# Owner(s): ["module: nn"] import math import random import string import unittest import io import unittest.mock as mock import itertools import warnings import pickle from copy import deepcopy from itertools import repeat, product from functools import reduce, partial from operator import mul from collections import OrderedDict import torch # TODO: remove this global setting # NN tests use double as the default dtype torch.set_default_dtype(torch.double) from torch._six import inf, nan import torch.backends.cudnn as cudnn import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init import torch.nn.utils.rnn as rnn_utils from torch.nn.utils import clip_grad_norm_, clip_grad_value_ import torch.nn.utils.parametrize as parametrize import torch.nn.utils.prune as prune from torch.nn.utils import parameters_to_vector, vector_to_parameters from torch.nn import Parameter from torch.nn.parameter import UninitializedParameter, UninitializedBuffer from torch.nn.parallel._functions import Broadcast from torch.testing._internal.common_dtype import integral_types, get_all_fp_dtypes, get_all_math_dtypes from torch.testing._internal.common_utils import freeze_rng_state, run_tests, TestCase, skipIfNoLapack, skipIfRocm, \ skipIfRocmVersionLessThan, skipIfNotMiopenSuggestNHWC, TEST_NUMPY, TEST_SCIPY, TEST_WITH_ROCM, download_file, \ get_function_arglist, load_tests, \ suppress_warnings, TemporaryFileName, TEST_WITH_UBSAN, IS_PPC, \ parametrize as parametrize_test, subtest, instantiate_parametrized_tests from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU, TEST_CUDNN, TEST_CUDNN_VERSION from torch.testing._internal.common_nn import NNTestCase, NewModuleTest, CriterionTest, \ module_tests, criterion_tests, loss_reference_fns, \ ctcloss_reference, new_module_tests, single_batch_reference_fn from torch.testing._internal.common_device_type import expectedFailureXLA, instantiate_device_type_tests, dtypes, \ dtypesIfCUDA, precisionOverride, skipCUDAIfNoCudnn, skipCUDAIfCudnnVersionLessThan, onlyCUDA, onlyCPU, \ skipCUDAIfRocm, skipCUDAIf, skipCUDAIfNotRocm, skipCUDAIfRocmVersionLessThan, skipCUDAIfNotMiopenSuggestNHWC, \ onlyNativeDeviceTypes, deviceCountAtLeast, largeTensorTest, expectedFailureMeta, skipMeta, get_all_device_types, \ disableMkldnn, skipCPUIfNoMkldnn, disablecuDNN, skipCUDAIfMiopen, skipCUDAIfNoMiopen from torch.nn import MultiheadAttention from hypothesis import given import torch.testing._internal.hypothesis_utils as hu from torch.testing._internal.common_utils import _assertGradAndGradgradChecks, gradcheck, gradgradcheck, \ GRADCHECK_NONDET_TOL from torch.testing._internal.common_utils import dtype2prec_DONTUSE from torch.testing._internal.common_cuda import tf32_on_and_off, tf32_is_not_fp32, tf32_off, tf32_on from torch.types import _TensorOrTensors AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() # load_tests from common_utils is used to automatically filter tests for # sharding on sandcastle. This line silences flake warnings load_tests = load_tests if TEST_SCIPY: from scipy import stats import scipy.ndimage if TEST_NUMPY: import numpy as np # WARNING: If you add a new top-level test case to this file, you MUST # update test/run_test.py to list it, otherwise it will NOT be run in # CI. class PackedSequenceTest(TestCase): _type_by_name = { 'torch.DoubleTensor': (torch.DoubleTensor, 'double'), 'torch.FloatTensor': (torch.FloatTensor, 'float'), # We leave out `'torch.HalfTensor': (torch.HalfTensor, 'half'),` # because of an error in `pad_packed_sequence` # > AttributeError: 'torch.HalfTensor' object has no attribute 'fill_' 'torch.LongTensor': (torch.LongTensor, 'long'), 'torch.IntTensor': (torch.IntTensor, 'int'), 'torch.ShortTensor': (torch.ShortTensor, 'short'), 'torch.CharTensor': (torch.CharTensor, 'char'), 'torch.ByteTensor': (torch.ByteTensor, 'byte'), } def __init__(self, *args, **kwargs): super(PackedSequenceTest, self).__init__(*args, **kwargs) self.batch_size = 5 self.max_length = 6 def _ordered_sequence(self, tensor_type): """Create ordered list of random sequences""" seqs = [tensor_type(random.randint(1, self.max_length)) for _ in range(self.batch_size)] if tensor_type == torch.ByteTensor: seqs = [s.random_(0, 256) for s in seqs] else: seqs = [s.random_(-128, 128) for s in seqs] ordered = sorted(seqs, key=len, reverse=True) return ordered def _padded_sequence(self, tensor_type): """Create Tensor of random padded sequences""" ordered = self._ordered_sequence(tensor_type) lengths = [len(i) for i in ordered] padded_tensor = rnn_utils.pad_sequence(ordered) return padded_tensor, lengths def test_type_casts(self): """Test type casting of `PackedSequence` against type casting of tensor""" for _, (input_type, _) in self._type_by_name.items(): for expected_type_str, (_, cast_str) in self._type_by_name.items(): for enforce_sorted in [True, False]: padded, lengths = self._padded_sequence(input_type) packed = rnn_utils.pack_padded_sequence( padded, lengths, enforce_sorted=enforce_sorted) # Apply cast to `PackedSequence` instance and unpack masked = getattr(packed, cast_str)() unpacked, lengths_out = rnn_utils.pad_packed_sequence(masked) self.assertEqual(unpacked.type(), expected_type_str) def test_wrong_order(self): a = torch.ones(25, 300) b = torch.ones(22, 300) b_a = rnn_utils.pad_sequence([b, a]) self.assertRaises( RuntimeError, lambda: rnn_utils.pack_padded_sequence(b_a, [22, 25], enforce_sorted=True)) def test_pad_sequence_with_tensor_sequences(self): seq_tuple_input = torch.nn.utils.rnn.pad_sequence( (torch.tensor([[7, 6]]), torch.tensor([[-7, -1]])) ) seq_tensor_input = torch.nn.utils.rnn.pad_sequence( torch.tensor([[[7, 6]], [[-7, -1]]]) ) self.assertEqual(seq_tuple_input, seq_tensor_input) self.assertEqual(seq_tuple_input.shape, torch.Size([1, 2, 2])) def test_pad_sequence_with_non_iterable_sequences(self): msg = r"Expected iterable for input sequences, but got arg of type" with self.assertRaisesRegex(RuntimeError, msg): torch.nn.utils.rnn.pad_sequence(5) def test_total_length(self): padded, lengths = self._padded_sequence(torch.FloatTensor) max_length = max(lengths) packed = rnn_utils.pack_padded_sequence(padded, lengths) # test ValueError if total_length < max_length for total_length in (-1, 0, max_length - 1): for batch_first in (True, False): def err_fn(): rnn_utils.pad_packed_sequence(packed, batch_first=batch_first, total_length=total_length) self.assertRaisesRegex(ValueError, r'Expected total_length to be at least the ' r'length of the longest sequence in input', err_fn) # test that pad_packed_sequence returns results of correct length for batch_first in (True, False): no_extra_pad, _ = rnn_utils.pad_packed_sequence(packed, batch_first=batch_first) for total_length_delta in (0, 1, 8): total_length = max_length + total_length_delta unpacked, lengths_out = rnn_utils.pad_packed_sequence(packed, batch_first=batch_first, total_length=total_length) self.assertEqual(lengths, lengths_out) self.assertEqual(unpacked.size(1 if batch_first else 0), total_length) if total_length_delta == 0: ref_output = no_extra_pad elif batch_first: extra_pad = no_extra_pad.new_zeros(self.batch_size, total_length_delta) ref_output = torch.cat([no_extra_pad, extra_pad], 1) else: extra_pad = no_extra_pad.new_zeros(total_length_delta, self.batch_size) ref_output = torch.cat([no_extra_pad, extra_pad], 0) self.assertEqual(unpacked, ref_output) def test_to(self): for enforce_sorted in (True, False): padded, lengths = self._padded_sequence(torch.IntTensor) a = rnn_utils.pack_padded_sequence( padded, lengths, enforce_sorted=enforce_sorted).cpu() self.assertIs(a, a.to('cpu')) self.assertIs(a, a.cpu()) self.assertIs(a, a.to('cpu', dtype=torch.int32)) self.assertEqual(a.long(), a.to(torch.int64)) if torch.cuda.is_available(): for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']: b = a.cuda(device=cuda) self.assertIs(b, b.to(cuda)) self.assertIs(b, b.cuda()) self.assertEqual(a, b.to('cpu')) self.assertEqual(b, a.to(cuda)) self.assertEqual(a, b.to('cpu', dtype=torch.int32)) self.assertIs(b, b.to(dtype=torch.int32)) self.assertEqual(b.long(), b.to(dtype=torch.int64)) def test_to_memory_format(self): m = torch.nn.Conv2d(in_channels=16, out_channels=32, kernel_size=2, bias=True) m = m.to(memory_format=torch.channels_last) for param in m.parameters(): if param.dim() == 4: self.assertTrue(param.is_contiguous(memory_format=torch.channels_last)) class TestAvgPool(TestCase): def _sum_pool2d(self, x, kernel_size): windows = torch.nn.functional.unfold(x, kernel_size=kernel_size, stride=kernel_size) return torch.sum(windows, dim=1) def _sum_pool3d(self, x, kernel_size): # Because unfold does not support 3D sliding window we will split tensor to multiple tensors and calculate sum h = kernel_size[0] splited_x = [t.sum(0) for t in x.split(h) if t.size(0) == h] # sum_pool2d assumes tensor in (1, 1, n, m) view, so unsqueeze two times splited_x = [self._sum_pool2d(t.unsqueeze(0).unsqueeze(0), kernel_size[1:]) for t in splited_x] joined_x = torch.cat(splited_x) return joined_x.view(1, joined_x.numel()) def _avg_pool2d(self, x, kernel_size): size = reduce((lambda x, y: x * y), kernel_size) return self._sum_pool2d(x, kernel_size) / size def _avg_pool3d(self, x, kernel_size): size = reduce((lambda x, y: x * y), kernel_size) return self._sum_pool3d(x, kernel_size) / size def test_doubletensor_avg_pool2d(self): n, m = 5, 8 input = torch.rand(1, 1, n, m) for i in range(1, n + 1): for j in range(1, m + 1): actual = torch.nn.functional.avg_pool2d(input[0], (i, j)) actual = actual.view(1, actual.numel()) expected = self._avg_pool2d(input, (i, j)) self.assertEqual(actual, expected, rtol=0, atol=1e-5) def test_avg_pool2d_with_zero_divisor(self): self.assertRaisesRegex(RuntimeError, "divisor must be not zero", lambda: F.avg_pool2d(torch.zeros(3, 3, 3), (2, 2), divisor_override=0)) def test_doubletensor_avg_pool2d_with_divisor(self): n, m = 3, 3 input = torch.rand(1, 1, n, m) for i in range(1, n + 1): for j in range(1, m + 1): for divisor in [1, 7, i * j]: actual = F.avg_pool2d(input[0], (i, j), divisor_override=divisor) actual = actual.view(1, actual.numel()) expected = self._sum_pool2d(input, (i, j)) / divisor self.assertEqual(actual, expected, rtol=0, atol=1e-5) def test_doubletensor_avg_pool3d(self): h, w, d = 5, 6, 7 input = torch.rand(h, w, d) for i in range(1, h + 1): for j in range(1, w + 1): for k in range(1, d + 1): actual = torch.nn.functional.avg_pool3d(input.unsqueeze(0), (i, j, k)) actual = actual.view(1, actual.numel()) expected = self._avg_pool3d(input, (i, j, k)) self.assertEqual(actual, expected, rtol=0, atol=1e-5) def test_doubletensor_avg_pool3d_with_divisor(self): h, w, d = 6, 5, 7 input = torch.rand(h, w, d) for i in range(1, h + 1): for j in range(1, w + 1): for k in range(1, d + 1): for divisor in [1, 7, i * j]: actual = torch.nn.functional.avg_pool3d(input.unsqueeze(0), (i, j, k), divisor_override=divisor) actual = actual.view(1, actual.numel()) expected = self._sum_pool3d(input, (i, j, k)) / divisor self.assertEqual(actual, expected, rtol=0, atol=1e-5) def test_avg_pool3d_with_zero_divisor(self): self.assertRaisesRegex(RuntimeError, "divisor must be not zero", lambda: F.avg_pool3d(torch.zeros(3, 3, 3, 3), (2, 2, 2), divisor_override=0)) def test_avg_pool1d_ceil_mode(self): # Regression test for gh-36977 x = 10 * torch.randn((1, 16, 4)) y = torch.nn.functional.avg_pool1d( x, ceil_mode=True, count_include_pad=True, kernel_size=1, stride=2) self.assertTrue(not torch.isnan(y).any()) if TEST_CUDA: y = torch.nn.functional.avg_pool1d( x.to('cuda'), ceil_mode=True, count_include_pad=True, kernel_size=1, stride=2) self.assertTrue(not torch.isnan(y).any()) def test_avg_pool2d_ceil_mode(self): # Regression test for gh-36977 x = 10 * torch.randn((1, 16, 4, 4)) y = torch.nn.functional.avg_pool2d( x, ceil_mode=True, count_include_pad=True, kernel_size=(1, 2), padding=(0, 1), stride=2) self.assertTrue(not torch.isnan(y).any()) if TEST_CUDA: y = torch.nn.functional.avg_pool2d( x.to('cuda'), ceil_mode=True, count_include_pad=True, kernel_size=(1, 2), padding=(0, 1), stride=2) self.assertTrue(not torch.isnan(y).any()) def test_avg_pool3d_ceil_mode(self): # Regression test for gh-36977 x = 10 * torch.randn((1, 16, 4, 4, 4)) y = torch.nn.functional.avg_pool3d( x, ceil_mode=True, count_include_pad=True, kernel_size=(1, 2, 3), stride=2) self.assertTrue(not torch.isnan(y).any()) if TEST_CUDA: y = torch.nn.functional.avg_pool3d( x.to('cuda'), ceil_mode=True, count_include_pad=True, kernel_size=(1, 2, 3), stride=2) self.assertTrue(not torch.isnan(y).any()) class TestNN(NNTestCase): _do_cuda_memory_leak_check = True _do_cuda_non_default_stream = True def _forward(self, module, input: _TensorOrTensors): with freeze_rng_state(): if isinstance(input, tuple): return module(*input) else: return module(input) def _backward(self, module, input: _TensorOrTensors, output, grad_output, create_graph=False): output.backward(grad_output, retain_graph=True, create_graph=create_graph) if isinstance(input, tuple): return tuple(i.grad.data if i.grad is not None else None for i in input) else: return input.grad.data if input.grad is not None else None def _forward_criterion(self, criterion, input, target, extra_args=None): if extra_args is None: extra_args = tuple() if isinstance(input, tuple): args = input + (target,) + extra_args output = criterion(*args) else: output = criterion(input, target, *extra_args) return output def _backward_criterion(self, criterion, input, output, target, gradOutput=None, extra_args=None): if extra_args is None: extra_args = tuple() input_tuple = input if isinstance(input, tuple) else (input,) output_tuple = output if isinstance(output, tuple) else (output,) for i in input_tuple: if i.grad is not None: i.grad.data.zero_() args = input_tuple + (target,) + extra_args if gradOutput is None: gradOutput = torch.ones(()) criterion(*args).backward(gradOutput.to(output_tuple[0])) if isinstance(input, tuple): return tuple(i.grad.data for i in input) else: return input.grad.data def _zero_grad_parameters(self, module): for p in module.parameters(): if p.grad is not None: with torch.no_grad(): p.grad.zero_() p.grad.detach_() def _get_parameters(self, module): params = [] d_params = [] for p in module.parameters(): params.append(p) d_params.append(p.grad) return params, d_params def _create_basic_net(self): class Layer(nn.Module): def __init__(self): super(Layer, self).__init__() self.layer_dummy_param = Parameter(torch.empty(3, 5)) self.register_buffer('layer_dummy_buf', torch.zeros(1, 3, 3, 7)) class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.l1 = Layer() self.dummy_param = Parameter(torch.empty(3, 5)) self.register_buffer('dummy_buf', torch.zeros(7, 3, 3, 1)) l = Layer() n = Net() s = nn.Sequential(n, n) return l, n, s def test_requires_grad_(self): m = self._create_basic_net()[-1] assert len(list(m.buffers())) > 0, 'invalid test' assert all(not b.requires_grad for b in m.buffers()) > 0, 'invalid test' assert len(list(m.parameters())) > 0, 'invalid test' assert all(p.requires_grad for p in m.parameters()) > 0, 'invalid test' for requires_grad in (False, True): self.assertIs(m.requires_grad_(requires_grad), m) for p in m.parameters(): self.assertEqual(p.requires_grad, requires_grad) for b in m.buffers(): self.assertFalse(b.requires_grad) def test_module_backcompat(self): from torch.serialization import SourceChangeWarning path = download_file('https://download.pytorch.org/test_data/linear.pt') with warnings.catch_warnings(): warnings.simplefilter('ignore', SourceChangeWarning) m = torch.load(path) input = torch.randn(2, 3, dtype=torch.float) self.assertEqual(m(input).size(), (2, 5)) def test_conv_backcompat(self): from torch.serialization import SourceChangeWarning # This file was generated by running on PyTorch 1.0.1 on Python 2: # # import torch # from torch import nn # m = nn.Conv2d(1, 1, 1) # torch.save(m, 'legacy_conv2d.pt') # # NB: This Pickle also contains some Unicode data! path = download_file('https://download.pytorch.org/test_data/legacy_conv2d.pt') with warnings.catch_warnings(): warnings.simplefilter('ignore', SourceChangeWarning) m = torch.load(path, encoding='utf-8') input = torch.randn((1, 1, 1, 1), dtype=torch.float) self.assertEqual(m(input).size(), (1, 1, 1, 1)) def test_share_memory(self): class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.p = nn.Parameter(torch.eye(5)) self.par = nn.ParameterList() self.par.append(nn.Parameter(torch.randn(10))) def forward(self, inp): # NB: dead code return inp.clone() net = Net() for p in net.parameters(): self.assertFalse(p.storage().is_shared()) for b in net.buffers(): self.assertFalse(b.storage().is_shared()) net.share_memory() for p in net.parameters(): self.assertTrue(p.storage().is_shared()) for b in net.buffers(): self.assertTrue(b.storage().is_shared()) def _test_hooks(self, backward_register_fn): module = nn.Sigmoid() input = torch.ones(5, 5, requires_grad=True) counter = { 'forwards': 0, 'backwards': 0 } def fw_hook(inc, h_module, input, output): self.assertIsInstance(input, tuple) self.assertTrue(isinstance(output, torch.Tensor)) self.assertTrue(h_module is module) self.assertEqual(input[0], torch.ones(5, 5)) self.assertEqual(output, torch.empty(5, 5).fill_(1 / (1 + 1 / math.e))) counter['forwards'] += inc def bw_hook(inc, h_module, grad_input, grad_output): self.assertIsInstance(grad_input, tuple) self.assertIsInstance(grad_output, tuple) self.assertTrue(h_module is module) self.assertEqual(grad_output[0], torch.ones(5, 5) * 2) counter['backwards'] += inc test_fwd = module.register_forward_hook(lambda *args: fw_hook(1, *args)) module(input) module(input) self.assertEqual(counter['forwards'], 2) self.assertEqual(counter['backwards'], 0) test_bwd = getattr(module, backward_register_fn)( lambda *args: bw_hook(1, *args)) output = module(input) self.assertEqual(counter['forwards'], 3) self.assertEqual(counter['backwards'], 0) output.backward(torch.ones(5, 5) * 2, retain_graph=True) self.assertEqual(counter['forwards'], 3) self.assertEqual(counter['backwards'], 1) output.backward(torch.ones(5, 5) * 2, retain_graph=True) self.assertEqual(counter['forwards'], 3) self.assertEqual(counter['backwards'], 2) test2_fwd = module.register_forward_hook(lambda *args: fw_hook(2, *args)) output = module(input) self.assertEqual(counter['forwards'], 6) self.assertEqual(counter['backwards'], 2) test2_bwd = getattr(module, backward_register_fn)(lambda *args: bw_hook(2, *args)) module(input).backward(torch.ones(5, 5) * 2) self.assertEqual(counter['forwards'], 9) self.assertEqual(counter['backwards'], 5) test2_bwd.remove() module(input).backward(torch.ones(5, 5) * 2) self.assertEqual(counter['forwards'], 12) self.assertEqual(counter['backwards'], 6) test2_fwd.remove() module(input).backward(torch.ones(5, 5) * 2) self.assertEqual(counter['forwards'], 13) self.assertEqual(counter['backwards'], 7) test_fwd.remove() test_bwd.remove() def test_hooks(self): self._test_hooks("register_backward_hook") self._test_hooks("register_full_backward_hook") def test_hook_cpp(self): bn = nn.BatchNorm1d(5) def hook(module, grad_inputs, grad_outputs): self.assertEqual(len(grad_inputs), 1) self.assertEqual(len(grad_outputs), 1) self.assertEqual(module, bn) bn.register_full_backward_hook(hook) output = bn(torch.randn(5, 5, requires_grad=True)) output.sum().backward() def test_hook_invalid_outputs(self): module = nn.Sigmoid() input = torch.randn(5, 5, requires_grad=True) def bw_fail1(self, grad_input, grad_output): return grad_input[:-1] def bw_fail2(self, grad_input, grad_output): return grad_input + (torch.randn(2, 2),) with module.register_backward_hook(bw_fail1): with self.assertRaisesRegex(RuntimeError, 'got 0, but expected 1'): module(input).sum().backward() with module.register_backward_hook(bw_fail2): with self.assertRaisesRegex(RuntimeError, 'got 2, but expected 1'): module(input).sum().backward() def test_hook_requires_grad(self): test_self = self class MyModule(nn.Module): def forward(self, arg1, arg2, arg3): test_self.assertTrue(arg1.requires_grad) test_self.assertFalse(arg2.requires_grad) test_self.assertTrue(arg3.requires_grad) return arg1.sum() + arg2.sum() + arg3.sum() inp = torch.rand(2, requires_grad=True) mod = MyModule() mod(inp, inp.detach(), inp) # Ensure that requires grad is properly propagated mod.register_full_backward_hook(lambda mod, gI, gO: None) mod(inp, inp.detach(), inp) def test_hook_no_requires_grad(self): mod = nn.Linear(2, 3) inp = torch.rand(1, 2) return_val = "None" hook_called = [0] def hook(mod, grad_input, grad_output): hook_called[0] += 1 for gI in grad_input: self.assertIsNone(gI) for gO in grad_output: self.assertEqual(gO.size(), (1, 3)) if return_val == "grad_input": return grad_input elif return_val == "invalid": # If the inputs were requiring gradients, this would be # a valid return return inp elif return_val == "None": return None else: raise RuntimeError("Invalid return_val string") mod.register_full_backward_hook(hook) # This should run and trigger the hook properly mod(inp).sum().backward() self.assertEqual(hook_called[0], 1) return_val = "grad_input" mod(inp).sum().backward() self.assertEqual(hook_called[0], 2) return_val = "invalid" with self.assertRaisesRegex(RuntimeError, "where no input requires gradient"): mod(inp).sum().backward() def test_hook_last_arg_requires_grad(self): mod = nn.L1Loss() inp = torch.rand(1, requires_grad=True) mod.register_full_backward_hook(lambda m, gI, gO: None) try: mod(inp.detach(), inp) except Exception as ex: self.fail("Unexpected exception: %s" % ex) def test_hook_extra_input(self): class MyModule(nn.Module): def forward(self, non_tensor, tensor): return tensor.clone(), non_tensor inp = torch.rand(2, requires_grad=True) mod = MyModule() def hook(mod, grad_input, grad_output): self.assertIsNone(grad_input[0]) self.assertIsInstance(grad_input[1], torch.Tensor) self.assertIsInstance(grad_output[0], torch.Tensor) self.assertIsNone(grad_output[1]) mod.register_full_backward_hook(hook) out, _ = mod(True, inp) out.sum().backward() def test_hook_inplace(self): class MyModule(nn.Module): def forward(self, inp, do_inplace): self.inp = inp if do_inplace: inp += 1 return inp.clone() hook_called = [0] def hook(mod, grad_input, grad_output): hook_called[0] += 1 inp = torch.rand(10, requires_grad=True) mod = MyModule() mod.register_full_backward_hook(hook) # No inplace should work mod(inp, False).sum().backward() self.assertEqual(hook_called[0], 1) # Input inplace error should throw an error with self.assertRaisesRegex(RuntimeError, "Output 0 of BackwardHookFunctionBackward is " "a view and is being modified inplace."): mod(inp.clone(), True) # Input inplace error should throw an error if we try to re-use the view after they have # been modified local_inp = inp.clone() out = mod(local_inp, False) local_inp[0] *= 1 with self.assertRaisesRegex(RuntimeError, "Output 0 of BackwardHookFunctionBackward is " "a view and its base or another view"): # Any operation involving the view will fail here mod.inp + 2 # Output inplace error should throw an error out = mod(inp, False) with self.assertRaisesRegex(RuntimeError, "BackwardHookFunctionBackward is a view " "and is being modified inplace."): out += 1 def test_hook_non_full_warning(self): def noop(*args): pass a = torch.rand(2, requires_grad=True) b = torch.rand(2, requires_grad=True) # Check invalid input container class MyModule(nn.Module): def forward(self, l): return l[0].clone(), l[1].clone() m = MyModule() m.register_backward_hook(noop) with self.assertWarnsRegex(UserWarning, "does not take as input a single Tensor or a tuple of Tensors"): m([a, b]) # Check invalid output container class MyModule(nn.Module): def forward(self, a, b): return [a.clone(), b.clone()] m = MyModule() m.register_backward_hook(noop) with self.assertWarnsRegex(UserWarning, "does not return a single Tensor or a tuple of Tensors"): m(a, b) # Check invalid output from different Nodes class MyModule(nn.Module): def forward(self, a, b): return a.clone(), b.clone() m = MyModule() m.register_backward_hook(noop) with self.assertWarnsRegex(UserWarning, "outputs are generated by different autograd Nodes"): m(a, b) # Check invalid forward with multiple Nodes class MyModule(nn.Module): def forward(self, a): return a.clone().clone() m = MyModule() m.register_backward_hook(noop) with self.assertWarnsRegex(UserWarning, "the forward contains multiple autograd Nodes"): m(a) def test_hook_backward_size(self): # Make module with multiple operations in forward # And different size for input and outputs class MyModule(nn.Module): def forward(self, arg1, arg2): tmp = arg1.sum() * arg2 tmp = tmp + arg2.sum() * arg1.sum() tmp = tmp.sum().view(1) tmp = tmp.expand(8).contiguous() return tmp module = MyModule() inp1 = torch.randn(5, 5, requires_grad=True) inp2 = torch.randn(10, 10, requires_grad=True) def bw_hook(module, grad_input, grad_output): self.assertEqual(len(grad_input), 2) self.assertEqual(grad_input[0].size(), torch.Size([5, 5])) self.assertEqual(grad_input[1].size(), torch.Size([10, 10])) self.assertEqual(len(grad_output), 1) self.assertEqual(grad_output[0].size(), torch.Size([8])) with module.register_full_backward_hook(bw_hook): module(inp1, inp2).sum().backward() def test_hook_backward_writeable(self): module = nn.Sigmoid() input = torch.randn(5, 5, requires_grad=True) sig_x = torch.nn.functional.sigmoid(input) def bw_hook(module, grad_input, grad_output): for grad in grad_input: self.assertTrue(isinstance(grad, torch.Tensor)) for grad in grad_output: self.assertTrue(isinstance(grad, torch.Tensor)) return tuple(gi * 2 for gi in grad_input) module.register_backward_hook(bw_hook) module(input).backward(torch.ones(5, 5)) expected_grad = sig_x * (1 - sig_x) * 2 self.assertEqual(input.grad, expected_grad) def test_hook_forward_preforward_writable(self): module = nn.Sigmoid() input = torch.randn(5, 5, requires_grad=True) sig_x = torch.nn.functional.sigmoid(input) def forward_pre_hook(m, input): return torch.nn.functional.relu(input[0]) def forward_hook(m, input, output): return -output module.register_forward_pre_hook(forward_pre_hook) module.register_forward_hook(forward_hook) output = module(input) expected_res = -torch.nn.functional.sigmoid(torch.nn.functional.relu(input)) self.assertEqual(output, expected_res) output.backward(torch.ones(5, 5) * 2, retain_graph=True) mask = (input > 0).double() expected_grad = -sig_x * (1 - sig_x) * 2 * mask self.assertEqual(input.grad, expected_grad) def test_to(self): m = nn.Linear(3, 5) self.assertIs(m, m.to('cpu')) self.assertIs(m, m.to('cpu', dtype=torch.float32)) self.assertEqual(m.double(), m.to(torch.float64)) self.assertRaises(RuntimeError, lambda: m.to('cpu', copy=True)) if torch.cuda.is_available(): for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']: m2 = m.cuda(device=cuda) self.assertIs(m2, m2.to(cuda)) self.assertEqual(m, m2.to('cpu')) self.assertEqual(m2, m.to(cuda)) self.assertIs(m2, m2.to(dtype=torch.float32)) self.assertEqual(m2.double(), m2.to(dtype=torch.float64)) def test_zero_grad(self): i = torch.randn(2, 5, requires_grad=True) module = nn.Linear(5, 5) for p in module.parameters(): p.requires_grad = False module.zero_grad() module.weight.requires_grad = True module.zero_grad() self.assertIsNone(module.weight.grad) # uninitialized grad module(i).sum().backward() self.assertIsNotNone(module.weight.grad) self.assertGreater(module.weight.grad.data.abs().sum(), 0) module.zero_grad() self.assertEqual(module.weight.grad.data, module.weight.data.clone().zero_()) module.bias.requires_grad = True module.zero_grad() self.assertIsNotNone(module.weight.grad) self.assertIsNone(module.bias.grad) module(i).sum().backward() self.assertIsNotNone(module.weight.grad) self.assertIsNotNone(module.bias.grad) self.assertGreater(module.weight.grad.data.abs().sum(), 0) self.assertGreater(module.bias.grad.data.abs().sum(), 0) module.zero_grad() self.assertEqual(module.weight.grad.data, module.weight.data.clone().zero_()) self.assertEqual(module.bias.grad.data, module.bias.data.clone().zero_()) # Force set to None. module.zero_grad(set_to_none=True) self.assertIsNone(module.weight.grad) def test_no_grad(self): for dtype in [torch.bfloat16, torch.float, torch.double]: module = nn.Conv2d(2, 5, kernel_size=3, padding=1).to(dtype) input = torch.randn(1, 2, 10, 10).to(dtype) x = input y = input.clone() output = module(x) self.assertTrue(output.requires_grad) output.backward(torch.ones(1, 5, 10, 10)) with torch.no_grad(): output2 = module(y) self.assertFalse(output2.requires_grad) self.assertRaises(RuntimeError, lambda: output2.backward(torch.ones(1, 5, 10, 10))) def test_invalid_conv1d(self): for dtype in [torch.bfloat16, torch.float, torch.double]: module = nn.Conv1d(in_channels=3, out_channels=33, kernel_size=10, stride=1, bias=True).to(dtype) input = torch.randn(1, 3, 4).to(dtype) with self.assertRaisesRegex(RuntimeError, r'Calculated padded input size per channel: \(4\). ' + r'Kernel size: \(10\). Kernel size can\'t be greater than actual input size'): module(input) # Negative stride check module = nn.Conv1d(in_channels=3, out_channels=6, kernel_size=3, stride=-1, bias=True).to(dtype) input = torch.randn(1, 3, 4).to(dtype) with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'): module(input) def test_mismatch_shape_conv2d(self): x = torch.randn(1, 10, 1, 28, 28) w = torch.randn(6, 1, 5, 5) with self.assertRaisesRegex(RuntimeError, r'Expected 3D \(unbatched\) or 4D \(batched\) input to conv2d, but got ' + r'input of size: \[1, 10, 1, 28, 28\]'): F.conv2d(x, w) def test_conv2d_discontiguous_weight(self): # Test for https://github.com/pytorch/pytorch/issues/55781 x = torch.ones(64, 16, 16, 16) weight = torch.arange(0, 1.0, 1 / 2.0 ** 10).reshape(32, 16, 1, 2)[:, :, :, ::2] self.assertFalse(weight.is_contiguous()) y = torch.nn.functional.conv2d(x, weight, None) if torch.backends.mkldnn.is_available(): # Disable MKLDNN explicitly, so that either NNPACK or THCNN will be used with torch.backends.mkldnn.flags(enabled=False): y_ = torch.nn.functional.conv2d(x, weight, None) self.assertEqual(y, y_) self.assertEqual(y.sum(), 4186112.) def test_invalid_conv2d(self): for dtype in [torch.bfloat16, torch.float, torch.double]: module = torch.nn.Conv2d(1, 1, kernel_size=3, dilation=2, stride=2).to(dtype) input = torch.empty(1, 1, 4, 4).to(dtype) self.assertRaises(RuntimeError, lambda: module(input)) module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, stride=1, bias=True) input = torch.randn(1, 3, 1, 1) with self.assertRaisesRegex(RuntimeError, r'Calculated padded input size per channel: \(1 x 1\). ' + r'Kernel size: \(10 x 10\). Kernel size can\'t be greater than actual input size'): module(input) # Negative stride check module = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=4, stride=-1, bias=True).to(dtype) input = torch.randn(1, 3, 4, 4).to(dtype) with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'): module(input) # Zero stride check module = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=4, stride=0, bias=True).to(dtype) input = torch.randn(1, 3, 4, 4).to(dtype) with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'): module(input) def test_invalid_conv3d(self): for dtype in [torch.bfloat16, torch.float, torch.double]: module = torch.nn.Conv3d(1, 1, kernel_size=3, dilation=2, stride=2).to(dtype) input = torch.empty(1, 1, 4, 4, 4).to(dtype) self.assertRaises(RuntimeError, lambda: module(input)) # Negative stride check module = torch.nn.Conv3d(1, 1, kernel_size=3, stride=-2) input = torch.empty(1, 1, 4, 4, 4) with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'): module(input) def test_Conv1d_module_same_padding(self): # Compare module against functional: without strides/dilation, asymmetric padding x = torch.rand(1, 1, 20) module = nn.Conv1d(in_channels=1, out_channels=1, kernel_size=10, padding='same') expect = F.conv1d(x, module.weight, module.bias, padding='same') self.assertEqual(expect, module(x)) # Test dilation, symmetric padding module = nn.Conv1d(in_channels=1, out_channels=1, kernel_size=10, padding='same', dilation=2) expect = F.conv1d(x, module.weight, module.bias, padding='same', dilation=2) self.assertEqual(expect, module(x)) # Test non-zero padding_mode, requiring explicit padding module = nn.Conv1d(in_channels=1, out_channels=1, kernel_size=10, padding='same', padding_mode='replicate') x_padded = F.pad(x, [4, 5], mode='replicate') expect = F.conv1d(x_padded, module.weight, module.bias, padding='valid') self.assertEqual(expect, module(x)) self.assertEqual(x.size(), expect.size()) # Test connstruction with invalid padding string raises with self.assertRaisesRegex(ValueError, 'Invalid padding string'): module = nn.Conv1d(in_channels=3, out_channels=33, kernel_size=10, padding='foo') # Test connstruction with same padding and strides raises with self.assertRaisesRegex(ValueError, "padding='same'"): module = nn.Conv1d(in_channels=3, out_channels=33, kernel_size=10, padding='same', stride=2) def test_Conv2d_module_same_padding(self): # Compare module against functional: # without strides/dilation, both symmetric and asymmetric padding x = torch.rand(1, 1, 9, 20) module = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(5, 10), padding='same') expect = F.conv2d(x, module.weight, module.bias, padding='same') self.assertEqual(expect, module(x)) # with dilation, symmetric padding module = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(3, 4), padding='same', dilation=(1, 2)) expect = F.conv2d(x, module.weight, module.bias, padding='same', dilation=(1, 2)) self.assertEqual(expect, module(x)) # Test non-zero padding_mode, requiring explicit padding module = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(3, 4), padding='same', padding_mode='reflect') x_padded = F.pad(x, [1, 2, 1, 1], mode='reflect') expect = F.conv2d(x_padded, module.weight, module.bias, padding='valid') self.assertEqual(expect, module(x)) self.assertEqual(x.size(), expect.size()) # Test connstruction with invalid padding string raises with self.assertRaisesRegex(ValueError, 'Invalid padding string'): module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, padding='foo') # Test connstruction with same padding and strides raises with self.assertRaisesRegex(ValueError, "padding='same'"): module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, padding='same', stride=2) with self.assertRaisesRegex(ValueError, "padding='same'"): module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, padding='same', stride=(1, 3)) with self.assertRaisesRegex(ValueError, "padding='same'"): module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, padding='same', stride=(4, 1)) def test_Conv3d_module_same_padding(self): # Compare module against functional: x = torch.rand(1, 1, 4, 4, 4) # without dilation, both symmetric and asymmetric padding module = nn.Conv3d(in_channels=1, out_channels=1, kernel_size=(2, 3, 4), padding='same') expect = F.conv3d(x, module.weight, module.bias, padding='same') self.assertEqual(expect, module(x)) # with dilation, both symmetric and asymmetric padding module = nn.Conv3d(in_channels=1, out_channels=1, kernel_size=(2, 3, 4), padding='same', dilation=(3, 2, 1)) expect = F.conv3d(x, module.weight, module.bias, padding='same', dilation=(3, 2, 1)) self.assertEqual(expect, module(x)) # Test non-zero padding_mode, requiring explicit padding module = nn.Conv3d(in_channels=1, out_channels=1, kernel_size=(2, 3, 4), padding='same', padding_mode='circular') x_padded = F.pad(x, [1, 2, 1, 1, 0, 1], mode='circular') expect = F.conv3d(x_padded, module.weight, module.bias, padding='valid') self.assertEqual(expect, module(x)) self.assertEqual(x.size(), expect.size()) # Test connstruction with invalid padding string raises with self.assertRaisesRegex(ValueError, 'Invalid padding string'): module = nn.Conv3d(in_channels=3, out_channels=33, kernel_size=10, padding='foo') # Test connstruction with same padding and strides raises with self.assertRaisesRegex(ValueError, "padding='same'"): module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, padding='same', stride=2) with self.assertRaisesRegex(ValueError, "padding='same'"): module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, padding='same', stride=(1, 1, 3)) with self.assertRaisesRegex(ValueError, "padding='same'"): module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, padding='same', stride=(1, 4, 1)) with self.assertRaisesRegex(ValueError, "padding='same'"): module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, padding='same', stride=(5, 1, 1)) def _test_alpha_dropout(self, cls, input): mean = input.mean() std = input.std() for p in [0.2, 0.5, 0.8]: module = cls(p) input_var = input.detach().clone().requires_grad_() output = module(input_var) # output mean should be close to input mean self.assertLess(abs(output.data.mean() - mean), 0.1) # output std should be close to input std self.assertLess(abs(output.data.std() - std), 0.1) output.backward(input) def test_parameters_and_named_parameters(self): def names(named_parameters): return [k for k, _ in named_parameters] l, n, s = self._create_basic_net() self.assertEqual(len(list(l.parameters())), 1) self.assertEqual( names(l.named_parameters()), ['layer_dummy_param']) self.assertEqual(len(list(n.parameters())), 2) self.assertEqual( names(n.named_parameters()), ['dummy_param', 'l1.layer_dummy_param']) self.assertEqual(len(list(n.parameters(recurse=False))), 1) self.assertEqual( names(n.named_parameters(recurse=False)), ['dummy_param']) self.assertEqual(len(list(s.parameters())), 2) self.assertEqual( names(s.named_parameters()), ['0.dummy_param', '0.l1.layer_dummy_param']) def test_buffers_and_named_buffers(self): def names(named_buffers): return [k for k, _ in named_buffers] l, n, s = self._create_basic_net() self.assertEqual(len(list(l.buffers())), 1) self.assertEqual( names(l.named_buffers()), ['layer_dummy_buf']) self.assertEqual(len(list(n.buffers())), 2) self.assertEqual( names(n.named_buffers()), ['dummy_buf', 'l1.layer_dummy_buf']) self.assertEqual(len(list(n.buffers(recurse=False))), 1) self.assertEqual( names(n.named_buffers(recurse=False)), ['dummy_buf']) self.assertEqual(len(list(s.buffers())), 2) self.assertEqual( names(s.named_buffers()), ['0.dummy_buf', '0.l1.layer_dummy_buf']) def test_call_supports_python_dict_output(self): class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.l1 = nn.Linear(10, 20) self.register_backward_hook(self.hook) self.check_backward_hook_flag = False def hook(self, module, grad_out, grad_in): self.check_backward_hook_flag = True def forward(self, inputs): return {"output": self.l1(inputs).sum()} net = Net() model_output = net(torch.randn([5, 10])) model_output["output"].backward() self.assertTrue(net.check_backward_hook_flag) def test_children(self): l1 = nn.Linear(2, 2) l2 = nn.Linear(2, 2) l3 = nn.Linear(2, 2) l4 = nn.Linear(2, 2) subnet = nn.Sequential(l3, l4) s = nn.Sequential(l1, l2, l1, l2, subnet) self.assertEqual(list(s.children()), [l1, l2, subnet]) def test_train_errors_for_invalid_mode(self): class SubclassNet(nn.Module): def __init__(self): super(SubclassNet, self).__init__() self.l1 = nn.Linear(2, 2) def forward(self, inputs): return self.l1(inputs) subclass_net = SubclassNet() sequential_net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) error_modes = ["invalid_str", torch.device('cpu')] modules_to_check = [subclass_net, sequential_net] for error_mode, module in itertools.product(error_modes, modules_to_check): with self.assertRaises(ValueError): module.train(error_mode) def test_dir(self): linear = nn.Linear(2, 2) linear._test_submodule = nn.Linear(2, 2) linear._test_parameter = Parameter(torch.empty(2, 2)) linear.register_buffer('_test_buffer', torch.empty(2, 2)) keys = dir(linear) self.assertIn('_test_submodule', keys) self.assertIn('_test_parameter', keys) self.assertIn('_test_buffer', keys) for key in keys: self.assertTrue(hasattr(linear, key)) def test_repr(self): # no extra information or sub-modules empty_sequential = nn.Sequential() expected_repr_empty = 'Sequential()' self.assertEqual(repr(empty_sequential), expected_repr_empty) # one liner extra information linear = nn.Linear(1, 1) expected_repr_linear = 'Linear(in_features=1, out_features=1, bias=True)' self.assertEqual(repr(linear), expected_repr_linear) # sub-modules repr sequential = nn.Sequential(linear) expected_repr_sequential = 'Sequential(\n' \ ' (0): Linear(in_features=1, out_features=1, bias=True)\n' \ ')' self.assertEqual(repr(sequential), expected_repr_sequential) def test_dir_digit(self): model = nn.Sequential(nn.Linear(2, 2)) keys = dir(model) self.assertNotIn('0', keys) def test_named_children(self): l1 = nn.Linear(2, 2) l2 = nn.Linear(2, 2) l3 = nn.Linear(2, 2) l4 = nn.Linear(2, 2) subnet = nn.Sequential(l3, l4) s = nn.Sequential() with self.assertRaises(KeyError): s.add_module('', l1) with self.assertRaises(KeyError): s.add_module('name.with.dot', l1) s.add_module('layer1', l1) s.add_module('layer2', l2) s.add_module('layer3', l1) s.add_module('layer4', l2) s.add_module('subnet', subnet) self.assertEqual(list(s.named_children()), [('layer1', l1), ('layer2', l2), ('subnet', subnet)]) def test_modules(self): class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.l1 = l self.l2 = l self.param = torch.empty(3, 5) l = nn.Linear(10, 20) n = Net() s = nn.Sequential(n, n, n, n) self.assertEqual(list(s.modules()), [s, n, l]) def test_named_modules(self): class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.l1 = l self.l2 = l self.param = torch.empty(3, 5) self.block = block l = nn.Linear(10, 20) l1 = nn.Linear(10, 20) l2 = nn.Linear(10, 20) block = nn.Sequential() block.add_module('linear1', l1) block.add_module('linear2', l2) n = Net() s = nn.Sequential(n, n) self.assertEqual(list(s.named_modules()), [('', s), ('0', n), ('0.l1', l), ('0.block', block), ('0.block.linear1', l1), ('0.block.linear2', l2)]) # test the option to not remove duplicate module instances self.assertEqual(list(s.named_modules(remove_duplicate=False)), [ ('', s), ('0', n), ('0.l1', l), ('0.l2', l), ('0.block', block), ('0.block.linear1', l1), ('0.block.linear2', l2), ('1', n), ('1.l1', l), ('1.l2', l), ('1.block', block), ('1.block.linear1', l1), ('1.block.linear2', l2)]) def test_register_buffer_raises_error_if_name_is_not_string(self): m = nn.Module() expected_error = 'buffer name should be a string. Got ' with self.assertRaisesRegex(TypeError, expected_error + 'int'): m.register_buffer(1, torch.rand(5)) with self.assertRaisesRegex(TypeError, expected_error + 'NoneType'): m.register_buffer(None, torch.rand(5)) def test_register_buffer_raises_error_if_attr_exists(self): m = nn.Module() m.attribute_name = 5 with self.assertRaises(KeyError): m.register_buffer('attribute_name', torch.rand(5)) del m.attribute_name m.register_parameter('attribute_name', nn.Parameter()) with self.assertRaises(KeyError): m.register_buffer('attribute_name', torch.rand(5)) del m.attribute_name m.add_module('attribute_name', nn.Module()) with self.assertRaises(KeyError): m.register_buffer('attribute_name', torch.rand(5)) def test_register_buffer_raises_error_if_not_tensor(self): m = nn.Module() with self.assertRaises(TypeError): m.register_buffer('attribute_name', 5) def test_register_buffer_allows_overwriting_with_same_name(self): m = nn.Module() buffer1 = torch.rand(5) buffer2 = buffer1 + 5 buffer3 = None m.register_buffer('buffer_name', buffer1) self.assertEqual(m.buffer_name, buffer1) m.register_buffer('buffer_name', buffer2) self.assertEqual(m.buffer_name, buffer2) m.register_buffer('buffer_name', buffer3) self.assertEqual(m.buffer_name, buffer3) def test_get_buffer(self): m = nn.Module() buffer1 = torch.randn(2, 3) buffer2 = torch.randn(4, 5) m.register_buffer('foo', buffer1) m.register_buffer('bar', buffer2) self.assertEqual(buffer1, m.get_buffer('foo')) self.assertEqual(buffer2, m.get_buffer('bar')) def test_get_buffer_from_submodules(self): class MyModule(nn.Module): def __init__(self, foo, bar): super().__init__() self.sub = Sub(foo, bar) class Sub(nn.Module): def __init__(self, foo, bar): super().__init__() self.register_buffer('foo', foo) self.subsub = SubSub(bar) class SubSub(nn.Module): def __init__(self, bar): super().