAL: grouped_workspace_type = WorkspaceType.GLOBAL if len(steps) == 0: steps.append(core.execution_step('empty', [])) if len(steps) == 1: step = steps[0] else: step = core.execution_step( '%s:body' % node, steps, concurrent_substeps=True) if len(node_inits) > 0 or len(node_exits) > 0: steps = [] if len(node_inits) > 0: steps.append( core.execution_step('%s:init' % node, node_inits)) steps.append(step) if len(node_exits) > 0: steps.append( core.execution_step('%s:exit' % node, node_exits)) step = core.execution_step(node, steps) Task( node=node, step=step, outputs=outputs, name='grouped_by_node', group=grouped_by_node, workspace_type=grouped_workspace_type) self._tasks_by_node = (grouped_by_node, node_map) return grouped_by_node def to_task(self, node=None): node = str(Node.current(node)) tasks = self.tasks_by_node(lambda x: node).tasks() if len(tasks) == 0: return Task() return tasks[0] def workspace_type(self): return self._workspace_type def __repr__(self): return "TaskGroup(tasks={}, workspace_type={}, remote_nets={})".format( self._tasks + self._tasks_to_add, self.workspace_type(), self.remote_nets()) class TaskOutput(object): """ Represents the output of a task. An output can be a blob, a list of blob, or a record. """ def __init__(self, names): self._schema = None self._is_scalar = False if isinstance(names, Field): self._schema = names names = self._schema.field_blobs() self._is_scalar = type(names) not in (tuple, list) if self._is_scalar: names = [names] self.names = names self._values = None def set(self, values, _fetch_func=None): assert len(values) == len(self.names) self._values = values self._fetch_func = _fetch_func def get(self): assert self._values is not None, 'Output value not set yet.' if self._is_scalar: return self._values[0] elif self._schema: return from_blob_list(self._schema, self._values) else: return self._values def fetch(self): assert self._fetch_func is not None, ( 'Cannot fetch value for this output.') fetched_vals = [self._fetch_func(v) for v in self._values] if self._is_scalar: return fetched_vals[0] elif self._schema: return from_blob_list(self._schema, fetched_vals) else: return fetched_vals def __repr__(self): return "TaskOutput(names={}, values={})".format(self.names, self._values) def final_output(blob_or_record): """ Adds an output to the current Task, or if no task is active, create a dummy task that returns the given blob or record to the client. This will return the value of the blob or record when the last task of the TaskGroup for a given node finishes. """ cur_task = Task.current(required=False) or Task() return cur_task.add_output(blob_or_record) class TaskOutputList(object): """ Keeps a list of outputs for a task """ def __init__(self, outputs=None): self.outputs = outputs or [] def names(self): """ Retrive the output names. TODO(azzolini): make this schema-based. """ names = [] for o in self.outputs: names += o.names return names def set_values(self, values, _fetch_func=None): offset = 0 for o in self.outputs: num = len(o.names) o.set(values[offset:offset + num], _fetch_func) offset += num assert offset == len(values), 'Wrong number of output values.' def __repr__(self): return "TaskOutputList(outputs={})".format(self.outputs) class Task(context.Managed): """ A Task is composed of an execution step and zero or more outputs. Tasks are executed in the context of a TaskGroup, which, in turn, can be run by a Session. Task outputs are fetched by the session at the end of the run. The recommended way of creating a task is by using `net_builder.ops`. Example: from net_builder import ops with Node('trainer'), Task(name='my_task', num_instances=2): with ops.task_init(): globl = ops.Const(0) with ops.task_instance_init(): local = ops.Const(0) with ops.loop(100): ops.Copy(globl, local) with ops.task_instance_exit(): ops.Add([globl, local], [globl]) with ops.task_exit(): ops.Mul([globl, globl], [globl]) The task above will create 2 instances that will run in parallel. Each instance will copy `local` to `globl` 100 times, Then Add `local` to `globl` once. The `Mul` will only execute once, after all the instances of the task have finished. """ # TASK_SETUP runs once per task, before/after all # concurrent task instances start/finish. TASK_SETUP = 'task_setup' # Setup will run once for each instance of the task. TASK_INSTANCE_SETUP = 'task_instance_setup' REPORT_STEP = 'report_step' _global_names_used = set() @staticmethod def _get_next_name(node, group, name): basename = str(node) + '/' + str(name) names_used = ( Task._global_names_used if group is None else set(t.name for t in group._tasks_to_add)) cur_name = basename i = 0 while cur_name in names_used: i += 1 cur_name = '%s:%d' % (basename, i) return cur_name def __init__( self, step=None, outputs=None, workspace_type=None, group=None, node=None, name=None, num_instances=None): """ Instantiate a Task and add it to the current TaskGroup and Node. Args: step: If provided, this task will run this ExecutionStep. outputs: If provided, the task will return the provided outputs to the client at completion time. node: If provided, force task execution on the given node. name: Name of the Task. num_instances: If provided, this task will be cloned num_instances times at runtime, and all instances will run concurrently. """ if not name and isinstance(step, core.ExecutionStep): name = step.Proto().name if not name: name = 'task' # register this node name with active context self.node = str(Node.current(None if node is None else Node(node))) self.group = TaskGroup.current(group, required=False) self.name = Task._get_next_name(self.node, self.group, name) # may need to be temporarily removed later if Task used as a context if self.group is not None: self.group._tasks_to_add.append(self) self._already_used = False self._step = None self._step_with_setup = None self._outputs = [] if step is not None: self.set_step(step) if outputs is not None: self.add_outputs(outputs) self._pipeline = None self._is_pipeline_context = False self._workspace_type = workspace_type self._report_net = None self._num_instances = num_instances def __enter__(self): super(Task, self).__enter__() # temporarily remove from _tasks_to_add to ensure correct order if self.group is not None: self.group._tasks_to_add.remove(self) self._assert_not_used() assert self._step is None, 'This Task already has an execution step.' from caffe2.python import net_builder self._net_builder = net_builder.NetBuilder(_fullname=self.name) self._net_builder.__enter__() return self def __exit__(self, type, value, traceback): super(Task, self).__exit__(type, value, traceback) self._net_builder.__exit__(type, value, traceback) if type is None: self.set_step(self._net_builder) if self.group is not None: self.group._tasks_to_add.append(self) self._net_builder = None def workspace_type(self): return self._workspace_type def _assert_not_used(self): assert not self._already_used, ( 'Cannot modify task since it is already been used.') def add_output(self, output): self._assert_not_used() output = ( output if isinstance(output, TaskOutput) else TaskOutput(output)) self._outputs.append(output) return output def add_outputs(self, outputs): self._assert_not_used() if type(outputs) not in (list, tuple): return self.add_output(outputs) else: return [self.add_output(output) for output in outputs] def set_step(self, step): self._assert_not_used() self._step = core.to_execution_step(step) def get_step(self): if self._step_with_setup is not None: return self._step_with_setup if self._step is None: self._step_with_setup = core.execution_step(self.name, []) return self._step_with_setup report_steps = [ s for s in self._step.get_all_attributes(Task.REPORT_STEP) if not hasattr(s, '_report_step_used') ] for step in report_steps: step._report_step_used = True if not step.Proto().run_every_ms: step.RunEveryMillis(1000) task_init_nets, task_exit_nets = get_setup_nets( Task.TASK_SETUP, [self._step] + report_steps, self) instance_init_nets, instance_exit_nets = get_setup_nets( Task.TASK_INSTANCE_SETUP, [self._step] + report_steps, self) if len(self._outputs) == 0: output_net = core.Net('%s:output' % self.name) self.add_output(output_net.ConstantFill( [], 1, dtype=core.DataType.INT32, value=0)) task_exit_nets.append(output_net) # Add instance-level report steps body = self._step if not report_steps else core.execution_step( '%s:body' % self.name, report_steps + [self._step]) # Enclose with instance-level (thread-local) setup nets step_with_instance_setup = add_setup_steps( body, instance_init_nets, instance_exit_nets, self.name + ':instance') # Set up runtime concurrent instances if self._num_instances and self._num_instances > 1: step_with_instance_setup.SetCreateWorkspace(True) step_with_instance_setup = core.execution_step( '%s:parallel', [step_with_instance_setup], num_concurrent_instances=self._num_instances) # Enclose with task-level setup nets self._step_with_setup = add_setup_steps( step_with_instance_setup, task_init_nets, task_exit_nets, self.name) return self._step_with_setup def output_list(self): return TaskOutputList(self._outputs) def outputs(self): return self._outputs def _notify_used(self): self.get_step() self._already_used = True def __repr__(self): return "Task(name={}, node={}, outputs={})".format( self.name, self.node, self.outputs()) class SetupNets(object): """ Allow to register a list of nets to be run at initialization and finalization of Tasks or TaskGroups. For example, let's say you have the following: init_net = core.Net('init') my_val = init_net.ConstantFill([], 'my_val', value=0) net = core.Net('counter') net.Add([my_val, net.Const(1),], [my_val]) with TaskGroup() as task_group: with Node('trainer'): my_task = Task(step=[net]) In order to have `init_net` run once before `net` runs for the first time, you can do one of the following: net.add_attribute(Task.TASK_SETUP, SetupNets([init_net])) or net.add_attribute(TaskGroup.LOCAL_SETUP, SetupNets([init_net])) - With Task.TASK_SETUP, init_net will run once at my_task startup. - With TaskGroup.LOCAL_SETUP, init_net will run once on node 'trainer', before any task of the task group is run on that node. The same SetupNets object can be added to multiple nets. It will only run once per Task/TaskGroup run. """ def __init__(self, init_nets=None, exit_nets=None): self.init_nets = init_nets self.exit_nets = exit_nets def setup(self, init_net): return self.init_nets def exit(self, exit_net): return self.exit_nets def __repr__(self): return "SetupNets(init_nets={}, exit_nets={})".format( self.init_nets, self.exit_nets)