__init__() self.register_buffer('bar', bar) foo = torch.randn(2, 3) bar = torch.randn(4, 5) m = MyModule(foo, bar) self.assertEqual(foo, m.get_buffer('sub.foo')) self.assertEqual(bar, m.get_buffer('sub.subsub.bar')) def test_buffer_not_persistent(self): m = nn.Module() m.register_buffer('buf', torch.rand(5), persistent=False) self.assertTrue(len(list(m.buffers())) == 1) self.assertTrue(len(m.state_dict()) == 0) def test_buffer_not_persistent_del(self): m = nn.Module() m.register_buffer('buf', torch.rand(5), persistent=False) del m.buf self.assertTrue(len(list(m.buffers())) == 0) def test_buffer_not_persistent_overwrite(self): m = nn.Module() m.register_buffer('buf', torch.rand(5), persistent=False) m.register_buffer('buf', torch.rand(5)) # can we overwrite a non-persistent buffer with a persistent one? self.assertTrue(len(list(m.buffers())) == 1) self.assertTrue(len(m.state_dict()) == 1) # can we overwrite a persistent buffer with a non-persistent one? m.register_buffer('buf', torch.rand(5), persistent=False) self.assertTrue(len(list(m.buffers())) == 1) self.assertTrue(len(m.state_dict()) == 0) def test_buffer_not_persistent_assign(self): m = nn.Module() m.register_buffer('buf', torch.rand(5), persistent=False) # Assigning None removes the buffer but if we then assign a new Tensor # to the same property, it should still be marked as a buffer. m.buf = None self.assertTrue(len(list(m.buffers())) == 0) self.assertTrue(len(m.state_dict()) == 0) m.buf = torch.rand(5) self.assertTrue(len(list(m.buffers())) == 1) self.assertTrue(len(m.state_dict()) == 0) # Assigning a Parameter removes the buffer. m.buf = nn.Parameter(torch.rand(5)) self.assertTrue(len(list(m.buffers())) == 0) self.assertTrue(len(m.state_dict()) == 1) @unittest.skipIf(not TEST_NUMPY, "numpy not found") def test_load_state_dict_invalid(self): m = torch.nn.Linear(2, 2, bias=False) state_dict = {'weight': np.random.randn(2, 2)} with self.assertRaisesRegex(RuntimeError, "expected torch.Tensor or Tensor-like object from checkpoint but received"): m.load_state_dict(state_dict) state_dict = {'weight': ((1., 1.), (2., 2.))} with self.assertRaisesRegex(RuntimeError, "expected torch.Tensor or Tensor-like object from checkpoint but received"): m.load_state_dict(state_dict) def test_buffer_not_persistent_load(self): m = nn.Module() m.register_buffer('buf', torch.rand(5), persistent=False) m.load_state_dict({}) def test_register_parameter_raises_error_if_name_is_not_string(self): m = nn.Module() expected_error = 'parameter name should be a string. Got ' with self.assertRaisesRegex(TypeError, expected_error + 'int'): m.register_parameter(1, nn.Parameter()) with self.assertRaisesRegex(TypeError, expected_error + 'NoneType'): m.register_parameter(None, nn.Parameter()) def test_register_parameter_raises_error_if_attr_exists(self): m = nn.Module() m.attribute_name = 5 with self.assertRaises(KeyError): m.register_parameter('attribute_name', nn.Parameter()) del m.attribute_name m.register_buffer('attribute_name', torch.rand(5)) with self.assertRaises(KeyError): m.register_parameter('attribute_name', nn.Parameter()) del m.attribute_name m.add_module('attribute_name', nn.Module()) with self.assertRaises(KeyError): m.register_parameter('attribute_name', nn.Parameter()) def test_register_parameter_allows_overwriting_with_same_name(self): m = nn.Module() param1 = nn.Parameter(torch.rand(5)) param2 = nn.Parameter(param1.data + 5) param3 = None m.register_parameter('param_name', param1) self.assertEqual(m.param_name, param1) m.register_parameter('param_name', param2) self.assertEqual(m.param_name, param2) m.register_parameter('param_name', param3) self.assertEqual(m.param_name, param3) def test_add_module_raises_error_if_attr_exists(self): methods_to_test = ['add_module', 'register_module'] for fn in methods_to_test: m = nn.Module() m.attribute_name = 5 with self.assertRaises(KeyError): getattr(m, fn)('attribute_name', nn.Module()) del m.attribute_name m.register_buffer('attribute_name', torch.rand(5)) with self.assertRaises(KeyError): getattr(m, fn)('attribute_name', nn.Module()) del m.attribute_name m.register_parameter('attribute_name', nn.Parameter()) with self.assertRaises(KeyError): getattr(m, fn)('attribute_name', nn.Module()) @unittest.expectedFailure def test_getattr_with_property(self): class Model(nn.Module): @property def some_property(self): return self.something_that_doesnt_exist model = Model() with self.assertRaisesRegex( AttributeError, r"'Model' object has no attribute 'something_that_doesnt_exist'"): model.some_property def test_Sequential_getitem(self): l1 = nn.Linear(10, 20) l2 = nn.Linear(20, 30) l3 = nn.Linear(30, 40) l4 = nn.Linear(40, 50) n = nn.Sequential(l1, l2, l3, l4) self.assertIs(n[0], l1) self.assertIs(n[1], l2) self.assertIs(n[2], l3) self.assertIs(n[3], l4) self.assertIs(n[torch.tensor(3, dtype=torch.int64)], l4) self.assertEqual(n[1:], nn.Sequential(l2, l3, l4)) self.assertEqual(n[3:], nn.Sequential(l4)) self.assertEqual(n[:-1], nn.Sequential(l1, l2, l3)) self.assertEqual(n[:-3], nn.Sequential(l1)) self.assertEqual(n[::-1], nn.Sequential(l4, l3, l2, l1)) def test_Sequential_setitem(self): l1 = nn.Linear(10, 20) l2 = nn.Linear(20, 30) l3 = nn.Linear(30, 40) l4 = nn.Linear(40, 50) n = nn.Sequential(l1, l2, l3) n[0] = l4 n[-1] = l4 n[torch.tensor(1, dtype=torch.int16)] = l1 self.assertIs(n[0], l4) self.assertIs(n[1], l1) self.assertIs(n[2], l4) def test_Sequential_setitem_named(self): l1 = nn.Linear(10, 20) l2 = nn.Linear(20, 30) l3 = nn.Linear(30, 40) l4 = nn.Linear(40, 50) n = nn.Sequential(OrderedDict([ ('linear1', l1), ('linear2', l2), ('linear3', l3), ])) n[0] = l4 n[-1] = l4 self.assertEqual(n.linear1, l4) self.assertEqual(n.linear3, l4) def test_Sequential_delitem(self): l1 = nn.Linear(10, 20) l2 = nn.Linear(20, 30) l3 = nn.Linear(30, 40) l4 = nn.Linear(40, 50) n = nn.Sequential(l1, l2, l3, l4) del n[-1] self.assertEqual(n, nn.Sequential(l1, l2, l3)) del n[1::2] self.assertEqual(n, nn.Sequential(l1, l3)) def test_Sequential_append(self): l1 = nn.Linear(10, 20) l2 = nn.Linear(20, 30) l3 = nn.Linear(30, 40) l4 = nn.Linear(40, 50) n = nn.Sequential(l1, l2, l3) n2 = n.append(l4) self.assertEqual(n, nn.Sequential(l1, l2, l3, l4)) self.assertEqual(n2, nn.Sequential(l1, l2, l3, l4)) self.assertEqual(nn.Sequential(l1).append(l2).append(l4), nn.Sequential(l1, l2, l4)) def test_ModuleList(self): modules = [nn.ReLU(), nn.Linear(5, 5)] module_list = nn.ModuleList(modules) def check(): self.assertEqual(len(module_list), len(modules)) for m1, m2 in zip(modules, module_list): self.assertIs(m1, m2) for m1, m2 in zip(modules, module_list.children()): self.assertIs(m1, m2) for i in range(len(modules)): self.assertIs(module_list[i], modules[i]) check() modules += [nn.Conv2d(3, 4, 3)] module_list += [modules[-1]] check() modules = modules + [nn.Conv2d(3, 4, 3, bias=False), nn.GELU()] module_list = module_list + nn.ModuleList(modules[-2:]) check() modules.insert(1, nn.Linear(3, 2)) module_list.insert(1, modules[1]) check() modules.append(nn.Tanh()) module_list.append(modules[-1]) check() next_modules = [nn.Linear(5, 5), nn.Sigmoid()] modules.extend(next_modules) module_list.extend(next_modules) check() modules[2] = nn.Conv2d(5, 3, 2) module_list[2] = modules[2] check() modules[-1] = nn.Conv2d(5, 2, 1) module_list[-1] = modules[-1] check() idx = torch.tensor(2, dtype=torch.int32) modules[2] = nn.Conv2d(5, 3, 2) module_list[idx] = modules[2] self.assertIs(module_list[idx], modules[2]) check() self.assertEqual(module_list[1:], nn.ModuleList(modules[1:])) self.assertEqual(module_list[3:], nn.ModuleList(modules[3:])) self.assertEqual(module_list[:-1], nn.ModuleList(modules[:-1])) self.assertEqual(module_list[:-3], nn.ModuleList(modules[:-3])) self.assertEqual(module_list[::-1], nn.ModuleList(modules[::-1])) del module_list[-1] self.assertEqual(module_list, nn.ModuleList(modules[:-1])) del module_list[1::2] self.assertEqual(module_list, nn.ModuleList(modules[:-1][0::2])) with self.assertRaises(TypeError): module_list += nn.ReLU() with self.assertRaises(TypeError): module_list.extend(nn.ReLU()) l1 = nn.Linear(1, 2) l2 = nn.Linear(2, 3) l3 = nn.Linear(3, 2) l4 = nn.Linear(2, 3) subnet = nn.Sequential(l3, l4) s = nn.Sequential( OrderedDict([ ("layer1", l1), ("layer2", l2), ("layer3", l3), ("layer4", l4), ("subnet_layer", subnet) ]) ) modules = list(s.modules()) module_list = nn.ModuleList() module_list.extend(s.modules()) check() # verify the right exception is thrown when trying to "forward" through a ModuleList self.assertRaises(NotImplementedError, module_list) self.assertRaises(NotImplementedError, module_list, torch.rand(1, 3)) def test_ModuleDict(self): modules = OrderedDict([ ('act', nn.ReLU()), ('conv', nn.Conv2d(10, 10, 5)), ('fc', nn.Linear(5, 5)), ]) module_dict = nn.ModuleDict(modules) def check(): self.assertEqual(len(module_dict), len(modules)) for k1, m2 in zip(modules, module_dict.children()): self.assertIs(modules[k1], m2) for k1, k2 in zip(modules, module_dict): self.assertIs(modules[k1], module_dict[k2]) for k in module_dict: self.assertIs(module_dict[k], modules[k]) for k in module_dict.keys(): self.assertIs(module_dict[k], modules[k]) for k, v in module_dict.items(): self.assertIs(modules[k], v) for k1, m2 in zip(modules, module_dict.values()): self.assertIs(modules[k1], m2) for k in modules.keys(): self.assertTrue(k in module_dict) check() modules['conv'] = nn.Conv2d(3, 4, 3) module_dict['conv'] = modules['conv'] check() next_modules = [ ('fc2', nn.Linear(5, 5)), ('act', nn.Sigmoid()), ] modules.update(next_modules) module_dict.update(next_modules) check() next_modules = OrderedDict([ ('fc3', nn.Linear(5, 5)), ('act2', nn.Sigmoid()), ]) modules.update(next_modules) module_dict.update(next_modules) check() next_modules = { 'fc4': nn.Linear(5, 5), 'act3': nn.Sigmoid() } modules.update(next_modules.items()) module_dict.update(next_modules) check() next_modules = nn.ModuleDict([ ('fc5', nn.Linear(5, 5)), ('act4', nn.Sigmoid()), ]) modules.update(next_modules) module_dict.update(next_modules) check() del module_dict['fc'] del modules['fc'] check() with self.assertRaises(TypeError): module_dict.update(nn.ReLU()) with self.assertRaises(TypeError): module_dict.update([nn.ReLU()]) with self.assertRaises(ValueError): module_dict.update([[nn.ReLU()]]) with self.assertRaises(TypeError): module_dict[1] = nn.ReLU() s = nn.Sequential(modules) module_dict = nn.ModuleDict(s.named_children()) check() c = module_dict.pop('conv') self.assertIs(c, modules['conv']) modules.pop('conv') check() module_dict.clear() self.assertEqual(len(module_dict), 0) modules.clear() check() # verify the right exception is thrown when trying to "forward" through a ModuleDict self.assertRaises(NotImplementedError, module_dict) self.assertRaises(NotImplementedError, module_dict, torch.rand(1, 3)) def test_ParameterList(self): def make_param(): return Parameter(torch.randn(2, 2)) parameters = [make_param(), make_param()] param_list = nn.ParameterList(parameters) def check(): self.assertEqual(len(parameters), len(param_list)) for p1, p2 in zip(parameters, param_list): self.assertIs(p1, p2) for p1, p2 in zip(filter(lambda x: isinstance(x, Parameter), parameters), param_list.parameters()): self.assertIs(p1, p2) for i in range(len(parameters)): self.assertIs(parameters[i], param_list[i]) check() parameters += [make_param()] param_list += [parameters[-1]] check() parameters.append(make_param()) param_list.append(parameters[-1]) check() next_params = [make_param(), make_param()] parameters.extend(next_params) param_list.extend(next_params) check() parameters[2] = make_param() param_list[2] = parameters[2] check() parameters[-1] = make_param() param_list[-1] = parameters[-1] check() idx = torch.tensor(2, dtype=torch.int32) parameters[2] = make_param() param_list[idx] = parameters[2] self.assertIs(param_list[idx], parameters[2]) check() self.assertEqual(param_list[1:], nn.ParameterList(parameters[1:])) self.assertEqual(param_list[3:], nn.ParameterList(parameters[3:])) self.assertEqual(param_list[:-1], nn.ParameterList(parameters[:-1])) self.assertEqual(param_list[:-3], nn.ParameterList(parameters[:-3])) self.assertEqual(param_list[::-1], nn.ParameterList(parameters[::-1])) with self.assertRaises(TypeError): param_list += make_param() with self.assertRaises(TypeError): param_list.extend(make_param()) l1 = nn.Linear(1, 2) l2 = nn.Linear(2, 3) l3 = nn.Linear(3, 2) l4 = nn.Linear(2, 3) subnet = nn.Sequential(l3, l4) s = nn.Sequential( OrderedDict([ ("layer1", l1), ("layer2", l2), ("layer3", l3), ("layer4", l4), ("subnet_layer", subnet) ]) ) parameters = list(s.parameters()) param_list = nn.ParameterList() param_list.extend(s.parameters()) check() param_list.append(torch.rand(2, 2)) self.assertIsInstance(param_list[-1], Parameter) parameters.append(param_list[-1]) param_list.extend([torch.rand(2, 2), "foo"]) self.assertIsInstance(param_list[-2], Parameter) self.assertIsInstance(param_list[-1], str) parameters.extend(param_list[-2:]) param_list += ["bar", torch.rand(2, 2)] self.assertIsInstance(param_list[-2], str) self.assertIsInstance(param_list[-1], Parameter) parameters += param_list[-2:] check() def test_ParameterList_replication(self): # The actual replication code from DP cannot be used on CPU so doing it manually here def make_param(): return Parameter(torch.randn(2, 2)) parameters = [make_param(), make_param()] param_list = nn.ParameterList(parameters) new_param_list = param_list._replicate_for_data_parallel() for n, p in param_list.named_parameters(): # Do a view here so that we can check the base later setattr(new_param_list, n, p.view_as(p)) for p, p2 in zip(param_list, new_param_list): self.assertEqual(p, p2) self.assertIsNotNone(p2.grad_fn) self.assertIs(p2._base, p) def test_ParameterDict(self): parameters = OrderedDict([ ('p1', Parameter(torch.randn(10, 10))), ('p2', Parameter(torch.randn(10, 10))), ('p3', Parameter(torch.randn(10, 10))), ]) parameter_dict = nn.ParameterDict(parameters) def check(): self.assertEqual(len(parameter_dict), len(parameters)) for i, (k1, (k2, m2)) in enumerate(zip(parameters, parameter_dict.named_parameters())): self.assertEqual(k1, k2) self.assertIs(parameters[k1], m2) for k1, k2 in zip(parameters, parameter_dict): self.assertIs(parameters[k1], parameter_dict[k2]) for k in parameter_dict: self.assertIs(parameter_dict[k], parameters[k]) for k in parameter_dict.keys(): self.assertIs(parameter_dict[k], parameters[k]) for k, v in parameter_dict.items(): self.assertIs(v, parameters[k]) for k1, m2 in zip(parameters, parameter_dict.values()): self.assertIs(parameters[k1], m2) for k in parameters.keys(): self.assertTrue(k in parameter_dict) check() parameters['p4'] = Parameter(torch.randn(10, 10)) parameter_dict['p4'] = parameters['p4'] check() next_parameters = [ ('p5', Parameter(torch.randn(10, 10))), ('p2', Parameter(torch.randn(10, 10))), ] parameters.update(next_parameters) parameter_dict.update(next_parameters) check() next_parameters = OrderedDict([ ('p6', Parameter(torch.randn(10, 10))), ('p5', Parameter(torch.randn(10, 10))), ]) parameters.update(next_parameters) parameter_dict.update(next_parameters) check() next_parameters = { 'p8': Parameter(torch.randn(10, 10)), 'p7': Parameter(torch.randn(10, 10)) } parameters.update(sorted(next_parameters.items())) parameter_dict.update(next_parameters) check() next_parameters = nn.ParameterDict([ ('p10', Parameter(torch.randn(10, 10))), ('p9', Parameter(torch.randn(10, 10))), ]) parameters.update(next_parameters) parameter_dict.update(next_parameters) check() del parameter_dict['p3'] del parameters['p3'] check() with self.assertRaises(TypeError): parameter_dict.update(1) with self.assertRaises(TypeError): parameter_dict.update([1]) with self.assertRaises(ValueError): parameter_dict.update(Parameter(torch.randn(10, 10))) p_pop = parameter_dict.pop('p4') self.assertIs(p_pop, parameters['p4']) parameters.pop('p4') check() # Check reverse works forward = list(iter(parameter_dict)) backward = list(reversed(parameter_dict)) self.assertEqual(len(forward), len(backward)) n = len(forward) for i in range(n): self.assertIs(forward[i], backward[n - i - 1]) check() # Check copy works copy = parameter_dict.copy() # Check all keys are present and have shallow copied values for key in parameter_dict: self.assertTrue(key in copy) self.assertEqual(parameter_dict[key], copy[key]) self.assertIs(parameter_dict[key], copy[key]) check() parameter_dict["p20"] = Parameter(torch.randn(10, 10)) copy["p21"] = Parameter(torch.randn(9, 10)) self.assertTrue("p20" in parameter_dict) self.assertFalse("p20" in copy) self.assertFalse("p21" in parameter_dict) self.assertTrue("p21" in copy) parameter_dict.pop("p20") check() p = Parameter(torch.randn(10, 10)) parameter_dict['p12'] = p p_popitem = parameter_dict.popitem() self.assertEqual(p_popitem[0], 'p12') self.assertIs(p_popitem[1], p) check() # Unit test for set_default # 1. Ensure parameter is correctly inserted when # the key is not present in `ParameterDict` assert 'p11' not in parameter_dict assert 'p11' not in parameters parameters['p11'] = Parameter(torch.randn(10, 10)) p_setdefault = parameter_dict.setdefault('p11', parameters['p11']) self.assertIs(p_setdefault, parameters['p11']) self.assertIs(p_setdefault, parameter_dict['p11']) check() # 2. Ensure parameter is NOT inserted when the # key is already present in `ParameterDict` p = Parameter(torch.randn(10, 10)) self.assertFalse(parameter_dict.setdefault('p11', p) is p) check() # 3. Ensure `None` is inserted when the key is not # present in `Parameter` and parameter is not specified self.assertIs(parameter_dict.setdefault('p26'), None) del parameter_dict['p26'] check() parameters2 = OrderedDict([ ('p13', Parameter(torch.randn(10, 10))), ('p2', Parameter(torch.randn(10, 10))), ('p3', Parameter(torch.randn(10, 10))), ]) parameter_dict2 = nn.ParameterDict(parameters2) parameters.update(parameters2) parameter_dict |= parameter_dict2 check() parameters2 = OrderedDict() parameter_dict2 = nn.ParameterDict(parameters2) parameters.update(parameters2) parameter_dict |= parameter_dict2 check() parameters2 = OrderedDict([ ('p14', Parameter(torch.randn(10, 10))), ('p15', Parameter(torch.randn(10, 10))), ('p13', Parameter(torch.randn(10, 10))), ]) parameter_dict2 = nn.ParameterDict(parameters2) parameters.update(parameters2) parameter_dict |= parameter_dict2 check() # Check __or__ and __ror__ works parameters2 = OrderedDict([ ('p20', Parameter(torch.randn(10, 10))), ('p21', Parameter(torch.randn(10, 10))), ('p22', Parameter(torch.randn(10, 10))), ]) parameter_dict2 = nn.ParameterDict(parameters2) parameters.update(parameters2) parameter_dict = parameter_dict | parameter_dict2 check() parameters2 = OrderedDict([ ('p23', Parameter(torch.randn(10, 10))), ('p24', Parameter(torch.randn(10, 10))), ('p25', Parameter(torch.randn(10, 10))), ]) parameter_dict2 = nn.ParameterDict(parameters2) parameters2.update(parameters) parameters = parameters2 parameter_dict = parameter_dict2 | parameter_dict check() parameters['p17'] = Parameter(torch.randn(10, 10)) parameter_dict['p17'] = parameters['p17'] self.assertIs(parameters['p17'], parameter_dict.get('p17')) temp_param = Parameter(torch.randn(10, 10)) self.assertIs(parameters['p17'], parameter_dict.get('p17', temp_param)) self.assertIs(None, parameter_dict.get('p18')) self.assertIs(temp_param, parameter_dict.get('p18', temp_param)) check() parameter_dict.clear() self.assertEqual(len(parameter_dict), 0) parameters.clear() check() parameter_dict2 = parameter_dict.fromkeys(['p19', 'p20']) self.assertEqual({'p19': None, 'p20': None}, parameter_dict2) check() parameter_dict2 = parameter_dict.fromkeys(['p19', 'p20'], temp_param) self.assertEqual({'p19': temp_param, 'p20': temp_param}, parameter_dict2) check() parameter_dict['p21'] = torch.rand(2, 2) self.assertIsInstance(parameter_dict['p21'], Parameter) parameters['p21'] = parameter_dict['p21'] parameter_dict.update({'p22': torch.rand(2, 2), 'foo': 'bar'}) self.assertIsInstance(parameter_dict['p22'], Parameter) self.assertIsInstance(parameter_dict['foo'], str) parameters['p22'] = parameter_dict['p22'] parameters['foo'] = parameter_dict['foo'] def test_ParameterDict_replication(self): # The actual replication code from DP cannot be used on CPU so doing it manually here def make_param(): return Parameter(torch.randn(2, 2)) parameters = {"foo": make_param(), "bar": make_param()} param_dict = nn.ParameterDict(parameters) new_param_dict = param_dict._replicate_for_data_parallel() for n, p in param_dict.named_parameters(): # Do a view here so that we can check the base later setattr(new_param_dict, n, p.view_as(p)) for (k, p), (k2, p2) in zip(param_dict.items(), new_param_dict.items()): self.assertEqual(k, k2) self.assertEqual(p, p2) self.assertIsNotNone(p2.grad_fn) self.assertIs(p2._base, p) self.assertEqual(param_dict["foo"], new_param_dict["foo"]) def test_add_module(self): methods_to_test = ['add_module', 'register_module'] for fn in methods_to_test: l = nn.Linear(10, 20) net = nn.Module() net.l = l net.l2 = l getattr(net, fn)('empty', None) self.assertEqual(net.l, l) self.assertEqual(net.l2, l) self.assertEqual(net.empty, None) getattr(net, fn)('l3', l) self.assertEqual(net.l3, l) l3 = nn.Linear(20, 10) getattr(net, fn)('l', l3) self.assertEqual(net.l, l3) self.assertRaises(TypeError, lambda: getattr(net, fn)('x', 'non-module')) self.assertRaisesRegex(TypeError, 'module name should be a string. Got int', lambda: getattr(net, fn)(1, l)) self.assertRaisesRegex(TypeError, 'module name should be a string. Got NoneType', lambda: getattr(net, fn)(None, l)) def test_module_to_argparse(self): net = nn.Sequential(nn.Linear(3, 3)) cpu = torch.device('cpu') with self.assertRaises(TypeError): net.to(cpu, True) with self.assertRaises(TypeError): net.to(torch.long) with self.assertRaises(TypeError): net.to(None, True) with self.assertRaises(TypeError): net.to(cpu, torch.long, True) with self.assertRaises(TypeError): net.to(cpu, dtype=torch.long, non_blocking=True) with self.assertRaises(TypeError): net.to([]) with self.assertRaises(TypeError): net.to({}, non_blocking=True) with self.assertRaises(TypeError): net.to(torch.tensor(3, dtype=torch.long), non_blocking=True) with self.assertRaises(TypeError): net.to(cpu, torch.tensor(3, dtype=torch.long), non_blocking=True) def test_RNN_nonlinearity(self): rnn = torch.nn.RNN(1, 10) self.assertEqual(rnn.nonlinearity, 'tanh') rnn = torch.nn.RNN(1, 10, nonlinearity='relu') self.assertEqual(rnn.nonlinearity, 'relu') with self.assertRaisesRegex(ValueError, 'Unknown nonlinearity'): rnn = torch.nn.RNN(1, 10, nonlinearity='garbage') def test_module_apply_inplace_op(self): def add_one_inplace(t): return t.add_(1.0) # Test that applying an in-place operation to a module would bump # the module's parameters' version counter. m = nn.Linear(20, 10) pvm = m.weight.mul(m.weight) m_weight_version_saved = m.weight._version m = m._apply(add_one_inplace) self.assertGreater(m.weight._version, m_weight_version_saved) with self.assertRaisesRegex(RuntimeError, "modified by an inplace operation"): pvm.backward(torch.randn(10, 20)) # Test that applying an in-place operation to a module would bump # the module's parameters' gradients' version counter. m = nn.Linear(20, 10) m.weight.grad = torch.randn(10, 20).requires_grad_() pgm = m.weight.grad.mul(m.weight.grad) m_weight_grad_version_saved = m.weight.grad._version m = m._apply(add_one_inplace) self.assertGreater(m.weight.grad._version, m_weight_grad_version_saved) with self.assertRaisesRegex(RuntimeError, "modified by an inplace operation"): pgm.backward(torch.randn(10, 20)) def test_overwrite_module_params_on_conversion(self): # Test that if the conversion function passed to `module._apply()` # changes the TensorImpl type of `module`'s parameters, the `module`'s # parameters are always overwritten, regardless of the value of # `torch.__future__.get_overwrite_module_params_on_conversion()`. m = nn.Linear(20, 10) m.weight.grad = torch.randn(10, 20) weight_ref = m.weight weight_grad_ref = m.weight.grad m = m._apply(lambda t: torch.sparse_coo_tensor(torch.zeros([2, 1]), torch.ones([1]), torch.Size([10, 20]))) self.assertNotEqual(weight_ref.layout, m.weight.layout) self.assertNotEqual(weight_grad_ref.layout, m.weight.grad.layout) # Test that under the current default settings # (`torch.__future__.get_overwrite_module_params_on_conversion() == False`), # a view to a module's parameters is not pointing to the same storage as # its base variable after converting the module to a different dtype. m = nn.Linear(20, 10).float() mw = m.weight[:] m.double() with torch.no_grad(): mw[0][0] = 5 self.assertTrue(mw[0][0].dtype == torch.float) self.assertTrue(mw._base[0][0].dtype == torch.double) try: torch.__future__.set_overwrite_module_params_on_conversion(True) # Test that if `torch.__future__.get_overwrite_module_params_on_conversion() == True`, # a view to a module's parameters is still pointing to the same storage as # its base variable after converting the module to a different dtype. m = nn.Linear(20, 10).float() mw = m.weight[:] m.double() with torch.no_grad(): mw[0][0] = 5 self.assertTrue(mw[0][0] == mw._base[0][0]) # Test that if `torch.__future__.get_overwrite_module_params_on_conversion() == True`, # `float_module.double()` doesn't preserve previous references to # `float_module`'s parameters or gradients. m = nn.Linear(20, 10).float() m.weight.grad = torch.randn(10, 20).float() weight_ref = m.weight weight_grad_ref = m.weight.grad m.double() self.assertNotEqual(weight_ref.dtype, m.weight.dtype) self.assertNotEqual(weight_grad_ref.dtype, m.weight.grad.dtype) def add_one_inplace(t): return t.add_(1.0) # Test that if `torch.__future__.get_overwrite_module_params_on_conversion() == True`, # applying an in-place operation to a module would bump the module's # original parameters' version counter. m = nn.Linear(20, 10) pvm = m.weight.mul(m.weight) weight_ref = m.weight m_weight_version_saved = weight_ref._version m = m._apply(add_one_inplace) # Test that the in-place operation bumps the original parameter's version counter self.assertGreater(weight_ref._version, m_weight_version_saved) with self.assertRaisesRegex(RuntimeError, "modified by an inplace operation"): pvm.backward(torch.randn(10, 20)) # Test that if `torch.__future__.get_overwrite_module_params_on_conversion() == True`, # applying an in-place operation to a module would bump the module's # original parameters' gradients' version counter. m = nn.Linear(20, 10) m.weight.grad = torch.randn(10, 20).requires_grad_() pgm = m.weight.grad.mul(m.weight.grad) weight_grad_ref = m.weight.grad m_weight_grad_version_saved = weight_grad_ref._version m = m._apply(add_one_inplace) self.assertGreater(weight_grad_ref._version, m_weight_grad_version_saved) with self.assertRaisesRegex(RuntimeError, "modified by an inplace operation"): pgm.backward(torch.randn(10, 20)) # Test that if `torch.__future__.get_overwrite_module_params_on_conversion() == True`, # applying an out-of-place operation to a module doesn't bump # the module's original parameters' version counter. m = nn.Linear(20, 10) weight_ref = m.weight m_weight_version_saved = weight_ref._version m = m._apply(lambda t: torch.randn(t.shape)) self.assertEqual(weight_ref._version, m_weight_version_saved) # Test that if `torch.__future__.get_overwrite_module_params_on_conversion() == True`, # applying an out-of-place operation to a module doesn't bump # the module's original parameters' gradients' version counter. m = nn.Linear(20, 10) m.weight.grad = torch.randn(10, 20).requires_grad_() weight_grad_ref = m.weight.grad m_weight_grad_version_saved = weight_grad_ref._version m = m._apply(lambda t: torch.randn(t.shape)) self.assertEqual(weight_grad_ref._version, m_weight_grad_version_saved) finally: torch.__future__.set_overwrite_module_params_on_conversion(False) def test_type(self): l = nn.Linear(10, 20) net = nn.Module() net.l = l net.l2 = l net.add_module('empty', None) net.register_buffer('indices', torch.LongTensor(1)) net.float() self.assertIsInstance(l.weight.data, torch.FloatTensor) self.assertIsInstance(l.bias.data, torch.FloatTensor) self.assertIsInstance(net.indices, torch.LongTensor) net.double() self.assertIsInstance(l.weight.data, torch.DoubleTensor) self.assertIsInstance(l.bias.data, torch.DoubleTensor) self.assertIsInstance(net.indices, torch.LongTensor) net.to(torch.half) self.assertIsInstance(l.weight.data, torch.HalfTensor) self.assertIsInstance(l.bias.data, torch.HalfTensor) self.assertIsInstance(net.indices, torch.LongTensor) if TEST_CUDA: net.float().cuda() self.assertIsInstance(l.weight.data, torch.cuda.FloatTensor) self.assertIsInstance(l.bias.data, torch.cuda.FloatTensor) self.assertIsInstance(net.indices, torch.cuda.LongTensor) net.cpu() self.assertIsInstance(l.weight.data, torch.FloatTensor) self.assertIsInstance(l.bias.data, torch.FloatTensor) self.assertIsInstance(net.indices, torch.LongTensor) net.to("cuda", torch.double, True) self.assertIsInstance(l.weight.data, torch.cuda.DoubleTensor) self.assertIsInstance(l.bias.data, torch.cuda.DoubleTensor) self.assertIsInstance(net.indices, torch.cuda.LongTensor) net.to(torch.empty(1, device="cuda:0", dtype=torch.half)) self.assertIsInstance(l.weight.data, torch.cuda.HalfTensor) self.assertIsInstance(l.bias.data, torch.cuda.HalfTensor) self.assertIsInstance(net.indices, torch.cuda.LongTensor) net.to(torch.device("cpu"), non_blocking=True) self.assertIsInstance(l.weight.data, torch.HalfTensor) self.assertIsInstance(l.bias.data, torch.HalfTensor) self.assertIsInstance(net.indices, torch.LongTensor) net.to(torch.float) self.assertIsInstance(l.weight.data, torch.FloatTensor) self.assertIsInstance(l.bias.data, torch.FloatTensor) net.to(torch.DoubleTensor(1)) self.assertIsInstance(l.weight.data, torch.DoubleTensor) self.assertIsInstance(l.bias.data, torch.DoubleTensor) if TEST_CUDA: net.to(device='cuda', dtype=torch.float) self.assertIsInstance(l.weight.data, torch.cuda.FloatTensor) self.assertIsInstance(l.bias.data, torch.cuda.FloatTensor) def test_non_leaf_parameters(self): l1 = nn.Linear(10, 10) l2 = nn.Linear(10, 10) def assign_weight(): l2.weight = l1.weight + 2 self.assertRaises(TypeError, assign_weight) # This should work though l2.weight = Parameter(torch.randn(10, 10)) def test_clip_grad_norm(self): l = nn.Linear(10, 10) max_norm = 2 def compute_norm(norm_type): norm_type = float(norm_type) if norm_type != inf: total_norm = 0 for p in l.parameters(): total_norm += p.grad.data.abs().pow(norm_type).sum() return pow(total_norm, 1. / norm_type) else: return max(p.grad.data.abs().max() for p in l.parameters()) def compare_scaling(grads): p_scale = [p.grad.data.div(g).view(-1) for p, g in zip(l.parameters(), grads)] scale = torch.cat(p_scale) self.assertEqual(scale.std(), 0) return scale[0] grads = torch.arange(1., 101).view(10, 10), torch.ones(10).div(1000) for norm_type in [0.5, 1.5, 2, 4, 'inf']: for p, g in zip(l.parameters(), grads): p._grad = g.clone().view_as(p.data) norm_before = compute_norm(norm_type) norm = clip_grad_norm_(l.parameters(), max_norm, norm_type=norm_type) norm_after = compute_norm(norm_type) self.assertEqual(norm, norm_before) self.assertEqual(norm_after, max_norm) self.assertLessEqual(norm_after, norm_before) compare_scaling(grads) # Small gradients should be left unchanged grads = torch.rand(10, 10).div(10000), torch.ones(10).div(500) for norm_type in [0.5, 1.5, 2, 4, 'inf']: for p, g in zip(l.parameters(), grads): p.grad.data.copy_(g) norm_before = compute_norm(norm_type) norm = clip_grad_norm_(l.parameters(), max_norm, norm_type=norm_type) norm_after = compute_norm(norm_type) self.assertEqual(norm, norm_before) self.assertEqual(norm_before, norm_after) self.assertLessEqual(norm_after, max_norm) scale = compare_scaling(grads) self.assertEqual(scale, 1) # Should accept a single Tensor as input p1, p2 = torch.randn(10, 10), torch.randn(10, 10) g = torch.arange(1., 101).view(10, 10) p1._grad = g.clone() p2._grad = g.clone() for norm_type in [0.5, 1.5, 2, 4, 'inf']: clip_grad_norm_(p1, max_norm, norm_type=norm_type) clip_grad_norm_([p2], max_norm, norm_type=norm_type) self.assertEqual(p1.grad, p2.grad) def test_clip_grad_value(self): l = nn.Linear(10, 10) clip_value = 2.5 grad_w, grad_b = torch.arange(-50., 50).view(10, 10).div_(5), torch.ones(10).mul_(2) for grad_list in [[grad_w, grad_b], [grad_w, None]]: for p, g in zip(l.parameters(), grad_list): p._grad = g.clone().view_as(p.data) if g is not None else g clip_grad_value_(l.parameters(), clip_value) for p in filter(lambda p: p.grad is not None, l.parameters()): self.assertLessEqual(p.grad.data.max(), clip_value) self.assertGreaterEqual(p.grad.data.min(), -clip_value) # Should accept a single Tensor as input p1, p2 = torch.randn(10, 10), torch.randn(10, 10) g = torch.arange(-50., 50).view(10, 10).div_(5) p1._grad = g.clone() p2._grad = g.clone() clip_grad_value_(p1, clip_value) clip_grad_value_([p2], clip_value) self.assertEqual(p1.grad, p2.grad) def test_parameters_to_vector(self): conv1 = nn.Conv2d(3, 10, 5) fc1 = nn.Linear(10, 20) model = nn.Sequential(conv1, fc1) vec = parameters_to_vector(model.parameters()) self.assertEqual(vec.size(0), 980) def test_vector_to_parameters(self): conv1 = nn.Conv2d(3, 10, 5) fc1 = nn.Linear(10, 20) model = nn.Sequential(conv1, fc1) vec = torch.arange(0., 980) vector_to_parameters(vec, model.parameters()) sample = next(model.parameters())[0, 0, 0] self.assertTrue(torch.equal(sample.data, vec.data[:5])) # FIXME: Rewrite this test using functions not depending on LAPACK # and remove the `@skipIfNoLapack` (see #70995) # torch/nn/utils/parametrize @skipIfNoLapack def test_register_and_remove_parametrization(self): r"""Test that it is possible to add a few parametrizations on a parameter or a buffer and that removing them restores the initial state It also tests that backpropagating through them works as expected """ # Define a couple matrix parametrizations class Skew(nn.Module): def forward(self, X): X = X.tril(-1) return X - X.T class Orthogonal(nn.Module): def forward(self, X): # Cayley map # If X is skew-symmetric it returns an orthogonal matrix Id = torch.eye(X.size(0), device=X.device) # We call contiguous because solve returns a tensor with strides that are Fortran-contiguous # and autograd raises a performance warning. # This happens when we remove the parametrization with leave_parametrized=True, # which does a set_ with a non-contiguous tensor while the gradient is contiguous return torch.linalg.solve(Id + X, Id - X).contiguous() class Resize(nn.Module): def forward(self, X): return X[[0]] class NoResize(nn.Module): def forward(self, X): return X # Define a couple vector parametrizations class FirstZero(nn.Module): def forward(self, x): return torch.cat([x.new_zeros(1), x[1:]]) class LastZero(nn.Module): def forward(self, x): return torch.cat([x[:-1], x.new_zeros(1)]) model = nn.Linear(8, 8) initial_weight_id = id(model.weight) initial_bias_id = id(model.bias) initial_model = deepcopy(model) # Test unsafe flag with self.assertRaisesRegex(ValueError, "Registering a parametrization may not change the shape of the tensor"): parametrize.register_parametrization(model, "weight", Resize()) # default unsafe = False model(torch.ones(8, 8)) # One parametrization with unsafe=True parametrize.register_parametrization(model, "weight", Resize(), unsafe=True) self.assertTrue(hasattr(model, "parametrizations")) self.assertTrue(parametrize.is_parametrized(model)) self.assertTrue(parametrize.is_parametrized(model, "weight")) self.assertFalse(parametrize.is_parametrized(model, "bias")) self.assertNotIn("weight", model._parameters) A = model.weight self.assertTrue(A.shape[0] == 1) parametrize.remove_parametrizations(model, "weight", leave_parametrized=False) self.assertFalse(hasattr(model, "parametrizations")) self.assertEqual(model.weight, initial_model.weight) self.assertEqual(id(model.weight), initial_weight_id) self.assertEqual(model.__class__, nn.Linear) # Two parametrizations with unsafe=True parametrize.register_parametrization(model, "weight", Resize(), unsafe=True) parametrize.register_parametrization(model, "weight", NoResize(), unsafe=False) self.assertTrue(hasattr(model, "parametrizations")) self.assertTrue(parametrize.is_parametrized(model)) self.assertTrue(parametrize.is_parametrized(model, "weight")) self.assertFalse(parametrize.is_parametrized(model, "bias")) self.assertNotIn("weight", model._parameters) A = model.weight self.assertTrue(A.shape[0] == 1) parametrize.remove_parametrizations(model, "weight", leave_parametrized=False) self.assertFalse(hasattr(model, "parametrizations")) self.assertEqual(model.weight, initial_model.weight) self.assertEqual(id(model.weight), initial_weight_id) self.assertEqual(model.__class__, nn.Linear) # Test unsafe flag doesn't change expected behavior parametrize.register_parametrization(model, "weight", Skew(), unsafe=True) self.assertTrue(hasattr(model, "parametrizations")) self.assertTrue(parametrize.is_parametrized(model)) self.assertTrue(parametrize.is_parametrized(model, "weight")) self.assertFalse(parametrize.is_parametrized(model, "bias")) self.assertNotIn("weight", model._parameters) # Result should be skew-symmetric A = model.weight self.assertEqual(A, -A.T) # Remove and check consistency parametrize.remove_parametrizations(model, "weight", leave_parametrized=False) self.assertFalse(hasattr(model, "parametrizations")) self.assertEqual(model.weight, initial_model.weight) self.assertEqual(id(model.weight), initial_weight_id) self.assertEqual(model.__class__, nn.Linear) # Test one parametrization parametrize.register_parametrization(model, "weight", Skew()) self.assertTrue(hasattr(model, "parametrizations")) self.assertTrue(parametrize.is_parametrized(model)) self.assertTrue(parametrize.is_parametrized(model, "weight")) self.assertFalse(parametrize.is_parametrized(model, "bias")) self.assertNotIn("weight", model._parameters) # Result should be skew-symmetric A = model.weight self.assertEqual(A, -A.T) # Remove and check consistency parametrize.remove_parametrizations(model, "weight", leave_parametrized=False) self.assertFalse(hasattr(model, "parametrizations")) self.assertEqual(model.weight, initial_model.weight) self.assertEqual(id(model.weight), initial_weight_id) self.assertEqual(model.__class__, nn.Linear) # Test two parametrizations at the same time and removing them parametrize.register_parametrization(model, "weight", Skew()) parametrize.register_parametrization(model, "weight", Orthogonal()) # Result should be orthogonal X = model.weight Id = torch.eye(X.size(0), device=X.device) self.assertEqual(X.T @ X, Id) # Structure tests self.assertTrue(hasattr(model, "parametrizations")) self.assertTrue(parametrize.is_parametrized(model)) self.assertTrue(parametrize.is_parametrized(model, "weight")) self.assertFalse(parametrize.is_parametrized(model, "bias")) self.assertIn("weight", model.parametrizations) self.assertNotIn("weight", model._parameters) # Remove parametrize.remove_parametrizations(model, "weight", leave_parametrized=False) self.assertEqual(model.weight, initial_model.weight) self.assertEqual(id(model.weight), initial_weight_id) self.assertFalse(hasattr(model, "parametrizations")) self.assertEqual(model.__class__, nn.Linear) # Add everything parametrize.register_parametrization(model, "weight", Skew()) parametrize.register_parametrization(model, "weight", Orthogonal()) parametrize.register_parametrization(model, "bias", FirstZero()) parametrize.register_parametrization(model, "bias", LastZero()) # Basic tests self.assertTrue(parametrize.is_parametrized(model)) self.assertTrue(parametrize.is_parametrized(model, "weight")) self.assertTrue(parametrize.is_parametrized(model, "bias")) self.assertEqual(model.bias[0].item(), 0.) self.assertEqual(model.bias[-1].item(), 0.) self.assertEqual(len(list(model.parameters())), 2) # Nothing weird has happpened # Should not throw sgd = torch.optim.SGD(model.parameters(), lr=0.01) weight_copy = model.weight.clone() bias_copy = model.bias.clone() sgd.zero_grad() (model.weight.T @ model.bias).sum().backward() sgd.step() self.assertNotEqual(model.weight, weight_copy) self.assertNotEqual(model.bias, bias_copy) # Remove first parametrization. # Check that the model is still parametrized and so is the second parameter parametrize.remove_parametrizations(model, "weight", leave_parametrized=False) self.assertTrue(parametrize.is_parametrized(model)) # Still parametrized self.assertFalse(parametrize.is_parametrized(model, "weight")) # Parametrization removed self.assertTrue(parametrize.is_parametrized(model, "bias")) # Still parametrized self.assertEqual(model.bias[0].item(), 0.) # Still parametrized self.assertEqual(model.bias[-1].item(), 0.) # Still parametrized self.assertNotEqual(model.weight, initial_model.weight) # Has been updated self.assertEqual(id(model.weight), initial_weight_id) # Keeps the same id self.assertEqual(len(list(model.parameters())), 2) # Nothing weird has happened # Should not throw weight_copy = model.weight.clone() bias_copy = model.bias.clone() sgd.zero_grad() (model.weight.T @ model.bias).sum().backward() sgd.step() self.assertNotEqual(model.weight, weight_copy) self.assertNotEqual(model.bias, bias_copy) # Remove the second parametrization. # Check that the module is not parametrized parametrize.remove_parametrizations(model, "bias", leave_parametrized=False) self.assertFalse(parametrize.is_parametrized(model)) # Not parametrized self.assertNotEqual(model.bias, initial_model.bias) # Has been updated self.assertNotEqual(model.bias[0].item(), 0.) # Not parametrized self.assertNotEqual(model.bias[-1].item(), 0.) # Not parametrized self.assertEqual(id(model.bias), initial_bias_id) # Keeps the same id self.assertFalse(hasattr(model, "parametrizations")) # Not parametrized the module self.assertEqual(model.__class__, nn.Linear) # Resores the previous class self.assertEqual(len(list(model.parameters())), 2) # Nothing weird has happeed # Should not throw things are updated weight_copy = model.weight.clone() bias_copy = model.bias.clone() sgd.zero_grad() (model.weight.T @ model.bias).sum().backward() sgd.step() self.assertNotEqual(model.weight, weight_copy) self.assertNotEqual(model.bias, bias_copy) # Test leave_parametrized=True for _ in range(2): parametrize.register_parametrization(model, "weight", Skew()) parametrize.register_parametrization(model, "weight", Orthogonal()) parametrize.remove_parametrizations(model, "weight", leave_parametrized=True) # We didn't change the dtype nor had multiple inputs, so the id should be the same self.assertEqual(id(model.weight), initial_weight_id) self.assertEqual(id(model.bias), initial_bias_id) # Should not throw. Things are updated weight_copy = model.weight.clone() bias_copy = model.bias.clone() sgd.zero_grad() (model.weight.T @ model.bias).sum().backward() sgd.step() self.assertNotEqual(model.weight, weight_copy) self.assertNotEqual(model.bias, bias_copy) def test_register_and_remove_nested_parametrization(self): r"""Test that it is possible to nest the parametrizations meaning that the original param is parametrized again """ class Skew(nn.Module): def forward(self, X): X = X.tril(-1) return X - X.T model = nn.Linear(8, 8) # Add top level parametrization parametrize.register_parametrization(model, "weight", Skew()) self.assertTrue(hasattr(model, "parametrizations")) self.assertTrue(parametrize.is_parametrized(model)) self.assertTrue(parametrize.is_parametrized(model, "weight")) self.assertFalse(parametrize.is_parametrized(model, "bias")) self.assertNotIn("weight", model._parameters) # Result should be skew-symmetric A = model.weight self.assertEqual(A, -A.T) # Add nested parametrization param_mod = model.parametrizations.weight self.assertFalse(hasattr(param_mod, "parametrizations")) self.assertFalse(parametrize.is_parametrized(param_mod)) self.assertFalse(parametrize.is_parametrized(param_mod, "original")) parametrize.register_parametrization(param_mod, "original", Skew()) self.assertTrue(hasattr(param_mod, "parametrizations")) self.assertTrue(parametrize.is_parametrized(param_mod)) self.assertTrue(parametrize.is_parametrized(param_mod, "original")) self.assertNotIn("original", param_mod._parameters) # Result should be skew-symmetric A = param_mod.original self.assertEqual(A, -A.T) # Remove nested param and check consistency parametrize.remove_parametrizations(param_mod, "original", leave_parametrized=False) self.assertFalse(hasattr(param_mod, "parametrizations")) self.assertEqual(param_mod.__class__, parametrize.ParametrizationList) # Remove top level and check consistency parametrize.remove_parametrizations(model, "weight", leave_parametrized=False) self.assertFalse(hasattr(model, "parametrizations")) self.assertEqual(model.__class__, nn.Linear) def test_register_and_remove_buffer_parametrization(self): r"""Test that it is possible to add and remove parametrizations on buffers""" # Define a couple vector parametrizations class FirstZero(nn.Module): def forward(self, x): return torch.cat([x.new_zeros(1), x[1:]]) class LastZero(nn.Module): def forward(self, x): return torch.cat([x[:-1], x.new_zeros(1)]) model = nn.Linear(8, 8) # Instantiate parametrizations on buffers. It should work as expected delattr(model, "bias") model.register_buffer("bias", torch.ones(8)) parametrize.register_parametrization(model, "bias", FirstZero()) parametrize.register_parametrization(model, "bias", LastZero()) self.assertTrue(parametrize.is_parametrized(model)) self.assertTrue(parametrize.is_parametrized(model, "bias")) self.assertEqual(model.bias[0].item(), 0.) self.assertEqual(model.bias[-1].item(), 0.) self.assertTrue((model.bias[1:-1] == torch.ones(6)).all()) self.assertEqual(len(list(model.parameters())), 1) # Remove parametrizations on buffers. It should work as expected parametrize.remove_parametrizations(model, "bias", leave_parametrized=True) self.assertFalse(parametrize.is_parametrized(model)) self.assertFalse(parametrize.is_parametrized(model, "bias")) self.assertEqual(model.bias[0].item(), 0.) self.assertEqual(model.bias[-1].item(), 0.) self.assertTrue((model.bias[1:-1] == torch.ones(6)).all()) self.assertEqual(len(list(model.parameters())), 1) # FIXME: Rewrite this test using functions not depending on LAPACK # and remove the `@skipIfNoLapack` (see #70995) @skipIfNoLapack def test_serialization_parametrization(self): r"""Test that it is possible to serialize a parametrized model via state_dict""" # A stateful parametrization class Orthogonal(nn.Module): def __init__(self, n): super().__init__() self.register_buffer("id", torch.eye(n)) self.register_buffer("B", torch.empty(n, n)) init.orthogonal_(self.B) def forward(self, X): A = X.triu(1) A = A - A.T return self.B @ torch.linalg.solve(self.id + A, self.id - A) def get_model(): model = torch.nn.Sequential( torch.nn.Linear(5, 5), torch.nn.ReLU(), torch.nn.Linear(5, 1), ) parametrize.register_parametrization(model[0], "weight", Orthogonal(5)) return model model = get_model() prev_weight = model[0].weight prev_B = model[0].parametrizations.weight[0].B new_model = get_model() with TemporaryFileName() as fname: torch.save(model.state_dict(), fname) new_model.load_state_dict(torch.load(fname)) # Integrity tests self.assertTrue(parametrize.is_parametrized(new_model[0], "weight")) self.assertEqual(prev_weight, new_model[0].weight) self.assertEqual(prev_B, new_model[0].parametrizations.weight[0].B) # Trying to save the whole parametrized model raises with self.assertRaisesRegex(RuntimeError, "state_dict"): with TemporaryFileName() as fname: torch.save(model, fname) # FIXME: Rewrite this test using functions not depending on LAPACK # and remove the `@skipIfNoLapack` (see #70995) @skipIfNoLapack def test_initialization_parametrization(self): r"""Test that it is possible to initialize a parametrization when it implements a `right_inverse` method """ class Skew(nn.Module): def forward(self, X): A = X.triu(1) return A - A.T def is_skew(self, A): return torch.allclose(A, -A.T, atol=1e-6) def right_inverse(self, X): if not self.is_skew(X): raise ValueError("The matrix is not skew-symmetric.") return X.triu(1) # Implements a Cayley map where right_inverse is not quite the inverse of forward class Orthogonal(nn.Module): def __init__(self, n): super().__init__() self.register_buffer("B", torch.eye(n)) def forward(self, X): Id = torch.eye(X.size(0)) return self.B @ torch.linalg.solve(Id + X, Id - X) def is_orthogonal(self, X): Id = torch.eye(X.size(0)) return torch.allclose(X.T @ X, Id, atol=1e-4) def right_inverse(self, X): if not self.is_orthogonal(X): raise ValueError("The input is not orthogonal.") # cayley(0) == Id, so B @ cayley(0) == B self.B = X return torch.zeros_like(X) N = 5 model = nn.Linear(N, N) # Register the skew-symmetric constraint. The result is now skew-symmetric skew = Skew() # Make the weight skew-symmetric before registering the parametrization with torch.no_grad(): model.weight.set_(skew(model.weight)) parametrize.register_parametrization(model, "weight", skew) X = torch.rand(N, N) # X is not skew-symmetric, so it throws an error with self.assertRaises(ValueError): model.weight = X # Make X skew-symmetric X = X - X.T model.weight = X self.assertEqual(model.parametrizations.weight.original, X.triu(1)) self.assertEqual(model.weight, X) # Having several parametrizations registered should work in the same way parametrize.register_parametrization(model, "weight", Orthogonal(N)) # Register now the Cayley map. The result is now orthogonal X = torch.rand(N, N) # X is not orthogonal, so it throws an error with self.assertRaises(ValueError): model.weight = X init.orthogonal_(X) model.weight = X self.assertEqual(model.weight, X) self.assertEqual(model.parametrizations.weight.original, torch.zeros_like(X)) def test_errors_unparametrized_tensor_parametrization(self): # Test errors when registering a parametrization on an unparametrized tensor module = nn.Linear(3, 4) weight_init = module.weight.clone() class Identity(nn.Module): def forward(self, x): return x # Register a parametrization on a non-existing parameter throws with self.assertRaisesRegex(ValueError, "does not have a parameter"): parametrize.register_parametrization(module, "foo", Identity()) self.assertFalse(parametrize.is_parametrized(module)) # Removing parametrizations from an unparametrized tensor throws with self.assertRaisesRegex(ValueError, "does not have a parametrization"): parametrize.remove_parametrizations(module, "bias") self.assertFalse(parametrize.is_parametrized(module)) # A correct parametrization with several outputs class Sum(nn.Module): def forward(self, x, y): return x + y def right_inverse(self, z): return z, torch.zeros_like(z) parametrize.register_parametrization(module, "weight", Sum()) # Cannot remove a parametrization with several outputs with `leave_parametrized=False` with self.assertRaisesRegex(ValueError, "leave_parametrized=False"): parametrize.remove_parametrizations(module, "weight", leave_parametrized=False) parametrize.remove_parametrizations(module, "weight", leave_parametrized=True) # A parametrization with an incorrect number of outputs class WrongNumberParams(nn.Module): def forward(self, x, y, z): return x + y + z def right_inverse(self, w): return w, torch.zeros_like(w) # Makes param(*param.right_inverse(X)) fail with self.assertRaisesRegex(TypeError, "positional argument"): parametrize.register_parametrization(module, "weight", WrongNumberParams()) self.assertFalse(parametrize.is_parametrized(module)) # A parametrization with a right_inverse that does not return a Tensor or Sequence[Tensor] class WrongRightInverse(Identity): def right_inverse(self, z): return None # right_inverse should return a Tensor or a Sequence[Tensor] with self.assertRaisesRegex(ValueError, "Tensor or a Sequence of"): parametrize.register_parametrization(module, "weight", WrongRightInverse()) self.assertFalse(parametrize.is_parametrized(module)) # If it's a sequence, it must to be a sequence of tensors class WrongRightInverseSequence(nn.Module): def forward(self, x, y): return x def right_inverse(self, z): return None, z with self.assertRaisesRegex(ValueError, "of the sequence with type"): parametrize.register_parametrization(module, "weight", WrongRightInverseSequence()) self.assertFalse(parametrize.is_parametrized(module)) # A parametrization from one tensor to one tensor that changes the dtype class ChangeDtypeInverse(nn.Module): def forward(self, x): return x.float() def right_inverse(self, w): return w.bool() # For parametrizations that return one tensor, right_inverse may not change the dtype with self.assertRaisesRegex(ValueError, "outputs one tensor, it may not change the dtype"): parametrize.register_parametrization(module, "weight", ChangeDtypeInverse()) self.assertFalse(parametrize.is_parametrized(module)) # Doesn't return a tensor class NotTensor(nn.Module): def forward(self, x): return 2 # Forward must return a tensor with self.assertRaisesRegex(ValueError, "must return a tensor"): parametrize.register_parametrization(module, "weight", NotTensor()) self.assertFalse(parametrize.is_parametrized(module)) # A parametrization from one tensor to one tensor that changes the dtype class ChangeDtype(nn.Module): def forward(self, x): return x.bool() # forward should not change the initial dtype with self.assertRaisesRegex(ValueError, "may not change the dtype"): parametrize.register_parametrization(module, "weight", ChangeDtype()) self.assertFalse(parametrize.is_parametrized(module)) # Change shape class ChangeShape(nn.Module): def forward(self, x): return x[:-1] # forward should not change the original shape with self.assertRaisesRegex(ValueError, "may not change the shape"): parametrize.register_parametrization(module, "weight", ChangeShape()) self.assertFalse(parametrize.is_parametrized(module)) # Many to one that changes dtype class ChangeDtypeMulti(nn.Module): def forward(self, x, y): return (x + y).bool() def right_inverse(self, w): return w, w + 1 # forward should not change the original shape even for parametrizations with many inputs with self.assertRaisesRegex(ValueError, "may not change the dtype"): parametrize.register_parametrization(module, "weight", ChangeDtypeMulti()) self.assertFalse(parametrize.is_parametrized(module)) # Returning a sequence of size one, although weird, it's correct class SequenceLen1(nn.Module): def forward(self, x): return x def right_inverse(self, w): return (w,) parametrize.register_parametrization(module, "weight", SequenceLen1()) self.assertTrue(hasattr(module.parametrizations.weight, "original0")) self.assertFalse(hasattr(module.parametrizations.weight, "original1")) _ = module.weight # Does not throw self.assertTrue(parametrize.is_parametrized(module)) parametrize.remove_parametrizations(module, "weight", leave_parametrized=True) # None of the operations above should have altered the weight self.assertFalse(parametrize.is_parametrized(module)) self.assertEqual(module.weight, weight_init) def test_errors_parametrized_tensor_parametrization(self): # Test errors when registering a parametrization on a parametrized tensor class Identity(nn.Module): def forward(self, x): return x module = nn.Linear(3, 4) parametrize.register_parametrization(module, "weight", Identity()) # Has to return a tensor class WrongReturn(nn.Module): def forward(self, x): return x, x with self.assertRaisesRegex(ValueError, "must return a tensor"): parametrize.register_parametrization(module, "weight", WrongReturn()) self.assertTrue(parametrize.is_parametrized(module)) self.assertEqual(len(module.parametrizations.weight), 1) self.assertTrue(isinstance(module.parametrizations.weight[0], Identity)) # Cannot change dtype class ChangeDtype(nn.Module): def forward(self, x): return x.bool() with self.assertRaisesRegex(ValueError, "may not change the dtype"): parametrize.register_parametrization(module, "weight", ChangeDtype()) self.assertTrue(parametrize.is_parametrized(module)) self.assertEqual(len(module.parametrizations.weight), 1) self.assertTrue(isinstance(module.parametrizations.weight[0], Identity)) # Cannot change shape class ChangeShape(nn.Module): def forward(self, x): return x[:-1] with self.assertRaisesRegex(ValueError, "may not change the shape"): parametrize.register_parametrization(module, "weight", ChangeShape()) self.assertTrue(parametrize.is_parametrized(module)) self.assertEqual(len(module.parametrizations.weight), 1) self.assertTrue(isinstance(module.parametrizations.weight[0], Identity)) # The following checks are mostly due to bugs in the code of the parametrization # right_inverse has to return a tensor class WrongReturnInverse(Identity): def right_inverse(self, x): return x, x with self.assertRaisesRegex(ValueError, "right_inverse must return a tensor"): parametrize.register_parametrization(module, "weight", WrongReturnInverse()) self.assertTrue(parametrize.is_parametrized(module)) self.assertEqual(len(module.parametrizations.weight), 1) self.assertTrue(isinstance(module.parametrizations.weight[0], Identity)) # Cannot change dtype class ChangeDtypeInverse(Identity): def right_inverse(self, x): return x.bool() with self.assertRaisesRegex(ValueError, "must have the same dtype"): parametrize.register_parametrization(module, "weight", ChangeDtypeInverse()) self.assertTrue(parametrize.is_parametrized(module)) self.assertEqual(len(module.parametrizations.weight), 1) self.assertTrue(isinstance(module.parametrizations.weight[0], Identity)) # Cannot change shape class ChangeShapeInverse(Identity): def right_inverse(self, x): return x[:-1] with self.assertRaisesRegex(ValueError, "must have the same shape"): parametrize.register_parametrization(module, "weight", ChangeShapeInverse()) self.assertTrue(parametrize.is_parametrized(module)) self.assertEqual(len(module.parametrizations.weight), 1) self.assertTrue(isinstance(module.parametrizations.weight[0], Identity)) # FIXME: Rewrite this test using functions not depending on LAPACK # and remove the `@skipIfNoLapack` (see #70995) @skipIfNoLapack def test_multiple_inputs_parametrization(self): # A parametrization with several outputs class RankOne(nn.Module): def forward(self, x, y): # Form a rank-1 matrix from a pair of vectors return x.unsqueeze(-1) @ y.unsqueeze(-2) def right_inverse(self, Y): # We project the given matrix onto the rank 1 matrices U, S, Vh = torch.linalg.svd(Y, full_matrices=False) # S is ordered in a decreasing way. s0_sqrt = S[0].sqrt().unsqueeze(-1) return U[..., :, 0] * s0_sqrt, Vh[..., 0, :] * s0_sqrt # Simple parametrisation class Double(nn.Module): def forward(self, x): return 2.0 * x def right_inverse(self, w): return 0.5 * w model = nn.Linear(3, 3) # Test one parametrization parametrize.register_parametrization(model, "weight", RankOne()) self.assertTrue(hasattr(model, "parametrizations")) self.assertTrue(parametrize.is_parametrized(model)) self.assertTrue(parametrize.is_parametrized(model, "weight")) self.assertTrue(hasattr(model.parametrizations.weight, "original0")) self.assertIn("original0", model.parametrizations.weight._parameters) self.assertTrue(hasattr(model.parametrizations.weight, "original1")) self.assertIn("original1", model.parametrizations.weight._parameters) self.assertFalse(parametrize.is_parametrized(model, "bias")) self.assertNotIn("weight", model._parameters) # Result should be rank 1 self.assertEqual(torch.linalg.matrix_rank(model.weight).item(), 1) with self.assertRaisesRegex(ValueError, "leave_parametrized=False"): # Cannot remove a parametrization with multiple inputs and not leave it parametrized parametrize.remove_parametrizations(model, "weight", leave_parametrized=False) # Remove parametrization and check consistency parametrize.remove_parametrizations(model, "weight", leave_parametrized=True) self.assertFalse(hasattr(model, "parametrizations")) self.assertEqual(model.__class__, nn.Linear) self.assertFalse(parametrize.is_parametrized(model)) self.assertEqual(torch.linalg.matrix_rank(model.weight).item(), 1) self.assertIn("weight", model._parameters) # Registering parametrizations with one input on top of one with multiple inputs should work init_weight = model.weight.clone() parametrize.register_parametrization(model, "weight", RankOne()) # Projecting a rank 1 matrix onto the matrices of rank one does not change the matrix self.assertEqual(init_weight, model.weight) parametrize.register_parametrization(model, "weight", Double()) # The matrix now is twice the initial matrix self.assertEqual(2.0 * init_weight, model.weight) # Multiplying by a scalar does not change the rank self.assertEqual(torch.linalg.matrix_rank(model.weight).item(), 1) # The model has now three parameters self.assertEqual(len(list(model.parameters())), 3) sgd = torch.optim.SGD(model.parameters(), lr=0.1) # Test backward. Should not throw for _ in range(2): sgd.zero_grad() loss = (model.weight.T @ model.bias).sum() loss.backward() sgd.step() # Same drill as before, removing should work as expected with self.assertRaisesRegex(ValueError, "leave_parametrized=False"): # Cannot remove a parametrization with multiple inputs and not leave it parametrized parametrize.remove_parametrizations(model, "weight", leave_parametrized=False) # Remove parametrization and check consistency parametrize.remove_parametrizations(model, "weight", leave_parametrized=True) self.assertFalse(hasattr(model, "parametrizations")) self.assertEqual(model.__class__, nn.Linear) self.assertFalse(parametrize.is_parametrized(model)) self.assertEqual(torch.linalg.matrix_rank(model.weight).item(), 1) self.assertIn("weight", model._parameters) # The model has now two parameters self.assertEqual(len(list(model.parameters())), 2) # Test backward. Should not throw sgd = torch.optim.SGD(model.parameters(), lr=0.1) for _ in range(2): sgd.zero_grad() loss = (model.weight.T @ model.bias).sum() loss.backward() sgd.step() # FIXME: Rewrite this test using functions not depending on LAPACK # and remove the `@skipIfNoLapack` (see #70995) @skipIfNoLapack def test_caching_parametrization(self): r"""Test the caching system of a parametrization""" # Define a couple matrix parametrizations class Skew(nn.Module): def forward(self, X): X = X.tril(-1) return X - X.T class Orthogonal(nn.Module): def forward(self, X): Id = torch.eye(X.size(0), device=X.device) return torch.linalg.solve(Id + X, Id - X) model = nn.Linear(5, 5) parametrize.register_parametrization(model, "weight", Skew()) parametrize.register_parametrization(model, "weight", Orthogonal()) # Test that the caching system works with parametrize.cached(): X = model.weight Y = model.weight self.assertEqual(id(X), id(Y)) def test_parametrization_same_training_mode(self): r"""Test training mode updated on parametrization registration""" class Identity(nn.Module): def forward(self, X): return X module = nn.Linear(4, 4) module.eval() parametrize.register_parametrization(module, "weight", Identity()) self.assertFalse(module.parametrizations.weight[0].training) module.train() parametrize.register_parametrization(module, "weight", Identity().eval()) self.assertTrue(module.parametrizations.weight[0].training) self.assertTrue(module.parametrizations.weight[1].training) # torch/nn/utils/prune.py @unittest.skipIf(not TEST_NUMPY, "numpy not found") def test_validate_pruning_amount_init(self): r"""Test the first util function that validates the pruning amount requested by the user the moment the pruning method is initialized. This test checks that the expected errors are raised whenever the amount is invalid. The original function runs basic type checking + value range checks. It doesn't check the validity of the pruning amount with respect to the size of the tensor to prune. That's left to `_validate_pruning_amount`, tested below. """ # neither float not int should raise TypeError with self.assertRaises(TypeError): prune._validate_pruning_amount_init(amount="I'm a string") # float not in [0, 1] should raise ValueError with self.assertRaises(ValueError): prune._validate_pruning_amount_init(amount=1.1) with self.assertRaises(ValueError): prune._validate_pruning_amount_init(amount=20.) # negative int should raise ValueError with self.assertRaises(ValueError): prune._validate_pruning_amount_init(amount=-10) # all these should pass without errors because they're valid amounts prune._validate_pruning_amount_init(amount=0.34) prune._validate_pruning_amount_init(amount=1500) prune._validate_pruning_amount_init(amount=0) prune._validate_pruning_amount_init(amount=0.) prune._validate_pruning_amount_init(amount=1) prune._validate_pruning_amount_init(amount=1.) self.assertTrue(True) @unittest.skipIf(not TEST_NUMPY, "numpy not found") def test_validate_pruning_amount(self): r"""Tests the second util function that validates the pruning amount requested by the user, this time with respect to the size of the tensor to prune. The rationale is that if the pruning amount, converted to absolute value of units to prune, is larger than the number of units in the tensor, then we expect the util function to raise a value error. """ # if amount is int and amount > tensor_size, raise ValueError with self.assertRaises(ValueError): prune._validate_pruning_amount(amount=20, tensor_size=19) # amount is a float so this should not raise an error prune._validate_pruning_amount(amount=0.3, tensor_size=0) # this is okay prune._validate_pruning_amount(amount=19, tensor_size=20) prune._validate_pruning_amount(amount=0, tensor_size=0) prune._validate_pruning_amount(amount=1, tensor_size=1) self.assertTrue(True) @unittest.skipIf(not TEST_NUMPY, "numpy not found") def test_compute_nparams_to_prune(self): r"""Test that requested pruning `amount` gets translated into the correct absolute number of units to prune. """ self.assertEqual( prune._compute_nparams_toprune(amount=0, tensor_size=15), 0 ) self.assertEqual( prune._compute_nparams_toprune(amount=10, tensor_size=15), 10 ) # if 1 is int, means 1 unit self.assertEqual( prune._compute_nparams_toprune(amount=1, tensor_size=15), 1 ) # if 1. is float, means 100% of units self.assertEqual( prune._compute_nparams_toprune(amount=1., tensor_size=15), 15 ) self.assertEqual( prune._compute_nparams_toprune(amount=0.4, tensor_size=17), 7 ) def test_random_pruning_sizes(self): r"""Test that the new parameters and buffers created by the pruning method have the same size as the input tensor to prune. These, in fact, correspond to the pruned version of the tensor itself, its mask, and its original copy, so the size must match. """ # fixturize test # TODO: add other modules modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)] names = ['weight', 'bias'] for m in modules: for name in names: with self.subTest(m=m, name=name): original_tensor = getattr(m, name) prune.random_unstructured(m, name=name, amount=0.1) # mask has the same size as tensor being pruned self.assertEqual( original_tensor.size(), getattr(m, name + '_mask').size() ) # 'orig' tensor has the same size as the original tensor self.assertEqual( original_tensor.size(), getattr(m, name + '_orig').size() ) # new tensor has the same size as the original tensor self.assertEqual( original_tensor.size(), getattr(m, name).size() ) def test_random_pruning_orig(self): r"""Test that original tensor is correctly stored in 'orig' after pruning is applied. Important to make sure we don't lose info about the original unpruned parameter. """ # fixturize test # TODO: add other modules modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)] names = ['weight', 'bias'] for m in modules: for name in names: with self.subTest(m=m, name=name): # tensor prior to pruning original_tensor = getattr(m, name) prune.random_unstructured(m, name=name, amount=0.1) self.assertEqual( original_tensor, getattr(m, name + '_orig') ) def test_random_pruning_new_weight(self): r"""Test that module.name now contains a pruned version of the original tensor obtained from multiplying it by the mask. """ # fixturize test # TODO: add other modules modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)] names = ['weight', 'bias'] for m in modules: for name in names: with self.subTest(m=m, name=name): # tensor prior to pruning original_tensor = getattr(m, name) prune.random_unstructured(m, name=name, amount=0.1) # weight = weight_orig * weight_mask self.assertEqual( getattr(m, name), getattr(m, name + '_orig') * getattr(m, name + '_mask').to( dtype=original_tensor.dtype ), ) def test_identity_pruning(self): r"""Test that a mask of 1s does not change forward or backward. """ input_ = torch.ones(1, 5) m = nn.Linear(5, 2) y_prepruning = m(input_) # output prior to pruning # compute grad pre-pruning and check it's equal to all ones y_prepruning.sum().backward() old_grad_weight = m.weight.grad.clone() # don't grab pointer! self.assertEqual(old_grad_weight, torch.ones_like(m.weight)) old_grad_bias = m.bias.grad.clone() self.assertEqual(old_grad_bias, torch.ones_like(m.bias)) # remove grads m.zero_grad() # force the mask to be made of all 1s prune.identity(m, name="weight") # with mask of 1s, output should be identical to no mask y_postpruning = m(input_) self.assertEqual(y_prepruning, y_postpruning) # with mask of 1s, grad should be identical to no mask y_postpruning.sum().backward() self.assertEqual(old_grad_weight, m.weight_orig.grad) self.assertEqual(old_grad_bias, m.bias.grad) # calling forward twice in a row shouldn't change output y1 = m(input_) y2 = m(input_) self.assertEqual(y1, y2) def test_random_pruning_0perc(self): r"""Test that a mask of 1s does not change forward or backward. """ input_ = torch.ones(1, 5) m = nn.Linear(5, 2) y_prepruning = m(input_) # output prior to pruning # compute grad pre-pruning and check it's equal to all ones y_prepruning.sum().backward() old_grad_weight = m.weight.grad.clone() # don't grab pointer! self.assertEqual(old_grad_weight, torch.ones_like(m.weight)) old_grad_bias = m.bias.grad.clone() self.assertEqual(old_grad_bias, torch.ones_like(m.bias)) # remove grads m.zero_grad() # force the mask to be made of all 1s with mock.patch( "torch.nn.utils.prune.RandomUnstructured.compute_mask" ) as compute_mask: compute_mask.return_value = torch.ones_like(m.weight) prune.random_unstructured(m, name='weight', amount=0.9) # amount won't count # with mask of 1s, output should be identical to no mask y_postpruning = m(input_) self.assertEqual(y_prepruning, y_postpruning) # with mask of 1s, grad should be identical to no mask y_postpruning.sum().backward() self.assertEqual(old_grad_weight, m.weight_orig.grad) self.assertEqual(old_grad_bias, m.bias.grad) # calling forward twice in a row shouldn't change output y1 = m(input_) y2 = m(input_) self.assertEqual(y1, y2) def test_random_pruning(self): input_ = torch.ones(1, 5) m = nn.Linear(5, 2) # define custom mask to assign with mock mask = torch.ones_like(m.weight) mask[1, 0] = 0 mask[0, 3] = 0 # check grad is zero for masked weights with mock.patch( "torch.nn.utils.prune.RandomUnstructured.compute_mask" ) as compute_mask: compute_mask.return_value = mask prune.random_unstructured(m, name='weight', amount=0.9) y_postpruning = m(input_) y_postpruning.sum().backward() # weight_orig is the parameter, so it's the tensor that will accumulate the grad self.assertEqual(m.weight_orig.grad, mask) # all 1s, except for masked units self.assertEqual(m.bias.grad, torch.ones_like(m.bias)) # make sure that weight_orig update doesn't modify [1, 0] and [0, 3] old_weight_orig = m.weight_orig.clone() # update weights learning_rate = 1. for p in m.parameters(): p.data.sub_(p.grad.data * learning_rate) # since these are pruned, they should not be updated self.assertEqual(old_weight_orig[1, 0], m.weight_orig[1, 0]) self.assertEqual(old_weight_orig[0, 3], m.weight_orig[0, 3]) def test_random_pruning_forward(self): r"""check forward with mask (by hand). """ input_ = torch.ones(1, 5) m = nn.Linear(5, 2) # define custom mask to assign with mock mask = torch.zeros_like(m.weight) mask[1, 0] = 1 mask[0, 3] = 1 with mock.patch( "torch.nn.utils.prune.RandomUnstructured.compute_mask" ) as compute_mask: compute_mask.return_value = mask prune.random_unstructured(m, name='weight', amount=0.9) yhat = m(input_) self.assertEqual(yhat[0, 0], m.weight_orig[0, 3] + m.bias[0]) self.assertEqual(yhat[0, 1], m.weight_orig[1, 0] + m.bias[1]) def test_remove_pruning_forward(self): r"""Remove pruning and check forward is unchanged from previous pruned state. """ input_ = torch.ones(1, 5) m = nn.Linear(5, 2) # define custom mask to assign with mock mask = torch.ones_like(m.weight) mask[1, 0] = 0 mask[0, 3] = 0 # check grad is zero for masked weights with mock.patch( "torch.nn.utils.prune.RandomUnstructured.compute_mask" ) as compute_mask: compute_mask.return_value = mask prune.random_unstructured(m, name='weight', amount=0.9) y_postpruning = m(input_) prune.remove(m, 'weight') y_postremoval = m(input_) self.assertEqual(y_postpruning, y_postremoval) def test_pruning_id_consistency(self): r"""Test that pruning doesn't change the id of the parameters, which would otherwise introduce issues with pre-existing optimizers that point to old parameters. """ m = nn.Linear(5, 2, bias=False) tensor_id = id(list(m.parameters())[0]) prune.random_unstructured(m, name="weight", amount=0.9) self.assertEqual(tensor_id, id(list(m.parameters())[0])) prune.remove(m, "weight") self.assertEqual(tensor_id, id(list(m.parameters())[0])) def test_random_pruning_pickle(self): modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)] names = ['weight', 'bias'] for m in modules: for name in names: with self.subTest(m=m, name=name): prune.random_unstructured(m, name=name, amount=0.1) m_new = pickle.loads(pickle.dumps(m)) self.assertIsInstance(m_new, type(m)) def test_multiple_pruning_calls(self): # if you call pruning twice, the hook becomes a PruningContainer m = nn.Conv3d(2, 2, 2) prune.l1_unstructured(m, name='weight', amount=0.1) weight_mask0 = m.weight_mask # save it for later sanity check # prune again prune.ln_structured(m, name='weight', amount=0.3, n=2, dim=0) hook = next(iter(m._forward_pre_hooks.values())) self.assertIsInstance( hook, torch.nn.utils.prune.PruningContainer ) # check that container._tensor_name is correctly set no matter how # many pruning methods are in the container self.assertEqual(hook._tensor_name, 'weight') # check that the pruning container has the right length # equal to the number of pruning iters self.assertEqual(len(hook), 2) # m.weight has been pruned twice # check that the entries of the pruning container are of the expected # type and in the expected order self.assertIsInstance(hook[0], torch.nn.utils.prune.L1Unstructured) self.assertIsInstance(hook[1], torch.nn.utils.prune.LnStructured) # check that all entries that are 0 in the 1st mask are 0 in the # 2nd mask too self.assertTrue(torch.all(m.weight_mask[weight_mask0 == 0] == 0)) # prune again prune.ln_structured(m, name='weight', amount=0.1, n=float('inf'), dim=1) # check that container._tensor_name is correctly set no matter how # many pruning methods are in the container hook = next(iter(m._forward_pre_hooks.values())) self.assertEqual(hook._tensor_name, 'weight') def test_pruning_container(self): # create an empty container container = prune.PruningContainer() container._tensor_name = 'test' self.assertEqual(len(container), 0) p = prune.L1Unstructured(amount=2) p._tensor_name = 'test' # test adding a pruning method to a container container.add_pruning_method(p) # test error raised if tensor name is different q = prune.L1Unstructured(amount=2) q._tensor_name = 'another_test' with self.assertRaises(ValueError): container.add_pruning_method(q) # test that adding a non-pruning method object to a pruning container # raises a TypeError with self.assertRaises(TypeError): container.add_pruning_method(10) with self.assertRaises(TypeError): container.add_pruning_method('ugh') def test_pruning_container_compute_mask(self): r"""Test `compute_mask` of pruning container with a known `t` and `default_mask`. Indirectly checks that Ln structured pruning is acting on the right axis. """ # create an empty container container = prune.PruningContainer() container._tensor_name = 'test' # 1) test unstructured pruning # create a new pruning method p = prune.L1Unstructured(amount=2) p._tensor_name = 'test' # add the pruning method to the container container.add_pruning_method(p) # create tensor to be pruned t = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).to(dtype=torch.float32) # create prior mask by hand default_mask = torch.tensor([[1, 1, 1, 0], [1, 1, 0, 1]]) # since we are pruning the two lowest magnitude units, the outcome of # the calculation should be this: expected_mask = torch.tensor([[0, 0, 1, 0], [1, 1, 0, 1]]) computed_mask = container.compute_mask(t, default_mask) # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 self.assertEqualIgnoreType(expected_mask, computed_mask) # 2) test structured pruning q = prune.LnStructured(amount=1, n=2, dim=0) q._tensor_name = 'test' container.add_pruning_method(q) # since we are pruning the lowest magnitude one of the two rows, the # outcome of the calculation should be this: expected_mask = torch.tensor([[0, 0, 0, 0], [1, 1, 0, 1]]) computed_mask = container.compute_mask(t, default_mask) # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 self.assertEqualIgnoreType(expected_mask, computed_mask) # 2) test structured pruning, along another axis r = prune.LnStructured(amount=1, n=2, dim=1) r._tensor_name = 'test' container.add_pruning_method(r) # since we are pruning the lowest magnitude of the four columns, the # outcome of the calculation should be this: expected_mask = torch.tensor([[0, 1, 1, 0], [0, 1, 0, 1]]) computed_mask = container.compute_mask(t, default_mask) # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 self.assertEqualIgnoreType(expected_mask, computed_mask) def test_l1_unstructured_pruning(self): r"""Test that l1 unstructured pruning actually removes the lowest entries by l1 norm (by hand). It also checks that applying l1 unstructured pruning more than once respects the previous mask. """ m = nn.Linear(4, 2) # modify its weight matrix by hand m.weight = torch.nn.Parameter( torch.tensor( [[1, 2, 3, 4], [-4, -3, -2, -1]], dtype=torch.float32 ) ) prune.l1_unstructured(m, 'weight', amount=2) expected_weight = torch.tensor([[0, 2, 3, 4], [-4, -3, -2, 0]], dtype=m.weight.dtype) self.assertEqual(expected_weight, m.weight) # check that pruning again removes the next two smallest entries prune.l1_unstructured(m, 'weight', amount=2) expected_weight = torch.tensor([[0, 0, 3, 4], [-4, -3, 0, 0]], dtype=m.weight.dtype) self.assertEqual(expected_weight, m.weight) def test_l1_unstructured_pruning_with_importance_scores(self): r"""Test that l1 unstructured pruning actually removes the lowest entries of importance scores and not the parameter by l1 norm (by hand). It also checks that applying l1 unstructured pruning more than once respects the previous mask. """ m = nn.Linear(4, 2) # modify its weight matrix by hand m.weight = torch.nn.Parameter( torch.tensor( [[1, 2, 3, 4], [-4, -3, -2, -1]], dtype=torch.float32 ) ) importance_scores = torch.tensor( [[4, 2, 1, 3], [-3, -1, -2, -4]], dtype=torch.float32 ) prune.l1_unstructured(m, 'weight', amount=2, importance_scores=importance_scores) expected_weight = torch.tensor([[1, 2, 0, 4], [-4, 0, -2, -1]], dtype=m.weight.dtype) self.assertEqual(expected_weight, m.weight) # check that pruning again removes two entries of m.weight that are colocated with # the next two smallest absolute values of importance scores. prune.l1_unstructured(m, 'weight', amount=2, importance_scores=importance_scores) expected_weight = torch.tensor([[1, 0, 0, 4], [-4, 0, 0, -1]], dtype=m.weight.dtype) self.assertEqual(expected_weight, m.weight) def test_unstructured_pruning_same_magnitude(self): r"""Since it may happen that the tensor to prune has entries with the same exact magnitude, it is important to check that pruning happens consistenly based on the bottom % of weights, and not by threshold, which would instead kill off *all* units with magnitude = threshold. """ AMOUNT = 0.2 p = prune.L1Unstructured(amount=AMOUNT) # create a random tensors with entries in {-2, 0, 2} t = 2 * torch.randint(low=-1, high=2, size=(10, 7)) nparams_toprune = prune._compute_nparams_toprune(AMOUNT, t.nelement()) computed_mask = p.compute_mask(t, default_mask=torch.ones_like(t)) nparams_pruned = torch.sum(computed_mask == 0) self.assertEqual(nparams_toprune, nparams_pruned) def test_random_structured_pruning_amount(self): AMOUNT = 0.6 AXIS = 2 p = prune.RandomStructured(amount=AMOUNT, dim=AXIS) t = 2 * torch.randint(low=-1, high=2, size=(5, 4, 2)).to( dtype=torch.float32 ) nparams_toprune = prune._compute_nparams_toprune(AMOUNT, t.shape[AXIS]) computed_mask = p.compute_mask(t, default_mask=torch.ones_like(t)) # check that 1 column is fully prune, the others are left untouched remaining_axes = [_ for _ in range(len(t.shape)) if _ != AXIS] per_column_sums = sorted( torch.sum(computed_mask == 0, axis=remaining_axes) ) assert per_column_sums == [0, 20] def test_ln_structured_pruning(self): r"""Check Ln structured pruning by hand. """ m = nn.Conv2d(3, 1, 2) m.weight.data = torch.tensor( [[[[1., 2.], [1., 2.5]], [[0.5, 1.], [0.1, 0.1]], [[-3., -5.], [0.1, -1.]]]] ) # expected effect of pruning 1 of the 3 channels by L2-norm expected_mask_axis1 = torch.ones_like(m.weight) expected_mask_axis1[:, 1] = 0. prune.ln_structured(m, 'weight', amount=1, n=2, dim=1) self.assertEqual(expected_mask_axis1, m.weight_mask) # expected effect of pruning 1 of the 2 columns along axis -1 by L1-norm expected_mask_axis3 = expected_mask_axis1 expected_mask_axis3[:, :, :, 0] = 0. prune.ln_structured(m, 'weight', amount=1, n=1, dim=-1) self.assertEqual(expected_mask_axis3, m.weight_mask) def test_ln_structured_pruning_importance_scores(self): r"""Check Ln structured pruning by hand. """ m = nn.Conv2d(3, 1, 2) m.weight.data = torch.tensor( [[[[1., 2.], [1., 2.5]], [[0.5, 1.], [0.1, 0.1]], [[-3., -5.], [0.1, -1.]]]] ) importance_scores = torch.tensor( [[[[10., 1.], [10., 1.]], [[30., 3.], [30., 3.]], [[-20., -2.], [-20., -2.]]]] ) # expected effect of pruning 1 of the 3 channels by L2-norm expected_mask_axis1 = torch.ones_like(m.weight) expected_mask_axis1[:, 0] = 0. prune.ln_structured(m, 'weight', amount=1, n=2, dim=1, importance_scores=importance_scores) self.assertEqual(expected_mask_axis1, m.weight_mask) # expected effect of pruning 1 of the 2 columns along axis -1 by L1-norm expected_mask_axis3 = expected_mask_axis1 expected_mask_axis3[:, :, :, 1] = 0. prune.ln_structured(m, 'weight', amount=1, n=1, dim=-1, importance_scores=importance_scores) self.assertEqual(expected_mask_axis3, m.weight_mask) def test_remove_pruning(self): r"""`prune.remove` removes the hook and the reparametrization and makes the pruning final in the original parameter. """ modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)] names = ['weight', 'bias'] for m in modules: for name in names: with self.subTest(m=m, name=name): # first prune prune.random_unstructured(m, name, amount=0.5) self.assertIn(name + "_orig", dict(m.named_parameters())) self.assertIn(name + "_mask", dict(m.named_buffers())) self.assertNotIn(name, dict(m.named_parameters())) self.assertTrue(hasattr(m, name)) pruned_t = getattr(m, name) # then remove pruning prune.remove(m, name) self.assertIn(name, dict(m.named_parameters())) self.assertNotIn(name + "_orig", dict(m.named_parameters())) self.assertNotIn(name + "_mask", dict(m.named_buffers())) final_t = getattr(m, name) self.assertEqual(pruned_t, final_t) def test_remove_pruning_exception(self): r"""Removing from an unpruned tensor throws an assertion error """ modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)] names = ['weight', 'bias'] for m in modules: for name in names: with self.subTest(m=m, name=name): # check that the module isn't pruned self.assertFalse(prune.is_pruned(m)) # since it isn't pruned, pruning can't be removed from it with self.assertRaises(ValueError): prune.remove(m, name) def test_global_pruning(self): r"""Test that global l1 unstructured pruning over 2 parameters removes the `amount=4` smallest global weights across the 2 parameters. """ m = nn.Linear(4, 2) n = nn.Linear(3, 1) # modify the weight matrices by hand m.weight = torch.nn.Parameter( torch.tensor([[1, 2, 3, 4], [-4, -3, -2, -1]]).to( dtype=torch.float32) ) n.weight = torch.nn.Parameter( torch.tensor([[0, 0.1, -2]]).to( dtype=torch.float32) ) params_to_prune = ( (m, 'weight'), (n, 'weight'), ) # prune the 4 smallest weights globally by L1 magnitude prune.global_unstructured( params_to_prune, pruning_method=prune.L1Unstructured, amount=4 ) expected_mweight = torch.tensor([[0, 2, 3, 4], [-4, -3, -2, 0]], dtype=m.weight.dtype) self.assertEqual(expected_mweight, m.weight) expected_nweight = torch.tensor([[0, 0, -2]]).to(dtype=n.weight.dtype) self.assertEqual(expected_nweight, n.weight) def test_global_pruning_importance_scores(self): r"""Test that global l1 unstructured pruning over 2 parameters removes the `amount=4` smallest global weights across the 2 parameters. """ m = nn.Linear(4, 2) n = nn.Linear(3, 1) # modify the weight matrices by hand m.weight = torch.nn.Parameter( torch.tensor([[1, 2, 3, 4], [-4, -3, -2, -1]]).to( dtype=torch.float32) ) m_importance_scores = torch.tensor( [[4, 2, 1, 3], [-3, -1, -2, -4]], dtype=torch.float32 ) n.weight = torch.nn.Parameter( torch.tensor([[0, 0.1, -2]]).to( dtype=torch.float32) ) n_importance_scores = torch.tensor([[0, 10., -0.2]]).to(dtype=torch.float32) params_to_prune = ( (m, 'weight'), (n, 'weight'), ) importance_scores = { (m, 'weight'): m_importance_scores, (n, 'weight'): n_importance_scores, } # prune the 4 smallest weights globally by L1 magnitude prune.global_unstructured( params_to_prune, pruning_method=prune.L1Unstructured, amount=4, importance_scores=importance_scores, ) expected_m_weight = torch.tensor([[1, 2, 0, 4], [-4, 0, -2, -1]], dtype=m.weight.dtype) self.assertEqual(expected_m_weight, m.weight) expected_n_weight = torch.tensor([[0, 0.1, 0]]).to(dtype=n.weight.dtype) self.assertEqual(expected_n_weight, n.weight) def test_custom_from_mask_pruning(self): r"""Test that the CustomFromMask is capable of receiving as input at instantiation time a custom mask, and combining it with the previous default mask to generate the correct final mask. """ # new mask mask = torch.tensor([[0, 1, 1, 0], [0, 0, 1, 1]]) # old mask default_mask = torch.tensor([[0, 0, 0, 0], [1, 1, 1, 1]]) # some tensor (not actually used) t = torch.rand_like(mask.to(dtype=torch.float32)) p = prune.CustomFromMask(mask=mask) computed_mask = p.compute_mask(t, default_mask) expected_mask = torch.tensor([[0, 0, 0, 0], [0, 0, 1, 1]]).to( dtype=t.dtype ) # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 self.assertEqualIgnoreType(computed_mask, expected_mask) def test_pruning_rollback(self): r"""Test that if something fails when the we try to compute the mask, then the model isn't left in some intermediate half-pruned state. The try/except statement in `apply` should handle rolling back to the previous state before pruning began. """ modules = [nn.Linear(5, 7), nn.Conv3d(2, 2, 2)] names = ['weight', 'bias'] for m in modules: for name in names: with self.subTest(m=m, name=name): with mock.patch( "torch.nn.utils.prune.L1Unstructured.compute_mask" ) as compute_mask: compute_mask.side_effect = Exception('HA!') with self.assertRaises(Exception): prune.l1_unstructured(m, name=name, amount=0.9) self.assertTrue( name in dict(m.named_parameters()) ) self.assertFalse( name + '_mask' in dict(m.named_buffers()) ) self.assertFalse( name + '_orig' in dict(m.named_parameters()) ) def test_pruning_serialization_model(self): # create a model model = torch.nn.Sequential( torch.nn.Linear(10, 10), torch.nn.ReLU(), torch.nn.Linear(10, 1), ) # check that everything looks normal before pruning self.assertNotIn('0.weight_orig', model.state_dict()) self.assertNotIn('0.weight_mask', model.state_dict()) self.assertIn('0.weight', model.state_dict()) # prune one of its parameters prune.l1_unstructured(module=model[0], name='weight', amount=0.9) # check that the original weight and the new mask are present self.assertIn('0.weight_orig', model.state_dict()) self.assertIn('0.weight_mask', model.state_dict()) self.assertNotIn('0.weight', model.state_dict()) self.assertTrue(hasattr(model[0], 'weight')) pruned_weight = model[0].weight with TemporaryFileName() as fname: torch.save(model, fname) new_model = torch.load(fname) # check that the original weight and the new mask are present self.assertIn('0.weight_orig', new_model.state_dict()) self.assertIn('0.weight_mask', new_model.state_dict()) self.assertNotIn('0.weight', new_model.state_dict()) self.assertTrue(hasattr(new_model[0], 'weight')) self.assertEqual(pruned_weight, new_model[0].weight) def test_pruning_serialization_state_dict(self): # create a model model = torch.nn.Sequential( torch.nn.Linear(10, 10), torch.nn.ReLU(), torch.nn.Linear(10, 1), ) # check that everything looks normal before pruning self.assertNotIn('0.weight_orig', model.state_dict()) self.assertNotIn('0.weight_mask', model.state_dict()) self.assertIn('0.weight', model.state_dict()) # prune one of its parameters prune.l1_unstructured(module=model[0], name='weight', amount=0.9) # check that the original weight and the new mask are present self.assertIn('0.weight_orig', model.state_dict()) self.assertIn('0.weight_mask', model.state_dict()) self.assertNotIn('0.weight', model.state_dict()) self.assertTrue(hasattr(model[0], 'weight')) pruned_weight = model[0].weight # make pruning permanent and restore parameter names as in base # architecture prune.remove(module=model[0], name='weight') # check that the original weight and the new mask are no longer present self.assertNotIn('0.weight_orig', model.state_dict()) self.assertNotIn('0.weight_mask', model.state_dict()) self.assertIn('0.weight', model.state_dict()) # save the state dict of model and reload it into new_model new_model = torch.nn.Sequential( torch.nn.Linear(10, 10), torch.nn.ReLU(), torch.nn.Linear(10, 1), ) with TemporaryFileName() as fname: torch.save(model.state_dict(), fname) new_model.load_state_dict(torch.load(fname)) # check that the original weight and the new mask are not present in # new_model either. self.assertNotIn('0.weight_orig', new_model.state_dict()) self.assertNotIn('0.weight_mask', new_model.state_dict()) self.assertIn('0.weight', new_model.state_dict()) self.assertEqual(pruned_weight, new_model[0].weight) def test_prune(self): # create a new pruning method p = prune.L1Unstructured(amount=2) # create tensor to be pruned t = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).to(dtype=torch.float32) # create prior mask by hand default_mask = torch.tensor([[1, 1, 1, 0], [1, 1, 0, 1]]) # since we are pruning the two lowest magnitude units, the outcome of # the calculation should be this: expected_mask = torch.tensor([[0, 0, 1, 0], [1, 1, 0, 1]]) pruned_tensor = p.prune(t, default_mask) self.assertEqual(t * expected_mask, pruned_tensor) def test_prune_importance_scores(self): # create a new pruning method p = prune.L1Unstructured(amount=2) # create tensor to be pruned t = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).to(dtype=torch.float32) importance_scores = torch.tensor( [[1, 2, 3, 4], [1.5, 1.6, 1.7, 1.8]] ).to(dtype=torch.float32) # create prior mask by hand default_mask = torch.tensor([[1, 1, 1, 0], [1, 1, 0, 1]]) # since we are pruning the two lowest magnitude units, the outcome of # the calculation should be this: expected_mask = torch.tensor([[0, 1, 1, 0], [0, 1, 0, 1]]) pruned_tensor = p.prune(t, default_mask, importance_scores=importance_scores) self.assertEqual(t * expected_mask, pruned_tensor) def test_prune_importance_scores_mimic_default(self): # create a new pruning method p = prune.L1Unstructured(amount=2) # create tensor to be pruned t = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]).to(dtype=torch.float32) # create prior mask by hand default_mask = torch.tensor([[1, 1, 1, 0], [1, 1, 0, 1]]) # since we are pruning the two lowest magnitude units, the outcome of # the calculation should be this: expected_mask = torch.tensor([[0, 0, 1, 0], [1, 1, 0, 1]]) pruned_tensor_without_importance_scores = p.prune(t, default_mask) pruned_tensor_with_importance_scores = p.prune(t, default_mask, importance_scores=t) self.assertEqual(pruned_tensor_without_importance_scores, pruned_tensor_with_importance_scores) self.assertEqual(t * expected_mask, pruned_tensor_without_importance_scores) def test_rnn_pruning(self): l = torch.nn.LSTM(32, 32) # This Module has 4 parameters called: # 'weight_ih_l0', 'weight_hh_l0', 'bias_ih_l0', 'bias_hh_l0' # Pruning one of them causes one of the weights to become a tensor prune.l1_unstructured(l, 'weight_ih_l0', 0.5) assert ( sum([isinstance(p, torch.nn.Parameter) for p in l._flat_weights]) == 3 ) # Removing the pruning reparametrization restores the Parameter prune.remove(l, 'weight_ih_l0') assert ( sum([isinstance(p, torch.nn.Parameter) for p in l._flat_weights]) == 4 ) # Make sure that, upon removal of the reparametrization, the # `._parameters` and `.named_parameters` contain the right params. # Specifically, the original weight ('weight_ih_l0') should be placed # back in the parameters, while the reparametrization component # ('weight_ih_l0_orig') should be removed. assert 'weight_ih_l0' in l._parameters assert l._parameters['weight_ih_l0'] is not None assert 'weight_ih_l0_orig' not in l._parameters assert 'weight_ih_l0' in dict(l.named_parameters()) assert dict(l.named_parameters())['weight_ih_l0'] is not None assert 'weight_ih_l0_orig' not in dict(l.named_parameters()) def test_rnn_weight_norm(self): def check_weight_norm(l, name, num_params): # This Module has 4 or 5 parameters called: # 'weight_ih_l0', 'weight_hh_l0', 'bias_ih_l0', 'bias_hh_l0', weight_hr_l0 # Applying weight norm on one of them causes it to become a tensor l = torch.nn.utils.weight_norm(l, name=name) self.assertEqual( sum([isinstance(p, torch.nn.Parameter) for p in l._flat_weights]), num_params - 1, ) # Removing the weight norm reparametrization restores the Parameter l = torch.nn.utils.remove_weight_norm(l, name=name) self.assertEqual( sum([isinstance(p, torch.nn.Parameter) for p in l._flat_weights]), num_params, ) # Make sure that, upon removal of the reparametrization, the # `._parameters` and `.named_parameters` contain the right params. # Specifically, the original weight ('weight_ih_l0') should be placed # back in the parameters, while the reparametrization components # ('weight_ih_l0_v' and 'weight_ih_l0_g') should be removed. self.assertTrue(name in l._parameters) self.assertIsNotNone(l._parameters[name]) self.assertTrue(name + '_v' not in l._parameters) self.assertTrue(name + '_g' not in l._parameters) self.assertTrue(name in dict(l.named_parameters())) self.assertIsNotNone(dict(l.named_parameters())[name]) self.assertTrue(name + '_v' not in dict(l.named_parameters())) self.assertTrue(name + '_g' not in dict(l.named_parameters())) check_weight_norm(torch.nn.LSTM(32, 32), 'weight_ih_l0', 4) check_weight_norm(torch.nn.LSTM(32, 32, proj_size=16), 'weight_hr_l0', 5) def test_weight_norm(self): input = torch.randn(3, 5) m = nn.Linear(5, 7) expected_output = m(input) # add weight normalization m = torch.nn.utils.weight_norm(m) self.assertEqual(m.weight_v.size(), m.weight.size()) self.assertEqual(m.weight_g.size(), (7, 1)) self.assertEqual(m(input), expected_output) # remove weight norm m = torch.nn.utils.remove_weight_norm(m) self.assertFalse(hasattr(m, 'weight_g')) self.assertFalse(hasattr(m, 'weight_v')) self.assertEqual(m(input), expected_output) # test with dim=1 m = torch.nn.utils.weight_norm(m, dim=1) self.assertEqual(m.weight_v.size(), m.weight.size()) self.assertEqual(m.weight_g.size(), (1, 5)) self.assertEqual(m(input), expected_output) # test with dim=None m = nn.Linear(5, 7) expected_output = m(input) m = torch.nn.utils.weight_norm(m, dim=None) self.assertEqual(m(input), expected_output) with self.assertRaisesRegex(RuntimeError, 'register two weight_norm hooks'): m = torch.nn.utils.weight_norm(m) m = torch.nn.utils.weight_norm(m) def test_parameterlistdict_setting_attributes(self): with warnings.catch_warnings(record=True) as w: mod = nn.ParameterList(map(nn.Parameter, [torch.rand(2), torch.rand(2)])) self.assertTrue(len(w) == 0) with warnings.catch_warnings(record=True) as w: mod.train() mod.eval() self.assertTrue(len(w) == 0) with warnings.catch_warnings(record=True) as w: mod = nn.ParameterDict({"a": nn.Parameter(torch.rand(2)), "b": nn.Parameter(torch.rand(2))}) self.assertTrue(len(w) == 0) with warnings.catch_warnings(record=True) as w: mod.train() mod.eval() self.assertTrue(len(w) == 0) def test_parameterlistdict_pickle(self): m = nn.ParameterList(map(nn.Parameter, [torch.rand(2), torch.rand(2)])) with warnings.catch_warnings(record=True) as w: m = pickle.loads(pickle.dumps(m)) self.assertTrue(len(w) == 0) # Test whether loading from older checkpoints works without triggering warnings m = nn.ParameterList(map(nn.Parameter, [torch.rand(2), torch.rand(2)])) del m._forward_pre_hooks, m._state_dict_hooks, m._load_state_dict_pre_hooks, m._non_persistent_buffers_set with warnings.catch_warnings(record=True) as w: m = pickle.loads(pickle.dumps(m)) self.assertTrue(len(w) == 0) m = nn.ParameterDict({"a": nn.Parameter(torch.rand(2)), "b": nn.Parameter(torch.rand(2))}) with warnings.catch_warnings(record=True) as w: m = pickle.loads(pickle.dumps(m)) self.assertTrue(len(w) == 0) # Test whether loading from older checkpoints works without triggering warnings m = nn.ParameterDict({"a": nn.Parameter(torch.rand(2)), "b": nn.Parameter(torch.rand(2))}) del m._forward_pre_hooks, m._state_dict_hooks, m._load_state_dict_pre_hooks, m._non_persistent_buffers_set with warnings.catch_warnings(record=True) as w: m = pickle.loads(pickle.dumps(m)) self.assertTrue(len(w) == 0) def test_weight_norm_pickle(self): m = torch.nn.utils.weight_norm(nn.Linear(5, 7)) m = pickle.loads(pickle.dumps(m)) self.assertIsInstance(m, nn.Linear) def test_spectral_norm(self): input = torch.randn(3, 5) m = nn.Linear(5, 7) m = torch.nn.utils.spectral_norm(m) self.assertEqual(m.weight_u.size(), torch.Size([m.weight.size(0)])) # weight_orig should be trainable self.assertTrue(hasattr(m, 'weight_orig')) self.assertTrue('weight_orig' in m._parameters) # weight_u should be just a reused buffer self.assertTrue(hasattr(m, 'weight_u')) self.assertTrue('weight_u' in m._buffers) self.assertTrue('weight_v' in m._buffers) # weight should be a plain attribute, not counted as a buffer or a param self.assertFalse('weight' in m._buffers) self.assertFalse('weight' in m._parameters) # it should also be sharing storage as `weight_orig` self.assertEqual(m.weight_orig.storage(), m.weight.storage()) self.assertEqual(m.weight_orig.size(), m.weight.size()) self.assertEqual(m.weight_orig.stride(), m.weight.stride()) m = torch.nn.utils.remove_spectral_norm(m) self.assertFalse(hasattr(m, 'weight_orig')) self.assertFalse(hasattr(m, 'weight_u')) # weight should be converted back as a parameter self.assertTrue(hasattr(m, 'weight')) self.assertTrue('weight' in m._parameters) with self.assertRaisesRegex(RuntimeError, 'register two spectral_norm hooks'): m = torch.nn.utils.spectral_norm(m) m = torch.nn.utils.spectral_norm(m) # test correctness in training/eval modes and cpu/multi-gpu settings for apply_dp in (True, False): if apply_dp: if not TEST_MULTIGPU: continue device = torch.device('cuda:0') def maybe_wrap(m): return torch.nn.DataParallel(m, [0, 1]) else: device = torch.device('cpu') def maybe_wrap(m): return m for requires_grad in (True, False): m = nn.Linear(3, 4).to(device) m.weight.requires_grad_(requires_grad) m = torch.nn.utils.spectral_norm(m) wrapped_m = maybe_wrap(m) self.assertTrue(hasattr(m, 'weight_u')) u0 = m.weight_u.clone() v0 = m.weight_v.clone() # TEST TRAINING BEHAVIOR # assert that u and v are updated input = torch.randn(2, 3, device=device) out = wrapped_m(input) self.assertNotEqual(u0, m.weight_u) self.assertNotEqual(v0, m.weight_v) # assert that backprop reaches weight_orig # can't use gradcheck because the function changes as we # activate through it in training mode if requires_grad: torch.autograd.grad(out.sum(), m.weight_orig) # test backward works with multiple forwards # it uses training mode so we need to reset `u` and `v` vectors # to same value at beginning for finite difference test to pass saved_u = m.weight_u.clone() saved_v = m.weight_v.clone() def fn(input): m.weight_u.data.copy_(saved_u) m.weight_v.data.copy_(saved_v) out0 = wrapped_m(input) out1 = wrapped_m(input) return out0 + out1 gradcheck(fn, (input.clone().requires_grad_(),), check_batched_grad=False) # test removing pre_remove_out = wrapped_m(input) m = torch.nn.utils.remove_spectral_norm(m) self.assertEqual(wrapped_m(input), pre_remove_out) m = torch.nn.utils.spectral_norm(m) for _ in range(3): pre_remove_out = wrapped_m(input) m = torch.nn.utils.remove_spectral_norm(m) self.assertEqual(wrapped_m(input), pre_remove_out) # TEST EVAL BEHAVIOR m = torch.nn.utils.spectral_norm(m) wrapped_m(input) last_train_out = wrapped_m(input) last_train_u = m.weight_u.clone() last_train_v = m.weight_v.clone() wrapped_m.zero_grad() wrapped_m.eval() eval_out0 = wrapped_m(input) # assert eval gives same result as last training iteration self.assertEqual(eval_out0, last_train_out) # assert doing more iteartion in eval don't change things self.assertEqual(eval_out0, wrapped_m(input)) self.assertEqual(last_train_u, m.weight_u) self.assertEqual(last_train_v, m.weight_v) # FIXME: the code below is flaky when executed with DataParallel # see https://github.com/pytorch/pytorch/issues/13818 if apply_dp: continue # test backward works with multiple forwards in mixed training # and eval modes # it uses training mode so we need to reset `u` and `v` vectors # to same value at beginning for finite difference test to pass saved_u = m.weight_u.clone() saved_v = m.weight_v.clone() def fn(input): m.weight_u.data.copy_(saved_u) m.weight_v.data.copy_(saved_v) wrapped_m.train() out0 = wrapped_m(input) wrapped_m.eval() out1 = wrapped_m(input) wrapped_m.train() out2 = wrapped_m(input) wrapped_m.eval() out3 = wrapped_m(input) return out0 + out1 + out2 + out3 gradcheck(fn, (input.clone().requires_grad_(),)) # assert that backprop reaches weight_orig in eval if requires_grad: def fn(weight): return wrapped_m(input) gradcheck(fn, (m.weight_orig,)) def test_new_spectral_norm(self): input = torch.randn(3, 5) m = nn.Linear(5, 7) m = torch.nn.utils.parametrizations.spectral_norm(m) spectral_norm_m = m.parametrizations.weight[0] self.assertEqual(spectral_norm_m._u.size(), torch.Size([m.weight.size(0)])) # .parametrizations.weight.original should be trainable self.assertTrue(hasattr(m.parametrizations.weight, 'original')) self.assertTrue('original' in m.parametrizations.weight._parameters) # u should be just a reused buffer self.assertTrue(hasattr(spectral_norm_m, '_u')) self.assertTrue('_u' in spectral_norm_m._buffers) self.assertTrue('_v' in spectral_norm_m._buffers) # weight should be a plain attribute, not counted as a buffer or a param self.assertIsNotNone(m.weight) self.assertFalse('weight' in m._buffers) self.assertFalse('weight' in m._parameters) # it should also be sharing storage as `weight_orig` # self.assertEqual(m.parametrizations.weight.original.storage(), m.weight.storage()) self.assertEqual(m.parametrizations.weight.original.size(), m.weight.size()) self.assertEqual(m.parametrizations.weight.original.stride(), m.weight.stride()) m = torch.nn.utils.parametrize.remove_parametrizations(m, 'weight') # spectral_norm is the only parametrization self.assertFalse(hasattr(m, 'parametrizations')) self.assertTrue('weight' in m._parameters) # We can register spectral_norm multiple times on the same parameter # and on multiple parameters in the same module m = torch.nn.utils.parametrizations.spectral_norm(m, 'weight') m = torch.nn.utils.parametrizations.spectral_norm(m, 'weight') m = torch.nn.utils.parametrizations.spectral_norm(m, 'bias') # If we remove the parametrization on bias, weight is still parametrized # Removing a parametrization runs forward in eval mode if leave_parametrized=True m = torch.nn.utils.parametrize.remove_parametrizations(m, 'bias') self.assertTrue('bias' in m._parameters) self.assertTrue(hasattr(m, 'parametrizations')) self.assertFalse('weight' in m._parameters) m = torch.nn.utils.parametrize.remove_parametrizations(m, 'weight') # Neither weight and bias are parametrized self.assertFalse(hasattr(m, 'parametrizations')) self.assertTrue('weight' in m._parameters) self.assertFalse(torch.nn.utils.parametrize.is_parametrized(m)) # test correctness in training/eval modes and cpu/multi-gpu settings for apply_dp in (True, False): if apply_dp: if not TEST_MULTIGPU: continue device = torch.device('cuda:0') def maybe_wrap(m): return torch.nn.DataParallel(m, [0, 1]) else: device = torch.device('cpu') def maybe_wrap(m): return m for requires_grad in (True, False): def get_modules(): m = nn.Linear(3, 4).to(device) m.weight.requires_grad_(requires_grad) m = torch.nn.utils.parametrizations.spectral_norm(m) wrapped_m = maybe_wrap(m) spectral_norm_m = m.parametrizations.weight[0] return m, wrapped_m, spectral_norm_m input = torch.randn(2, 3, device=device) m, wrapped_m, spectral_norm_m = get_modules() self.assertTrue(hasattr(spectral_norm_m, '_u')) u0 = spectral_norm_m._u.clone() v0 = spectral_norm_m._v.clone() # TEST TRAINING BEHAVIOR # We perform GD first to modify the initial matrix opt = torch.optim.SGD(wrapped_m.parameters(), lr=0.1) opt.zero_grad() wrapped_m(input).sum().backward() opt.step() out = wrapped_m(input) if requires_grad: # run forward again and assert that u and v are updated self.assertNotEqual(u0, spectral_norm_m._u) self.assertNotEqual(v0, spectral_norm_m._v) # assert that backprop reaches original weight # can't use gradcheck because the function changes as we # activate through it in training mode if requires_grad: torch.autograd.grad(out.sum(), m.parametrizations.weight.original) # test backward works with multiple forwards # it uses training mode so we need to reset `u` and `v` vectors # to same value at beginning for finite difference test to pass saved_u = spectral_norm_m._u.clone() saved_v = spectral_norm_m._v.clone() def fn(input): spectral_norm_m._u.data.copy_(saved_u) spectral_norm_m._v.data.copy_(saved_v) out0 = wrapped_m(input) out1 = wrapped_m(input) return out0 + out1 # Make sure we can compute gradients wrt to all the parameters in the case # of double forward fn(input.clone().requires_grad_()).sum().backward() gradcheck(fn, (input.clone().requires_grad_(),), check_batched_grad=False) # test removing # spectral norm module needs to be in eval mode if we'd like to # avoid doing another power iteration m, wrapped_m, _ = get_modules() pre_remove_out = wrapped_m(input) m.eval() m = torch.nn.utils.parametrize.remove_parametrizations(m, 'weight') self.assertEqual(wrapped_m(input), pre_remove_out) torch.nn.utils.parametrizations.spectral_norm(m) for _ in range(3): pre_remove_out = wrapped_m(input) m.eval() m = torch.nn.utils.parametrize.remove_parametrizations(m, 'weight') self.assertEqual(wrapped_m(input), pre_remove_out) # TEST EVAL BEHAVIOR m, wrapped_m, spectral_norm_m = get_modules() wrapped_m(input) last_train_out = wrapped_m(input) last_train_u = spectral_norm_m._u.clone() last_train_v = spectral_norm_m._v.clone() wrapped_m.zero_grad() wrapped_m.eval() eval_out0 = wrapped_m(input) # assert eval gives same result as last training iteration self.assertEqual(eval_out0, last_train_out) # assert doing more iteartion in eval don't change things self.assertEqual(eval_out0, wrapped_m(input)) self.assertEqual(last_train_u, spectral_norm_m._u) self.assertEqual(last_train_v, spectral_norm_m._v) # FIXME: the code below is flaky when executed with DataParallel # see https://github.com/pytorch/pytorch/issues/13818 if apply_dp: continue # test backward works with multiple forwards in mixed training # and eval modes # it uses training mode so we need to reset `u` and `v` vectors # to same value at beginning for finite difference test to pass saved_u = spectral_norm_m._u.clone() saved_v = spectral_norm_m._v.clone() def fn(input): spectral_norm_m._u.data.copy_(saved_u) spectral_norm_m._v.data.copy_(saved_v) wrapped_m.train() out0 = wrapped_m(input) wrapped_m.eval() out1 = wrapped_m(input) wrapped_m.train() out2 = wrapped_m(input) wrapped_m.eval() out3 = wrapped_m(input) return out0 + out1 + out2 + out3 gradcheck(fn, (input.clone().requires_grad_(),)) # assert that backprop reaches weight_orig in eval if requires_grad: def fn(weight): return wrapped_m(input) gradcheck(fn, (m.parametrizations.weight.original,)) def test_new_spectral_norm_load_state_dict(self): for activate_times in (0, 3): inp = torch.randn(2, 3) m = nn.Linear(3, 5) snm = torch.nn.utils.parametrizations.spectral_norm(m) snm.train() for _ in range(activate_times): snm(inp) state_dict = deepcopy(snm.state_dict()) self.assertEqual({ 'parametrizations.weight.original', 'bias', 'parametrizations.weight.0._v', 'parametrizations.weight.0._u' }, set(state_dict.keys())) # test that non-strict loading works non_strict_state_dict = deepcopy(state_dict) non_strict_state_dict['nonsense'] = 'nonsense' with self.assertRaisesRegex(RuntimeError, r'Unexpected key\(s\) in state_dict: "nonsense"'): snm.load_state_dict(non_strict_state_dict, strict=True) snm.load_state_dict(non_strict_state_dict, strict=False) del non_strict_state_dict['parametrizations.weight.original'] snm.load_state_dict(non_strict_state_dict, strict=False) del non_strict_state_dict['parametrizations.weight.0._u'] snm.load_state_dict(non_strict_state_dict, strict=False) del non_strict_state_dict['parametrizations.weight.0._v'] snm.load_state_dict(non_strict_state_dict, strict=False) non_strict_state_dict['weight'] = snm.weight.detach().clone() # set W as a buffer snm.load_state_dict(non_strict_state_dict, strict=False) del non_strict_state_dict._metadata['parametrizations.weight.0'] # remove metadata info snm.load_state_dict(non_strict_state_dict, strict=False) del non_strict_state_dict['weight'] # remove W buffer snm.load_state_dict(non_strict_state_dict, strict=False) del non_strict_state_dict['bias'] snm.load_state_dict(non_strict_state_dict, strict=False) # normal state_dict # test that re-wrapping does not matter m = torch.nn.utils.parametrize.remove_parametrizations(snm, 'weight') snm = torch.nn.utils.parametrizations.spectral_norm(m) snm.load_state_dict(state_dict) with torch.no_grad(): snm.eval() out0_eval = snm(inp) snm.train() out1_train = snm(inp) out2_train = snm(inp) snm.eval() out3_eval = snm(inp) # test that re-wrapping does not matter m = torch.nn.utils.parametrize.remove_parametrizations(snm, 'weight') snm = torch.nn.utils.parametrizations.spectral_norm(m) # Test normal loading snm.load_state_dict(state_dict) with torch.no_grad(): snm.eval() self.assertEqual(out0_eval, snm(inp)) snm.train() self.assertEqual(out1_train, snm(inp)) self.assertEqual(out2_train, snm(inp)) snm.eval() self.assertEqual(out3_eval, snm(inp)) @skipIfNoLapack def test_spectral_norm_load_state_dict(self): inp = torch.randn(2, 3) for activate_times in (0, 3): # Test backward compatibility # At version None -> 1: weight becomes not a buffer and v vector becomes a buffer m = nn.Linear(3, 5) snm = torch.nn.utils.spectral_norm(m) snm.train() for _ in range(activate_times): snm(inp) version_latest_ref_state_dict = deepcopy(snm.state_dict()) self.assertEqual({'weight_orig', 'bias', 'weight_u', 'weight_v'}, set(version_latest_ref_state_dict.keys())) # test that non-strict loading works non_strict_state_dict = deepcopy(version_latest_ref_state_dict) non_strict_state_dict['nonsense'] = 'nonsense' with self.assertRaisesRegex(RuntimeError, r'Unexpected key\(s\) in state_dict: "nonsense"'): snm.load_state_dict(non_strict_state_dict, strict=True) snm.load_state_dict(non_strict_state_dict, strict=False) del non_strict_state_dict['weight_orig'] snm.load_state_dict(non_strict_state_dict, strict=False) del non_strict_state_dict['weight_u'] snm.load_state_dict(non_strict_state_dict, strict=False) del non_strict_state_dict['weight_v'] snm.load_state_dict(non_strict_state_dict, strict=False) non_strict_state_dict['weight'] = snm.weight.detach().clone() # set W as a buffer snm.load_state_dict(non_strict_state_dict, strict=False) del non_strict_state_dict._metadata['']['spectral_norm'] # remove metadata info snm.load_state_dict(non_strict_state_dict, strict=False) del non_strict_state_dict['weight'] # remove W buffer snm.load_state_dict(non_strict_state_dict, strict=False) del non_strict_state_dict['bias'] snm.load_state_dict(non_strict_state_dict, strict=False) # craft a version None state_dict version_none_state_dict = deepcopy(version_latest_ref_state_dict) self.assertIn('spectral_norm', version_none_state_dict._metadata['']) del version_none_state_dict._metadata['']['spectral_norm'] # remove metadata info del version_none_state_dict['weight_v'] # remove v vector version_none_state_dict['weight'] = snm.weight.detach().clone() # set W as a buffer # normal state_dict for version_latest_with_metadata in [True, False]: version_latest_state_dict = deepcopy(version_latest_ref_state_dict) if not version_latest_with_metadata: # We want to still load a user-crafted state_dict, one without metadata del version_latest_state_dict._metadata['']['spectral_norm'] # test that re-wrapping does not matter m = torch.nn.utils.remove_spectral_norm(snm) snm = torch.nn.utils.spectral_norm(m) snm.load_state_dict(version_latest_ref_state_dict) with torch.no_grad(): snm.eval() out0_eval = snm(inp) snm.train() out1_train = snm(inp) out2_train = snm(inp) snm.eval() out3_eval = snm(inp) # test that re-wrapping does not matter m = torch.nn.utils.remove_spectral_norm(snm) snm = torch.nn.utils.spectral_norm(m) snm.load_state_dict(version_none_state_dict) if activate_times > 0: # since in loading version None state dict, we assume that the # values in the state dict have gone through at lease one # forward, we only test for equivalence when activate_times > 0. with torch.no_grad(): snm.eval() self.assertEqual(out0_eval, snm(inp)) snm.train() self.assertEqual(out1_train, snm(inp)) self.assertEqual(out2_train, snm(inp)) snm.eval() self.assertEqual(out3_eval, snm(inp)) # test that re-wrapping does not matter m = torch.nn.utils.remove_spectral_norm(snm) snm = torch.nn.utils.spectral_norm(m) # Test normal loading snm.load_state_dict(version_latest_state_dict) with torch.no_grad(): snm.eval() self.assertEqual(out0_eval, snm(inp)) snm.train() self.assertEqual(out1_train, snm(inp)) self.assertEqual(out2_train, snm(inp)) snm.eval() self.assertEqual(out3_eval, snm(inp)) def test_spectral_norm_dim(self): inp = torch.randn(2, 3, 10, 12) m = nn.ConvTranspose2d(3, 4, (5, 6)) m = torch.nn.utils.spectral_norm(m) # this should not run into incompatible shapes x = m(inp) # check that u refers to the same dimension self.assertEqual(m.weight_u.shape, m.weight_orig[0, :, 0, 0].shape) def test_new_spectral_norm_dim(self): inp = torch.randn(2, 3, 10, 12) m = nn.ConvTranspose2d(3, 4, (5, 6)) m = torch.nn.utils.parametrizations.spectral_norm(m) snm = m.parametrizations.weight[0] # this should not run into incompatible shapes x = m(inp) # check that u refers to the same dimension self.assertEqual(snm._u.shape, m.parametrizations.weight.original[0, :, 0, 0].shape) def test_spectral_norm_forward(self): input = torch.randn(3, 5) m = nn.Linear(5, 7) m = torch.nn.utils.spectral_norm(m) # naive forward _weight, _bias, _u = m.weight_orig, m.bias, m.weight_u _weight_mat = _weight.view(_weight.size(0), -1) _v = torch.mv(_weight_mat.t(), _u) _v = F.normalize(_v, dim=0, eps=1e-12) _u = torch.mv(_weight_mat, _v) _u = F.normalize(_u, dim=0, eps=1e-12) _weight.data /= torch.dot(_u, torch.matmul(_weight_mat, _v)) out_hat = torch.nn.functional.linear(input, _weight, _bias) expect_out = m(input) self.assertEqual(expect_out, out_hat) def test_new_spectral_norm_forward(self): input = torch.randn(3, 5) m = nn.Linear(5, 7) m = torch.nn.utils.parametrizations.spectral_norm(m) snm = m.parametrizations.weight[0] # naive forward _weight = m.parametrizations.weight.original _bias, _v = m.bias, snm._v _weight_mat = _weight.view(_weight.size(0), -1) _u = torch.mv(_weight_mat, _v) _u = F.normalize(_u, dim=0, eps=1e-12) _v = torch.mv(_weight_mat.t(), _u) _v = F.normalize(_v, dim=0, eps=1e-12) _weight.data /= torch.dot(_u, torch.matmul(_weight_mat, _v)) out_hat = torch.nn.functional.linear(input, _weight, _bias) expect_out = m(input) self.assertEqual(expect_out, out_hat) def test_spectral_norm_pickle(self): m = torch.nn.utils.spectral_norm(nn.Linear(5, 7)) m = pickle.loads(pickle.dumps(m)) self.assertIsInstance(m, nn.Linear) @skipIfNoLapack def test_orthogonal_parametrization(self): # Orthogonal implements 6 algorithms (3x parametrizations times 2 options of use_trivialization) def assert_is_orthogonal(X): n, k = X.size(-2), X.size(-1) if n < k: X = X.mT n, k = k, n Id = torch.eye(k, dtype=X.dtype, device=X.device).expand(*(X.size()[:-2]), k, k) eps = 10 * n * torch.finfo(X.dtype).eps torch.testing.assert_allclose(X.mH @ X, Id, atol=eps, rtol=0.) def assert_weight_allclose_Q(weight, W): # Test that weight is equal to the Q part of the QR decomposition of W # (or of its transpose if the matrix is wide) wide_matrix = W.size(-2) < W.size(-1) if wide_matrix: W = W.mT Q, R = torch.linalg.qr(W) Q *= R.diagonal(dim1=-2, dim2=-1).sgn().unsqueeze(-2) if wide_matrix: Q = Q.mT torch.testing.assert_allclose(Q, weight, atol=1e-5, rtol=0.) for shape, dtype, use_linear in product(((4, 4), (5, 3), (3, 5)), # square/ tall / wide (torch.float32, torch.complex64), (True, False)): # Conv2d does not support complex yet if not use_linear and dtype.is_complex: continue if use_linear: input = torch.randn(3, shape[0], dtype=dtype) else: input = torch.randn(2, 2, shape[0] + 2, shape[1] + 1, dtype=dtype) for parametrization, use_trivialization in product(("matrix_exp", "cayley", "householder"), (False, True)): # right_inverse for Cayley and matrix_exp not implemented for use_trivialization=False # See Note [right_inverse expm cayley] can_initialize = use_trivialization or parametrization == "householder" # We generate them every time to always start with fresh weights if use_linear: m = nn.Linear(*shape, dtype=dtype) else: m = nn.Conv2d(2, 3, shape, dtype=dtype) # We do not support householder for complex inputs # See Note [Householder complex] w_init = m.weight.clone() if parametrization == "householder" and m.weight.is_complex(): msg = "householder parametrization does not support complex tensors" with self.assertRaisesRegex(ValueError, msg): torch.nn.utils.parametrizations.orthogonal(m, "weight", parametrization, use_trivialization=use_trivialization) continue wide_matrix = w_init.size(-2) < w_init.size(-1) torch.nn.utils.parametrizations.orthogonal(m, "weight", parametrization, use_trivialization=use_trivialization) # Forwards works as expected self.assertEqual(w_init.shape, m.weight.shape) assert_is_orthogonal(m.weight) if can_initialize: assert_weight_allclose_Q(m.weight, w_init) # Intializing with a given orthogonal matrix works X = torch.randn_like(m.weight) if wide_matrix: X = X.mT w_new = torch.linalg.qr(X).Q if wide_matrix: w_new = w_new.mT if can_initialize: m.weight = w_new torch.testing.assert_allclose(w_new, m.weight, atol=1e-5, rtol=0.) else: msg = "assign to the matrix exponential or the Cayley parametrization" with self.assertRaisesRegex(NotImplementedError, msg): m.weight = w_new # Intializing with a non-orthogonal matrix makes m.weight be the Q part of the given matrix w_new = torch.randn_like(m.weight) if can_initialize: m.weight = w_new assert_weight_allclose_Q(m.weight, w_new) else: msg = "assign to the matrix exponential or the Cayley parametrization" with self.assertRaisesRegex(NotImplementedError, msg): m.weight = w_new opt = torch.optim.SGD(m.parameters(), lr=0.1) for _ in range(2): opt.zero_grad() m(input).norm().backward() grad = m.parametrizations.weight.original.grad self.assertIsNotNone(grad) # We do not update the upper triangular part of the matrix if tall tril if wide if grad.size(-2) >= grad.size(-1): zeros_grad = grad.triu(1) else: zeros_grad = grad.tril(-1) self.assertEqual(zeros_grad, torch.zeros_like(zeros_grad)) # The gradient in the diagonal can only be imaginary because a skew-Hermitian # matrix has imaginary diagonal diag_grad = grad.diagonal(dim1=-2, dim2=-1) if grad.is_complex(): diag_grad = diag_grad.real self.assertEqual(diag_grad, torch.zeros_like(diag_grad)) opt.step() assert_is_orthogonal(m.weight) @skipIfNoLapack def test_orthogonal_errors(self): m = nn.Linear(3, 4) with self.assertRaisesRegex(ValueError, "has to be one of"): torch.nn.utils.parametrizations.orthogonal(m, "weight", "foo") with self.assertRaisesRegex(ValueError, "Expected a matrix"): torch.nn.utils.parametrizations.orthogonal(m, "bias") torch.nn.utils.parametrizations.orthogonal(m, "weight") with self.assertRaisesRegex(ValueError, "matrices of shape"): m.weight = torch.randn(5, 5) torch.nn.utils.parametrize.remove_parametrizations(m, "weight") def test_threshold_int(self): x = torch.tensor([-3, -2, -1, 0, 1, 2, 3]) expected = torch.tensor([99, 99, 99, 99, 1, 2, 3]) self.assertEqual(F.threshold(x, 0, 99), expected) def test_threshold_bfloat16(self): x = torch.randn(100) for threshold in [0, -0.5, 0.5, float('inf'), float('-inf'), float('nan')]: expected = F.threshold(x, threshold, 0).bfloat16().float() res_bf16 = F.threshold(x.bfloat16(), threshold, 0).float() self.assertEqual(res_bf16, expected) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") def test_embedding_max_norm_unsorted_repeating_indices(self): def create_embedding(device): # Seed RNG so we get the same Embedding each time torch.manual_seed(0) return torch.nn.Embedding( num_embeddings=20, embedding_dim=64, max_norm=1.0).to(device) ix = torch.arange(2, device='cpu', dtype=torch.long).repeat(2000) out_cpu = create_embedding('cpu')(ix) ix = ix.to('cuda') out = create_embedding('cuda')(ix) self.assertEqual(out.cpu(), out_cpu) def test_embedding_sparse_basic(self): embedding = nn.Embedding(10, 20, sparse=True) input = torch.tensor([[0, 2, 4, 5], [4, 3, 0, 9]], dtype=torch.long) embedding(input).sum().backward() self.assertTrue(embedding.weight.grad.is_sparse) self.assertEqual(embedding.weight.grad.shape, embedding.weight.shape) def test_embedding_sparse_empty_tensor(self): embedding = nn.Embedding(0, 0, sparse=True) input = torch.tensor([], dtype=torch.int64) embedding(input).sum().backward() self.assertTrue(embedding.weight.grad.is_sparse) self.assertEqual(embedding.weight.grad.shape, embedding.weight.shape) embedding = nn.Embedding(10, 0, sparse=True) input = torch.LongTensor([[0, 2, 4, 5], [4, 3, 0, 9]]) embedding(input).sum().backward() self.assertTrue(embedding.weight.grad.is_sparse) self.assertEqual(embedding.weight.grad.shape, embedding.weight.shape) def test_move_sparse_half_embedding(self): embedding = nn.Embedding(10, 3, sparse=True) self.assertEqual(embedding.weight.device.type, 'cpu') self.assertEqual(embedding.weight.dtype, torch.float64) embedding.to(torch.float16) self.assertEqual(embedding.weight.dtype, torch.float16) self.assertEqual(embedding.embedding_dim, 3) self.assertEqual(embedding.num_embeddings, 10) if torch.cuda.is_available(): embedding.to('cuda') self.assertEqual(embedding.weight.device.type, 'cuda') embedding.to('cpu') self.assertEqual(embedding.weight.device.type, 'cpu') def test_embedding_max_norm(self): embedding = nn.Embedding(22, 5, max_norm=1.0) input = torch.tensor([2, 8, 8, 6], dtype=torch.long) output = embedding(input) self.assertEqual(output[1], output[2]) self.assertTrue(output.data.norm(p=2, dim=1).le(1).all()) def test_embedding_from_pretrained(self): a = torch.tensor([[1., 2., 3.], [4., 5., 6.]]) embedding = nn.Embedding.from_pretrained(a) self.assertEqual(a, embedding.weight.data) input = torch.LongTensor([0, 1]) output = embedding(input) self.assertEqual(a, output) def test_embedding_bag_from_pretrained(self): a = torch.tensor([[1., 2., 3.], [4., 5., 6.]]) embedding = nn.EmbeddingBag.from_pretrained(a) self.assertEqual(a, embedding.weight) input = torch.tensor([0, 1], dtype=torch.long) output = embedding(input, torch.arange(input.size(0))) self.assertEqual(a, output) def test_embedding_from_pretrained_padding_idx(self): padding_idx = 2 padding_vec = torch.ones(3) * 7 embeddings = torch.rand(4, 3, requires_grad=True) with torch.no_grad(): embeddings[padding_idx] = padding_vec embedding_nn = nn.Embedding.from_pretrained(embeddings, padding_idx=padding_idx) self.assertEqual(embedding_nn.weight[padding_idx], padding_vec) def test_embedding_bag_from_pretrained_padding_idx(self): padding_idx = 2 embeddings = torch.rand(4, 3, requires_grad=True) embedding_nn = nn.EmbeddingBag.from_pretrained(embeddings, padding_idx=padding_idx) self.assertEqual(embedding_nn.weight, embeddings) def test_embedding_from_pretrained_options(self): a = torch.tensor([[1., 2., 3.], [4., 5., 6.]]) opts = { "max_norm": 2., "norm_type": .5, "scale_grad_by_freq": False, "sparse": True } embedding = nn.Embedding.from_pretrained(a, **opts) input = torch.LongTensor([0, 1]) output = embedding(input) # test output and that weight matrix was renormalized self.assertEqual(a, output) self.assertTrue(a.ne(torch.arange(1, 7, dtype=a.dtype).view(2, 3)).all()) self.assertTrue(output.data.norm(p=opts["norm_type"], dim=1).le(opts["max_norm"]).all()) def test_embedding_functional(self): a = torch.tensor([ [1, 3, 2], [0, 2, 1] ], dtype=torch.long) embeddings = torch.rand(4, 3, requires_grad=True) embed_old = torch.nn.Embedding(4, 3) embed_old.weight.data = embeddings.data res_old = embed_old(a) res_F = F.embedding(a, embeddings) self.assertEqual(res_old, res_F) embed_old = torch.nn.Embedding(4, 3) embed_old = embed_old.from_pretrained(embeddings, padding_idx=2) res_old = embed_old(a) res_F = F.embedding(a, embeddings, padding_idx=2) self.assertEqual(res_old, res_F) def test_embedding_bag_functional(self): a = torch.tensor([ [1, 3, 2], [0, 2, 1] ], dtype=torch.long) embeddings = torch.rand(4, 3, requires_grad=True) embed_old = torch.nn.EmbeddingBag(4, 3) embed_old.weight = torch.nn.Parameter(embeddings) res_old = embed_old(a) res_F = F.embedding_bag(a, embeddings) self.assertEqual(res_old, res_F) embed_old = torch.nn.EmbeddingBag(4, 3) embed_old = embed_old.from_pretrained(embeddings, padding_idx=2) res_old = embed_old(a) res_F = F.embedding_bag(a, embeddings, padding_idx=2) self.assertEqual(res_old, res_F) # Make sure that error is thrown if padding_idx is out of bounds def test_embedding_bag_padding_idx_error(self): a = torch.tensor([ [1, 3, 2], [0, 2, 1] ], dtype=torch.long) num_embeddings = 4 num_features = 3 embeddings = torch.rand(num_embeddings, num_features, requires_grad=True) functional_err_msg = r'padding_idx must be within the number of embeddings' module_err_msg = r'padding_idx must be within num_embeddings' for padding_idx in range(-(num_embeddings + 2), (num_embeddings + 2)): if (padding_idx < -num_embeddings) or (padding_idx >= num_embeddings): with self.assertRaisesRegex(RuntimeError, functional_err_msg): F.embedding_bag(a, embeddings, padding_idx=padding_idx) with self.assertRaisesRegex(AssertionError, module_err_msg): torch.nn.EmbeddingBag(num_embeddings, num_features, padding_idx=padding_idx) else: F.embedding_bag(a, embeddings, padding_idx=padding_idx) torch.nn.EmbeddingBag(num_embeddings, num_features, padding_idx=padding_idx) @unittest.skipUnless('fbgemm' in torch.backends.quantized.supported_engines, 'Linear_FP16_weight requires FBGEMM. FBGEMM is only optimized for CPUs' ' with instruction set support avx2 or newer.') def test_fb_fc_packed(self): X = np.random.rand(16, 16).astype(np.float32) - 0.5 W = np.random.rand(16, 16).astype(np.float32) - 0.5 b = np.random.rand(16).astype(np.float32) - 0.5 def fc_op(X, W, b): return np.dot(X, W.T) + b x_tensor = torch.tensor(X) w_tensor = torch.tensor(W) b_tensor = torch.tensor(b) packed_w_tensor = torch.fbgemm_pack_gemm_matrix_fp16(w_tensor) actual_output = torch.fbgemm_linear_fp16_weight(x_tensor, packed_w_tensor, b_tensor) expected_output = fc_op(X, W, b) torch.testing.assert_close(torch.from_numpy(expected_output), actual_output.cpu(), atol=1e-3, rtol=1e-3) def test_embeddingbag_from_pretrained(self): a = torch.tensor([[1., 2., 3.], [4., 5., 6.]]) embeddingbag = nn.EmbeddingBag.from_pretrained(a) self.assertEqual(a, embeddingbag.weight.data) input = torch.LongTensor([[0, 1]]) output = embeddingbag(input) self.assertEqual(a.mean(0, keepdim=True), output) def test_embeddingbag_from_pretrained_options(self): a = torch.tensor([[1., 2., 3.], [4., 5., 6.]]) opts = { "max_norm": 2., "norm_type": .5, "scale_grad_by_freq": False, "mode": "max", "sparse": False } embeddingbag = nn.EmbeddingBag.from_pretrained(a, **opts) input = torch.LongTensor([[0, 1]]) output = embeddingbag(input) self.assertEqual(a.max(0, keepdim=True)[0], output) self.assertTrue(a.ne(torch.arange(1, 7, dtype=a.dtype).view(2, 3)).all()) self.assertTrue(a.norm(p=opts["norm_type"], dim=1).le(opts["max_norm"]).all()) def test_AlphaDropout(self): # generate random tensor with zero mean and unit std input = torch.randn(5000) self._test_alpha_dropout(nn.AlphaDropout, input) def test_FeatureAlphaDropout(self): b = random.randint(1, 5) w = random.randint(1, 5) h = random.randint(1, 5) d = random.randint(1, 2) num_features = 1000 input = torch.randn(num_features, b, d, w, h) self._test_alpha_dropout(nn.FeatureAlphaDropout, input) # no batch dims input = torch.randn(50, 20, 64, 64) self._test_alpha_dropout(nn.FeatureAlphaDropout, input) def test_pad_scalar_error(self): inputs = torch.tensor(0., requires_grad=True) self.assertRaises(AssertionError, lambda: F.pad(inputs, (1, 1))) self.assertRaises(AssertionError, lambda: F.pad(inputs, (1,))) @unittest.skipIf(not TEST_NUMPY, "numpy not found") @parametrize_test("average_attn_weights", [True, False]) def test_multihead_attention(self, average_attn_weights): def _scaled_dot_attn_ref(Q, K, V, dims, unseen_mask=None, key_padding_mask=None, average_attn_weights=average_attn_weights): """ Numpy-based reference implementation of scaled dot attention for testing""" QKT = _batchmatmul( Q, np.transpose(K, axes=[0, 1, 3, 2]) / np.sqrt(dims[3], dtype=np.float32), # divide by sqrt(d_head) ) b1, b2, s1, s2 = QKT.shape if unseen_mask is not None or key_padding_mask is not None: # assert s1 == s2 for i in range(b1): for j in range(b2): for m in range(s1): for n in range(s2): if unseen_mask is not None and unseen_mask[m][n] == 0: QKT[i, j, m, n] = -np.inf if key_padding_mask is not None and key_padding_mask[i][n]: QKT[i, j, m, n] = -np.inf reference = _softmax(QKT) ref_attn_weight = reference if average_attn_weights: ref_attn_weight = np.sum(ref_attn_weight, axis=1) / b2 reference = _batchmatmul(reference, V) return reference, ref_attn_weight def _batchmatmul(a, b): # batchmatmul over 4 dim matrix """ Numpy-based batch matrix multiply over 4 dim matrix""" assert a.shape[0] == b.shape[0] assert a.shape[1] == b.shape[1] retval = np.zeros( (a.shape[0], a.shape[1], a.shape[2], b.shape[3]), dtype=np.float32 ) for i in range(a.shape[0]): for j in range(a.shape[1]): retval[i, j, :, :] = np.matmul(a[i, j, :, :], b[i, j, :, :]) return retval def _softmax(x): # softmax over 4 dim matrix """ Numpy-based reference softmax over 4 dim matrix""" np.seterr(invalid='ignore') output = np.zeros(x.shape, dtype=np.float64) for i in range(x.shape[0]): for j in range(x.shape[1]): for k in range(x.shape[2]): x_curr = x[i, j, k, :] e_x = np.exp(x_curr - np.amax(x_curr)) output[i, j, k, :] = e_x / np.sum(e_x) return output def _split_heads_ref(X, dims, nheads, d_head): X_split = np.reshape(X, dims[:2] + [nheads, d_head]) X_split_transposed = np.transpose(X_split, [0, 2, 1, 3]) reference = np.reshape(X_split_transposed, [dims[0], nheads, dims[1], d_head]) return reference def _combine_heads_ref(X, dims, nheads, d_head): X_transposed = np.transpose(X, [0, 2, 1, 3]) reference = np.reshape(X_transposed, dims[:2] + [nheads * d_head]) return reference def _fc(X, X_weight, X_bias): X_fc_b = X_bias.detach().numpy() X_fc_w = X_weight.detach().numpy() return np.matmul(X, np.transpose(X_fc_w)) + X_fc_b def _create_src_lengths_mask(batch_size, src_lengths): """ Generate boolean mask to prevent attention beyond the end of source Inputs: batch_size : int src_lengths : [batch_size] of sentence lengths Outputs: [batch_size, max_src_len] """ max_srclen = src_lengths.max() src_indices = torch.arange(0, max_srclen).unsqueeze(0).to(src_lengths) src_indices = src_indices.expand(batch_size, max_srclen) src_lengths = src_lengths.unsqueeze(dim=1).expand(batch_size, max_srclen) # returns [batch_size, max_seq_len] return (src_indices < src_lengths).int().detach() def _multihead_attn_test_helper(add_key_padding_mask=False, add_bias_kv=False, add_zero_attn=False, saved_kv=False, same_embed_dim=False, byte_mask=False, average_attn_weights=average_attn_weights): for _ in range(100): batch_sz, seq_len = [random.randint(2, 10) for r in range(2)] d_head = random.randint(3, 10) nheads = random.randint(3, 10) d_model = d_head * nheads if same_embed_dim: kv_dim = d_model else: kv_dim = random.randint(5, 20) dims = [batch_sz, seq_len, kv_dim] saved_k = None saved_k_tensor = None saved_v = None saved_v_tensor = None if saved_kv: saved_k = np.random.rand(batch_sz * nheads, seq_len, d_head) saved_k_tensor = torch.from_numpy(saved_k).to(torch.get_default_dtype()) saved_v = np.random.rand(batch_sz * nheads, seq_len, d_head) saved_v_tensor = torch.from_numpy(saved_v).to(torch.get_default_dtype()) key_padding_mask = None key_padding_mask_tensor = None if add_key_padding_mask: seq_mask = np.random.randint(0, 2, (1, seq_len)) key_padding_mask = (np.repeat(seq_mask, batch_sz, axis=0) == 1) key_padding_mask_tensor = torch.from_numpy(key_padding_mask) if byte_mask: key_padding_mask_tensor = key_padding_mask_tensor.byte() decoder_state = np.random.rand(batch_sz, d_model) K = np.random.rand(*dims) V = K Q = np.expand_dims(decoder_state, 1) attn_mask = np.random.randint(0 , 2, size=(1, seq_len)) attn_mask_tensor = torch.from_numpy(attn_mask).float() if byte_mask: attn_mask_tensor = (attn_mask_tensor == 0).byte() else: attn_mask_tensor.masked_fill_(attn_mask_tensor == 0, float('-inf')) attn_mask_tensor.masked_fill_(attn_mask_tensor > 0, float('0.0')) attn_mask_tensor = attn_mask_tensor.double() decoder_state_tensor = torch.from_numpy(decoder_state).to(torch.get_default_dtype()) source_hid_tensor = torch.from_numpy(K).to(torch.get_default_dtype()).transpose(0, 1) multihead_attn_module = MultiheadAttention(d_model, nheads, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, kdim=kv_dim, vdim=kv_dim) if add_bias_kv: bias_k = multihead_attn_module.bias_k.detach().numpy() bias_v = multihead_attn_module.bias_v.detach().numpy() else: bias_k = None bias_v = None _Q = decoder_state_tensor.unsqueeze(1).transpose(0, 1) _V = source_hid_tensor _K = source_hid_tensor if multihead_attn_module._qkv_same_embed_dim: result, result_weight = torch.nn.functional.multi_head_attention_forward( _Q, _K, _V, d_model, nheads, multihead_attn_module.in_proj_weight, multihead_attn_module.in_proj_bias, multihead_attn_module.bias_k, multihead_attn_module.bias_v, multihead_attn_module.add_zero_attn, multihead_attn_module.dropout, multihead_attn_module.out_proj.weight, multihead_attn_module.out_proj.bias, multihead_attn_module.training, key_padding_mask_tensor, True, attn_mask_tensor, static_k=saved_k_tensor, static_v=saved_v_tensor, average_attn_weights=average_attn_weights) else: result, result_weight = torch.nn.functional.multi_head_attention_forward( _Q, _K, _V, d_model, nheads, None, multihead_attn_module.in_proj_bias, multihead_attn_module.bias_k, multihead_attn_module.bias_v, multihead_attn_module.add_zero_attn, multihead_attn_module.dropout, multihead_attn_module.out_proj.weight, multihead_attn_module.out_proj.bias, multihead_attn_module.training, key_padding_mask_tensor, True, attn_mask_tensor, True, multihead_attn_module.q_proj_weight, multihead_attn_module.k_proj_weight, multihead_attn_module.v_proj_weight, static_k=saved_k_tensor, static_v=saved_v_tensor, average_attn_weights=average_attn_weights) result = result.squeeze(0).detach().numpy() if multihead_attn_module._qkv_same_embed_dim: q_proj_weight = multihead_attn_module.in_proj_weight[:d_model] k_proj_weight = multihead_attn_module.in_proj_weight[d_model:(d_model * 2)] v_proj_weight = multihead_attn_module.in_proj_weight[(d_model * 2):] else: q_proj_weight = multihead_attn_module.q_proj_weight k_proj_weight = multihead_attn_module.k_proj_weight v_proj_weight = multihead_attn_module.v_proj_weight Q_fc = _fc(Q, q_proj_weight, multihead_attn_module.in_proj_bias[:d_model]) K_fc = _fc(K, k_proj_weight, multihead_attn_module.in_proj_bias[d_model:(d_model * 2)]) V_fc = _fc(V, v_proj_weight, multihead_attn_module.in_proj_bias[(d_model * 2):]) if add_bias_kv: K_fc = np.concatenate((K_fc, np.repeat(bias_k, K_fc.shape[0], axis=0)), axis=1) V_fc = np.concatenate((V_fc, np.repeat(bias_v, V_fc.shape[0], axis=0)), axis=1) if attn_mask is not None: attn_mask = np.concatenate((attn_mask, np.ones([1, 1])), axis=1) if key_padding_mask is not None: key_padding_mask = np.concatenate((key_padding_mask, np.full((batch_sz, 1), False, dtype=bool)), axis=1) dims[1] += 1 Q_split = _split_heads_ref( Q_fc, [batch_sz, 1, d_model], nheads, d_head ) if saved_k is not None: K_split = np.reshape(saved_k, [dims[0], nheads, dims[1], d_head]) else: K_split = _split_heads_ref(K_fc, dims, nheads, d_head) if saved_v is not None: V_split = np.reshape(saved_v, [dims[0], nheads, dims[1], d_head]) else: V_split = _split_heads_ref(V_fc, dims, nheads, d_head) if add_zero_attn: dims[1] += 1 K_split = np.concatenate((K_split, np.zeros([K_split.shape[0], K_split.shape[1], 1, K_split.shape[3]])), axis=2) V_split = np.concatenate((V_split, np.zeros([V_split.shape[0], V_split.shape[1], 1, V_split.shape[3]])), axis=2) if attn_mask is not None: attn_mask = np.concatenate((attn_mask, np.ones([1, 1])), axis=1) if key_padding_mask is not None: key_padding_mask = np.concatenate((key_padding_mask, np.full((batch_sz, 1), False, dtype=bool)), axis=1) attn_heads, ref_attn_weight = _scaled_dot_attn_ref( Q=Q_split, K=K_split, V=V_split, dims=Q_split.shape, unseen_mask=attn_mask, key_padding_mask=key_padding_mask ) combined_attn_heads = _combine_heads_ref( X=attn_heads, dims=[batch_sz, 1], nheads=nheads, d_head=d_head ) reference = _fc(combined_attn_heads, multihead_attn_module.out_proj.weight, multihead_attn_module.out_proj.bias) reference = np.squeeze(reference, axis=1) # result = reference self.assertEqual(tuple(result.shape), (batch_sz, d_model)) np.testing.assert_allclose(result, reference, atol=1e-5) # result_weight = ref_attn_weight result_weight = result_weight.detach().numpy() self.assertEqual(tuple(result_weight.shape), tuple(ref_attn_weight.shape)) np.testing.assert_allclose(result_weight, ref_attn_weight, atol=1e-5) def test_multihead_attn_add_bias_kv(): _multihead_attn_test_helper(add_bias_kv=True) def test_multihead_attn_add_zero_attn(): _multihead_attn_test_helper(add_zero_attn=True) def test_multihead_attn_no_masking(): _multihead_attn_test_helper() def test_multihead_attn_key_padding_mask(): _multihead_attn_test_helper(add_key_padding_mask=True) def test_multihead_attn_saved_kv(): _multihead_attn_test_helper(saved_kv=True) def test_multihead_attn_add_bias_kv_zero_attn(): _multihead_attn_test_helper(add_key_padding_mask=True, add_bias_kv=True, add_zero_attn=True) def test_multihead_attn_all_arguments1(): _multihead_attn_test_helper(add_key_padding_mask=True, add_zero_attn=True, saved_kv=True) def test_multihead_attn_all_arguments2(): _multihead_attn_test_helper(add_key_padding_mask=True, add_bias_kv=True, add_zero_attn=True, saved_kv=True) def test_multihead_attn_all_arguments3(): _multihead_attn_test_helper(add_key_padding_mask=True, add_zero_attn=True, saved_kv=True, same_embed_dim=True) def test_multihead_attn_all_arguments4(): _multihead_attn_test_helper(add_key_padding_mask=True, add_zero_attn=True, saved_kv=True, same_embed_dim=True, byte_mask=True) test_multihead_attn_add_zero_attn() # Test MultiheadAttention with add_zero_attn test_multihead_attn_add_bias_kv() # Test MultiheadAttention with add_bias_kv test_multihead_attn_no_masking() # Test MultiheadAttention without masking test_multihead_attn_key_padding_mask() # Test MultiheadAttention with src lengths test_multihead_attn_saved_kv() # Test MultiheadAttention with static kv. test_multihead_attn_add_bias_kv_zero_attn() # Test MultiheadAttention with bias_kv and zero_attn. test_multihead_attn_all_arguments1() # Test MultiheadAttention with all the argument. with self.assertRaisesRegex(AssertionError, "bias cannot be added to static key."): test_multihead_attn_all_arguments2() # Test MultiheadAttention with all the argument. test_multihead_attn_all_arguments3() # Test MultiheadAttention with all the argument. test_multihead_attn_all_arguments4() # Test MultiheadAttention with all the argument. def test_multihead_attn_3d_attn_mask(self): embed_dim = 8 num_heads = 4 batch_size = 8 src_len = 3 tgt_len = 2 query = torch.rand(batch_size, tgt_len, embed_dim) # [N, T, D] key = torch.rand(batch_size, src_len, embed_dim) # [N, S, D] value = key # [N, S, D] attn_mask = torch.randint(0, 2, (batch_size, tgt_len, src_len)).float() # [N, T, S] attn_mask = attn_mask.masked_fill(attn_mask == 0, float('-inf')).masked_fill(attn_mask == 1, float(0.0)) mta_model = torch.nn.MultiheadAttention(embed_dim, num_heads) # Generate 3D results attn_mask_3d = torch.repeat_interleave(attn_mask, num_heads, dim=0) # [N * H, T, S] output_3d = mta_model(query.transpose(0, 1), key.transpose(0, 1), value.transpose(0, 1), attn_mask=attn_mask_3d)[0] output_3d = output_3d.transpose(0, 1) # [N, T, D] for i in range(0, batch_size): output_2d = mta_model(query[i].unsqueeze(0).transpose(0, 1), key[i].unsqueeze(0).transpose(0, 1), value[i].unsqueeze(0).transpose(0, 1), attn_mask=attn_mask[i])[0] # output_2d in shape of [T, 1, D] self.assertEqual(output_3d[i].unsqueeze(0).transpose(0, 1), output_2d) def test_multihead_attn_no_bias(self): embed_dim = 8 num_heads = 4 mha = torch.nn.MultiheadAttention(embed_dim, num_heads, bias=False) # Verify that bias=False applies to both in and out projection layers. self.assertIsNone(mha.in_proj_bias) self.assertIsNone(mha.out_proj.bias) def test_multihead_attn_invalid_shape(self): mha = torch.nn.MultiheadAttention(3, 3) # Batched (3D) query cases query = torch.randn(3, 3, 3) key = torch.randn(3, 3, 3) value = torch.randn(3, 3, 3) msg = "expected `key` and `value` to be 3-D but found 2-D and 3-D tensors respectively" # 3D query, 2D key and 3D value with self.assertRaisesRegex(AssertionError, msg): mha(query, torch.randn(3, 3), value) msg = "expected `key` and `value` to be 3-D but found 3-D and 2-D tensors respectively" # 3D query, 3D key and 2D value with self.assertRaisesRegex(AssertionError, msg): mha(query, key, torch.randn(3, 3)) msg = "expected `key_padding_mask` to be `None` or 2-D but found 1-D tensor instead" # 3D query, 3D key, 3D value and 1D key_padding_mask with self.assertRaisesRegex(AssertionError, msg): mha(query, key, value, key_padding_mask=torch.tensor([False, True, True], dtype=torch.bool)) msg = "expected `attn_mask` to be `None`, 2-D or 3-D but found 1-D tensor instead" # 3D query, 3D key, 3D value and 1D attn_mask with self.assertRaisesRegex(AssertionError, msg): mha(query, key, value, attn_mask=torch.tensor([False, True, True], dtype=torch.bool)) # Unbatched (2D) query cases query = torch.randn(3, 3) key = torch.randn(3, 3) value = torch.randn(3, 3) msg = "expected `key` and `value` to be 2-D but found 3-D and 2-D tensors respectively" # 2D query, 3D key and 2D value with self.assertRaisesRegex(AssertionError, msg): mha(query, torch.randn(3, 3, 3), value) msg = "expected `key` and `value` to be 2-D but found 2-D and 3-D tensors respectively" # 2D query, 3D key and 2D value with self.assertRaisesRegex(AssertionError, msg): mha(query, key, torch.randn(3, 3, 3)) msg = "expected `key_padding_mask` to be `None` or 1-D but found 2-D tensor instead" # 2D query, 2D key, 2D value and 1D key_padding_mask with self.assertRaisesRegex(AssertionError, msg): mha(query, key, value, key_padding_mask=torch.tensor([[False, True, True] * 2], dtype=torch.bool)) msg = "expected `attn_mask` to be `None`, 2-D or 3-D but found 1-D tensor instead" # 2D query, 2D key, 2D value and 1D attn_mask with self.assertRaisesRegex(AssertionError, msg): mha(query, key, value, attn_mask=torch.tensor([False, True, True], dtype=torch.bool)) msg = r"Expected `attn_mask` shape to be \(3, 3, 3\)" # 2D query, 2D key, 2D value and 3D incorrect attn_mask with self.assertRaisesRegex(AssertionError, msg): mha(query, key, value, attn_mask=torch.randn(4, 3, 3).bernoulli_().to(torch.bool)) def test_normalize(self): inputs = torch.randn(1, 3, 4, 4, requires_grad=True) self.assertTrue(gradcheck(lambda x: F.normalize(x, p=1, dim=-1), (inputs,))) self.assertTrue(gradcheck(lambda x: F.normalize(x, p=2, dim=-2), (inputs,))) inputs = torch.randn((), requires_grad=True) self.assertTrue(gradcheck(lambda x: F.normalize(x, p=1, dim=-1), (inputs,))) def test_adaptive_pooling_input_size(self): for numel in (2, 3): for pool_type in ('Max', 'Avg'): cls_name = 'Adaptive{}Pool{}d'.format(pool_type, numel) module_cls = getattr(nn, cls_name) output_size = (2,) * numel module = module_cls(output_size) input = torch.randn(output_size) self.assertRaises(ValueError, lambda: module(input)) def test_adaptive_pooling_size_none(self): for numel in (2, 3): for pool_type in ('Max', 'Avg'): cls_name = 'Adaptive{}Pool{}d'.format(pool_type, numel) module_cls = getattr(nn, cls_name) output_size = (2,) * (numel - 1) + (None,) module = module_cls(output_size) input = torch.randn((4,) * (numel + 1)) output = module(input) self.assertEqual(output.size(), (4,) + (2,) * (numel - 1) + (4,)) @unittest.skipIf(TEST_WITH_UBSAN, "signed integer overflow error with UBSAN") def test_adaptive_pooling_size_overflow(self): # 0x0x3fffffffffffffff * 2 * 2 = 0xfffffffffffffffc = -4 as int64_t # Tensor::numel() return int64_t, so following check that negative allocs are correctly handled self.assertRaises( RuntimeError, lambda: torch.nn.AdaptiveMaxPool1d(0x3fffffffffffffff)(torch.empty([2, 2, 2]))) def test_adaptive_pooling_avg_nhwc(self): device_list = ['cpu'] if TEST_CUDA: device_list.append('cuda') for device in device_list: input = torch.randint(1, 10, (4, 8, 8, 8), dtype=torch.float32).to(device) input = input.contiguous(memory_format=torch.channels_last).requires_grad_() grad = torch.randint(1, 10, (4, 8, 7, 7), dtype=torch.float32).to(device) pool = torch.nn.AdaptiveAvgPool2d((7, 7)).to(device) ref_input = input.detach().clone().contiguous().requires_grad_(True) ref_grad = grad.detach().clone().contiguous() ref_pool = torch.nn.AdaptiveAvgPool2d((7, 7)).to(device) out = pool(input) out.backward(grad) ref_out = ref_pool(ref_input) ref_out.backward(ref_grad) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(ref_out.is_contiguous()) self.assertEqual(out, ref_out) self.assertEqual(input.grad, ref_input.grad) def test_adaptive_pooling_avg_nhwc_non_contiguous(self): device_list = ['cpu'] if TEST_CUDA: device_list.append('cuda') for device in device_list: input = torch.randint(1, 10, (4, 8, 8, 8), dtype=torch.float32).to(device) input = input.contiguous(memory_format=torch.channels_last) input = input[:, ::2, :, :].requires_grad_() grad = torch.randint(1, 10, (4, 8, 7, 7), dtype=torch.float32).to(device) grad = grad[:, ::2, :, :] pool = torch.nn.AdaptiveAvgPool2d((7, 7)).to(device) ref_input = input.detach().clone().contiguous().requires_grad_(True) ref_grad = grad.detach().clone().contiguous() ref_pool = torch.nn.AdaptiveAvgPool2d((7, 7)).to(device) out = pool(input) out.backward(grad) ref_out = ref_pool(ref_input) ref_out.backward(ref_grad) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(ref_out.is_contiguous()) self.assertEqual(out, ref_out) self.assertEqual(input.grad, ref_input.grad) def test_adaptive_pooling_bfloat16(self): def _test_adaptive_pooling_bfloat16(self, device, mod, memory_format): input = torch.randint(1, 10, (3, 19, 8, 8), dtype=torch.float32) input = input.to(device).to(memory_format=memory_format).requires_grad_() pool = mod((7, 7)).to(device) input2 = input.detach().clone().bfloat16().requires_grad_(True) out = pool(input) out.sum().backward() out2 = pool(input2) out2.sum().backward() self.assertTrue(out2.is_contiguous(memory_format=memory_format)) self.assertEqual(out2.dtype, torch.bfloat16) self.assertEqual(input2.grad.dtype, torch.bfloat16) self.assertEqual(out, out2.float(), atol=0.1, rtol=0) self.assertEqual(input.grad, input2.grad.float(), atol=0.1, rtol=0) device_list = ['cpu'] for device in device_list: _test_adaptive_pooling_bfloat16(self, device, torch.nn.AdaptiveAvgPool2d, torch.contiguous_format) _test_adaptive_pooling_bfloat16(self, device, torch.nn.AdaptiveAvgPool2d, torch.channels_last) _test_adaptive_pooling_bfloat16(self, device, torch.nn.AdaptiveMaxPool2d, torch.contiguous_format) _test_adaptive_pooling_bfloat16(self, device, torch.nn.AdaptiveMaxPool2d, torch.channels_last) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @largeTensorTest('12GB', device='cuda') def test_adaptive_pooling_avg_nhwc_launch_config_backward(self): input = torch.randint(1, 10, (1, 32, 2 ** 17 + 1, 32), dtype=torch.float32, device="cuda") input = input.contiguous(memory_format=torch.channels_last).requires_grad_() grad = torch.randint(1, 10, (1, 32, 10, 32), dtype=torch.float32, device="cuda") pool = torch.nn.AdaptiveAvgPool2d((10, 32)).cuda() ref_input = input.detach().clone().contiguous().requires_grad_(True) ref_grad = grad.detach().clone().contiguous() ref_pool = torch.nn.AdaptiveAvgPool2d((10, 32)).cuda() out = pool(input) out.backward(grad) ref_out = ref_pool(ref_input) ref_out.backward(ref_grad) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(ref_out.is_contiguous()) self.assertEqual(out, ref_out) self.assertEqual(input.grad, ref_input.grad) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @largeTensorTest('12GB', device='cuda') def test_adaptive_pooling_avg_nhwc_launch_config_forward(self): input = torch.randint(1, 10, (1, 32, 16, 16), dtype=torch.float32, device="cuda") input = input.contiguous(memory_format=torch.channels_last).requires_grad_() pool = torch.nn.AdaptiveAvgPool2d((2 ** 17 + 1, 32)).cuda() ref_input = input.detach().clone().contiguous().requires_grad_(True) ref_pool = torch.nn.AdaptiveAvgPool2d((2 ** 17 + 1, 32)).cuda() out = pool(input) ref_out = ref_pool(ref_input) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(ref_out.is_contiguous()) self.assertEqual(out, ref_out) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") # Skip the test for ROCm as per https://github.com/pytorch/pytorch/issues/53190 @skipIfRocm def test_broadcast_double_backwards_gpu(self): tensors = (torch.randn(4, 4, device='cuda', requires_grad=True), torch.randn(4, 4, device='cuda', requires_grad=True), torch.randn(4, 4, device='cuda', requires_grad=True)) # TODO(#50743): the following segfaults with check_batched_grad=True _assertGradAndGradgradChecks(self, lambda *i: Broadcast.apply((0, 1), *i), tensors, check_batched_grad=False) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_broadcast_not_requiring_grad(self): variables = [ torch.randn(1, 2, device='cuda', requires_grad=True), torch.randn(1, 2, device='cuda', requires_grad=False), torch.randn(1, 2, device='cuda', requires_grad=False), torch.randn(1, 2, device='cuda', requires_grad=True), torch.randn(1, 2, device='cuda', requires_grad=True), ] broadcasted_variables = Broadcast.apply((0, 1), *variables) for output_idx, broadcasted_var in enumerate(broadcasted_variables): input_var = variables[output_idx % len(variables)] self.assertEqual(input_var.requires_grad, broadcasted_var.requires_grad) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_broadcast_no_grad(self): x = torch.randn(1, 2, dtype=torch.float32, requires_grad=True, device='cuda') with torch.no_grad(): broadcasted = Broadcast.apply((0, 1), x) self.assertTrue(x.requires_grad) for output in broadcasted: self.assertFalse(output.requires_grad) def test_state_dict(self): l = nn.Linear(5, 5) block = nn.Module() block.conv = nn.Conv2d(3, 3, 3, bias=False) net = nn.Module() net.linear1 = l net.linear2 = l net.bn = nn.BatchNorm2d(2) net.block = block net.add_module('empty', None) state_dict = net.state_dict() self.assertEqual(len(state_dict), 10) self.assertEqual(len(state_dict._metadata), 6) self.assertIn('', state_dict._metadata) self.assertIn('linear1', state_dict._metadata) self.assertIn('linear1.weight', state_dict) self.assertIn('linear1.bias', state_dict) self.assertIn('linear2', state_dict._metadata) self.assertIn('linear2.weight', state_dict) self.assertIn('linear2.bias', state_dict) self.assertIn('block', state_dict._metadata) self.assertIn('block.conv', state_dict._metadata) self.assertIn('block.conv.weight', state_dict) self.assertIn('block.conv.weight', state_dict) self.assertNotIn('block.conv.bias', state_dict) self.assertIn('bn', state_dict._metadata) self.assertIn('bn.weight', state_dict) self.assertIn('bn.bias', state_dict) self.assertIn('bn.running_var', state_dict) self.assertIn('bn.running_mean', state_dict) self.assertIn('bn.num_batches_tracked', state_dict) self.assertFalse(any(k.startswith('empty') for k in state_dict.keys())) for k, v in state_dict.items(): param = net for component in k.split('.'): param = getattr(param, component) if isinstance(param, Parameter): param = param.data self.assertEqual(v.data_ptr(), param.data_ptr()) l = nn.Linear(5, 5) state_dict = l.state_dict() self.assertEqual(len(state_dict), 2) self.assertEqual(len(state_dict._metadata), 1) self.assertIn('', state_dict._metadata) self.assertTrue(state_dict._metadata['']['version'] >= 0) self.assertEqual(state_dict['weight'].data_ptr(), l.weight.data_ptr()) self.assertEqual(state_dict['bias'].data_ptr(), l.bias.data_ptr()) def test_load_state_dict(self): l = nn.Linear(5, 5) block = nn.Module() block.conv1 = nn.Conv2d(3, 3, 3, bias=True) block.conv2 = nn.Conv2d(3, 3, 3, bias=False) net = nn.Module() net.linear1 = l net.linear2 = l net.bn = nn.BatchNorm2d(2) net.block = block net.add_module('empty', None) conv1_bias_dtype = block.conv1.bias.dtype state_dict = net.state_dict() state_dict.update({ 'linear1.weight': torch.ones(5, 5), 'block.conv1.bias': torch.arange(1, 4, dtype=conv1_bias_dtype), 'bn.running_mean': torch.randn(2), }) # Also test if a DDP state_dict can be loaded from a local model. ddp_state_dict = net.state_dict() ddp_state_dict.update({ 'module.linear1.weight': torch.ones(5, 5), 'module.block.conv1.bias': torch.arange(1, 4, dtype=conv1_bias_dtype), 'module.bn.running_mean': torch.randn(2), }) torch.nn.modules.utils.consume_prefix_in_state_dict_if_present(ddp_state_dict, 'module.') for sd in [state_dict, ddp_state_dict]: incompatible_keys = net.load_state_dict(sd) self.assertEqual(len(incompatible_keys.missing_keys), 0) self.assertEqual(len(incompatible_keys.unexpected_keys), 0) self.assertNotIn('Incompatible', str(incompatible_keys)) self.assertEqual(net.linear1.weight, sd['linear1.weight']) self.assertEqual(net.block.conv1.bias, sd['block.conv1.bias']) self.assertEqual(net.bn.running_mean, sd['bn.running_mean']) state_dict = net.state_dict() state_dict.update({'extra': torch.ones(5)}) self.assertRaises(RuntimeError, lambda: net.load_state_dict(state_dict)) incompatible_keys = net.load_state_dict(state_dict, strict=False) self.assertEqual(len(incompatible_keys.missing_keys), 0) self.assertEqual(len(incompatible_keys.unexpected_keys), 1) self.assertIn('extra', incompatible_keys.unexpected_keys) self.assertIn('Incompatible', str(incompatible_keys)) state_dict = net.state_dict() state_dict.update({'extra.param': torch.ones(5)}) self.assertRaises(RuntimeError, lambda: net.load_state_dict(state_dict)) incompatible_keys = net.load_state_dict(state_dict, strict=False) self.assertEqual(len(incompatible_keys.missing_keys), 0) self.assertEqual(len(incompatible_keys.unexpected_keys), 1) self.assertIn('extra.param', incompatible_keys.unexpected_keys) state_dict = net.state_dict() del state_dict['linear1.weight'] self.assertRaises(RuntimeError, lambda: net.load_state_dict(state_dict)) incompatible_keys = net.load_state_dict(state_dict, strict=False) self.assertEqual(len(incompatible_keys.missing_keys), 1) self.assertEqual(len(incompatible_keys.unexpected_keys), 0) self.assertIn('linear1.weight', incompatible_keys.missing_keys) state_dict.update({'extra.param': torch.ones(5)}) self.assertRaises(RuntimeError, lambda: net.load_state_dict(state_dict)) incompatible_keys = net.load_state_dict(state_dict, strict=False) self.assertEqual(len(incompatible_keys.missing_keys), 1) self.assertEqual(len(incompatible_keys.unexpected_keys), 1) self.assertIn('linear1.weight', incompatible_keys.missing_keys) self.assertIn('extra.param', incompatible_keys.unexpected_keys) state_dict = net.state_dict() state_dict.update({'bn.running_mean': torch.rand(14, 4)}) # wrong size self.assertRaises(RuntimeError, lambda: net.load_state_dict(state_dict)) self.assertRaises(RuntimeError, lambda: net.load_state_dict(state_dict, strict=False)) state_dict = net.state_dict() old_state_dict = deepcopy(state_dict) state_dict = { 'linear1.weight': torch.ones(5, 5), 'block.conv1.bias': torch.arange(1, 4, dtype=conv1_bias_dtype), 'bn.running_mean': torch.randn(2), 'nonexistent_key': torch.rand(3) } net.load_state_dict(state_dict, strict=False) self.assertEqual(net.linear1.weight, state_dict['linear1.weight']) self.assertEqual(net.block.conv1.bias, state_dict['block.conv1.bias']) self.assertEqual(net.bn.running_mean, state_dict['bn.running_mean']) new_state_dict = net.state_dict() del old_state_dict['linear1.weight'] del old_state_dict['block.conv1.bias'] del old_state_dict['bn.running_mean'] for k, v, in old_state_dict.items(): self.assertTrue(v.equal(new_state_dict[k])) def test_load_state_dict_BC(self): # BatchNormNd # Added num_batches_tracked buffer at version 2. For state dict with # earlier versions or no versions, it should provide default value of 0. bn = nn.BatchNorm2d(3) state_dict = bn.state_dict() del state_dict['num_batches_tracked'] state_dict._metadata['']['version'] = 1 # version 1 bn.load_state_dict(state_dict) self.assertEqual(bn.num_batches_tracked.dtype, torch.long) self.assertEqual(bn.num_batches_tracked.item(), 0) del state_dict._metadata['']['version'] # no version bn.load_state_dict(state_dict) self.assertEqual(bn.num_batches_tracked.dtype, torch.long) self.assertEqual(bn.num_batches_tracked.item(), 0) def test_load_state_dict_ref_cycle(self): # load_state_dict shouldn't cause a reference cycle involving Tensors import gc m = torch.nn.LSTM(16, 16, bidirectional=True) gc.collect() m.load_state_dict(deepcopy(m).state_dict()) refcycles = gc.collect() self.assertEqual(refcycles, 0) def test_load_state_dict_custom(self): class CustomState(nn.Module): def __init__(self): super(CustomState, self).__init__() self.param = torch.nn.Parameter(torch.ones(1)) self.sub = torch.nn.Linear(5, 5) def _save_to_state_dict(self, destination, prefix, keep_vars): destination[prefix + "serialized"] = self.param.data + 1 def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): # skip some of the error handling self.param.data.copy_(state_dict[prefix + "serialized"] - 1) # use sequential to verify nesting m = nn.Sequential(CustomState()) with torch.no_grad(): m[0].param[0] = 10 m[0].sub.weight[0, 0] = 555 state_dict = m.state_dict() self.assertEqual(state_dict["0.serialized"].item(), 11) self.assertIn("0.sub.weight", state_dict) self.assertNotIn("0.param", state_dict) del m mm = nn.Sequential(CustomState()) self.assertEqual(mm[0].param[0].item(), 1) mm.load_state_dict(state_dict) self.assertEqual(mm[0].param[0].item(), 10) self.assertEqual(mm[0].sub.weight[0, 0].item(), 555) def test_extra_state(self): class SubModule(torch.nn.Module): def __init__(self, foo): super().__init__() self.foo = foo def get_extra_state(self): return { 'foo': self.foo } def set_extra_state(self, state): self.foo = state['foo'] class MyModule(torch.nn.Module): def __init__(self, foo, bar): super().__init__() self.sub = SubModule(foo) self.bar = bar def get_extra_state(self): return { 'bar': self.bar } def set_extra_state(self, state): self.bar = state['bar'] # Ensure state_dict contains the extra state by loading it into another module. m = MyModule(3, 'something') m2 = MyModule(5, 'something else') m2.load_state_dict(m.state_dict()) self.assertEqual(m.state_dict(), m2.state_dict()) self.assertEqual(m2.bar, m.bar) self.assertEqual(m2.sub.foo, m.sub.foo) def test_extra_state_non_dict(self): class MyModule(torch.nn.Module): def __init__(self, foo): super().__init__() self.foo = foo def get_extra_state(self): return self.foo def set_extra_state(self, state): self.foo = state # Test various types of extra state. for state in ('something', 5, MyModule(3)): m = MyModule(state) m2 = MyModule('something else') m2.load_state_dict(m.state_dict()) self.assertEqual(m.state_dict(), m2.state_dict()) self.assertEqual(m.foo, m2.foo) def test_extra_state_missing_set_extra_state(self): class MyModule(torch.nn.Module): def __init__(self): super().__init__() def get_extra_state(self): return { 'foo': 5 } m = MyModule() with self.assertRaisesRegex(RuntimeError, 'Unexpected key'): m.load_state_dict(m.state_dict()) def test_extra_state_missing_get_extra_state(self): class MyModule(torch.nn.Module): def __init__(self): super().__init__() def set_extra_state(self): pass m = MyModule() with self.assertRaisesRegex(RuntimeError, 'Missing key'): m.load_state_dict(m.state_dict()) def test_parameter_assignment(self): l = nn.Linear(5, 5) def num_params(): return len(list(l.parameters())) self.assertEqual(num_params(), 2) new_param = Parameter(torch.randn(5, 5)) l.param_name = new_param self.assertEqual(num_params(), 3) self.assertObjectIn(new_param, l.parameters()) var = torch.randn(5, 5) l.var_name = var self.assertEqual(num_params(), 3) self.assertNotIn(id(var), map(id, l.parameters())) # Make sure Variables are not saved as parameters l.variable_attr = torch.empty(5, 5) self.assertEqual(num_params(), 3) l.param_attr = Parameter(torch.empty(5, 5)) self.assertEqual(num_params(), 4) # It shouldn't be possible to replace a parameter with a Variable def assign_var(): l.param_attr = torch.empty(5, 5) self.assertRaises(TypeError, assign_var) # But replacing it with None should be fine l.param_attr = None self.assertEqual(num_params(), 3) def test_assignment(self): l = nn.Module() a = nn.Parameter(torch.randn(2)) b = nn.Parameter(torch.randn(3)) c = nn.Parameter(torch.randn(4)) q = nn.Linear(4, 4) r = nn.Linear(5, 5) w = nn.Linear(6, 6) def test_assignments(get_list, a, b, c): # Check that None can be shadowed l.a = None self.assertIsNone(l.a) self.assertIn('a', l.__dict__) l.a = a self.assertIs(l.a, a) self.assertEqual(get_list(), [a]) self.assertNotIn('a', l.__dict__) # Assign second object l.b = None self.assertIsNone(l.b) self.assertIn('b', l.__dict__) l.b = b self.assertIs(l.b, b) self.assertEqual(get_list(), [a, b]) self.assertNotIn('b', l.__dict__) # Remove and add the object back. Order should be unchanged. l.a = None self.assertIsNone(l.a) self.assertEqual(get_list(), [b]) l.a = a self.assertIs(l.a, a) self.assertEqual(get_list(), [a, b]) # Replace object with another one. Order should be unchanged. l.a = c self.assertIs(l.a, c) self.assertEqual(get_list(), [c, b]) # Remove and reassign an attribute. It should appear at the end of the list now. del l.a self.assertFalse(hasattr(l, 'a')) l.a = a self.assertIs(l.a, a) self.assertEqual(get_list(), [b, a]) test_assignments(lambda: list(l.parameters()), a, b, c) del l.a, l.b self.assertEqual(list(l.parameters()), []) test_assignments(lambda: list(l.children()), q, r, w) del l.a, l.b self.assertEqual(list(l.children()), []) buf = torch.randn(10) l.register_buffer('buf', buf) self.assertIs(l.buf, buf) l.buf = None self.assertIs(l.buf, None) self.assertNotIn('buf', l.__dict__) # should be stored in l._buffers l.buf = buf self.assertIn('buf', l.state_dict()) self.assertEqual(l.state_dict()['buf'], buf) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') def test_thnn_conv_strided_padded_dilated(self): for convfn, dims, transposed in ( (torch.nn.functional.conv2d, 2, False), (torch.nn.functional.conv_transpose2d, 2, True), (torch.nn.functional.conv3d, 3, False), (torch.nn.functional.conv_transpose3d, 3, True)): for stride, padding, dilation in ( (2, 0, 1), (1, 1, 1), (2, 1, 1), (1, 0, 2)): kwargs = {"stride": stride, "padding": padding, "dilation": dilation} inp_shape = (1, 2) + dims * (4,) weight_shape = (2, 2) + dims * (1,) inputs = torch.randn(inp_shape, dtype=torch.double, device="cuda", requires_grad=True) weight = torch.randn(weight_shape, dtype=torch.double, device="cuda", requires_grad=True) bias = torch.randn(2, dtype=torch.double, device="cuda", requires_grad=True) with torch.backends.cudnn.flags(enabled=False): res = convfn(inputs, weight, bias, **kwargs) res_cpu = convfn(inputs.cpu(), weight.cpu(), bias.cpu(), **kwargs) self.assertEqual(res, res_cpu) with torch.backends.cudnn.flags(enabled=False): torch.autograd.gradcheck( lambda x, w, b: convfn(x, w, b, **kwargs), (inputs, weight, bias) ) torch.autograd.gradcheck( lambda x, w, b: convfn(x, w, b, **kwargs), (inputs.cpu(), weight.cpu(), bias.cpu()) ) def test_Conv2d_inconsistent_types(self): inputs = torch.randn(4, 1, 7, 7, dtype=torch.float) weights = torch.randn(1, 1, 3, 3, dtype=torch.double) # inconsistent types should raise an exception self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights)) # but it should work with the same type nn.functional.conv2d(inputs.float(), weights.float()) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') def test_Conv2d_inconsistent_types_on_GPU_without_cudnn(self): inputs = torch.randn(4, 1, 7, 7, dtype=torch.float, device="cuda") weights = torch.randn(1, 1, 3, 3, dtype=torch.double, device="cuda") bias = torch.randn(1, dtype=torch.double, device="cuda") with torch.backends.cudnn.flags(enabled=False): # inconsistent types should raise an exception self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights)) self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights.float(), bias)) # but it should work with the same type nn.functional.conv2d(inputs.float(), weights.float(), bias.float()) def test_Conv2d_1x1(self): in_channels = 2 out_channels = 2 mod = torch.nn.Conv2d(2, 2, 1, bias=False).to(dtype=torch.double) input = torch.randn(1, in_channels, 5, 5, requires_grad=True, dtype=torch.double) for enabled in (False, True): with torch.backends.mkldnn.flags(enabled=enabled): gradcheck(F.conv2d, (input, mod.weight)) def test_Conv2d_OneDNN(self): def run_once(group_val=24, dilation=1): ifm = torch.ones([1, group_val, 6, 6], dtype=torch.float32) weights = torch.ones([group_val, 1, 3, 3], dtype=torch.float32) op = torch.nn.Conv2d( in_channels=group_val, out_channels=group_val, kernel_size=[3, 3], stride=[2, 2], padding=[1, 1], dilation=[dilation, dilation], groups=group_val, bias=False, padding_mode='zeros' ) op.weight.data = weights res = op(ifm) grad_in = torch.ones(res.shape, dtype=torch.float32) res.backward(grad_in) return op.weight.grad for gorup_val in (24, 48, 23, 25): for dilation in (1, 2): with torch.backends.mkldnn.flags(enabled=False): without_onednn = run_once(gorup_val, dilation) with torch.backends.mkldnn.flags(enabled=True): with_onednn = run_once(gorup_val, dilation) self.assertEqual(without_onednn, with_onednn) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_cudnn_non_contiguous(self): x = torch.randn(192, 16, 50).cuda() x = x.permute(0, 2, 1).contiguous().permute(0, 2, 1) m = torch.nn.Conv1d( in_channels=16, out_channels=32, kernel_size=2, bias=True).cuda() result = m(x) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_Conv2d_inconsistent_types_on_GPU_with_cudnn(self): inputs = torch.randn(4, 1, 7, 7, dtype=torch.float, device="cuda") weights = torch.randn(1, 1, 3, 3, dtype=torch.double, device="cuda") bias = torch.randn(1, dtype=torch.double, device="cuda") with torch.backends.cudnn.flags(enabled=True): # inconsistent types should raise an exception self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights)) self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights.float(), bias)) # but it should work with the same type nn.functional.conv2d(inputs.float(), weights.float(), bias.float()) def test_Conv2d_missing_argument(self): c = nn.Conv2d(3, 3, 3) self.assertRaises(TypeError, lambda: c(None)) def test_Conv2d_backward_twice(self): input = torch.randn(2, 3, 5, 5) c = nn.Conv2d(3, 3, 3) o1 = c(input) o1.sum().backward() self.assertRaisesRegex(RuntimeError, 'Specify retain_graph=True', lambda: o1.sum().backward()) def test_conv_modules_raise_error_on_incorrect_input_size(self): for dtype in [torch.bfloat16, torch.double, torch.float]: modules = [nn.Conv1d(3, 8, 3).to(dtype), nn.ConvTranspose1d(3, 8, 3).to(dtype), nn.Conv2d(3, 8, 3).to(dtype), nn.ConvTranspose2d(3, 8, 3).to(dtype), nn.Conv3d(3, 8, 3).to(dtype), nn.ConvTranspose3d(3, 8, 3).to(dtype)] invalid_input_dims = [(1, 4), (1, 4), (2, 5), (2, 5), (3, 6), (3, 6)] for invalid_dims, module in zip(invalid_input_dims, modules): for dims in invalid_dims: input = torch.empty(torch.Size((3, ) * dims)) self.assertRaises(RuntimeError, lambda: module(input)) def test_conv_shapecheck(self): def test(should_raise, module, input_size, dtype): input = torch.empty(3, *input_size).to(dtype) if should_raise: self.assertRaises(RuntimeError, lambda: module(input)) else: # just run it to ensure no exception raised. module(input) for dtype in [torch.bfloat16, torch.float, torch.double]: # Conv1d test(True, nn.Conv1d(1, 1, 3).to(dtype), (1, 2), dtype) test(True, nn.Conv1d(1, 1, 3, stride=2).to(dtype), (1, 2), dtype) test(False, nn.Conv1d(1, 1, 2).to(dtype), (1, 2), dtype) test(False, nn.Conv1d(1, 1, 2, stride=2).to(dtype), (1, 2), dtype) test(False, nn.Conv1d(1, 1, 3, stride=2, padding=1).to(dtype), (1, 2), dtype) # Conv2d test(True, nn.Conv2d(1, 1, (3, 3)).to(dtype), (1, 2, 2), dtype) test(False, nn.Conv2d(1, 1, (3, 3)).to(dtype), (1, 3, 3), dtype) test(False, nn.Conv2d(1, 1, (3, 3), padding=1).to(dtype), (1, 2, 2), dtype) # Conv3D test(True, nn.Conv3d(1, 1, (3, 3, 3)).to(dtype), (1, 2, 2, 2), dtype) test(False, nn.Conv3d(1, 1, (3, 3, 3)).to(dtype), (1, 3, 3, 3), dtype) test(False, nn.Conv3d(1, 1, (3, 3, 3), padding=1).to(dtype), (1, 2, 2, 2), dtype) def test_ConvTranspose2d_output_size(self): m = nn.ConvTranspose2d(3, 4, 3, 3, 0, 2) i = torch.randn(2, 3, 6, 6) for h in range(15, 22): for w in range(15, 22): if 18 <= h <= 20 and 18 <= w <= 20: output = m(i, output_size=(h, w)) self.assertEqual(output.size()[2:], (h, w)) else: self.assertRaises(ValueError, lambda: m(i, (h, w))) def test_ConvTranspose2d_output_size_downsample_upsample(self): b, c, hid_c = 2, 3, 2 for h in range(13, 24): for w in range(13, 17): for k in range(2, 5): for d in range(1, 5): for s in range(1, 4): for p in range(3): conv = nn.Conv2d( in_channels=c, out_channels=hid_c, kernel_size=k, stride=s, padding=p, dilation=d, ) t_conv = nn.ConvTranspose2d( in_channels=hid_c, out_channels=c, kernel_size=k, stride=s, padding=p, dilation=d, ) i = torch.randn(b, c, h, w) out = t_conv(conv(i), output_size=i.shape) self.assertEqual(out.size()[2:], i.size()[2:]) def test_ConvTranspose3d_correct_output_size(self): # Check that ConvTranspose3d can take a 5d output_size. m = nn.ConvTranspose3d(2, 2, 2) i = torch.rand(1, 2, 1, 1, 1) out = m(i, output_size=(1, 2, 2, 2, 2)) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') def test_ConvTranspose2d_half_cublas_gemm(self): with torch.backends.cudnn.flags(enabled=False): inputs = torch.randn(1, 1, 16, 16, device='cuda', dtype=torch.half) deconv = nn.ConvTranspose2d( 1, 1, 3, stride=2, padding=1, output_padding=1).cuda().half() output = deconv(inputs) output.mean().backward() @skipIfRocm # For https://github.com/pytorch/pytorch/pull/1273 # Almost identical to the above `test_Conv2d_naive_groups` def test_Conv2d_groups_nobias(self): dev_dtypes = [("cpu", torch.float)] if TEST_CUDA: dev_dtypes += [("cuda", torch.float), ("cuda", torch.half)] if AMPERE_OR_ROCM: dev_dtypes += [("cuda", torch.bfloat16)] for device, dtype in dev_dtypes: m = nn.Conv2d(4, 4, kernel_size=3, groups=2, bias=False).to(device, dtype) i = torch.randn(2, 4, 6, 6, device=device, dtype=dtype, requires_grad=True) output = m(i) grad_output = torch.randn(2, 4, 4, 4, device=device, dtype=dtype) output.backward(grad_output) m1 = nn.Conv2d(2, 2, kernel_size=3, bias=False).to(device, dtype) m1.weight.data.copy_(m.weight.data[:2]) i1 = i.data[:, :2].contiguous().requires_grad_(True) output1 = m1(i1) output1.backward(grad_output[:, :2].contiguous()) m2 = nn.Conv2d(2, 2, kernel_size=3, bias=False).to(device, dtype) m2.weight.data.copy_(m.weight.data[2:]) i2 = i.data[:, 2:].contiguous().requires_grad_(True) output2 = m2(i2) output2.backward(grad_output[:, 2:].contiguous()) self.assertEqual(output, torch.cat([output1, output2], 1)) self.assertEqual(i.grad.data, torch.cat([i1.grad.data, i2.grad.data], 1), atol=dtype2prec_DONTUSE[dtype], rtol=0) self.assertEqual(m.weight.grad.data, torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0), atol=1e-1 if dtype == torch.half else dtype2prec_DONTUSE[dtype], rtol=0) # Almost identical to the above `test_Conv2d_naive_groups` # Covering special case when group > 1, input-channel / group < 16 and output-channel is multiple of 16 # See also https://github.com/pytorch/pytorch/pull/18463#issuecomment-476563686 # and https://github.com/pytorch/pytorch/pull/18463#issuecomment-477001024 @skipIfRocm def test_Conv2d_groups_nobias_v2(self): torch.manual_seed(123) dev_dtypes = [("cpu", torch.float)] if TEST_CUDA: dev_dtypes += [("cuda", torch.float), ("cuda", torch.half)] if AMPERE_OR_ROCM: dev_dtypes += [("cuda", torch.bfloat16)] for device, dtype in dev_dtypes: m = nn.Conv2d(4, 16, kernel_size=3, groups=2, bias=False).to(device, dtype) i = torch.randn(2, 4, 6, 6, device=device, dtype=dtype, requires_grad=True) output = m(i) grad_output = torch.randn(2, 16, 4, 4, device=device, dtype=dtype) output.backward(grad_output) m1 = nn.Conv2d(2, 8, kernel_size=3, bias=False).to(device, dtype) m1.weight.data.copy_(m.weight.data[:8]) i1 = i.data[:, :2].contiguous().requires_grad_(True) output1 = m1(i1) output1.backward(grad_output[:, :8].contiguous()) m2 = nn.Conv2d(2, 8, kernel_size=3, bias=False).to(device, dtype) m2.weight.data.copy_(m.weight.data[8:]) i2 = i.data[:, 2:].contiguous().requires_grad_(True) output2 = m2(i2) output2.backward(grad_output[:, 8:].contiguous()) self.assertEqual(output, torch.cat([output1, output2], 1)) self.assertEqual(i.grad.data, torch.cat([i1.grad.data, i2.grad.data], 1), atol=dtype2prec_DONTUSE[dtype], rtol=0) self.assertEqual(m.weight.grad.data, torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0), atol=1e-1 if dtype == torch.half else dtype2prec_DONTUSE[dtype], rtol=0) # CPU-only test for group conv3d fast implementation using bmm # See: https://github.com/pytorch/pytorch/pull/36355 def test_Conv3d_groups_nobias(self): torch.manual_seed(123) m = nn.Conv3d(4, 16, kernel_size=3, groups=2, bias=False).to("cpu", torch.float) i = torch.randn(2, 4, 6, 6, 6, device="cpu", dtype=torch.float, requires_grad=True) output = m(i) grad_output = torch.randn(2, 16, 4, 4, 4, device="cpu", dtype=torch.float) output.backward(grad_output) m1 = nn.Conv3d(2, 8, kernel_size=3, bias=False).to("cpu", torch.float) m1.weight.data.copy_(m.weight.data[:8]) i1 = i.data[:, :2].contiguous().requires_grad_(True) output1 = m1(i1) output1.backward(grad_output[:, :8].contiguous()) m2 = nn.Conv3d(2, 8, kernel_size=3, bias=False).to("cpu", torch.float) m2.weight.data.copy_(m.weight.data[8:]) i2 = i.data[:, 2:].contiguous().requires_grad_(True) output2 = m2(i2) output2.backward(grad_output[:, 8:].contiguous()) self.assertEqual(output, torch.cat([output1, output2], 1)) self.assertEqual(i.grad.data, torch.cat([i1.grad.data, i2.grad.data], 1), atol=dtype2prec_DONTUSE[torch.float], rtol=0) self.assertEqual(m.weight.grad.data, torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0), atol=dtype2prec_DONTUSE[torch.float], rtol=dtype2prec_DONTUSE[torch.float]) def test_Conv3d_groups_wbias(self): torch.manual_seed(123) m = nn.Conv3d(4, 16, kernel_size=3, groups=2, bias=True).to("cpu", torch.float) i = torch.randn(2, 4, 6, 6, 6, device="cpu", dtype=torch.float, requires_grad=True) output = m(i) grad_output = torch.randn(2, 16, 4, 4, 4, device="cpu", dtype=torch.float) output.backward(grad_output) m1 = nn.Conv3d(2, 8, kernel_size=3, bias=True).to("cpu", torch.float) m1.weight.data.copy_(m.weight.data[:8]) m1.bias.data.copy_(m.bias.data[:8]) i1 = i.data[:, :2].contiguous().requires_grad_(True) output1 = m1(i1) output1.backward(grad_output[:, :8].contiguous()) m2 = nn.Conv3d(2, 8, kernel_size=3, bias=True).to("cpu", torch.float) m2.weight.data.copy_(m.weight.data[8:]) m2.bias.data.copy_(m.bias.data[8:]) i2 = i.data[:, 2:].contiguous().requires_grad_(True) output2 = m2(i2) output2.backward(grad_output[:, 8:].contiguous()) self.assertEqual(output, torch.cat([output1, output2], 1)) self.assertEqual(i.grad.data, torch.cat([i1.grad.data, i2.grad.data], 1), atol=dtype2prec_DONTUSE[torch.float], rtol=dtype2prec_DONTUSE[torch.float]) self.assertEqual(m.weight.grad.data, torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0), atol=dtype2prec_DONTUSE[torch.float], rtol=dtype2prec_DONTUSE[torch.float]) self.assertEqual(m.bias.grad.data, torch.cat([m1.bias.grad.data, m2.bias.grad.data], 0), atol=dtype2prec_DONTUSE[torch.float], rtol=dtype2prec_DONTUSE[torch.float]) def test_MaxUnpool2d_output_size(self): m = nn.MaxPool2d(3, stride=2, return_indices=True) mu = nn.MaxUnpool2d(3, stride=2) big_t = torch.rand(1, 1, 6, 6) big_t[0][0][4][4] = 100 output_big, indices_big = m(big_t) self.assertRaises(RuntimeError, lambda: mu(output_big, indices_big)) small_t = torch.rand(1, 1, 5, 5) for i in range(0, 4, 2): for j in range(0, 4, 2): small_t[:, :, i, j] = 100 output_small, indices_small = m(small_t) for h in range(3, 10): for w in range(3, 10): if 4 <= h <= 6 and 4 <= w <= 6: size = (h, w) if h == 6: size = (1, 1) + size mu(output_small, indices_small, output_size=size) else: self.assertRaises(ValueError, lambda: mu(output_small, indices_small, (h, w))) def test_max_unpool2d_nhwc_cpu(self): input = torch.randn(2, 10, 9, 9).float().cpu() input = input.contiguous(memory_format=torch.channels_last) ref_input = input.clone().contiguous() pool = nn.MaxPool2d(3, stride=2, return_indices=True).cpu() ref_pool = nn.MaxPool2d(3, stride=2, return_indices=True).cpu() out, ind = pool(input) ref_out, ref_ind = ref_pool(ref_input) out.requires_grad_() ref_out.requires_grad_() unpool = nn.MaxUnpool2d(3, stride=2).cpu() ref_unpool = nn.MaxUnpool2d(3, stride=2).cpu() upout = unpool(out, ind) ref_upout = ref_unpool(ref_out, ref_ind) grad = torch.randn(upout.size()).float().cpu() grad = grad.contiguous(memory_format=torch.channels_last) ref_grad = grad.clone().contiguous() upout.backward(grad) ref_upout.backward(ref_grad) self.assertTrue(upout.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(ref_upout.is_contiguous()) self.assertTrue(torch.allclose(upout, ref_upout)) self.assertTrue(torch.allclose(out.grad, ref_out.grad)) def test_container_copy(self): class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.linear = nn.Linear(4, 5) def forward(self, input): return self.linear(input) input = torch.randn(2, 4) model = Model() model_cp = deepcopy(model) self.assertEqual(model(input).data, model_cp(input).data) model_cp.linear.weight.data[:] = 2 self.assertNotEqual(model(input).data, model_cp(input).data) def test_RNN_cell(self): # this is just a smoke test; these modules are implemented through # autograd so no Jacobian test is needed for module in (nn.RNNCell, nn.GRUCell): for bias in (True, False): input = torch.randn(3, 10) hx = torch.randn(3, 20) cell = module(10, 20, bias=bias) for _ in range(6): hx = cell(input, hx) hx.sum().backward() def test_RNN_cell_forward_input_size(self): input = torch.randn(3, 11) hx = torch.randn(3, 20) for module in (nn.RNNCell, nn.GRUCell): cell = module(10, 20) self.assertRaises(Exception, lambda: cell(input, hx)) def test_RNN_cell_forward_hidden_size(self): input = torch.randn(3, 10) hx = torch.randn(3, 21) cell_shared_param = (10, 20) for cell in (nn.RNNCell(*cell_shared_param, nonlinearity="relu"), nn.RNNCell(*cell_shared_param, nonlinearity="tanh"), nn.GRUCell(*cell_shared_param)): self.assertRaises(Exception, lambda: cell(input, hx)) def test_RNN_cell_forward_zero_hidden_size(self): input = torch.randn(3, 10) hx = torch.randn(3, 0) cell_shared_param = (10, 0) for cell in (nn.RNNCell(*cell_shared_param, nonlinearity="relu"), nn.RNNCell(*cell_shared_param, nonlinearity="tanh"), nn.GRUCell(*cell_shared_param)): self.assertEqual(cell(input, hx).shape, torch.Size([3, 0])) def _test_loss_equal_input_target_shape(self, cast): # Tests losses whose inputs should have the same size. losses = { 'mse_loss': lambda x, y: F.mse_loss(x, y), 'l1_loss': lambda x, y: F.l1_loss(x, y), 'smooth_l1_loss': lambda x, y: F.smooth_l1_loss(x, y), 'huber_loss': lambda x, y: F.huber_loss(x, y), 'kl_div': lambda x, y: F.kl_div(x, y), 'poisson_nll_loss': lambda x, y: F.poisson_nll_loss(x, y), } input = cast(torch.randn(3, 5)) target = cast(torch.randn(5, 3)) for _name, fn in losses.items(): self.assertRaises(Exception, lambda: fn(input, target)) def test_loss_equal_input_target_shape(self): self._test_loss_equal_input_target_shape(lambda x: x) def test_mse_loss_size_warning(self): i = torch.randn((10, 1), requires_grad=True) t = torch.randn((10,)) with warnings.catch_warnings(record=True) as w: # Ensure warnings are being shown warnings.simplefilter("always") # Trigger Warning F.mse_loss(i, t) # Check warning occurs self.assertEqual(len(w), 1) self.assertIn('Please ensure they have the same size.', str(w[0])) def test_poisson_nll_loss_reduction_modes(self): input = torch.tensor([0.5, 1.5, 2.5]) target = torch.tensor([1., 2., 3.]) component_wise_loss = torch.exp(input) - target * input self.assertEqual(component_wise_loss, F.poisson_nll_loss(input, target, reduction='none')) self.assertEqual(torch.sum(component_wise_loss), F.poisson_nll_loss(input, target, reduction='sum')) self.assertEqual(torch.mean(component_wise_loss), F.poisson_nll_loss(input, target, reduction='mean')) with self.assertRaisesRegex(ValueError, 'is not valid'): F.poisson_nll_loss(input, target, reduction='total') def test_gaussian_nll_loss_reduction_modes(self): input = torch.tensor([[0.5, 1.5, 2.5], [2., 4., 6.]]) target = torch.tensor([[1., 2., 3.], [4., 5., 6.]]) var = torch.tensor([[0.5, 1., 1.5], [1., 1.5, 2.]]) component_wise_loss = 0.5 * (torch.log(var) + (input - target)**2 / var) self.assertEqual(component_wise_loss, F.gaussian_nll_loss(input, target, var, reduction='none')) self.assertEqual(torch.sum(component_wise_loss), F.gaussian_nll_loss(input, target, var, reduction='sum')) self.assertEqual(torch.mean(component_wise_loss), F.gaussian_nll_loss(input, target, var, reduction='mean')) with self.assertRaisesRegex(ValueError, 'is not valid'): F.gaussian_nll_loss(input, target, var, reduction='total') def test_gaussian_nll_loss_broadcasting(self): input = torch.tensor([[0.5, 1.5, 2.5], [2., 4., 6.]]) target_full = torch.tensor([[1., 2., 3.], [1., 2., 3.]]) target_part = torch.tensor([[1., 2., 3.]]) var_full = torch.tensor([[0.5, 0.5, 0.5], [1.5, 1.5, 1.5]]) var_part1 = torch.tensor([[0.5], [1.5]]) var_part2 = torch.tensor([0.5, 1.5]) component_wise_loss = 0.5 * (torch.log(var_full) + (input - target_full)**2 / var_full) self.assertEqual(component_wise_loss, F.gaussian_nll_loss(input, target_part, var_full, reduction='none')) self.assertEqual(component_wise_loss, F.gaussian_nll_loss(input, target_full, var_part1, reduction='none')) self.assertEqual(component_wise_loss, F.gaussian_nll_loss(input, target_full, var_part2, reduction='none')) self.assertEqual(component_wise_loss, F.gaussian_nll_loss(input, target_part, var_part1, reduction='none')) self.assertEqual(component_wise_loss, F.gaussian_nll_loss(input, target_part, var_part2, reduction='none')) def test_gaussian_nll_loss_args(self): input = torch.randn(3, 5) with self.assertRaisesRegex(ValueError, 'var is of incorrect size'): target = torch.randn(3, 5) var = torch.ones(3, 3) torch.nn.functional.gaussian_nll_loss(input, target, var) with self.assertRaisesRegex(ValueError, 'var has negative entry/entries'): var = -1 * torch.ones(3, 5) torch.nn.functional.gaussian_nll_loss(input, target, var) def test_KLDivLoss_batch_mean(self): input_shape = (2, 5) log_prob1 = F.log_softmax(torch.randn(input_shape), 1) prob2 = F.softmax(torch.randn(input_shape), 1) loss = nn.KLDivLoss(reduction='batchmean') l = loss(log_prob1, prob2) loss_none_reduce = nn.KLDivLoss(reduction='sum')(log_prob1, prob2) expected = loss_none_reduce / input_shape[0] self.assertEqual(l, expected) def test_KLDivLoss_batch_mean_log_target(self): input_shape = (2, 5) log_prob1 = F.log_softmax(torch.randn(input_shape), 1) log_prob2 = F.log_softmax(torch.randn(input_shape), 1) loss = nn.KLDivLoss(reduction='batchmean', log_target=True) l = loss(log_prob1, log_prob2) loss_none_reduce = nn.KLDivLoss(reduction='sum', log_target=True)(log_prob1, log_prob2) expected = loss_none_reduce / input_shape[0] self.assertEqual(l, expected) def test_CTCLoss_typechecks(self): target_lengths = torch.tensor([30, 25, 20]) input_lengths = torch.tensor([50, 50, 50]) targets = torch.randint(1, 15, (sum(target_lengths),), dtype=torch.int) log_probs = torch.randn(50, 3, 15, dtype=torch.float).log_softmax(2) with self.assertRaises(RuntimeError): _input_lengths = input_lengths.to(dtype=torch.float) torch.nn.functional.ctc_loss(log_probs, targets, _input_lengths, target_lengths) with self.assertRaises(RuntimeError): target_lengths = target_lengths.to(dtype=torch.float) torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') def test_CTCLoss_lengthchecks_cuda(self): target_lengths = [30, 25, 20] input_lengths = [50, 50, 50] targets = torch.randint(1, 15, (3, 29), dtype=torch.long, device='cuda') log_probs = torch.randn(50, 3, 15, dtype=torch.float, device='cuda').log_softmax(2) with self.assertRaises(RuntimeError): torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths) def test_CTCLoss_lengthchecks_cpu(self): target_lengths = [30, 25, 20] input_lengths = [50, 50, 50] targets = torch.randint(1, 15, (3, 29), dtype=torch.int) log_probs = torch.randn(50, 3, 15, dtype=torch.float).log_softmax(2) with self.assertRaises(RuntimeError): torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') def test_CTCLoss_long_targets(self): input_length = 4000 vocab_size = 3 batch_size = 4 target_length = 1200 log_probs = torch.randn(input_length, batch_size, vocab_size).log_softmax(2).requires_grad_() targets = torch.randint(low=1, high=vocab_size - 1, size=(batch_size, target_length), dtype=torch.long) input_lengths = batch_size * [input_length] target_lengths = batch_size * [target_length] res_cpu = torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths, reduction='sum', zero_infinity=True) grad_out = torch.randn_like(res_cpu) grad_cpu, = torch.autograd.grad(res_cpu, log_probs, grad_out) with torch.backends.cudnn.flags(enabled=False): res_gpu = torch.nn.functional.ctc_loss(log_probs.cuda(), targets.cuda(), input_lengths, target_lengths, reduction='sum', zero_infinity=True) grad_gpu, = torch.autograd.grad(res_gpu, log_probs, grad_out.cuda()) self.assertEqual(res_cpu, res_gpu, atol=1e-4, rtol=0) self.assertEqual(grad_cpu, grad_gpu, atol=1e-4, rtol=0) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') def test_CTCLoss_critical_target_len(self): # cudnn has an unexpected problem with target length 256, see issue #53505 N = 1 S = 256 C = 10 T = 500 target = torch.randint(low=1, high=C, size=(S,), dtype=torch.int) input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.int) target_lengths = torch.tensor(S, dtype=torch.int) inp = torch.randn(T, N, C, dtype=torch.float, device='cuda').log_softmax(2).requires_grad_() with cudnn.flags(enabled=True): res_gpu = torch.nn.functional.ctc_loss(inp, target, input_lengths, target_lengths, reduction='none') res_cpu = torch.nn.functional.ctc_loss(inp.cpu(), target, input_lengths, target_lengths, reduction='none') self.assertEqual(res_cpu, res_gpu, atol=1e-3, rtol=0) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') def test_CTCLoss_zero_infinity(self): target_lengths = [60, 25, 20] input_lengths = [50, 50, 50] targets = torch.randint(1, 15, (sum(target_lengths),), dtype=torch.int, device='cuda') log_probs = torch.randn(50, 3, 15, dtype=torch.float, device='cuda').log_softmax(2).requires_grad_() res = torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths, reduction='sum', zero_infinity=True) with torch.backends.cudnn.flags(enabled=False): res2 = torch.nn.functional.ctc_loss(log_probs, targets.cuda().long(), input_lengths, target_lengths, reduction='sum', zero_infinity=True) res_cpu = torch.nn.functional.ctc_loss(log_probs.cpu(), targets.cpu(), input_lengths, target_lengths, reduction='sum', zero_infinity=True) self.assertEqual(res2, res, atol=1e-4, rtol=0) self.assertEqual(res_cpu, res.cpu(), atol=1e-4, rtol=0) g1, = torch.autograd.grad(res, log_probs) g2, = torch.autograd.grad(res2, log_probs) g3, = torch.autograd.grad(res_cpu, log_probs) self.assertEqual(g2, g3, atol=1e-4, rtol=0) self.assertEqual(g1, g2, atol=1e-4, rtol=0) self.assertTrue((g1 == g1).all().item()) # check that we don't have NaN def test_RNN_cell_no_broadcasting(self): def test(cell_module, input, hx, input_size, hidden_size): cell = cell_module(input_size, hidden_size) self.assertRaises(RuntimeError, lambda: cell(input, hx)) def test_all(hidden_size, bad_hx, good_hx, input_size, input): test(nn.RNNCell, input, bad_hx, input_size, hidden_size) test(nn.GRUCell, input, bad_hx, input_size, hidden_size) test(nn.LSTMCell, input, (bad_hx, good_hx), input_size, hidden_size) test(nn.LSTMCell, input, (good_hx, bad_hx), input_size, hidden_size) hidden_size = 20 input_size = 10 input = torch.randn(3, input_size) bad_hx = torch.randn(1, hidden_size) good_hx = torch.randn(3, hidden_size) # Test hidden/input batch size broadcasting test_all(hidden_size, bad_hx, good_hx, input_size, input) # Test hx's hidden_size vs module's hidden_size broadcasting bad_hx = torch.randn(3, 1) test_all(hidden_size, bad_hx, good_hx, input_size, input) # Test input's input_size vs module's input_size broadcasting bad_input = torch.randn(3, 1) test_all(hidden_size, good_hx, good_hx, input_size, bad_input) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") def test_native_dropout_corner_case(self): for train in [True, False]: for p in [0.0, 1.0]: for device in ["cuda", "cpu"]: x = torch.randn(5).to(device=device).requires_grad_() x_ref = x.detach().requires_grad_() o = torch.native_dropout(x, p, train)[0] o_ref = torch.dropout(x_ref, p, train) o.sum().backward() o_ref.sum().backward() assert(o.equal(o_ref)) assert(x.grad.equal(x_ref.grad)) def test_invalid_dropout_p(self): v = torch.ones(1) self.assertRaises(ValueError, lambda: nn.Dropout(-0.1)) self.assertRaises(ValueError, lambda: nn.Dropout(1.1)) self.assertRaises(ValueError, lambda: nn.Dropout2d(-0.1)) self.assertRaises(ValueError, lambda: nn.Dropout2d(1.1)) self.assertRaises(ValueError, lambda: nn.Dropout3d(-0.1)) self.assertRaises(ValueError, lambda: nn.Dropout3d(1.1)) self.assertRaises(ValueError, lambda: F.dropout(v, -0.1)) self.assertRaises(ValueError, lambda: F.dropout(v, 1.1)) def test_pad_sequence(self): def pad(tensor, length): return torch.cat( [tensor.data, tensor.data.new( length - tensor.size(0), *tensor.size()[1:]).zero_()]) # single dimensional a = torch.tensor([1, 2, 3]) b = torch.tensor([4, 5]) c = torch.tensor([6]) # batch_first = true expected = torch.tensor([[4, 5, 0], [1, 2, 3], [6, 0, 0]]) padded = rnn_utils.pad_sequence([b, a, c], True) self.assertEqual(padded, expected) # batch_first = false padded = rnn_utils.pad_sequence([b, a, c]) self.assertEqual(padded, expected.transpose(0, 1)) # pad with non-zero value expected = torch.tensor([[4, 5, 1], [1, 2, 3], [6, 1, 1]]) padded = rnn_utils.pad_sequence([b, a, c], True, 1) self.assertEqual(padded, expected) # Test pad sorted sequence expected = torch.tensor([[1, 2, 3], [4, 5, 0], [6, 0, 0]]) padded = rnn_utils.pad_sequence([a, b, c], True) self.assertEqual(padded, expected) # more dimensions maxlen = 9 for num_dim in (0, 1, 2, 3): sequences = [] trailing_dims = [4] * num_dim for i in range(1, maxlen + 1): seq_len = i * i sequences.append(torch.rand(seq_len, 5, *trailing_dims)) random.shuffle(sequences) expected = [] for seq in sequences: expected.append(pad(seq, maxlen * maxlen)) # batch first = true expected = torch.stack(expected) padded = rnn_utils.pad_sequence(sequences, True) self.assertEqual(padded, expected) # batch first = false padded = rnn_utils.pad_sequence(sequences) self.assertEqual(padded, expected.transpose(0, 1)) def test_unpad_sequence(self): # single dimensional a = torch.tensor([1, 2, 3]) b = torch.tensor([4, 5]) c = torch.tensor([6]) sequences = [a, b, c] lengths = torch.as_tensor([v.size(0) for v in sequences]) for batch_first in [True, False]: padded_sequences = rnn_utils.pad_sequence(sequences, batch_first=batch_first) unpadded_sequences = rnn_utils.unpad_sequence(padded_sequences, lengths, batch_first=batch_first) self.assertEqual(sequences, unpadded_sequences) # more dimensions maxlen = 9 for num_dim in (0, 1, 2, 3): sequences = [] trailing_dims = [4] * num_dim for i in range(1, maxlen + 1): seq_len = i * i sequences.append(torch.rand(seq_len, 5, *trailing_dims)) random.shuffle(sequences) lengths = torch.as_tensor([v.size(0) for v in sequences]) padded_sequences = rnn_utils.pad_sequence(sequences, batch_first=batch_first) unpadded_sequences = rnn_utils.unpad_sequence(padded_sequences, lengths, batch_first=batch_first) self.assertEqual(sequences, unpadded_sequences) def test_pack_sequence(self): def _compatibility_test(sequences, lengths, batch_first, enforce_sorted=False): padded = rnn_utils.pad_sequence(sequences, batch_first) packed = rnn_utils.pack_sequence(sequences, enforce_sorted) unpacked = rnn_utils.pad_packed_sequence(packed, batch_first) self.assertEqual(padded, unpacked[0]) pack_padded = rnn_utils.pack_padded_sequence( padded, lengths, batch_first, enforce_sorted) self.assertEqual(packed, pack_padded) # single dimensional a = torch.tensor([1, 2, 3]) b = torch.tensor([4, 5]) c = torch.tensor([6]) packed = rnn_utils.pack_sequence([a, b, c], enforce_sorted=False) expected = torch.tensor([1, 4, 6, 2, 5, 3]) self.assertEqual(packed.batch_sizes, [3, 2, 1]) self.assertEqual(packed.data.data, expected) self.assertEqual(packed.sorted_indices, [0, 1, 2]) self.assertEqual(packed.unsorted_indices, [0, 1, 2]) packed_unsorted = rnn_utils.pack_sequence([b, c, a], enforce_sorted=False) self.assertEqual(packed_unsorted.batch_sizes, [3, 2, 1]) self.assertEqual(packed_unsorted.data.data, expected) self.assertEqual(packed_unsorted.sorted_indices, [2, 0, 1]) self.assertEqual(packed_unsorted.unsorted_indices, [1, 2, 0]) # single dimensional, enforce_sorted = True packed_enforce_sorted = rnn_utils.pack_sequence([a, b, c], enforce_sorted=True) self.assertEqual(packed_enforce_sorted.batch_sizes, [3, 2, 1]) self.assertEqual(packed_enforce_sorted.data.data, expected) self.assertTrue(packed_enforce_sorted.sorted_indices is None) self.assertTrue(packed_enforce_sorted.unsorted_indices is None) with self.assertRaisesRegex(RuntimeError, 'must be sorted in decreasing order'): rnn_utils.pack_sequence([b, c, a], enforce_sorted=True) with self.assertRaisesRegex(RuntimeError, 'You can pass `enforce_sorted=False`'): rnn_utils.pack_sequence([b, c, a], enforce_sorted=True) # more dimensions maxlen = 9 for num_dim in (0, 1, 2, 3): sequences = [] lengths = [] trailing_dims = [4] * num_dim for i in range(maxlen, 0, -1): seq_len = i * i lengths.append(seq_len) sequences.append(torch.rand(seq_len, 5, *trailing_dims)) unsorted_sequences = [s.clone() for s in sequences] random.shuffle(unsorted_sequences) unsorted_sequences_lengths = [t.size(0) for t in unsorted_sequences] # compatibility with other utilities for batch_first in (True, False): for enforce_sorted in (True, False): _compatibility_test(sequences, lengths, batch_first, enforce_sorted) _compatibility_test(unsorted_sequences, unsorted_sequences_lengths, batch_first) def test_unpack_sequence(self): # single dimensional a = torch.tensor([1, 2, 3]) b = torch.tensor([4, 5]) c = torch.tensor([6]) sequences = [a, b, c] packed_sequences = rnn_utils.pack_sequence(sequences, enforce_sorted=False) unpacked_sequences = rnn_utils.unpack_sequence(packed_sequences) self.assertEqual(sequences, unpacked_sequences) # more dimensions maxlen = 9 for num_dim in (0, 1, 2, 3): sequences = [] trailing_dims = [4] * num_dim for i in range(1, maxlen + 1): seq_len = i * i sequences.append(torch.rand(seq_len, 5, *trailing_dims)) random.shuffle(sequences) packed_sequences = rnn_utils.pack_sequence(sequences, enforce_sorted=False) unpacked_sequences = rnn_utils.unpack_sequence(packed_sequences) self.assertEqual(sequences, unpacked_sequences) def test_pack_padded_sequence(self): def generate_test_case(sorted_lengths, should_shuffle): def pad(tensor, length): return torch.cat([tensor, tensor.new(length - tensor.size(0), *tensor.size()[1:]).zero_()]) max_length = sorted_lengths[0] batch_sizes = [sum(map(bool, filter(lambda x: x >= i, sorted_lengths))) for i in range(1, max_length + 1)] offset = 0 padded = torch.cat([pad(i * 100 + torch.arange(1., 5 * l + 1).view(l, 1, 5), max_length) for i, l in enumerate(sorted_lengths, 1)], 1) expected_data = [[torch.arange(1., 6) + (i + 1) * 100 + 5 * n for i in range(batch_size)] for n, batch_size in enumerate(batch_sizes)] expected_data = list(itertools.chain.from_iterable(expected_data)) expected_data = torch.stack(expected_data, dim=0) if should_shuffle: # Shuffle the padded sequence to create an unsorted sequence permutation = list(range(len(sorted_lengths))) random.shuffle(permutation) unsorted_indices = torch.tensor(permutation) padded = padded.index_select(1, unsorted_indices) lengths = torch.tensor(sorted_lengths).index_select(0, unsorted_indices) else: unsorted_indices = None lengths = sorted_lengths return padded.requires_grad_(), lengths, expected_data, batch_sizes, unsorted_indices test_cases = [ # sorted_lengths, should_shuffle [[10, 8, 4, 2, 2, 2, 1], False], [[11, 10, 8, 6, 4, 3, 1], False], [[11, 10, 8, 6, 4, 3, 1], True], ] for test_case, batch_first in itertools.product(test_cases, (True, False)): sorted_lengths, should_shuffle = test_case padded, lengths, expected_data, batch_sizes, unsorted_indices = generate_test_case( sorted_lengths, should_shuffle) src = padded if batch_first: src = src.transpose(0, 1) # check output packed = rnn_utils.pack_padded_sequence(src, lengths, batch_first=batch_first, enforce_sorted=not should_shuffle) self.assertEqual(packed.data.data, expected_data) self.assertEqual(packed.batch_sizes, batch_sizes) self.assertEqual(packed.unsorted_indices, unsorted_indices) # test inverse unpacked, unpacked_len = rnn_utils.pad_packed_sequence(packed, batch_first=batch_first) self.assertEqual(unpacked, src) self.assertEqual(unpacked_len, lengths) # check grad if padded.grad is not None: padded.grad.data.zero_() grad_output = unpacked.data.clone().normal_() unpacked.backward(grad_output) if batch_first: grad_output.transpose_(0, 1) for i, l in enumerate(lengths): self.assertEqual(padded.grad.data[:l, i], grad_output[:l, i]) if l < 10: self.assertEqual(padded.grad.data[l:, i].abs().sum(), 0) # test error messages with self.assertRaisesRegex(RuntimeError, 'You can pass `enforce_sorted=False`'): packed = rnn_utils.pack_padded_sequence(torch.randn(3, 3), [1, 3, 2]) with self.assertRaisesRegex(RuntimeError, 'empty tensor'): packed = rnn_utils.pack_padded_sequence(torch.randn(0, 0), []) def test_LSTM_cell(self): # this is just a smoke test; these modules are implemented through # autograd so no Jacobian test is needed for bias in (True, False): input = torch.randn(3, 10) hx = torch.randn(3, 20) cx = torch.randn(3, 20) lstm = nn.LSTMCell(10, 20, bias=bias) for _ in range(6): hx, cx = lstm(input, (hx, cx)) (hx + cx).sum().backward() def test_LSTM_cell_forward_input_size(self): input = torch.randn(3, 11) hx = torch.randn(3, 20) cx = torch.randn(3, 20) lstm = nn.LSTMCell(10, 20) self.assertRaises(Exception, lambda: lstm(input, (hx, cx))) def test_LSTM_cell_forward_hidden_size(self): input = torch.randn(3, 10) hx = torch.randn(3, 21) cx = torch.randn(3, 20) lstm = nn.LSTMCell(10, 20) self.assertRaises(Exception, lambda: lstm(input, (hx, cx))) self.assertRaises(Exception, lambda: lstm(input, (cx, hx))) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') def test_pack_sequence_batch_sizes_throw(self): with self.assertRaisesRegex(ValueError, r"batch_sizes should always be on CPU"): m = nn.LSTM(3, 4, bidirectional=True, num_layers=2).to('cuda') a = torch.rand(5, 3, device='cuda') b = torch.tensor([1, 1, 1, 1, 1], device='cuda') input = nn.utils.rnn.PackedSequence(a, b) def test_Transformer_cell(self): # this is just a smoke test; these modules are implemented through # autograd so no Jacobian test is needed d_model = 512 nhead = 16 num_encoder_layers = 4 num_decoder_layers = 3 dim_feedforward = 256 dropout = 0.3 bsz = 8 seq_length = 35 tgt_length = 15 for batch_first, src_size, tgt_size in zip((True, False), [(bsz, seq_length, d_model), (seq_length, bsz, d_model)], [(bsz, tgt_length, d_model), (tgt_length, bsz, d_model)]): transformer = nn.Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout, batch_first=batch_first) src = torch.randn(src_size) src_mask = transformer.generate_square_subsequent_mask(seq_length).double() tgt = torch.randn(tgt_size) tgt_mask = transformer.generate_square_subsequent_mask(tgt_length).double() memory_mask = torch.randn(tgt_length, seq_length).double() src_key_padding_mask = torch.rand(bsz, seq_length) >= 0.5 tgt_key_padding_mask = torch.rand(bsz, tgt_length) >= 0.5 memory_key_padding_mask = torch.rand(bsz, seq_length) >= 0.5 output = transformer(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask, memory_mask=memory_mask, src_key_padding_mask=src_key_padding_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask) output.sum().backward() def test_transformerencoderlayer(self): # this is a deterministic test for TransformerEncoderLayer d_model = 4 nhead = 2 dim_feedforward = 16 dropout = 0.0 bsz = 2 for batch_first in (False, True): def perm_fn(x): return x.transpose(1, 0) if batch_first else x model = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, batch_first=batch_first) # set constant weights of the model for idx, p in enumerate(model.parameters()): x = p.data sz = x.view(-1).size(0) shape = x.shape x = torch.cos(torch.arange(0, sz).float().view(shape)) p.data.copy_(x) # deterministic input encoder_input = torch.tensor([[[20., 30., 40., 50.]]]) result = model(encoder_input) ref_output = torch.tensor([[[2.258703, 0.127985, -0.697881, 0.170862]]]) result = result.detach().numpy() ref_output = ref_output.detach().numpy() self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) np.testing.assert_allclose(result, ref_output, atol=1e-5) # 0 values are NOT masked. This shouldn't mask anything. mask = torch.tensor([[0]]) == 1 result = model(encoder_input, src_key_padding_mask=mask) result = result.detach().numpy() self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) np.testing.assert_allclose(result, ref_output, atol=1e-5) # 1 values are masked. Since there is only 1 input embedding this # will result in nan. mask = torch.tensor([[1]]) == 1 result = model(encoder_input, src_key_padding_mask=mask) result = result.detach().numpy() self.assertTrue(np.isnan(result).all()) # deterministic input encoder_input = perm_fn(torch.tensor([[[1., 2., 3., 4.]], [[5., 6., 7., 8.]]])) result = model(encoder_input) ref_output = perm_fn(torch.tensor([[[2.272644, 0.119035, -0.691669, 0.153486]], [[2.272644, 0.119035, -0.691669, 0.153486]]])) result = result.detach().numpy() ref_output = ref_output.detach().numpy() self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) np.testing.assert_allclose(result, ref_output, atol=1e-5) # all 0 which is no masking mask = torch.tensor([[0, 0]]) == 1 result = model(encoder_input, src_key_padding_mask=mask) result = result.detach().numpy() self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) np.testing.assert_allclose(result, ref_output, atol=1e-5) mask = torch.tensor([[1, 0]]) == 1 result = model(encoder_input, src_key_padding_mask=mask) ref_output = perm_fn(torch.tensor([[[2.301516, 0.092249, -0.679101, 0.103088]], [[2.301516, 0.092249, -0.679101, 0.103088]]])) result = result.detach().numpy() ref_output = ref_output.detach().numpy() self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) np.testing.assert_allclose(result, ref_output, atol=1e-5) # deterministic input encoder_input = perm_fn(torch.tensor([[[0.7462, 0.6653, 0.5679, 0.4891], [0.5387, 0.1655, 0.3565, 0.0471]], [[0.8335, 0.2799, 0.5031, 0.2947], [0.1402, 0.0318, 0.7636, 0.1346]], [[0.6333, 0.9344, 0.1376, 0.9938], [0.8924, 0.2872, 0.6692, 0.2944]], [[0.9897, 0.6915, 0.3154, 0.1733], [0.8645, 0.3513, 0.3064, 0.0767]], [[0.8117, 0.2366, 0.4838, 0.7881], [0.3718, 0.4945, 0.9511, 0.0864]]])) result = model(encoder_input) ref_output = perm_fn(torch.tensor([[[2.428589, 0.020835, -0.602055, -0.085249], [2.427987, 0.021213, -0.602496, -0.084103]], [[2.424689, 0.019155, -0.604793, -0.085672], [2.413863, 0.022211, -0.612486, -0.072490]], [[2.433774, 0.021598, -0.598343, -0.087548], [2.425104, 0.019748, -0.604515, -0.084839]], [[2.436185, 0.022682, -0.596625, -0.087261], [2.433556, 0.021891, -0.598509, -0.086832]], [[2.416246, 0.017512, -0.610712, -0.082961], [2.422901, 0.024187, -0.606178, -0.074929]]])) result = result.detach().numpy() ref_output = ref_output.detach().numpy() self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) np.testing.assert_allclose(result, ref_output, atol=1e-5) # all 0 mask = torch.zeros([2, 5]) == 1 result = model(encoder_input, src_key_padding_mask=mask) result = result.detach().numpy() self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) np.testing.assert_allclose(result, ref_output, atol=1e-5) mask[0, 1] = 1 mask[1, 3] = 1 mask[1, 4] = 1 result = model(encoder_input, src_key_padding_mask=mask) ref_output = perm_fn(torch.tensor([[[2.429026, 0.020793, -0.601741, -0.085642], [2.428811, 0.021445, -0.601912, -0.084252]], [[2.425009, 0.019155, -0.604566, -0.085899], [2.415408, 0.02249 , -0.611415, -0.073]], [[2.434199, 0.021682, -0.598039, -0.087699], [2.42598, 0.019941, -0.603896, -0.085091]], [[2.436457, 0.022736, -0.59643 , -0.08736], [2.434021, 0.022093, -0.598179, -0.08679]], [[2.416531, 0.017498, -0.610513, -0.083181], [2.4242, 0.024653, -0.605266, -0.074959]]])) result = result.detach().numpy() ref_output = ref_output.detach().numpy() self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) np.testing.assert_allclose(result, ref_output, atol=1e-5) def test_transformerencoderlayer_gelu(self): # this is a deterministic test for TransformerEncoderLayer with gelu activation d_model = 4 nhead = 2 dim_feedforward = 16 dropout = 0.0 bsz = 2 for activation, batch_first in product(('gelu', F.gelu, nn.GELU()), (True, False)): def perm_fn(x): return x.transpose(1, 0) if batch_first else x model = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout, activation, batch_first=batch_first) # set constant weights of the model for idx, p in enumerate(model.parameters()): x = p.data sz = x.view(-1).size(0) shape = x.shape x = torch.cos(torch.arange(0, sz).float().view(shape)) p.data.copy_(x) # deterministic input encoder_input = torch.tensor([[[20., 30., 40., 50.]]]) result = model(encoder_input) ref_output = torch.tensor([[[2.249815, 0.131006, -0.702199, 0.177868]]]) torch.testing.assert_close(result, ref_output, rtol=1e-5, atol=0) # deterministic input encoder_input = perm_fn(torch.tensor([[[1., 2., 3., 4.]], [[5., 6., 7., 8.]]])) result = model(encoder_input) ref_output = perm_fn(torch.tensor([[[2.264103, 0.121417, -0.696012, 0.159724]], [[2.264103, 0.121417, -0.696012, 0.159724]]])) torch.testing.assert_close(result, ref_output, rtol=1e-5, atol=0) # deterministic input encoder_input = perm_fn(torch.tensor([[[0.7462, 0.6653, 0.5679, 0.4891], [0.5387, 0.1655, 0.3565, 0.0471]], [[0.8335, 0.2799, 0.5031, 0.2947], [0.1402, 0.0318, 0.7636, 0.1346]], [[0.6333, 0.9344, 0.1376, 0.9938], [0.8924, 0.2872, 0.6692, 0.2944]], [[0.9897, 0.6915, 0.3154, 0.1733], [0.8645, 0.3513, 0.3064, 0.0767]], [[0.8117, 0.2366, 0.4838, 0.7881], [0.3718, 0.4945, 0.9511, 0.0864]]])) result = model(encoder_input) ref_output = perm_fn(torch.tensor([[[2.42163188, 0.03227153, -0.60714219, -0.05908082], [2.42151276, 0.03302179, -0.60722523, -0.05762651]], [[2.41926761, 0.02974034, -0.60879519, -0.0621269], [2.41626395, 0.03539356, -0.61087842, -0.04978623]], [[2.42382808, 0.03218872, -0.6055963, -0.06073591], [2.41983477, 0.03085259, -0.60840145, -0.06046414]], [[2.42500749, 0.03328855, -0.60476388, -0.0595334], [2.4237977, 0.03290575, -0.60561789, -0.05940082]], [[2.41383916, 0.02686345, -0.61256377, -0.06380707], [2.42000277, 0.03800944, -0.60824798, -0.04754947]]])) torch.testing.assert_close(result, ref_output, rtol=1e-5, atol=0) def test_transformerdecoderlayer(self): # this is a deterministic test for TransformerDecoderLayer d_model = 4 nhead = 2 dim_feedforward = 16 dropout = 0.0 bsz = 2 seq_length = 5 tgt_length = 3 for batch_first in (False, True): def perm_fn(x): return x.transpose(1, 0) if batch_first else x model = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, batch_first=batch_first) # set constant weights of the model for idx, p in enumerate(model.parameters()): x = p.data sz = x.view(-1).size(0) shape = x.shape x = torch.cos(torch.arange(0, sz).float().view(shape)) p.data.copy_(x) # deterministic input decoder_input = torch.tensor([[[20., 30., 40., 50.]]]) memory_input = torch.tensor([[[60., 70., 80., 90.]]]) result = model(decoder_input, memory_input) ref_output = torch.tensor([[[2.314351, 0.094805, -0.671322, 0.101977]]]) result = result.detach().numpy() ref_output = ref_output.detach().numpy() self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) np.testing.assert_allclose(result, ref_output, atol=1e-5) # deterministic input decoder_input = perm_fn(torch.tensor([[[9., 10., 11., 12.]], [[11., 12., 13., 14.]]])) memory_input = torch.tensor([[[1., 2., 3., 4.]]]) result = model(decoder_input, memory_input) result = result.detach().numpy() ref_output = perm_fn(torch.tensor([[[2.422245, 0.051716, -0.606338, -0.024756]], [[2.422245, 0.051716, -0.606338, -0.024756]]])) ref_output = ref_output.detach().numpy() self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) np.testing.assert_allclose(result, ref_output, atol=1e-5) # deterministic input decoder_input = perm_fn(torch.tensor([[[1., 2., 3., 4.]], [[5., 6., 7., 8.]]])) memory_input = perm_fn(torch.tensor([[[9., 10., 11., 12.]], [[11., 12., 13., 14.]]])) result = model(decoder_input, memory_input) ref_output = perm_fn(torch.tensor([[[2.343536, 0.085561, -0.654954, 0.074991]], [[2.343536, 0.085561, -0.654954, 0.074991]]])) result = result.detach().numpy() ref_output = ref_output.detach().numpy() self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) np.testing.assert_allclose(result, ref_output, atol=1e-5) # deterministic input decoder_input = perm_fn(torch.tensor([[[0.4517, 0.6793, 0.5313, 0.0034], [0.2678, 0.3677, 0.4459, 0.7166]], [[0.8100, 0.3716, 0.4096, 0.1976], [0.6958, 0.8844, 0.6081, 0.8315]], [[0.0494, 0.9343, 0.5955, 0.3830], [0.5404, 0.3464, 0.9378, 0.6200]]])) memory_input = perm_fn(torch.tensor([[[0.7462, 0.6653, 0.5679, 0.4891], [0.5387, 0.1655, 0.3565, 0.0471]], [[0.8335, 0.2799, 0.5031, 0.2947], [0.1402, 0.0318, 0.7636, 0.1346]], [[0.6333, 0.9344, 0.1376, 0.9938], [0.8924, 0.2872, 0.6692, 0.2944]], [[0.9897, 0.6915, 0.3154, 0.1733], [0.8645, 0.3513, 0.3064, 0.0767]], [[0.8117, 0.2366, 0.4838, 0.7881], [0.3718, 0.4945, 0.9511, 0.0864]]])) result = model(decoder_input, memory_input) ref_output = perm_fn(torch.tensor([[[2.430065, 0.027862, -0.601136, -0.073096], [2.431935, 0.028907, -0.599809, -0.072488]], [[2.428457, 0.027053, -0.602275, -0.073462], [2.431970, 0.029387, -0.599789, -0.071621]], [[2.431934, 0.028196, -0.599802, -0.073809], [2.432306, 0.028858, -0.599542, -0.072846]]])) result = result.detach().numpy() ref_output = ref_output.detach().numpy() self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) np.testing.assert_allclose(result, ref_output, atol=1e-5) # key_padding_mask key_padding_mask = torch.zeros(2, 3) == 1 result = model(decoder_input, memory_input, tgt_key_padding_mask=key_padding_mask) ref_output = perm_fn(torch.tensor([[[2.430065, 0.027862, -0.601136, -0.073096], [2.431935, 0.028907, -0.599809, -0.072488]], [[2.428457, 0.027053, -0.602275, -0.073462], [2.431970, 0.029387, -0.599789, -0.071621]], [[2.431934, 0.028196, -0.599802, -0.073809], [2.432306, 0.028858, -0.599542, -0.072846]]])) result = result.detach().numpy() ref_output = ref_output.detach().numpy() self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) np.testing.assert_allclose(result, ref_output, atol=1e-5) # key_padding_mask key_padding_mask[0, 2] = 1 key_padding_mask[1, 1] = 1 key_padding_mask[1, 2] = 1 result = model(decoder_input, memory_input, tgt_key_padding_mask=key_padding_mask) ref_output = perm_fn(torch.tensor([[[2.430025, 0.027643, -0.601164, -0.073476], [2.4323, 0.029375, -0.599553, -0.071881]], [[2.428523, 0.026838, -0.602226, -0.07391], [2.432634, 0.029842, -0.599318, -0.071253]], [[2.432278, 0.028152, -0.599555, -0.074139], [2.432659, 0.029244, -0.599294, -0.072382]]])) result = result.detach().numpy() ref_output = ref_output.detach().numpy() self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) np.testing.assert_allclose(result, ref_output, atol=1e-5) # memory_key_padding_mask key_padding_mask = torch.zeros(2, 5) == 1 result = model(decoder_input, memory_input, memory_key_padding_mask=key_padding_mask) ref_output = perm_fn(torch.tensor([[[2.430065, 0.027862, -0.601136, -0.073096], [2.431935, 0.028907, -0.599809, -0.072488]], [[2.428457, 0.027053, -0.602275, -0.073462], [2.431970, 0.029387, -0.599789, -0.071621]], [[2.431934, 0.028196, -0.599802, -0.073809], [2.432306, 0.028858, -0.599542, -0.072846]]])) result = result.detach().numpy() ref_output = ref_output.detach().numpy() self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) np.testing.assert_allclose(result, ref_output, atol=1e-5) # memory_key_padding_mask key_padding_mask[0, 4] = 1 key_padding_mask[1, 3] = 1 key_padding_mask[1, 4] = 1 result = model(decoder_input, memory_input, memory_key_padding_mask=key_padding_mask) ref_output = perm_fn(torch.tensor([[[2.429757, 0.027358, -0.601351, -0.073816], [2.432692, 0.028583, -0.599263, -0.073634]], [[2.428247, 0.02662, -0.602419, -0.074123], [2.432657, 0.029055, -0.599293, -0.072732]], [[2.431515, 0.027687, -0.600096, -0.074459], [2.433075, 0.028543, -0.598987, -0.073985]]])) result = result.detach().numpy() ref_output = ref_output.detach().numpy() self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) np.testing.assert_allclose(result, ref_output, atol=1e-5) def test_transformerdecoderlayer_gelu(self): # this is a deterministic test for TransformerDecoderLayer with gelu activation d_model = 4 nhead = 2 dim_feedforward = 16 dropout = 0.0 bsz = 2 seq_length = 5 tgt_length = 3 for activation, batch_first in product(('gelu', F.gelu, nn.GELU()), (True, False)): def perm_fn(x): return x.transpose(1, 0) if batch_first else x model = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout, activation, batch_first=batch_first) # set constant weights of the model for idx, p in enumerate(model.parameters()): x = p.data sz = x.view(-1).size(0) shape = x.shape x = torch.cos(torch.arange(0, sz).float().view(shape)) p.data.copy_(x) # deterministic input decoder_input = torch.tensor([[[20., 30., 40., 50.]]]) memory_input = torch.tensor([[[60., 70., 80., 90.]]]) result = model(decoder_input, memory_input) ref_output = torch.tensor([[[2.306435, 0.095946, -0.675796, 0.10687]]]) torch.testing.assert_close(result, ref_output, rtol=1e-5, atol=0) # deterministic input decoder_input = perm_fn(torch.tensor([[[9., 10., 11., 12.]], [[11., 12., 13., 14.]]])) memory_input = perm_fn(torch.tensor([[[1., 2., 3., 4.]]])) result = model(decoder_input, memory_input) ref_output = perm_fn(torch.tensor([[[2.415448, 0.054389, -0.610932, -0.0156613]], [[2.415448, 0.054389, -0.610932, -0.0156613]]])) torch.testing.assert_close(result, ref_output, rtol=1e-5, atol=0) # deterministic input decoder_input = perm_fn(torch.tensor([[[1., 2., 3., 4.]], [[5., 6., 7., 8.]]])) memory_input = perm_fn(torch.tensor([[[9., 10., 11., 12.]], [[11., 12., 13., 14.]]])) result = model(decoder_input, memory_input) ref_output = perm_fn(torch.tensor([[[2.338531, 0.087709, -0.65776, 0.080646]], [[2.338531, 0.087709, -0.65776, 0.080646]]])) torch.testing.assert_close(result, ref_output, rtol=1e-5, atol=0) # deterministic input decoder_input = perm_fn(torch.tensor([[[0.4517, 0.6793, 0.5313, 0.0034], [0.2678, 0.3677, 0.4459, 0.7166]], [[0.8100, 0.3716, 0.4096, 0.1976], [0.6958, 0.8844, 0.6081, 0.8315]], [[0.0494, 0.9343, 0.5955, 0.3830], [0.5404, 0.3464, 0.9378, 0.6200]]])) memory_input = perm_fn(torch.tensor([[[0.7462, 0.6653, 0.5679, 0.4891], [0.5387, 0.1655, 0.3565, 0.0471]], [[0.8335, 0.2799, 0.5031, 0.2947], [0.1402, 0.0318, 0.7636, 0.1346]], [[0.6333, 0.9344, 0.1376, 0.9938], [0.8924, 0.2872, 0.6692, 0.2944]], [[0.9897, 0.6915, 0.3154, 0.1733], [0.8645, 0.3513, 0.3064, 0.0767]], [[0.8117, 0.2366, 0.4838, 0.7881], [0.3718, 0.4945, 0.9511, 0.0864]]])) result = model(decoder_input, memory_input) ref_output = perm_fn(torch.tensor([[[2.42049104, 0.03443088, -0.60793706, -0.05436271], [2.42210631, 0.03546578, -0.60679895, -0.05357488]], [[2.41907674, 0.0336104, -0.60892977, -0.05490462], [2.42216881, 0.03586554, -0.6067524, -0.05289126]], [[2.42205716, 0.03488046, -0.60683681, -0.05460596], [2.42240309, 0.0354595, -0.60659063, -0.05378816]]])) torch.testing.assert_close(result, ref_output, rtol=1e-5, atol=0) def test_transformerencoder(self): def get_a_test_layer(use_cuda, activation, batch_first=False): d_model = 4 nhead = 2 dim_feedforward = 16 dropout = 0.0 device = torch.device("cuda" if use_cuda else "cpu") layer = nn.TransformerEncoderLayer( d_model, nhead, dim_feedforward=dim_feedforward, dropout=dropout, activation=activation, batch_first=batch_first).to(device) with torch.no_grad(): # set constant weights of the model for idx, p in enumerate(layer.parameters()): x = p.data sz = x.view(-1).size(0) shape = x.shape x = torch.cos(torch.arange(0, sz).float().view(shape)) p.data.copy_(x) return layer # this is a deterministic test for TransformerEncoder activation = F.relu use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") for batch_first in (True, False): def perm_fn(x): return x.transpose(1, 0) if batch_first else x encoder_layer = get_a_test_layer(use_cuda=use_cuda, activation=activation, batch_first=batch_first) model = nn.TransformerEncoder(encoder_layer, 1).to(device) # deterministic input encoder_input = perm_fn(torch.tensor([[[0.7462, 0.6653, 0.5679, 0.4891], [0.5387, 0.1655, 0.3565, 0.0471]], [[0.8335, 0.2799, 0.5031, 0.2947], [0.1402, 0.0318, 0.7636, 0.1346]], [[0.6333, 0.9344, 0.1376, 0.9938], [0.8924, 0.2872, 0.6692, 0.2944]], [[0.9897, 0.6915, 0.3154, 0.1733], [0.8645, 0.3513, 0.3064, 0.0767]], [[0.8117, 0.2366, 0.4838, 0.7881], [0.3718, 0.4945, 0.9511, 0.0864]]] )).to(device) result = model(encoder_input) ref_output = perm_fn(torch.tensor([[[2.428589, 0.020835, -0.602055, -0.085249], [2.427987, 0.021213, -0.602496, -0.084103]], [[2.424689, 0.019155, -0.604793, -0.085672], [2.413863, 0.022211, -0.612486, -0.072490]], [[2.433774, 0.021598, -0.598343, -0.087548], [2.425104, 0.019748, -0.604515, -0.084839]], [[2.436185, 0.022682, -0.596625, -0.087261], [2.433556, 0.021891, -0.598509, -0.086832]], [[2.416246, 0.017512, -0.610712, -0.082961], [2.422901, 0.024187, -0.606178, -0.074929]]] )).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5) # all 0 mask = torch.zeros([2, 5]).to(device) == 1 result = model(encoder_input, src_key_padding_mask=mask) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5) mask[0, 1] = 1 mask[1, 3] = 1 mask[1, 4] = 1 result = model(encoder_input, src_key_padding_mask=mask) ref_output = perm_fn(torch.tensor([[[2.429026, 0.020793, -0.601741, -0.085642], [2.428811, 0.021445, -0.601912, -0.084252]], [[2.425009, 0.019155, -0.604566, -0.085899], [2.415408, 0.02249, -0.611415, -0.073]], [[2.434199, 0.021682, -0.598039, -0.087699], [2.42598, 0.019941, -0.603896, -0.085091]], [[2.436457, 0.022736, -0.59643, -0.08736], [2.434021, 0.022093, -0.598179, -0.08679]], [[2.416531, 0.017498, -0.610513, -0.083181], [2.4242, 0.024653, -0.605266, -0.074959]]] )).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5) # test case 2, multiple layers no norm model = nn.TransformerEncoder(encoder_layer, 2).to(device) result = model(encoder_input, src_key_padding_mask=mask) ref_output = perm_fn(torch.tensor([[[2.419051, 0.017446, -0.608738, -0.085003], [2.419102, 0.017452, -0.608703, -0.085026]], [[2.419043, 0.017445, -0.608744, -0.084999], [2.419052, 0.017446, -0.608738, -0.085004]], [[2.419067, 0.017448, -0.608727, -0.085010], [2.419098, 0.017452, -0.608706, -0.085024]], [[2.419072, 0.017449, -0.608724, -0.085012], [2.419119, 0.017455, -0.608691, -0.085034]], [[2.419019, 0.017442, -0.608761, -0.084989], [2.419075, 0.017449, -0.608722, -0.085014]]] )).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5) model = nn.TransformerEncoder(encoder_layer, 6).to(device) result = model(encoder_input, src_key_padding_mask=mask) ref_output = perm_fn(torch.tensor([[[2.419101, 0.017453, -0.608703, -0.085025], [2.419101, 0.017453, -0.608704, -0.085025]], [[2.419101, 0.017453, -0.608703, -0.085025], [2.419101, 0.017453, -0.608704, -0.085025]], [[2.419101, 0.017453, -0.608703, -0.085025], [2.419101, 0.017453, -0.608704, -0.085025]], [[2.419101, 0.017453, -0.608703, -0.085025], [2.419101, 0.017453, -0.608704, -0.085025]], [[2.419101, 0.017453, -0.608703, -0.085025], [2.419101, 0.017453, -0.608704, -0.085025]]] )).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5) # test case 3, multiple layers with norm # d_model = 4 norm = nn.LayerNorm(4) model = nn.TransformerEncoder(encoder_layer, 2, norm=norm).to(device) result = model(encoder_input, src_key_padding_mask=mask) ref_output = perm_fn(torch.tensor([[[1.695949, -0.357635, -0.893077, -0.445238], [1.695955, -0.357639, -0.893050, -0.445266]], [[1.695948, -0.357634, -0.893082, -0.445233], [1.695950, -0.357635, -0.893077, -0.445238]], [[1.695951, -0.357636, -0.893069, -0.445246], [1.695955, -0.357639, -0.893052, -0.445264]], [[1.695952, -0.357636, -0.893066, -0.445249], [1.695957, -0.357641, -0.893041, -0.445276]], [[1.695946, -0.357632, -0.893095, -0.445220], [1.695952, -0.357637, -0.893065, -0.445251]]] )).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5) model = nn.TransformerEncoder(encoder_layer, 6, norm=norm).to(device) result = model(encoder_input, src_key_padding_mask=mask) ref_output = perm_fn(torch.tensor([[[1.695955, -0.357639, -0.893051, -0.445265], [1.695955, -0.357639, -0.893051, -0.445265]], [[1.695955, -0.357639, -0.893051, -0.445265], [1.695955, -0.357639, -0.893051, -0.445265]], [[1.695955, -0.357639, -0.893051, -0.445265], [1.695955, -0.357639, -0.893051, -0.445265]], [[1.695955, -0.357639, -0.893051, -0.445265], [1.695955, -0.357639, -0.893051, -0.445265]], [[1.695955, -0.357639, -0.893051, -0.445265], [1.695955, -0.357639, -0.893051, -0.445265]]] )).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5) def test_transformerdecoder(self): def get_a_test_layer(use_cuda, activation, batch_first=False): d_model = 4 nhead = 2 dim_feedforward = 16 dropout = 0.0 device = torch.device("cuda" if use_cuda else "cpu") layer = nn.TransformerDecoderLayer( d_model, nhead, dim_feedforward=dim_feedforward, dropout=dropout, activation=activation, batch_first=batch_first).to(device) with torch.no_grad(): # set constant weights of the model for idx, p in enumerate(layer.parameters()): x = p.data sz = x.view(-1).size(0) shape = x.shape x = torch.cos(torch.arange(0, sz).float().view(shape)) p.data.copy_(x) return layer # this is a deterministic test for TransformerDecoder for batch_first in (False, True): def perm_fn(x): return x.transpose(1, 0) if batch_first else x activation = F.relu use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") decoder_layer = get_a_test_layer(use_cuda=use_cuda, activation=activation, batch_first=batch_first) model = nn.TransformerDecoder(decoder_layer, 1).to(device) # deterministic input decoder_input = torch.tensor([[[20., 30., 40., 50.]]]).to(device) memory_input = torch.tensor([[[60., 70., 80., 90.]]]).to(device) result = model(decoder_input, memory_input) ref_output = torch.tensor( [[[2.314351, 0.094805, -0.671322, 0.101977]]]).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-3) # deterministic input decoder_input = perm_fn(torch.tensor([[[9., 10., 11., 12.]], [[11., 12., 13., 14.]]])).to(device) memory_input = perm_fn(torch.tensor([[[1., 2., 3., 4.]]])).to(device) result = model(decoder_input, memory_input) ref_output = perm_fn(torch.tensor([[[2.422245, 0.051716, -0.606338, -0.024756]], [[2.422245, 0.051716, -0.606338, -0.024756]]] )).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-4) # deterministic input decoder_input = perm_fn(torch.tensor([[[1., 2., 3., 4.]], [[5., 6., 7., 8.]]])).to(device) memory_input = perm_fn(torch.tensor([[[9., 10., 11., 12.]], [[11., 12., 13., 14.]]])).to(device) result = model(decoder_input, memory_input) ref_output = perm_fn(torch.tensor([[[2.343536, 0.085561, -0.654954, 0.074991]], [[2.343536, 0.085561, -0.654954, 0.074991]]] )).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-4) # deterministic input decoder_input = perm_fn(torch.tensor([[[0.4517, 0.6793, 0.5313, 0.0034], [0.2678, 0.3677, 0.4459, 0.7166]], [[0.8100, 0.3716, 0.4096, 0.1976], [0.6958, 0.8844, 0.6081, 0.8315]], [[0.0494, 0.9343, 0.5955, 0.3830], [0.5404, 0.3464, 0.9378, 0.6200]]] )).to(device) memory_input = perm_fn(torch.tensor([[[0.7462, 0.6653, 0.5679, 0.4891], [0.5387, 0.1655, 0.3565, 0.0471]], [[0.8335, 0.2799, 0.5031, 0.2947], [0.1402, 0.0318, 0.7636, 0.1346]], [[0.6333, 0.9344, 0.1376, 0.9938], [0.8924, 0.2872, 0.6692, 0.2944]], [[0.9897, 0.6915, 0.3154, 0.1733], [0.8645, 0.3513, 0.3064, 0.0767]], [[0.8117, 0.2366, 0.4838, 0.7881], [0.3718, 0.4945, 0.9511, 0.0864]]] )).to(device) result = model(decoder_input, memory_input) ref_output = perm_fn(torch.tensor([[[2.430065, 0.027862, -0.601136, -0.073096], [2.431935, 0.028907, -0.599809, -0.072488]], [[2.428457, 0.027053, -0.602275, -0.073462], [2.431970, 0.029387, -0.599789, -0.071621]], [[2.431934, 0.028196, -0.599802, -0.073809], [2.432306, 0.028858, -0.599542, -0.072846]]] )).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5) # key_padding_mask key_padding_mask = torch.zeros(2, 3).to(device) == 1 result = model(decoder_input, memory_input, tgt_key_padding_mask=key_padding_mask) ref_output = perm_fn(torch.tensor([[[2.430065, 0.027862, -0.601136, -0.073096], [2.431935, 0.028907, -0.599809, -0.072488]], [[2.428457, 0.027053, -0.602275, -0.073462], [2.431970, 0.029387, -0.599789, -0.071621]], [[2.431934, 0.028196, -0.599802, -0.073809], [2.432306, 0.028858, -0.599542, -0.072846]]] )).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5) # key_padding_mask key_padding_mask[0, 2] = 1 key_padding_mask[1, 1] = 1 key_padding_mask[1, 2] = 1 result = model(decoder_input, memory_input, tgt_key_padding_mask=key_padding_mask) ref_output = perm_fn(torch.tensor([[[2.430025, 0.027643, -0.601164, -0.073476], [2.4323, 0.029375, -0.599553, -0.071881]], [[2.428523, 0.026838, -0.602226, -0.07391], [2.432634, 0.029842, -0.599318, -0.071253]], [[2.432278, 0.028152, -0.599555, -0.074139], [2.432659, 0.029244, -0.599294, -0.072382]]] )).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5) # memory_key_padding_mask key_padding_mask = torch.zeros(2, 5).to(device) == 1 result = model(decoder_input, memory_input, memory_key_padding_mask=key_padding_mask) ref_output = perm_fn(torch.tensor([[[2.430065, 0.027862, -0.601136, -0.073096], [2.431935, 0.028907, -0.599809, -0.072488]], [[2.428457, 0.027053, -0.602275, -0.073462], [2.431970, 0.029387, -0.599789, -0.071621]], [[2.431934, 0.028196, -0.599802, -0.073809], [2.432306, 0.028858, -0.599542, -0.072846]]] )).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5) # memory_key_padding_mask key_padding_mask[0, 4] = 1 key_padding_mask[1, 3] = 1 key_padding_mask[1, 4] = 1 result = model(decoder_input, memory_input, memory_key_padding_mask=key_padding_mask) ref_output = perm_fn(torch.tensor([[[2.429757, 0.027358, -0.601351, -0.073816], [2.432692, 0.028583, -0.599263, -0.073634]], [[2.428247, 0.02662, -0.602419, -0.074123], [2.432657, 0.029055, -0.599293, -0.072732]], [[2.431515, 0.027687, -0.600096, -0.074459], [2.433075, 0.028543, -0.598987, -0.073985]]] )).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5) # multiple layers no norm model = nn.TransformerDecoder(decoder_layer, 2).to(device) # deterministic input decoder_input = torch.tensor([[[20., 30., 40., 50.]]]).to(device) memory_input = torch.tensor([[[60., 70., 80., 90.]]]).to(device) result = model(decoder_input, memory_input) ref_output = torch.tensor( [[[2.31316, 0.0950293, -0.671995, 0.102802]]]).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-3) # multiple layers no norm model = nn.TransformerDecoder(decoder_layer, 6).to(device) # deterministic input decoder_input = perm_fn(torch.tensor([[[0.4517, 0.6793, 0.5313, 0.0034], [0.2678, 0.3677, 0.4459, 0.7166]], [[0.8100, 0.3716, 0.4096, 0.1976], [0.6958, 0.8844, 0.6081, 0.8315]], [[0.0494, 0.9343, 0.5955, 0.3830], [0.5404, 0.3464, 0.9378, 0.6200]]] )).to(device) memory_input = perm_fn(torch.tensor([[[0.7462, 0.6653, 0.5679, 0.4891], [0.5387, 0.1655, 0.3565, 0.0471]], [[0.8335, 0.2799, 0.5031, 0.2947], [0.1402, 0.0318, 0.7636, 0.1346]], [[0.6333, 0.9344, 0.1376, 0.9938], [0.8924, 0.2872, 0.6692, 0.2944]], [[0.9897, 0.6915, 0.3154, 0.1733], [0.8645, 0.3513, 0.3064, 0.0767]], [[0.8117, 0.2366, 0.4838, 0.7881], [0.3718, 0.4945, 0.9511, 0.0864]]] )).to(device) result = model(decoder_input, memory_input) ref_output = perm_fn(torch.tensor([[[2.42794, 0.026164, -0.60263, -0.0747591], [2.43113, 0.0279516, -0.600376, -0.0736896]], [[2.42794, 0.026164, -0.60263, -0.0747591], [2.43113, 0.0279516, -0.600376, -0.0736896]], [[2.42794, 0.026164, -0.60263, -0.0747591], [2.43113, 0.0279516, -0.600376, -0.0736896]]] )).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5) # multiple layers with norm # d_model = 4 norm = nn.LayerNorm(4) model = nn.TransformerDecoder(decoder_layer, 2, norm=norm).to(device) # deterministic input decoder_input = torch.tensor([[[20., 30., 40., 50.]]]).to(device) memory_input = torch.tensor([[[60., 70., 80., 90.]]]).to(device) result = model(decoder_input, memory_input) ref_output = torch.tensor( [[[1.66166, -0.326986, -1.01466, -0.320017]]]).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-3) # multiple layers with norm model = nn.TransformerDecoder(decoder_layer, 6, norm=norm).to(device) # deterministic input decoder_input = perm_fn(torch.tensor([[[0.4517, 0.6793, 0.5313, 0.0034], [0.2678, 0.3677, 0.4459, 0.7166]], [[0.8100, 0.3716, 0.4096, 0.1976], [0.6958, 0.8844, 0.6081, 0.8315]], [[0.0494, 0.9343, 0.5955, 0.3830], [0.5404, 0.3464, 0.9378, 0.6200]]] )).to(device) memory_input = perm_fn(torch.tensor([[[0.7462, 0.6653, 0.5679, 0.4891], [0.5387, 0.1655, 0.3565, 0.0471]], [[0.8335, 0.2799, 0.5031, 0.2947], [0.1402, 0.0318, 0.7636, 0.1346]], [[0.6333, 0.9344, 0.1376, 0.9938], [0.8924, 0.2872, 0.6692, 0.2944]], [[0.9897, 0.6915, 0.3154, 0.1733], [0.8645, 0.3513, 0.3064, 0.0767]], [[0.8117, 0.2366, 0.4838, 0.7881], [0.3718, 0.4945, 0.9511, 0.0864]]] )).to(device) result = model(decoder_input, memory_input) ref_output = perm_fn(torch.tensor([[[1.69559, -0.357291, -0.894741, -0.443553], [1.69571, -0.357363, -0.894154, -0.444196]], [[1.69559, -0.357291, -0.894741, -0.443553], [1.69571, -0.357363, -0.894154, -0.444196]], [[1.69559, -0.357291, -0.894741, -0.443553], [1.69571, -0.357363, -0.894154, -0.444196]]] )).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5) # gelu activation test cases activation = "gelu" use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") decoder_layer = get_a_test_layer(use_cuda=use_cuda, activation=activation, batch_first=batch_first) model = nn.TransformerDecoder(decoder_layer, 1).to(device) # deterministic input decoder_input = torch.tensor([[[20., 30., 40., 50.]]]).to(device) memory_input = torch.tensor([[[60., 70., 80., 90.]]]).to(device) result = model(decoder_input, memory_input) ref_output = torch.tensor([[[2.306435, 0.095946, -0.675796, 0.10687]]]).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-3) # deterministic input decoder_input = perm_fn(torch.tensor([[[9., 10., 11., 12.]], [[11., 12., 13., 14.]]])).to(device) memory_input = perm_fn(torch.tensor([[[1., 2., 3., 4.]]])).to(device) result = model(decoder_input, memory_input) ref_output = perm_fn(torch.tensor([[[2.415448, 0.054389, -0.610932, -0.0156613]], [[2.415448, 0.054389, -0.610932, -0.0156613]]])).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-4) # deterministic input decoder_input = perm_fn(torch.tensor([[[1., 2., 3., 4.]], [[5., 6., 7., 8.]]])).to(device) memory_input = perm_fn(torch.tensor([[[9., 10., 11., 12.]], [[11., 12., 13., 14.]]])).to(device) result = model(decoder_input, memory_input) ref_output = perm_fn(torch.tensor([[[2.338531, 0.087709, -0.65776, 0.080646]], [[2.338531, 0.087709, -0.65776, 0.080646]]])).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-4) # deterministic input decoder_input = perm_fn(torch.tensor([[[0.4517, 0.6793, 0.5313, 0.0034], [0.2678, 0.3677, 0.4459, 0.7166]], [[0.8100, 0.3716, 0.4096, 0.1976], [0.6958, 0.8844, 0.6081, 0.8315]], [[0.0494, 0.9343, 0.5955, 0.3830], [0.5404, 0.3464, 0.9378, 0.6200]]] )).to(device) memory_input = perm_fn(torch.tensor([[[0.7462, 0.6653, 0.5679, 0.4891], [0.5387, 0.1655, 0.3565, 0.0471]], [[0.8335, 0.2799, 0.5031, 0.2947], [0.1402, 0.0318, 0.7636, 0.1346]], [[0.6333, 0.9344, 0.1376, 0.9938], [0.8924, 0.2872, 0.6692, 0.2944]], [[0.9897, 0.6915, 0.3154, 0.1733], [0.8645, 0.3513, 0.3064, 0.0767]], [[0.8117, 0.2366, 0.4838, 0.7881], [0.3718, 0.4945, 0.9511, 0.0864]]] )).to(device) result = model(decoder_input, memory_input) ref_output = perm_fn(torch.tensor([[[2.42049104, 0.03443088, -0.60793706, -0.05436271], [2.42210631, 0.03546578, -0.60679895, -0.05357488]], [[2.41907674, 0.0336104, -0.60892977, -0.05490462], [2.42216881, 0.03586554, -0.6067524, -0.05289126]], [[2.42205716, 0.03488046, -0.60683681, -0.05460596], [2.42240309, 0.0354595, -0.60659063, -0.05378816]]] )).to(device) self.assertEqual(tuple(result.shape), tuple(ref_output.shape)) torch.testing.assert_close(result, ref_output, rtol=1e-7, atol=1e-5) @unittest.skipIf(not (TEST_CUDNN and TEST_MULTIGPU), 'CUDNN or multi-gpu not available') def test_cudnn_rnn_dropout_states_device(self): rnn = nn.RNN(10, 20, num_layers=2, dropout=.5) device = 1 input = torch.randn(5, 4, 10).cuda(device) rnn.cuda(device) hx = torch.randn(2, 4, 20).cuda(device) output = rnn(input, hx) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') @skipIfRocm def test_cudnn_weight_format(self): rnns = [ nn.LSTM(10, 20, batch_first=True), nn.LSTM(10, 20, batch_first=True, proj_size=10), nn.GRU(10, 20, batch_first=True), nn.RNN(10, 20, batch_first=True) ] first_warn = True for rnn in rnns: rnn.cuda() input = torch.randn(5, 4, 10, requires_grad=True, device="cuda") hx = torch.randn(1, 5, 20, requires_grad=True, device="cuda") all_vars = [input, hx] + list(rnn.parameters()) if isinstance(rnn, nn.LSTM): # LSTM with projections has different hx size if rnn.proj_size > 0: hx = torch.randn(1, 5, 10, requires_grad=True, device="cuda") all_vars[1] = hx cx = torch.randn(1, 5, 20, requires_grad=True, device="cuda") all_vars[2:2] = [cx] hx = (hx, cx) output = rnn(input, hx) output[0].sum().backward() grads = [v.grad.data.clone() for v in all_vars] for v in all_vars: v.grad.data.zero_() # Weights will no longer view onto the same chunk of memory weight = all_vars[4] weight_data = weight.data.clone() with torch.no_grad(): weight.set_(weight_data) for _ in range(2): with warnings.catch_warnings(record=True) as w: output_noncontig = rnn(input, hx) if first_warn: self.assertEqual(len(w), 1) self.assertIn('weights are not part of single contiguous chunk of memory', w[0].message.args[0]) first_warn = False warnings.resetwarnings() output_noncontig[0].sum().backward() grads_noncontig = [v.grad.data.clone() for v in all_vars] for v in all_vars: v.grad.data.zero_() self.assertEqual(output, output_noncontig) self.assertEqual(grads_noncontig, grads) # Make sure these still share storage weight_data[:] = 4 self.assertEqual(weight_data, all_vars[4].data) @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') def test_cudnn_weight_tying(self): rnns = [ nn.LSTM(10, 20, batch_first=True, bidirectional=True), nn.LSTM(10, 20, batch_first=True, bidirectional=True, proj_size=10), nn.GRU(10, 20, batch_first=True, bidirectional=True), nn.RNN(10, 20, batch_first=True, bidirectional=True) ] for rnn in rnns: rnn.bias_ih_l0_reverse = rnn.bias_ih_l0 rnn.cuda() input = torch.randn(5, 4, 10, requires_grad=True, device="cuda") hx = torch.randn(2, 5, 20, requires_grad=True, device="cuda") all_vars = [input, hx] + list(rnn.parameters()) opt = torch.optim.SGD(rnn.parameters(), lr=0.1) opt.zero_grad() if isinstance(rnn, nn.LSTM): # LSTM with projections has different hx size if rnn.proj_size > 0: hx = torch.randn(2, 5, 10, requires_grad=True, device="cuda") all_vars[1] = hx cx = torch.randn(2, 5, 20, requires_grad=True, device="cuda") all_vars[2:2] = [cx] hx = (hx, cx) with warnings.catch_warnings(record=True) as w: output = rnn(input, hx) output[0].sum().backward() opt.step() with warnings.catch_warnings(record=True) as w: output_cuda = rnn(input, hx) rnn.cpu() hx = (hx[0].cpu(), hx[1].cpu()) if isinstance(rnn, nn.LSTM) else hx.cpu() output_cpu = rnn(input.cpu(), hx) self.assertEqual(output_cuda, output_cpu) def test_transformer_args_check(self): model_name = 'Transformer' d_model = 128 nhead = 4 num_encoder_layers = 2 num_decoder_layers = 3 dim_feedforward = 65 dropout = 0.3 bsz = 3 seq_len = 35 tgt_len = 15 activations = [F.relu, F.gelu] wrong_bsz = 7 wrong_d_model = 63 wrong_nhead = 5 wrong_activation = "abc" def test(encoder_input_shape, decoder_input_shape, src_mask_len=None, tgt_mask_len=None, memory_mask_size=None, src_key_padding_mask_size=None, tgt_key_padding_mask_size=None, memory_key_padding_mask_size=None): encoder_input = torch.randn(encoder_input_shape) decoder_input = torch.randn(decoder_input_shape) model = getattr(nn, model_name)(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout) if src_mask_len is not None: src_mask = model.generate_square_subsequent_mask(src_mask_len) else: src_mask = None if tgt_mask_len is not None: tgt_mask = model.generate_square_subsequent_mask(tgt_mask_len) else: tgt_mask = None if memory_mask_size is not None: memory_task = torch.rand(memory_mask_size) else: memory_task = None if src_key_padding_mask_size is not None: src_key_padding_mask = torch.rand(src_key_padding_mask_size) >= 0.5 else: src_key_padding_mask = None if tgt_key_padding_mask_size is not None: tgt_key_padding_mask = torch.rand(tgt_key_padding_mask_size) >= 0.5 else: tgt_key_padding_mask = None if memory_key_padding_mask_size is not None: memory_key_padding_mask = torch.rand(memory_key_padding_mask_size) >= 0.5 else: memory_key_padding_mask = None with self.assertRaises(RuntimeError): model(encoder_input, decoder_input, src_mask=src_mask, tgt_mask=tgt_mask, memory_mask=memory_task, src_key_padding_mask=src_key_padding_mask, tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask) correct_encoder_input_shape = (seq_len, bsz, d_model) correct_decoder_input_shape = (tgt_len, bsz, d_model) def update_shape(shape, dim, new_dim_size): new_shape = list(shape) new_shape[dim] = new_dim_size return tuple(new_shape) # Incorrect encoder_input batch size encoder_input_shape = update_shape(correct_encoder_input_shape, 1, wrong_bsz) decoder_input_shape = correct_decoder_input_shape test(encoder_input_shape, decoder_input_shape) # Incorrect decoder_input batch size encoder_input_shape = correct_encoder_input_shape decoder_input_shape = update_shape(correct_decoder_input_shape, 1, wrong_bsz) test(encoder_input_shape, decoder_input_shape) # Incorrect encoder_input input size encoder_input_shape = update_shape(correct_encoder_input_shape, 2, wrong_d_model) decoder_input_shape = correct_decoder_input_shape test(encoder_input_shape, decoder_input_shape) # Incorrect decoder_input input size encoder_input_shape = correct_encoder_input_shape decoder_input_shape = update_shape(correct_decoder_input_shape, 2, wrong_d_model) test(encoder_input_shape, decoder_input_shape) # Incorrect nhead encoder_input_shape = correct_encoder_input_shape decoder_input_shape = correct_decoder_input_shape with self.assertRaises(AssertionError): model = getattr(nn, model_name)(d_model, wrong_nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout) # Incorrect src_mask encoder_input_shape = correct_encoder_input_shape decoder_input_shape = correct_decoder_input_shape wrong_src_mask_size = seq_len + 1 test(encoder_input_shape, decoder_input_shape, src_mask_len=wrong_src_mask_size) # Incorrect tgt_mask encoder_input_shape = correct_encoder_input_shape decoder_input_shape = correct_decoder_input_shape wrong_tgt_mask_size = tgt_len + 1 test(encoder_input_shape, decoder_input_shape, tgt_mask_len=wrong_tgt_mask_size) # Incorrect memory_mask encoder_input_shape = correct_encoder_input_shape decoder_input_shape = correct_decoder_input_shape wrong_tgt_mask_size = tgt_len + 1 test(encoder_input_shape, decoder_input_shape, memory_mask_size=(wrong_tgt_mask_size, wrong_src_mask_size)) # Incorrect src_key_padding_mask encoder_input_shape = correct_encoder_input_shape decoder_input_shape = correct_decoder_input_shape with self.assertRaises(AssertionError): test(encoder_input_shape, decoder_input_shape, src_key_padding_mask_size=(wrong_bsz, wrong_src_mask_size)) # Incorrect tgt_key_padding_mask encoder_input_shape = correct_encoder_input_shape decoder_input_shape = correct_decoder_input_shape with self.assertRaises(AssertionError): test(encoder_input_shape, decoder_input_shape, tgt_key_padding_mask_size=(wrong_bsz, wrong_tgt_mask_size)) # Incorrect memory_key_padding_mask encoder_input_shape = correct_encoder_input_shape decoder_input_shape = correct_decoder_input_shape with self.assertRaises(AssertionError): test(encoder_input_shape, decoder_input_shape, memory_key_padding_mask_size=(wrong_bsz, wrong_src_mask_size)) # Correct activations for activation in activations: model = getattr(nn, model_name)(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout, activation) # Incorrect activation with self.assertRaises(RuntimeError): model = getattr(nn, model_name)(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout, wrong_activation) def test_transformer_layer_args_check(self): model_names = ['TransformerEncoderLayer', 'TransformerDecoderLayer'] d_model = 128 nhead = 4 dim_feedforward = 65 dropout = 0.3 bsz = 3 seq_len = 35 tgt_len = 15 activations = [F.relu, F.gelu] wrong_activation = "abc" encoder_input_shape = (seq_len, bsz, d_model) decoder_input_shape = (tgt_len, bsz, d_model) encoder_input = torch.randn(encoder_input_shape) decoder_input = torch.randn(decoder_input_shape) for model_name in model_names: for activation in activations: model = getattr(nn, model_name)(d_model, nhead, dim_feedforward, dropout, activation) # Incorrect activation for model_name in model_names: with self.assertRaises(RuntimeError): model = getattr(nn, model_name)(d_model, nhead, dim_feedforward, dropout, wrong_activation) def test_rnn_args_check(self): input_size = 3 hidden_size = 5 num_layers = 2 batch_size = 4 seq_len = 6 num_directions = 1 bad_size = 7 # prime number so that no size can divide it. def test(input_shape, hidden_shape, mode): for input, hidden in get_inputs(input_shape, hidden_shape, mode): model = getattr(nn, mode)(input_size, hidden_size, num_layers) self.assertRaises(RuntimeError, lambda: model(input, hidden)) correct_input_shape = (seq_len, batch_size, input_size) correct_hidden_shape = (num_layers * num_directions, batch_size, hidden_size) def update_shape(shape, dim, new_dim_size): new_shape = list(shape) new_shape[dim] = new_dim_size return tuple(new_shape) def get_inputs(input_shape, hidden_shape, mode): '''returns list( tuple(input, hidden) ) where input, hidden are inputs to a model''' input = torch.randn(input_shape) hidden = torch.randn(hidden_shape) if mode != 'LSTM': return [(input, hidden)] if hidden_shape == correct_hidden_shape: return [(input, (hidden, hidden))] good_hidden = torch.randn(correct_hidden_shape) return [ (input, (hidden, good_hidden)), (input, (good_hidden, hidden)), ] rnn_modes = ['RNN', 'GRU', 'LSTM'] for mode in rnn_modes: # Incorrect input batch size input_shape = update_shape(correct_input_shape, 1, bad_size) hidden_shape = correct_hidden_shape test(input_shape, hidden_shape, mode) # Incorrect hidden batch size input_shape = correct_input_shape hidden_shape = update_shape(correct_hidden_shape, 1, bad_size) test(input_shape, hidden_shape, mode) # Incorrect input size input_shape = update_shape(correct_input_shape, 2, bad_size) hidden_shape = correct_hidden_shape test(input_shape, hidden_shape, mode) # Incorrect hidden size input_shape = correct_input_shape hidden_shape = update_shape(correct_hidden_shape, 2, bad_size) test(input_shape, hidden_shape, mode) # Incorrect hidden[0] input_shape = correct_input_shape hidden_shape = update_shape(correct_hidden_shape, 0, bad_size) test(input_shape, hidden_shape, mode) def test_projections_lstm_args_check(self): input_size = 3 hidden_size = 5 proj_size = 2 num_layers = 2 batch_size = 4 seq_len = 6 num_directions = 1 bad_size = 7 # prime number so that no size can divide it. def test(input_shape, hidden_h_shape, hidden_c_shape): for input, hidden in get_inputs(input_shape, hidden_h_shape, hidden_c_shape): model = nn.LSTM(input_size, hidden_size, num_layers, proj_size=proj_size) self.assertRaises(RuntimeError, lambda: model(input, hidden)) correct_input_shape = (seq_len, batch_size, input_size) correct_hidden_h_shape = (num_layers * num_directions, batch_size, proj_size) correct_hidden_c_shape = (num_layers * num_directions, batch_size, hidden_size) def update_shape(shape, dim, new_dim_size): new_shape = list(shape) new_shape[dim] = new_dim_size return tuple(new_shape) def get_inputs(input_shape, hidden_h_shape, hidden_c_shape): '''returns list( tuple(input, hidden) ) where input, hidden are inputs to a model''' input = torch.randn(input_shape) hidden_h = torch.randn(hidden_h_shape) hidden_c = torch.randn(hidden_c_shape) return [(input, (hidden_h, hidden_c))] # Incorrect input batch size input_shape = update_shape(correct_input_shape, 1, bad_size) test(input_shape, correct_hidden_h_shape, correct_hidden_c_shape) # Incorrect hidden batch size input_shape = correct_input_shape hidden_h_shape = update_shape(correct_hidden_h_shape, 1, bad_size) hidden_c_shape = update_shape(correct_hidden_c_shape, 1, bad_size) test(input_shape, hidden_h_shape, hidden_c_shape) # Incorrect input size input_shape = update_shape(correct_input_shape, 2, bad_size) test(input_shape, correct_hidden_h_shape, correct_hidden_c_shape) # Incorrect hidden size input_shape = correct_input_shape hidden_h_shape = update_shape(correct_hidden_h_shape, 2, bad_size) hidden_c_shape = update_shape(correct_hidden_c_shape, 2, bad_size) test(input_shape, hidden_h_shape, hidden_c_shape) # Incorrect hidden[0] input_shape = correct_input_shape hidden_h_shape = update_shape(correct_hidden_h_shape, 0, bad_size) hidden_c_shape = update_shape(correct_hidden_c_shape, 0, bad_size) test(input_shape, hidden_h_shape, hidden_c_shape) # Incorrect proj size = hidden size input_shape = correct_input_shape hidden_h_shape = update_shape(correct_hidden_h_shape, 0, hidden_size) hidden_c_shape = correct_hidden_c_shape test(input_shape, hidden_h_shape, hidden_c_shape) # Incorrect proj size != hidden size input_shape = correct_input_shape hidden_h_shape = update_shape(correct_hidden_h_shape, 0, bad_size) hidden_c_shape = correct_hidden_c_shape test(input_shape, hidden_h_shape, hidden_c_shape) # Incorrect cell size != hidden size input_shape = correct_input_shape hidden_h_shape = correct_hidden_h_shape hidden_c_shape = update_shape(correct_hidden_c_shape, 0, bad_size) test(input_shape, hidden_h_shape, hidden_c_shape) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_rnn_check_device(self): input_size = 3 hidden_size = 5 num_layers = 2 batch_size = 4 seq_len = 6 num_directions = 1 correct_input_shape = (seq_len, batch_size, input_size) correct_hidden_shape = (num_layers * num_directions, batch_size, hidden_size) rnn_modes = ['RNN', 'GRU', 'LSTM'] for mode in rnn_modes: model = getattr(nn, mode)(input_size, hidden_size, num_layers) input = torch.randn(correct_input_shape) hidden = torch.randn(correct_hidden_shape) # input and weights are not at the same device with self.assertRaisesRegex(RuntimeError, "Input and parameter tensors are not at the same device"): model(input.to('cuda:0')) # input and hiddens are not at the same device with self.assertRaisesRegex(RuntimeError, r"Input and hidden tensors are not at the same device"): if mode == 'LSTM': model(input, (hidden.to('cuda:0'), hidden.to('cuda:0'))) else: model(input, (hidden.to('cuda:0'))) # hidden tensors are not at the same CUDA device if mode == 'LSTM': with self.assertRaisesRegex(RuntimeError, "Input and hidden tensors are not at the same device"): model(input.to('cuda:0'), (hidden.to('cuda:0'), hidden.to('cuda:1'))) @unittest.skipIf(not TEST_MULTIGPU, "multi-GPU not supported") def test_projections_lstm_check_device(self): input_size = 3 hidden_size = 5 proj_size = 2 num_layers = 2 batch_size = 4 seq_len = 6 num_directions = 1 correct_input_shape = (seq_len, batch_size, input_size) correct_hidden_h_shape = (num_layers * num_directions, batch_size, proj_size) correct_hidden_c_shape = (num_layers * num_directions, batch_size, hidden_size) model = nn.LSTM(input_size, hidden_size, num_layers, proj_size=proj_size) input = torch.randn(correct_input_shape) hidden_h = torch.randn(correct_hidden_h_shape) hidden_c = torch.randn(correct_hidden_c_shape) # input and weights are not at the same device with self.assertRaisesRegex(RuntimeError, "Input and parameter tensors are not at the same device"): model(input.to('cuda:0')) # input and hiddens are not at the same device with self.assertRaisesRegex(RuntimeError, r"Input and hidden tensors are not at the same device"): model(input, (hidden_h.to('cuda:0'), hidden_c.to('cuda:0'))) # hidden tensors are not at the same CUDA device with self.assertRaisesRegex(RuntimeError, "Input and hidden tensors are not at the same device"): model(input.to('cuda:0'), (hidden_h.to('cuda:0'), hidden_c.to('cuda:1'))) def test_rnn_initial_hidden_state(self): rnn_modes = ['RNN', 'GRU', 'LSTM'] for mode in rnn_modes: rnn = getattr(nn, mode)(30, 20, 2) input = torch.randn(10, 32, 30) hidden = torch.zeros(2, 32, 20) if mode == 'LSTM': hidden = (hidden, hidden) output1, hidden1 = rnn(input, hidden) output2, hidden2 = rnn(input) self.assertEqual(output1, output2) self.assertEqual(hidden1, hidden2) def test_projections_lstm_initial_hidden_state(self): for bidir in [False, True]: rnn = nn.LSTM(30, 20, 2, bidirectional=bidir, proj_size=10) num_dirs = 2 if bidir else 1 input = torch.randn(10, 32, 30) hidden_h = torch.zeros(2 * num_dirs, 32, 10) hidden_c = torch.zeros(2 * num_dirs, 32, 20) hidden = (hidden_h, hidden_c) output1, hidden1 = rnn(input, hidden) output2, hidden2 = rnn(input) self.assertEqual(output1, output2) self.assertEqual(hidden1, hidden2) def test_projections_errors_on_gru_and_rnn(self): error_msg = "proj_size argument is only supported for LSTM, not RNN or GRU" for mode in ['RNN', 'GRU']: with self.assertRaisesRegex(ValueError, error_msg): rnn = getattr(nn, mode)(30, 20, 2, proj_size=10) def _test_RNN_cpu_vs_cudnn(self, dropout, dtype=torch.double): def forward_backward(cuda, rnn, input_val, grad_output, weights_val, hx_val, grad_hy, cx_val=None, grad_cy=None): is_lstm = isinstance(rnn, nn.LSTM) for x_layer, y_layer in zip(rnn.all_weights, weights_val): for x, y in zip(x_layer, y_layer): x.data.copy_(y.data) if isinstance(input_val, rnn_utils.PackedSequence): input = rnn_utils.PackedSequence( input_val.data.data.requires_grad_(True), input_val.batch_sizes) input_var = input.data else: input = input_val.clone().requires_grad_(True) input_var = input if is_lstm: if cx_val is None: hx = (hx_val.clone().requires_grad_(True), hx_val.add(1).requires_grad_(True)) else: hx = (hx_val.clone().requires_grad_(True), cx_val.add(1).requires_grad_(True)) else: hx = hx_val.clone().requires_grad_(True) if cuda: rnn.cuda() input_var.data = input_var.data.cuda() if is_lstm: hx[0].data = hx[0].data.cuda() hx[1].data = hx[1].data.cuda() else: hx.data = hx.data.cuda() grad_hy = grad_hy.cuda() if grad_cy is not None: grad_cy = grad_cy.cuda() grad_output = grad_output.cuda() output, hy = rnn(input, hx) if isinstance(output, rnn_utils.PackedSequence): output = output.data if is_lstm: if grad_cy is None: torch.autograd.backward([output, hy[0], hy[1]], [grad_output, grad_hy, grad_hy + 1]) else: torch.autograd.backward([output, hy[0], hy[1]], [grad_output, grad_hy, grad_cy + 1]) else: torch.autograd.backward([output, hy], [grad_output, grad_hy]) return {'output': output.data, 'hy': hy[0].data if is_lstm else hy.data, 'weights': rnn.all_weights, 'grad_input': input_var.grad.data, 'grad_hx': hx[0].grad.data if is_lstm else hx.grad.data, 'cy': hy[1].data if is_lstm else None, 'grad_cx': hx[1].grad.data if is_lstm else None} input_size = 10 hidden_size = 6 proj_size = 3 num_layers = 2 seq_length = 7 batch = 6 def make_noncontig(tensor): ndim = tensor.dim() return torch.stack([tensor.clone().zero_(), tensor], ndim).select(ndim, 1) def compare_cpu_gpu(outputs_cpu, outputs_gpu): self.assertEqual(list(outputs_cpu.keys()), list(outputs_gpu.keys())) for key in outputs_cpu.keys(): if key != 'weights': self.assertEqual(outputs_cpu[key], outputs_gpu[key], atol=5e-5, rtol=0, msg=key) # check grad weights separately, as nested dict for cpu_layer_weight, gpu_layer_weight in zip(outputs_cpu['weights'], outputs_gpu['weights']): for (cpu_weight, gpu_weight) in zip(cpu_layer_weight, gpu_layer_weight): self.assertEqual(cpu_weight.grad.data, gpu_weight.grad.data, atol=5e-5, rtol=0) for module in (nn.RNN, nn.LSTM, nn.GRU): for bias, bidirectional, batch_first, contig, variable_len, lens_as_tensor \ in product((True, False), repeat=6): num_directions = 2 if bidirectional else 1 if batch_first: input_val = torch.randn(batch, seq_length, input_size, dtype=dtype) grad_output = torch.randn(batch, seq_length, hidden_size * num_directions, dtype=dtype) else: input_val = torch.randn(seq_length, batch, input_size, dtype=dtype) grad_output = torch.randn(seq_length, batch, hidden_size * num_directions, dtype=dtype) hx_val = torch.randn(num_layers * num_directions, batch, hidden_size, dtype=dtype) grad_hy = torch.randn(num_layers * num_directions, batch, hidden_size, dtype=dtype) if not contig: grad_output = make_noncontig(grad_output) grad_hy = make_noncontig(grad_hy) input_var = make_noncontig(input_val) hx_val = make_noncontig(hx_val) if variable_len: lengths = [7, 5, 5, 2, 1, 1] if lens_as_tensor: lengths = torch.tensor(lengths, dtype=torch.long) input_val = rnn_utils.pack_padded_sequence(input_val, lengths, batch_first=batch_first) grad_output = rnn_utils.pack_padded_sequence(grad_output, lengths, batch_first=batch_first).data rnn = module(input_size, hidden_size, num_layers, bias=bias, dropout=dropout, bidirectional=bidirectional, batch_first=batch_first).to(dtype) outputs_cpu = forward_backward( False, rnn, input_val, grad_output, rnn.all_weights, hx_val, grad_hy) rnn_gpu = module(input_size, hidden_size, num_layers, bias=bias, dropout=dropout, bidirectional=bidirectional, batch_first=batch_first).to(dtype) outputs_gpu = forward_backward( True, rnn_gpu, input_val, grad_output, rnn.all_weights, hx_val, grad_hy) compare_cpu_gpu(outputs_cpu, outputs_gpu) for nonlinearity in ('tanh', 'relu'): hx_val = torch.randn(num_layers, batch, hidden_size, dtype=dtype) input_val = torch.randn(seq_length, batch, input_size, dtype=dtype) grad_output = torch.randn( seq_length, batch, hidden_size * num_directions, dtype=dtype) grad_hy = torch.randn( num_layers * num_directions, batch, hidden_size, dtype=dtype) rnn = nn.RNN(input_size, hidden_size, num_layers, bias=bias, nonlinearity=nonlinearity).to(dtype) outputs_cpu = forward_backward(False, rnn, input_val, grad_output, rnn.all_weights, hx_val, grad_hy) rnn_gpu = nn.RNN(input_size, hidden_size, num_layers, bias=bias, nonlinearity=nonlinearity).to(dtype) outputs_gpu = forward_backward(True, rnn_gpu, input_val, grad_output, rnn.all_weights, hx_val, grad_hy) compare_cpu_gpu(outputs_cpu, outputs_gpu) # checking LSTM with projections for bias, bidirectional, batch_first, contig, variable_len, lens_as_tensor \ in product((True, False), repeat=6): num_directions = 2 if bidirectional else 1 if batch_first: input_val = torch.randn(batch, seq_length, input_size, dtype=dtype) grad_output = torch.randn(batch, seq_length, proj_size * num_directions, dtype=dtype) else: input_val = torch.randn(seq_length, batch, input_size, dtype=dtype) grad_output = torch.randn(seq_length, batch, proj_size * num_directions, dtype=dtype) hx_val = torch.randn(num_layers * num_directions, batch, proj_size, dtype=dtype) cx_val = torch.randn(num_layers * num_directions, batch, hidden_size, dtype=dtype) grad_hy = torch.randn(num_layers * num_directions, batch, proj_size, dtype=dtype) grad_cy = torch.randn(num_layers * num_directions, batch, hidden_size, dtype=dtype) if not contig: grad_output = make_noncontig(grad_output) grad_hy = make_noncontig(grad_hy) grad_cy = make_noncontig(grad_cy) input_var = make_noncontig(input_val) hx_val = make_noncontig(hx_val) cx_val = make_noncontig(cx_val) if variable_len: lengths = [7, 5, 5, 2, 1, 1] if lens_as_tensor: lengths = torch.tensor(lengths, dtype=torch.long) input_val = rnn_utils.pack_padded_sequence(input_val, lengths, batch_first=batch_first) grad_output = rnn_utils.pack_padded_sequence(grad_output, lengths, batch_first=batch_first).data rnn = nn.LSTM(input_size, hidden_size, num_layers, bias=bias, dropout=dropout, bidirectional=bidirectional, batch_first=batch_first, proj_size=proj_size).to(dtype) outputs_cpu = forward_backward( False, rnn, input_val, grad_output, rnn.all_weights, hx_val, grad_hy, cx_val, grad_cy) rnn_gpu = nn.LSTM(input_size, hidden_size, num_layers, bias=bias, dropout=dropout, bidirectional=bidirectional, batch_first=batch_first, proj_size=proj_size).to(dtype) outputs_gpu = forward_backward( True, rnn_gpu, input_val, grad_output, rnn.all_weights, hx_val, grad_hy, cx_val, grad_cy) compare_cpu_gpu(outputs_cpu, outputs_gpu) @unittest.skipIf(not TEST_CUDNN, "needs cudnn") def test_RNN_cpu_vs_cudnn_no_dropout(self): dtype = torch.double self._test_RNN_cpu_vs_cudnn(0, dtype) @unittest.skipIf(not (TEST_CUDNN and (TEST_CUDNN_VERSION if TEST_CUDNN_VERSION else 0) >= 5103), "needs cudnn >= 5.1") def test_RNN_cpu_vs_cudnn_with_dropout(self): # Because of dropout randomness, can only compare dropout=0 and dropout=1 self._test_RNN_cpu_vs_cudnn(1) @unittest.skipIf(not TEST_CUDNN, "needs cudnn") def test_RNN_cudnn_weight_norm(self): input_size = 10 hidden_size = 6 num_layers = 2 seq_length = 7 batch = 6 # runs on CPU to acquire expected output def check_weight_norm(m, name): input = torch.randn(seq_length, batch, input_size) expected_output = m(input) # adds weight normalization m = torch.nn.utils.weight_norm(m, name=name) # moves to CUDA m = m.cuda() input = input.cuda() # otherwise, subsequent warnings will be hidden, and further tests rely on them warnings.simplefilter("always") self.assertEqual(m(input), expected_output) # remove weight norm m = torch.nn.utils.remove_weight_norm(m, name=name) self.assertEqual(m(input), expected_output) check_weight_norm(nn.LSTM(input_size, hidden_size, num_layers), 'weight_hh_l0') check_weight_norm(nn.LSTM(input_size, hidden_size, num_layers, proj_size=3), 'weight_hr_l0') @unittest.skipIf(not TEST_CUDA, 'CUDA not available') def test_partial_flat_weights(self): input_size = 10 hidden_size = 6 num_layers = 2 m = nn.LSTM(input_size, hidden_size, num_layers) inp = torch.randn(3, 2, 10) out_expected = m(inp) # deletes an attribute of original LSTM weight_orig = m.weight_hh_l0 del m.weight_hh_l0 self.assertFalse(hasattr(m, "weight_hh_l0")) # verifies that moving to CUDA with only some attributes defined # does not throw an error m.cuda() # recompute the weight and make sure that module can be used m.weight_hh_l0 = weight_orig.cuda() inp = inp.cuda() # otherwise, subsequent warnings will be hidden, and further tests rely on them warnings.simplefilter("always") self.assertEqual(m(inp)[0].cpu(), out_expected[0]) @unittest.skipIf(not (TEST_CUDNN and (TEST_CUDNN_VERSION if TEST_CUDNN_VERSION else 0) >= 5103), "needs cudnn >= 5.1") def test_RNN_dropout(self): # checking the assumption that cuDNN sticks dropout in between # RNN layers for p in (0, 0.276, 0.731, 1): for train in (True, False): for cuda in (True, False): rnn = nn.RNN(10, 1000, 2, bias=False, dropout=p, nonlinearity='relu') if cuda: rnn.cuda() if train: rnn.train() else: rnn.eval() rnn.weight_ih_l0.data.fill_(1) rnn.weight_hh_l0.data.fill_(1) rnn.weight_ih_l1.data.fill_(1) rnn.weight_hh_l1.data.fill_(1) input = torch.ones(1, 1, 10) hx = torch.zeros(2, 1, 1000) if cuda: input = input.cuda() hx = hx.cuda() output, hy = rnn(input, hx) self.assertEqual(output.data.min(), output.data.max()) output_val = output.data[0][0][0] if p == 0 or not train: self.assertEqual(output_val, 10000) elif p == 1: self.assertEqual(output_val, 0) else: self.assertGreater(output_val, 8000) self.assertLess(output_val, 12000) denorm_mod = (output_val * (1 - p)) % 10 self.assertLess(min(denorm_mod, 10 - denorm_mod), 1e-2) self.assertEqual(hy[0].data.min(), hy[0].data.max()) self.assertEqual(hy[1].data.min(), hy[1].data.max()) self.assertEqual(hy.data[0][0][0], 10) self.assertEqual(hy.data[1][0][0], output_val) def test_error_RNN_seq_len_zero(self): # checking error message when RNN has seq_len = 0 for module in (nn.RNN, nn.LSTM, nn.GRU): for bidirectional in [True, False]: for device in get_all_device_types(): input = torch.ones(0, 10, 5) rnn = module(5, 6, bidirectional=bidirectional) if device == 'cuda': rnn.cuda() input = input.cuda() with self.assertRaisesRegex(RuntimeError, "Expected sequence length to be larger than 0 in RNN"): rnn(input) def test_RNN_input_size_zero(self): for module in (nn.RNN, nn.LSTM, nn.GRU): for device in get_all_device_types(): input = torch.zeros((5, 0, 3)) rnn = module(input_size=3, hidden_size=4) if device == 'cuda': rnn.cuda() input = input.cuda() outs = rnn(input) self.assertEqual(outs[0].shape, torch.Size([5, 0, 4])) # Check that backward does not cause a hard error outs[0].sum().backward() @unittest.skipIf(not (TEST_CUDNN and (TEST_CUDNN_VERSION if TEST_CUDNN_VERSION else 0) >= 5103), "needs cudnn >= 5.1") def test_RNN_dropout_state(self): for p in (0, 0.1234): for train in (True, False): for cuda in (True, False): rnn = nn.RNN(100, 100, 2, bias=False, dropout=p, nonlinearity='relu') if cuda: rnn.cuda() if train: rnn.train() else: rnn.eval() input = torch.rand(1, 1, 100) hx = torch.rand(2, 1, 100) if cuda: input = input.cuda() hx = hx.cuda() output1, hy1 = rnn(input, hx) output2, hy2 = rnn(input, hx) buf = io.BytesIO() rnn_pickle = torch.save(rnn, buf) buf.seek(0) rnn2 = torch.load(buf) rnn2.flatten_parameters() output3, hy3 = rnn2(input, hx) if p == 0 or not train: self.assertEqual(output1, output2) self.assertEqual(output1, output3) self.assertEqual(hy1, hy2) self.assertEqual(hy1, hy3) else: self.assertNotEqual(output1, output2) self.assertNotEqual(output1, output3) self.assertNotEqual(hy1, hy2) self.assertNotEqual(hy1, hy3) @unittest.skipIf(not (TEST_CUDNN and (TEST_CUDNN_VERSION if TEST_CUDNN_VERSION else 0) >= 5103), "needs cudnn >= 5.1") def test_RNN_change_dropout(self): for train, cuda in product((True, False), repeat=2): rnn = nn.RNN(100, 100, 2, dropout=0, nonlinearity='relu') input = torch.rand(3, 2, 100) if cuda: input.data = input.data.cuda() rnn.cuda() if train: rnn.train() else: rnn.eval() prev_output = None for p in (0, 0.5, 0, 0.7, 0.2, 1, 0.2, 0): rnn.dropout = p output1, hy1 = rnn(input) output2, hy2 = rnn(input) if p == 0 or p == 1 or not train: self.assertEqual(output1, output2) self.assertEqual(hy1, hy2) else: self.assertNotEqual(output1, output2) self.assertNotEqual(hy1, hy2) if prev_output is not None: if not train: self.assertEqual(output1.data, prev_output) self.assertEqual(output2.data, prev_output) else: self.assertNotEqual(output1.data, prev_output) self.assertNotEqual(output2.data, prev_output) prev_output = output1.data def test_inplace_thnn(self): modules = [nn.ReLU, nn.ELU, nn.SELU, nn.CELU, nn.RReLU] for mod in modules: r = mod(inplace=True) input = torch.randn(5, 5, requires_grad=True) output = r(input + 0) grad_output = torch.randn(5, 5) grad_output_clone = grad_output.clone() output.backward(grad_output) self.assertEqual(grad_output, grad_output_clone) def test_pixel_shuffle_unshuffle(self): def _test_pixel_shuffle_unshuffle_helper(num_input_dims, valid_channels_dim=True, upscale_factor=None): # Function to imperatively ensure pixels are shuffled to the correct locations. # Used to validate the batch operations in pixel_shuffle. def _verify_pixel_shuffle(input, output, upscale_factor): for c in range(output.size(-3)): for h in range(output.size(-2)): for w in range(output.size(-1)): height_idx = h // upscale_factor weight_idx = w // upscale_factor channel_idx = (upscale_factor * (h % upscale_factor)) + (w % upscale_factor) + \ (c * upscale_factor ** 2) self.assertEqual(output[..., c, h, w], input[..., channel_idx, height_idx, weight_idx]) upscale_factor = random.randint(2, 5) if upscale_factor is None else upscale_factor # If valid_channels_dim=False, add 1 to make channels dim indivisible by upscale_factor ** 2. channels = random.randint(1, 4) * upscale_factor ** 2 + (0 if valid_channels_dim else 1) height = random.randint(5, 10) width = random.randint(5, 10) if num_input_dims == 1: input = torch.rand(channels, requires_grad=True) elif num_input_dims == 2: input = torch.rand(height, width, requires_grad=True) else: batch_sizes = [random.randint(1, 3) for _ in range(num_input_dims - 3)] input = torch.rand(*batch_sizes, channels, height, width, requires_grad=True) ps = nn.PixelShuffle(upscale_factor) pus = nn.PixelUnshuffle(downscale_factor=upscale_factor) if num_input_dims >= 3 and valid_channels_dim and upscale_factor > 0: output = ps(input) _verify_pixel_shuffle(input, output, upscale_factor) output.backward(output.data) self.assertEqual(input.data, input.grad.data) # Ensure unshuffle properly inverts shuffle. unshuffle_output = pus(output) self.assertEqual(input, unshuffle_output) else: self.assertRaises(RuntimeError, lambda: ps(input)) def _test_pixel_unshuffle_error_case_helper(num_input_dims, valid_height_dim=True, valid_width_dim=True, downscale_factor=None): downscale_factor = random.randint(2, 5) if downscale_factor is None else downscale_factor channels = random.randint(1, 4) # If valid_height_dim=False, add 1 to make height dim indivisible by downscale_factor. height = random.randint(3, 5) * abs(downscale_factor) + (0 if valid_height_dim else 1) # If valid_width_dim=False, add 1 to make width dim indivisible by downscale_factor. width = random.randint(3, 5) * abs(downscale_factor) + (0 if valid_width_dim else 1) if num_input_dims == 1: input = torch.rand(channels, requires_grad=True) elif num_input_dims == 2: input = torch.rand(height, width, requires_grad=True) else: batch_sizes = [random.randint(1, 3) for _ in range(num_input_dims - 3)] input = torch.rand(*batch_sizes, channels, height, width, requires_grad=True) pus = nn.PixelUnshuffle(downscale_factor) self.assertRaises(RuntimeError, lambda: pus(input)) def _test_pixel_shuffle_unshuffle_for_input_dims(num_input_dims): # For 1D - 2D, this is an error case. # For 3D - 5D, this is a success case for pixel_shuffle + pixel_unshuffle. _test_pixel_shuffle_unshuffle_helper(num_input_dims=num_input_dims) # Error cases for pixel_shuffle. _test_pixel_shuffle_unshuffle_helper(num_input_dims=num_input_dims, valid_channels_dim=False) _test_pixel_shuffle_unshuffle_helper(num_input_dims=num_input_dims, upscale_factor=0) _test_pixel_shuffle_unshuffle_helper(num_input_dims=num_input_dims, upscale_factor=-2) # Error cases for pixel_unshuffle. _test_pixel_unshuffle_error_case_helper(num_input_dims=num_input_dims, valid_height_dim=False) _test_pixel_unshuffle_error_case_helper(num_input_dims=num_input_dims, valid_width_dim=False) _test_pixel_unshuffle_error_case_helper(num_input_dims=num_input_dims, downscale_factor=0) _test_pixel_unshuffle_error_case_helper(num_input_dims=num_input_dims, downscale_factor=-2) def test_pixel_shuffle_unshuffle_1D(): _test_pixel_shuffle_unshuffle_for_input_dims(num_input_dims=1) def test_pixel_shuffle_unshuffle_2D(): _test_pixel_shuffle_unshuffle_for_input_dims(num_input_dims=2) def test_pixel_shuffle_unshuffle_3D(): _test_pixel_shuffle_unshuffle_for_input_dims(num_input_dims=3) def test_pixel_shuffle_unshuffle_4D(): _test_pixel_shuffle_unshuffle_for_input_dims(num_input_dims=4) def test_pixel_shuffle_unshuffle_5D(): _test_pixel_shuffle_unshuffle_for_input_dims(num_input_dims=5) test_pixel_shuffle_unshuffle_1D() test_pixel_shuffle_unshuffle_2D() test_pixel_shuffle_unshuffle_3D() test_pixel_shuffle_unshuffle_4D() test_pixel_shuffle_unshuffle_5D() # These tests should be OpInfo'd def test_elu_inplace_on_view(self): v = torch.tensor([1.0, -1.0, 1.0, -1.0], requires_grad=True) def func(root): x = root.clone() view = x.narrow(0, 1, 2) res = F.elu(view, inplace=True) self.assertIs(res, view) return x gradcheck(func, [v]) gradgradcheck(func, [v]) def test_elu_inplace_gradgrad(self): v = torch.randn(8, requires_grad=True) def func(root): x = root.clone() return F.elu(x, inplace=True) gradcheck(func, [v]) gradgradcheck(func, [v]) def test_relu_inplace_on_view(self): v = torch.tensor([1.0, -1.0, 1.0, -1.0], requires_grad=True) def func(root): x = root.clone() view = x.narrow(0, 1, 2) res = F.relu(view, inplace=True) self.assertIs(res, view) return x gradcheck(func, [v]) gradgradcheck(func, [v]) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') def test_PReLU_backward_requires_grad_false(self): m = nn.PReLU().to('cuda') x = torch.randn(2, 3, 4, 5, requires_grad=False, device='cuda') y = m(x) y.mean().backward() self.assertEqual(x.grad, None) @unittest.skipIf( not TEST_NUMPY or not TEST_SCIPY, "Numpy or Scipy not found") def test_gelu(self): def _test_gelu(n, m, dtype, contiguous, atol=None, rtol=None): numpy_dtype = { torch.bfloat16: torch.float, torch.float: torch.float, torch.double: torch.double }[dtype] devices = ['cpu'] devices += ['cuda'] if TEST_CUDA else [] def _gelu_ref(X): return X * stats.norm.cdf(X) for d in devices: if contiguous: X = torch.rand(n, m, dtype=dtype, requires_grad=True, device=d) else: X = torch.rand(n, m, dtype=dtype, requires_grad=True, device=d)[:, ::2] res = F.gelu(X) ref = _gelu_ref(X.to(numpy_dtype).cpu().detach().numpy()) self.assertEqual(res, ref, rtol=rtol, atol=atol, exact_dtype=False) if dtype == torch.float64: gradcheck(F.gelu, [X], eps=1e-4) for n in range(1, 10): for m in range(1, 10): _test_gelu(n, m, torch.bfloat16, True, 1e-2, 0) _test_gelu(n, m, torch.bfloat16, False, 1e-2, 0) _test_gelu(n, m, torch.float32, True) _test_gelu(n, m, torch.float32, False) _test_gelu(n, m, torch.float64, True) _test_gelu(n, m, torch.float64, False) # Test multi threaded num_threads = torch.get_num_threads() torch.set_num_threads(4) try: _test_gelu(32, 32, torch.float32, False) finally: torch.set_num_threads(num_threads) def test_bce_loss_always_nonnegative(self): target = torch.ones(5) input = torch.ones(5) self.assertEqual((nn.BCELoss()(input, target) < 0).sum(), 0) target = torch.zeros(5) input = torch.zeros(5) self.assertEqual((nn.BCELoss()(input, target) < 0).sum(), 0) def test_bce_with_logits_raises_if_target_and_input_are_different_size(self): target = torch.rand(5) input = torch.rand(5, 1) with self.assertRaises(ValueError): nn.BCEWithLogitsLoss()(input, target) target = torch.rand(5, 1) input = torch.rand(5) with self.assertRaises(ValueError): nn.BCEWithLogitsLoss()(input, target) def test_bce_with_logits_gives_same_result_as_sigmoid_and_bce_loss(self): sigmoid = nn.Sigmoid() target = torch.rand(64, 4) output = torch.rand(64, 4) - 0.5 self.assertEqual(nn.BCEWithLogitsLoss()(output, target), nn.BCELoss()(sigmoid(output), target)) weight = torch.rand(4) self.assertEqual(nn.BCEWithLogitsLoss(weight)(output, target), nn.BCELoss(weight)(sigmoid(output), target)) target = torch.zeros(4, 1, dtype=torch.float) output = torch.empty(4, 1, dtype=torch.float).fill_(-100) self.assertEqual(nn.BCEWithLogitsLoss()(output, target), nn.BCELoss()(sigmoid(output), target)) self.assertEqual(nn.BCEWithLogitsLoss(reduction='none')(output, target), nn.BCELoss(reduction='none')(sigmoid(output), target)) weight = torch.rand(1, dtype=torch.float) self.assertEqual(nn.BCEWithLogitsLoss(weight)(output, target), nn.BCELoss(weight)(sigmoid(output), target)) def test_bce_loss_input_range(self): bceloss = nn.BCELoss() target = torch.rand(25, 25) output_valid = torch.rand(25, 25) output_too_negative = output_valid - 1.0 output_too_positive = output_valid + 1.0 loss_valid = bceloss(output_valid, target) with self.assertRaisesRegex(RuntimeError, 'between 0 and 1'): loss_too_negative = bceloss(output_too_negative, target) with self.assertRaisesRegex(RuntimeError, 'between 0 and 1'): loss_too_positive = bceloss(output_too_positive, target) def test_bce_loss_size_mismatch(self): bceloss = nn.BCELoss() a = torch.rand(25) b = torch.rand(25, 1) with self.assertRaisesRegex(ValueError, r'Using a target size \('): bceloss(a, b) def test_bce_with_logits_gives_same_result_as_sigmoid_and_bce_loss_large_tensors_with_grad(self): x_size = 1024 y_size = 256 target = torch.rand(x_size, y_size) for reduction in ['none', 'mean', 'sum']: output_sig = torch.rand(x_size, y_size) - 0.5 output_logits = output_sig.clone().detach() output_sig.requires_grad = True output_logits.requires_grad = True weight = torch.rand(y_size) loss_sig = nn.BCELoss(weight, reduction=reduction)( torch.sigmoid(output_sig), target ) loss_logits = nn.BCEWithLogitsLoss(weight, reduction=reduction)( output_logits, target ) self.assertEqual(loss_logits, loss_sig) if reduction == 'none': grad = torch.rand(x_size, y_size) loss_sig.backward(grad) loss_logits.backward(grad) else: loss_sig.backward() loss_logits.backward() self.assertEqual(output_sig.grad, output_logits.grad) def test_bce_with_logits_has_correct_forward_grad(self): output = torch.randn(3, 5, requires_grad=True) target = torch.randn(3, 5) for reduction in ('sum', 'mean', 'none'): gradcheck(lambda self, target: nn.BCEWithLogitsLoss(reduction=reduction)(self, target), (output, target), check_forward_ad=True) def test_bce_with_logits_has_correct_grad_at_zero(self): output = torch.zeros(3, 1, requires_grad=True) target = torch.zeros(3, 1) nn.BCEWithLogitsLoss(reduction='sum')(output, target).backward() expected_grad = torch.empty(3, 1).fill_(0.5) self.assertEqual(output.grad, expected_grad) def test_bce_with_logits_broadcasts_weights(self): target = torch.rand(16, 4) output = torch.rand(16, 4) - 0.5 weight = torch.rand(4) out1 = nn.BCEWithLogitsLoss(weight)(output, target) weight = weight.expand(16, 4).contiguous() out2 = nn.BCEWithLogitsLoss(weight)(output, target) self.assertEqual(out1, out2) weight = torch.rand(16, 1) out1 = nn.BCEWithLogitsLoss(weight)(output, target) weight = weight.expand(16, 4).contiguous() out2 = nn.BCEWithLogitsLoss(weight)(output, target) self.assertEqual(out1, out2) def test_bce_with_logits_ones_in_pos_weights_are_the_same_as_none(self): target = torch.rand(64, 4) output = torch.rand(64, 4) - 0.5 pos_weight = torch.ones(64, 4) self.assertEqual(nn.BCEWithLogitsLoss()(output, target), nn.BCEWithLogitsLoss(pos_weight=pos_weight)(output, target)) def test_bce_with_logits_broadcasts_pos_weights(self): target = torch.rand(64, 4) output = torch.rand(64, 4) - 0.5 pos_weight = torch.rand(4) out1 = nn.BCEWithLogitsLoss(pos_weight=pos_weight)(output, target) pos_weight1 = pos_weight.expand(1, 4) out2 = nn.BCEWithLogitsLoss(pos_weight=pos_weight1)(output, target) pos_weight2 = pos_weight.expand(64, 4) out3 = nn.BCEWithLogitsLoss(pos_weight=pos_weight2)(output, target) self.assertEqual(out1, out2) self.assertEqual(out1, out3) def test_bce_with_logits_with_pos_weight_has_correct_grad_at_zero(self): output = torch.zeros(3, 1, requires_grad=True) target = torch.zeros(3, 1) pos_weight = torch.ones(3, 1) nn.BCEWithLogitsLoss(pos_weight=pos_weight, reduction='sum')(output, target).backward() expected_grad = torch.empty(3, 1).fill_(0.5) grad = output.grad self.assertEqual(grad, expected_grad) def test_bce_with_logits_stability(self): output = torch.tensor([0., -120.]) target = torch.tensor([0., 1.]) pos_weight = torch.tensor([1., 1.]) out1 = nn.BCEWithLogitsLoss()(output, target) self.assertTrue(torch.isfinite(out1).all().item()) out2 = nn.BCEWithLogitsLoss(pos_weight=pos_weight)(output, target) self.assertTrue(torch.isfinite(out2).all().item()) def test_bce_loss_broadcasts_weights(self): sigmoid = nn.Sigmoid() target = torch.rand(16, 4) output = torch.rand(16, 4) - 0.5 weight = torch.rand(4) out1 = nn.BCELoss(weight)(sigmoid(output), target) weight = weight.expand(16, 4).contiguous() out2 = nn.BCELoss(weight)(sigmoid(output), target) self.assertEqual(out1, out2) weight = torch.rand(16, 1) out1 = nn.BCELoss(weight)(sigmoid(output), target) weight = weight.expand(16, 4).contiguous() out2 = nn.BCELoss(weight)(sigmoid(output), target) self.assertEqual(out1, out2) def test_hardtanh_inplace_gradgrad(self): v = torch.randn(8, requires_grad=True) def func(root): x = root.clone() return F.hardtanh(x, inplace=True) gradcheck(func, [v]) gradgradcheck(func, [v]) # test hardtanh backward froo large tensor def test_hardtanh_backward(self): x = torch.randn(128, 10000, requires_grad=True) grad = torch.randn(128, 10000) z = torch.zeros(128, 10000) y = F.hardtanh(x) y.backward(grad) # ref backward path for hardtanh mask = (x > -1) & (x < 1) x_grad_ref = torch.where(mask, grad, z) self.assertEqual(x.grad, x_grad_ref) def test_batchnorm_nhwc_cpu(self): def helper(self, size): channels = size[1] input = torch.randn(size, dtype=torch.float32, device='cpu', requires_grad=True) input = input.contiguous(memory_format=torch.channels_last) input.retain_grad() grad = torch.randn(size, dtype=torch.float32, device='cpu') grad = grad.contiguous(memory_format=torch.channels_last) bn = nn.BatchNorm2d(channels).cpu().float() bn.weight.data.uniform_() bn.bias.data.uniform_() ref_input = input.detach().clone().contiguous().requires_grad_(True) ref_grad = grad.detach().clone().contiguous() ref_bn = nn.BatchNorm2d(channels).cpu().float() ref_bn.load_state_dict(bn.state_dict()) out = bn(input) out.backward(grad) ref_out = ref_bn(ref_input) ref_out.backward(ref_grad) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(ref_out.is_contiguous()) self.assertEqual(out, ref_out) self.assertEqual(bn.weight.grad, ref_bn.weight.grad) self.assertEqual(bn.bias.grad, ref_bn.bias.grad) self.assertEqual(input.grad, ref_input.grad) helper(self, (4, 8, 10, 10)) helper(self, (4, 1, 9, 9)) helper(self, (4, 9, 1, 1)) def test_batchnorm_non_contig_cpu(self): input = torch.arange(6, dtype=torch.float).reshape(1, 3, 2, 1).cpu() input = input.permute(0, 2, 1, 3) bn = torch.nn.BatchNorm2d(2).cpu().float().eval() bn.weight.data.uniform_() bn.bias.data.uniform_() ref_input = input.detach().clone().contiguous() ref_bn = nn.BatchNorm2d(2).cpu().float().eval() ref_bn.load_state_dict(bn.state_dict()) out = bn(input) ref_out = ref_bn(ref_input) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(ref_out.is_contiguous()) self.assertEqual(out, ref_out) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @unittest.skipIf(not TEST_CUDNN, "needs cudnn") @skipIfRocm def test_batchnorm_cudnn_nhwc(self): def run_test(input, grad_output): c = input.size(1) mod = nn.BatchNorm2d(c).cuda().float() mod.weight.data.uniform_() mod.bias.data.uniform_() ref_input = input.detach().clone().contiguous().requires_grad_(True) ref_grad = grad.detach().clone().contiguous() ref_mod = nn.BatchNorm2d(c).cuda().float() ref_mod.load_state_dict(mod.state_dict()) out = mod(input) out.backward(grad_output) ref_out = ref_mod(ref_input) ref_out.backward(ref_grad) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(ref_out.is_contiguous()) self.assertEqual(out, ref_out) self.assertEqual(mod.weight.grad, ref_mod.weight.grad) self.assertEqual(mod.bias.grad, ref_mod.bias.grad) self.assertEqual(input.grad, ref_input.grad) input = torch.randint(1, 10, (4, 8, 2, 2), dtype=torch.float32, device="cuda") input = input.contiguous(memory_format=torch.channels_last).detach().requires_grad_() grad = torch.randint(1, 10, (4, 8, 2, 2), dtype=torch.float32, device="cuda") grad = grad.contiguous(memory_format=torch.channels_last) run_test(input, grad) # see #42588, grad is channels_last contiguous, but grad.suggest_memory_format (rightly) return "contiguous" # not channels_last input = torch.randint(1, 10, (2, 8, 8, 1), dtype=torch.float32, device="cuda") input = input.contiguous(memory_format=torch.channels_last).detach().requires_grad_() grad = torch.randint(1, 10, (2, 8, 8, 1), dtype=torch.float32, device="cuda") grad = grad.permute(0, 2, 1, 3) run_test(input, grad) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") def test_batchnorm_cudnn_half(self): # THNN input = torch.randint(1, 10, (2, 3, 2, 2), dtype=torch.half, device="cuda", requires_grad=True) m = nn.BatchNorm2d(3).half().cuda() thnn_output = m(input) thnn_output.sum().backward() thnn_input_grad = input.grad.data.clone() self.assertEqualTypeString(thnn_output, input) # cuDNN if TEST_CUDNN: input.grad = None m = m.float() cudnn_output = m(input) cudnn_output.sum().backward() cudnn_input_grad = input.grad.data.clone() self.assertEqualTypeString(cudnn_output, input) self.assertEqual(cudnn_output, thnn_output) self.assertEqual(cudnn_input_grad, thnn_input_grad, atol=1e-3, rtol=0) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") def test_batchnorm_nonaffine_cuda_half_input(self): input = torch.randn(16, 3, 24, 24, dtype=torch.half, device="cuda") m = nn.BatchNorm2d(3, affine=False).cuda().float() # keep running stats in FP32 output = m(input) self.assertEqualTypeString(output, input) m.eval() output = m(input) self.assertEqualTypeString(output, input) def test_batchnorm_raises_error_if_less_than_one_value_per_channel(self): x = torch.rand(10)[None, :, None] with self.assertRaises(ValueError): torch.nn.BatchNorm1d(10)(x) def test_batchnorm_raises_error_if_running_mean_is_not_same_size_as_input(self): input = torch.rand(2, 10) running_var = torch.rand(10) wrong_sizes = [9, 11] for size in wrong_sizes: with self.assertRaises(RuntimeError): F.batch_norm(input, torch.rand(size), running_var) def test_batchnorm_raises_error_if_running_var_is_not_same_size_as_input(self): input = torch.rand(2, 10) running_mean = torch.rand(10) wrong_sizes = [9, 11] for size in wrong_sizes: with self.assertRaises(RuntimeError): F.batch_norm(input, running_mean, torch.rand(size)) def test_batchnorm_raises_error_if_weight_is_not_same_size_as_input(self): input = torch.rand(2, 10) running_mean = torch.rand(10) running_var = torch.rand(10) wrong_sizes = [9, 11] for size in wrong_sizes: with self.assertRaises(RuntimeError): F.batch_norm(input, running_mean, running_var, weight=Parameter(torch.rand(size))) def test_batchnorm_raises_error_if_bias_is_not_same_size_as_input(self): input = torch.rand(2, 10) running_mean = torch.rand(10) running_var = torch.rand(10) wrong_sizes = [9, 11] for size in wrong_sizes: with self.assertRaises(RuntimeError): F.batch_norm(input, running_mean, running_var, bias=Parameter(torch.rand(size))) def test_batchnorm_buffer_update_when_stats_are_not_tracked(self): input_size = (32, 4) # Instantiate BN with buffers that are not None bn = nn.BatchNorm1d(input_size[1], track_running_stats=True) # Use buffers for normalization but don't update them bn.track_running_stats = False # Store initial values num_batches = bn.num_batches_tracked.clone() running_mean = bn.running_mean.clone() running_var = bn.running_var.clone() # Forward random tensor _ = bn(torch.rand(input_size)) # Ensure none of the buffers has been updated self.assertTrue(torch.equal(num_batches, bn.num_batches_tracked)) self.assertTrue(torch.equal(running_mean, bn.running_mean)) self.assertTrue(torch.equal(running_var, bn.running_var)) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_batchnorm_nhwc_cuda(self): for dtype in (torch.half, torch.float): (N, C, H, W) = 2, 64, 50, 50 model = torch.nn.BatchNorm2d(C, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) model = model.eval().cuda().to(dtype) inp1 = torch.randn(N, C, H, W, device=torch.device('cuda'), dtype=dtype) inp2 = inp1.contiguous(memory_format=torch.channels_last) out1 = model(inp1) out2 = model(inp2) self.assertTrue(torch.equal(out1, out2)) def test_pairwise_distance(self): input1 = torch.randn(4, 4, requires_grad=True) input2 = torch.randn(4, 4, requires_grad=True) self.assertTrue(gradcheck(lambda x, y: F.pairwise_distance(x, y), (input1, input2))) # TODO: Create an OpInfo for pdist def test_pdist(self): for device, trans in itertools.product(device_(), [False, True]): inp = torch.randn(4, 5, dtype=torch.double, device=device, requires_grad=True) if trans: inp = inp.transpose(0, 1) for p in [0, 1, 2, 0.5, 1.5, 2.5, float('inf')]: self.assertTrue(gradcheck(lambda x: F.pdist(x, p), (inp,))) def test_pdist_zeros(self): """Test that grad is still valid when dist is 0""" for device in device_(): inp = torch.randn(1, 3, dtype=torch.double, device=device, requires_grad=True).repeat([2, 1]) for p in [0, 1, 2, 0.5, 1.5, 2.5, float('inf')]: self.assertTrue(gradcheck(lambda x: F.pdist(x, p), (inp,))) def test_pdist_empty_row(self): for device in device_(): inp = torch.randn(1, 3, dtype=torch.double, device=device, requires_grad=True) self.assertTrue(gradcheck(F.pdist, (inp,))) def test_pdist_empty_col(self): for device in device_(): inp = torch.randn(4, 0, dtype=torch.double, device=device, requires_grad=True) self.assertTrue(gradcheck(F.pdist, (inp,))) @unittest.expectedFailure def test_pdist_cpu_gradgrad_unimplemented(self): inp = torch.randn(4, 5, requires_grad=True) gradgradcheck(F.pdist, (inp,)) @unittest.expectedFailure def test_pdist_cuda_gradgrad_unimplemented(self): inp = torch.randn(4, 5, device='cuda', requires_grad=True) gradgradcheck(F.pdist, (inp,)) # Merge into OpInfo? # test for backward in https://github.com/pytorch/pytorch/issues/15511 def test_pdist_large(self): for device in device_(): def func(x): return torch.pdist(x, p=2) # shape[0] should be able to be (roughly) arbitrarily large, but the kernel # is currently limited to smaller sizes (see issue above); this is just testing # a floor. shape = (1000, 1) x = torch.randn(shape, device=device).requires_grad_() output = torch.pdist(x, p=2) # just run a single backward, as gradcheck/gradgradcheck is expensive here output.sum().backward() def test_binary_cross_entropy_grads(self): import torch.nn.functional as F for device in device_(): input = torch.rand(3, 3, dtype=torch.double, device=device, requires_grad=True) target = torch.rand(3, 3, dtype=torch.double, device=device) gradcheck(F.binary_cross_entropy, [input, target]) gradgradcheck(F.binary_cross_entropy, [input, target]) # now with diffentiable target target.requires_grad_(True) gradcheck(F.binary_cross_entropy, [input, target], check_batched_grad=False) # no double backward for target yet with self.assertRaisesRegex(RuntimeError, "not implemented"): gradgradcheck(F.binary_cross_entropy, [input, target], check_batched_grad=False) def test_cosine_embedding_loss_with_diff_type(self): for device in device_(): input1 = torch.tensor([[2, 3, 4], [6, 2, 4]], dtype=torch.double, device=device) input2 = torch.tensor([[2, 3, 5], [3, 2, 1]], dtype=torch.double, device=device) target = torch.tensor([1, -1], dtype=torch.int, device=device) expected = torch.nn.functional.cosine_embedding_loss(input1, input2, target) for dt1 in get_all_math_dtypes(device): for dt2 in get_all_math_dtypes(device): for dt3 in get_all_math_dtypes(device): # dt3 is used as dtype for target = [1, -1], so let's skip unsigned type if dt3 == torch.uint8: continue if dt1.is_complex or dt2.is_complex or dt3.is_complex: continue input1 = input1.to(dt1) input2 = input2.to(dt2) target = target.to(dt3) result = torch.nn.functional.cosine_embedding_loss(input1, input2, target) self.assertEqual(result.item(), expected.item(), atol=0.001, rtol=0) def test_kl_div_with_diff_type(self): for device in device_(): input = torch.tensor([[2, 3, 5], [3, 2, 1]], dtype=torch.double, device=device) target = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=torch.double, device=device) expected = torch.nn.functional.kl_div(input, target) for input_dtype in get_all_math_dtypes(device): if input_dtype.is_complex: continue for target_dtype in [torch.float32, torch.float64, torch.float16]: if (torch.device(device).type == 'cpu' and target_dtype == torch.float16): continue input = input.to(input_dtype) target = target.to(target_dtype) result = torch.nn.functional.kl_div(input, target) self.assertEqual(result.item(), expected.item(), atol=0.001, rtol=0) def test_kl_div_with_diff_type_log_target(self): for device in device_(): input = torch.tensor([[2, 3, 5], [3, 2, 1]], dtype=torch.double, device=device) target = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=torch.double, device=device).log() expected = torch.nn.functional.kl_div(input, target, log_target=True) for input_dtype in get_all_math_dtypes(device): if input_dtype.is_complex: continue for target_dtype in [torch.float32, torch.float64, torch.float16]: if (torch.device(device).type == 'cpu' and target_dtype == torch.float16): continue input = input.to(input_dtype) target = target.to(target_dtype) result = torch.nn.functional.kl_div(input, target, log_target=True) self.assertEqual(result.item(), expected.item(), atol=0.001, rtol=0) def test_kl_div_log_softmax_target(self): for device in device_(): a = torch.tensor([[1.0, 2, 3], [5.0, 5, 5]], device=device) b = torch.tensor([[1.0, 2, 3], [5.0, 5, 5]], device=device) self.assertEqual( F.kl_div(F.log_softmax(a, 1), F.log_softmax(b, 1), reduction='none', log_target=True), torch.zeros_like(a) ) def test_cosine_embedding_loss_no_reduce(self): input1 = torch.randn(15, 10, requires_grad=True) input2 = torch.randn(15, 10, requires_grad=True) target = torch.randn(15).sign() self.assertTrue(gradcheck(lambda x, y, z: F.cosine_embedding_loss( x, y, z, reduction='none'), (input1, input2, target))) self.assertEqual(F.cosine_embedding_loss(input1, input2, target, reduction='none'), loss_reference_fns['CosineEmbeddingLoss'](input1, input2, target, reduction='none')) def test_cosine_embedding_loss_margin_no_reduce(self): input1 = torch.randn(15, 10, requires_grad=True) input2 = torch.randn(15, 10, requires_grad=True) target = torch.randn(15).sign() self.assertTrue(gradcheck(lambda x, y, z: F.cosine_embedding_loss( x, y, z, margin=0.5, reduction='none'), (input1, input2, target))) self.assertEqual(F.cosine_embedding_loss(input1, input2, target, margin=0.5, reduction='none'), loss_reference_fns['CosineEmbeddingLoss'](input1, input2, target, margin=0.5, reduction='none')) def test_cosine_embedding_loss_invalid_shape(self): input1 = torch.randn(15, 10) input2 = torch.randn(15, 10) target = torch.randn(15, 1).sign() with self.assertRaisesRegex(RuntimeError, "1D target tensor expected"): F.cosine_embedding_loss(input1, input2, target) with self.assertRaisesRegex(RuntimeError, "1D target tensor expects 2D input tensors"): F.cosine_embedding_loss(torch.randn(10), torch.randn(10), torch.randn(10)) with self.assertRaisesRegex(RuntimeError, "0D target tensor expects 1D input tensors"): F.cosine_embedding_loss(torch.randn(2, 5), torch.randn(2, 5), torch.randn(())) def test_margin_ranking_loss_no_reduce(self): input1 = torch.randn(15).mul_(10).requires_grad_() input2 = torch.randn(15).mul_(10).requires_grad_() target = torch.randn(15).sign() self.assertTrue(gradcheck(lambda x, y, z: F.margin_ranking_loss( x, y, z, reduction='none'), (input1, input2, target))) self.assertEqual(F.margin_ranking_loss(input1, input2, target, reduction='none'), loss_reference_fns['MarginRankingLoss'](input1, input2, target, reduction='none')) def test_margin_ranking_loss_margin_no_reduce(self): input1 = torch.randn(15).mul_(10).requires_grad_() input2 = torch.randn(15).mul_(10).requires_grad_() target = torch.randn(15).sign() self.assertTrue(gradcheck(lambda x, y, z: F.margin_ranking_loss( x, y, z, margin=0.5, reduction='none'), (input1, input2, target))) self.assertEqual(F.margin_ranking_loss(input1, input2, target, margin=0.5, reduction='none'), loss_reference_fns['MarginRankingLoss'](input1, input2, target, margin=0.5, reduction='none')) def test_triplet_margin_loss(self): input1 = torch.randn(5, 10, requires_grad=True) input2 = torch.randn(5, 10, requires_grad=True) input3 = torch.randn(5, 10, requires_grad=True) self.assertTrue(gradcheck(lambda x1, x2, x3: F.triplet_margin_loss( x1, x2, x3), (input1, input2, input3))) self.assertEqual(F.triplet_margin_loss(input1, input2, input3), loss_reference_fns['TripletMarginLoss'](input1, input2, input3)) def test_triplet_margin_loss_swap(self): input1 = torch.randn(5, 10, requires_grad=True) input2 = torch.randn(5, 10, requires_grad=True) input3 = torch.randn(5, 10, requires_grad=True) self.assertTrue(gradcheck(lambda x1, x2, x3: F.triplet_margin_loss( x1, x2, x3, swap=True), (input1, input2, input3))) self.assertEqual(F.triplet_margin_loss(input1, input2, input3, swap=True), loss_reference_fns['TripletMarginLoss'](input1, input2, input3, swap=True)) def test_triplet_margin_loss_no_reduce(self): input1 = torch.randn(5, 10, requires_grad=True) input2 = torch.randn(5, 10, requires_grad=True) input3 = torch.randn(5, 10, requires_grad=True) self.assertTrue(gradcheck(lambda x1, x2, x3: F.triplet_margin_loss( x1, x2, x3, reduction='none'), (input1, input2, input3))) self.assertEqual(F.triplet_margin_loss(input1, input2, input3, reduction='none'), loss_reference_fns['TripletMarginLoss'](input1, input2, input3, reduction='none')) def test_triplet_margin_loss_swap_no_reduce(self): input1 = torch.randn(5, 10, requires_grad=True) input2 = torch.randn(5, 10, requires_grad=True) input3 = torch.randn(5, 10, requires_grad=True) self.assertTrue(gradcheck(lambda x1, x2, x3: F.triplet_margin_loss( x1, x2, x3, swap=True, reduction='none'), (input1, input2, input3))) self.assertEqual(F.triplet_margin_loss(input1, input2, input3, swap=True, reduction='none'), loss_reference_fns['TripletMarginLoss'](input1, input2, input3, swap=True, reduction='none')) def test_triplet_margin_loss_invalid(self): input1 = torch.randn(5, 10, requires_grad=True) input2 = torch.randn(5, 10, requires_grad=True) input3 = torch.randn(5, 10, requires_grad=True) input_1d = torch.randn(10, requires_grad=True) with self.assertRaisesRegex(RuntimeError, "All inputs should have same dimension"): F.triplet_margin_loss(input1, input2, input_1d) with self.assertRaisesRegex(RuntimeError, "All inputs should have same dimension"): F.triplet_margin_loss(input1, input_1d, input3) with self.assertRaisesRegex(RuntimeError, "All inputs should have same dimension"): F.triplet_margin_loss(input_1d, input2, input3) def test_pointwise_loss_target_grad_none_reduction(self): i = torch.randn(5, 10) t = torch.randn(5, 10, requires_grad=True) self.assertEqual(F.mse_loss(i, t, reduction='none').size(), t.size()) self.assertEqual(F.l1_loss(i, t, reduction='none').size(), t.size()) def test_pointwise_loss_broadcast(self): losses = { 'mse_loss': lambda x, y, r: F.mse_loss(x, y, reduction=r), 'l1_loss': lambda x, y, r: F.l1_loss(x, y, reduction=r), 'smooth_l1_loss': lambda x, y, r: F.smooth_l1_loss(x, y, reduction=r), 'huber_loss': lambda x, y, r: F.huber_loss(x, y, reduction=r), } input = torch.randn(2, 1, requires_grad=True) for _name, fn in losses.items(): for requires_grad in [True, False]: # When target.requires_grad=True, its impl is in Python, while the other is in TH. target = torch.randn(2, 10, requires_grad=requires_grad) for reduction in ['none', 'mean', 'sum']: l = fn(input, target, reduction) if reduction == 'none': self.assertEqual(l.size(), target.size()) self.assertTrue(gradcheck(fn, (input, target, reduction))) # https://github.com/pytorch/pytorch/issues/27692 reports # that l1_loss get a wrong result for big batch size def test_l1_loss_correct(self): for dtype in [torch.float, torch.cfloat]: for N in range(1, 50, 10): input = torch.rand(N, 3, 1024, 1024, dtype=dtype) self.assertEqual( torch.nn.L1Loss()(input, torch.zeros_like(input)), input.abs().mean()) def test_smoothl1loss_intergral_target(self): def _input_grad(input, target, reduction): output = F.smooth_l1_loss(input, target, reduction=reduction, beta=0.5) output.sum().backward() return input.grad for device, dtype, reduction in product(device_(), integral_types(), ('none', 'sum', 'mean')): input = torch.randn(2, 2, device=device, requires_grad=True) target = torch.randint(0, 9, (2, 2), device=device, dtype=dtype) input_grad_with_float_target = _input_grad(input, target.float(), reduction) input_grad = _input_grad(input.detach().clone().requires_grad_(True), target, reduction) self.assertEqual(input_grad, input_grad_with_float_target) def test_smoothl1loss_negative_beta_not_supported(self): with self.assertRaises(RuntimeError): F.smooth_l1_loss(torch.randn(2, 2), torch.randn(2, 2), beta=-1.0) def test_huber_loss_invalid_delta(self): def _test_huber_loss_delta_error_helper(delta): input, target = torch.randn(2, 2), torch.randn(2, 2) loss = torch.nn.HuberLoss(delta=delta) with self.assertRaises(RuntimeError): loss(input, target) def test_huber_loss_negative_delta(): _test_huber_loss_delta_error_helper(delta=-0.5) def test_huber_loss_zero_delta(): _test_huber_loss_delta_error_helper(delta=0.0) test_huber_loss_negative_delta() test_huber_loss_zero_delta() def test_cosine_similarity(self): # Check cosine_similarity input/output shapes input_size = (1, 3, 2, 1) expected_size = (1, 2, 1) input1 = torch.randn(input_size, requires_grad=True) input2 = torch.randn(input_size, requires_grad=True) self.assertEqual(F.cosine_similarity(input1, input2, dim=1).size(), expected_size) # Check numerical precision, issue #18057 vv1 = torch.tensor(list([float(i) for i in range(84)])).unsqueeze(0) vv2 = torch.tensor(list([float(i) for i in range(84)])).unsqueeze(0) out = F.cosine_similarity(vv1, vv2) self.assertLessEqual(out, 1.0) # Check dividing by 0. input1 = torch.randn(10).requires_grad_() input2 = torch.zeros_like(input1).requires_grad_() torch.cosine_similarity(input1, input2, 0).sum().backward() self.assertEqual(input1.grad, torch.zeros_like(input1)) self.assertEqual(input2.grad, input1 * 1e8) # Check type promotion, issue #61454 input = torch.tensor(12.) out = F.cosine_similarity(input.to(torch.int8), input, dim=-1) self.assertEqual(out, 1.) def test_grid_sample_error_checking(self): input = torch.empty(1, 1, 2, 2) grid = torch.empty(1, 1, 1, 2) # assert no error F.grid_sample(input, grid, align_corners=False) with self.assertRaisesRegex(ValueError, "but got: 'garbage'"): F.grid_sample(input, grid, mode='garbage', align_corners=False) with self.assertRaisesRegex(ValueError, "but got: 'garbage'"): F.grid_sample(input, grid, padding_mode='garbage', align_corners=False) with self.assertRaisesRegex(RuntimeError, "expected 4D or 5D input"): F.grid_sample(input[0], grid, align_corners=False) with self.assertRaisesRegex(RuntimeError, "grid with same number of dimensions"): F.grid_sample(input, torch.empty(1, 1, 1, 1, 3), align_corners=False) with self.assertRaisesRegex(RuntimeError, "expected grid and input to have same batch size"): F.grid_sample(input, torch.empty(2, 1, 1, 2), align_corners=False) with self.assertRaisesRegex(RuntimeError, "expected grid to have size 2 in last dimension"): F.grid_sample(input, torch.empty(1, 1, 1, 3), align_corners=False) with self.assertRaisesRegex(RuntimeError, "expected input to have non-empty spatial dimensions"): F.grid_sample(torch.empty(1, 1, 0, 2), grid, align_corners=False) with self.assertRaisesRegex(RuntimeError, "bicubic interpolation only supports 4D input"): F.grid_sample(torch.empty(1, 1, 2, 2, 2), torch.empty(1, 1, 1, 1, 3), mode='bicubic') if TEST_CUDA: with self.assertRaisesRegex(RuntimeError, "expected input and grid to be on same device"): F.grid_sample(input.cuda(), grid, align_corners=False) def test_affine_grid_error_checking(self): # 2D affine theta = torch.empty(1, 2, 3, dtype=torch.double) size = torch.Size([1, 1, 2, 2]) # assert no error F.affine_grid(theta, size, align_corners=False) # check for warning for empty span along dimension with warnings.catch_warnings(record=True) as w: # Ensure warnings are being shown warnings.simplefilter("always") # Should not trigger warning F.affine_grid(theta, torch.Size([1, 1, 2, 1]), align_corners=False) # Check no warning occurs self.assertNotIn('See the documentation of affine_grid for details.', ' '.join(map(str, w))) # Should trigger warning F.affine_grid(theta, torch.Size([1, 1, 2, 1]), align_corners=True) # Check warning occurs self.assertIn('See the documentation of affine_grid for details.', ' '.join(map(str, w))) with self.assertRaisesRegex(ValueError, "Expected theta to have floating point type"): F.affine_grid(theta.int(), size, align_corners=False) with self.assertRaisesRegex(ValueError, "Expected a batch of 2D affine matrices of shape Nx2x3"): F.affine_grid(theta[0], size, align_corners=False) with self.assertRaisesRegex(ValueError, "Expected a batch of 2D affine matrices of shape Nx2x3"): F.affine_grid(theta.unsqueeze(0), size, align_corners=False) with self.assertRaisesRegex(ValueError, "Expected a batch of 2D affine matrices of shape Nx2x3"): F.affine_grid(theta.repeat(1, 2, 1), size, align_corners=False) with self.assertRaisesRegex(ValueError, "Expected a batch of 2D affine matrices of shape Nx2x3"): F.affine_grid(theta.repeat(1, 1, 2), size, align_corners=False) # 3D affine theta = torch.empty(1, 3, 4, dtype=torch.double) size = torch.Size([1, 1, 2, 2, 2]) # assert no error F.affine_grid(theta, size, align_corners=False) # check for warning for empty span along dimension with warnings.catch_warnings(record=True) as w: # Ensure warnings are being shown warnings.simplefilter("always") # Should not trigger warning F.affine_grid(theta, torch.Size([1, 1, 3, 2, 1]), align_corners=False) # Check no warning occurs self.assertNotIn('See the documentation of affine_grid for details.', ' '.join(map(str, w))) # Should trigger warning F.affine_grid(theta, torch.Size([1, 1, 3, 2, 1]), align_corners=True) # Check warning occurs self.assertIn('See the documentation of affine_grid for details.', ' '.join(map(str, w))) with self.assertRaisesRegex(ValueError, "Expected a batch of 3D affine matrices of shape Nx3x4"): F.affine_grid(theta[0], size, align_corners=False) with self.assertRaisesRegex(ValueError, "Expected a batch of 3D affine matrices of shape Nx3x4"): F.affine_grid(theta.unsqueeze(0), size, align_corners=False) with self.assertRaisesRegex(ValueError, "Expected a batch of 3D affine matrices of shape Nx3x4"): F.affine_grid(theta.repeat(1, 2, 1), size, align_corners=False) with self.assertRaisesRegex(ValueError, "Expected a batch of 3D affine matrices of shape Nx3x4"): F.affine_grid(theta.repeat(1, 1, 2), size, align_corners=False) with self.assertRaisesRegex(NotImplementedError, "affine_grid only supports 4D and 5D sizes"): F.affine_grid(theta, torch.Size([1, 2, 2]), align_corners=False) with self.assertRaisesRegex(NotImplementedError, "affine_grid only supports 4D and 5D sizes"): F.affine_grid(theta, torch.Size([1, 1, 2, 2, 2, 2]), align_corners=False) @skipIfRocm def test_grid_sample(self): # Backward pass of native C++ and CUDA kernels branch depending on whether input requires gradient, # so we test both cases. def test(N, C, H, W, mode, padding_mode, align_corners, input_requires_grad): def test_shape(N, C, IH, IW, H, W, mode, padding_mode, align_corners): for grid_dim_contig_order in [(0, 1, 2, 3), (0, 3, 1, 2), (3, 0, 1, 2), (0, 2, 1, 3)]: # grid_dim_contig_order specifies the dimension order that can # make grid to be contiguous. # i.e., grid.permute(grid_dim_contig_order) is contiguous. # e.g., with grid_dim_contig_order=[0, 3, 1, 2], grid should be # initialized with contiguous tensor of shape [N, 2, H, W] # and permuted to [N, H, W, 2] afterwards. grid_shape = [N, H, W, 2] grid_init_shape = [grid_shape[d] for d in grid_dim_contig_order] grid_fwd_permute = [None, None, None, None] for i, d in enumerate(grid_dim_contig_order): grid_fwd_permute[d] = i def get_grid(device='cpu', data=None): if data is not None: assert list(data.shape) == grid_shape data = data.permute(grid_dim_contig_order).to(device) else: data = torch.randn(grid_init_shape, device=device) grid = data.permute(grid_fwd_permute) assert grid.permute(grid_dim_contig_order).is_contiguous() return grid input_cpu = torch.randn(C, N, IH, IW).transpose(0, 1).requires_grad_(input_requires_grad) grid_cpu = get_grid().requires_grad_() out_cpu = F.grid_sample(input_cpu, grid_cpu, mode=mode, padding_mode=padding_mode, align_corners=align_corners) self.assertTrue(out_cpu.size() == torch.Size([N, C, H, W])) gradients = torch.randn_like(out_cpu) out_cpu.backward(gradients) # Compare against unvectorized CPU fallback # NOTE [ grid_sample CPU fallback ] # grid_sample uses AVX for 2d images, but that requires 32-bit indexing for # 32-bit floats. So we also have a fallback that is used only for float tensors # requiring 64-bit indexing. That requires too much memory to run on CI, so we # also export the fallback and test it here to ensure feature parity with # the vectorized version. input_fallback = input_cpu.float().detach_().requires_grad_() grid_fallback = grid_cpu.float().detach_().requires_grad_() out_fallback = torch._grid_sampler_2d_cpu_fallback( input_fallback, grid_fallback, F.GRID_SAMPLE_INTERPOLATION_MODES[mode], F.GRID_SAMPLE_PADDING_MODES[padding_mode], align_corners) self.assertEqual(out_fallback, out_cpu.float(), atol=1e-5, rtol=5e-5) out_fallback.backward(gradients.float()) if input_requires_grad: self.assertEqual(input_fallback.grad, input_cpu.grad.float(), atol=1e-4, rtol=5e-5) self.assertEqual(grid_fallback.grad, grid_cpu.grad.float(), atol=1e-4, rtol=5e-5) if TEST_CUDA: input_cuda = input_cpu.detach().transpose(0, 1).cuda().transpose(0, 1).requires_grad_(input_requires_grad) grid_cuda = get_grid('cuda', grid_cpu.detach()).requires_grad_() out_cuda = F.grid_sample(input_cuda, grid_cuda, mode=mode, padding_mode=padding_mode, align_corners=align_corners) self.assertEqual(out_cpu, out_cuda) out_cuda.backward(gradients.cuda()) if input_requires_grad: self.assertEqual(input_cpu.grad, input_cuda.grad) self.assertEqual(grid_cpu.grad, grid_cuda.grad, atol=5e-5, rtol=0) # check that zero-dimensional input strides don't error out base_input = torch.randn(N, C, 1, IW) input_cpu = base_input.expand_as(input_cuda).requires_grad_(input_requires_grad) out_cpu = F.grid_sample(input_cpu, grid_cpu, mode=mode, padding_mode=padding_mode, align_corners=align_corners) input_cuda = base_input.cuda().expand_as(input_cuda).requires_grad_(input_requires_grad) out_cuda = F.grid_sample(input_cuda, grid_cuda, mode=mode, padding_mode=padding_mode, align_corners=align_corners) self.assertEqual(out_cpu, out_cuda) # test same size output test_shape(N, C, H, W, H, W, mode, padding_mode, align_corners) # test larger output N = random.randint(2, 8) C = random.randint(2, 8) IH = random.randint(2, 8) IW = random.randint(2, 8) H = random.randint(IH + 1, 12) W = random.randint(IW + 1, 12) test_shape(N, C, IH, IW, H, W, mode, padding_mode, align_corners) # test smaller output N = random.randint(2, 8) C = random.randint(2, 8) IH = random.randint(2, 8) IW = random.randint(2, 8) H = random.randint(2, IH) W = random.randint(2, IW) test_shape(N, C, IH, IW, H, W, mode, padding_mode, align_corners) # test 1x1 inpput N = random.randint(2, 8) C = random.randint(2, 8) IH = 1 IW = 1 H = random.randint(2, 5) W = random.randint(2, 5) test_shape(N, C, IH, IW, H, W, mode, padding_mode, align_corners) # testing empty grid N = random.randint(2, 8) C = random.randint(2, 8) IH = random.randint(2, 8) IW = random.randint(2, 8) W = random.randint(3, IW + 2) test_shape(N, C, IH, IW, 0, W, mode, padding_mode, align_corners) # testing empty channel N = random.randint(2, 8) IH = random.randint(2, 8) IW = random.randint(2, 8) H = random.randint(3, IH + 2) W = random.randint(3, IW + 2) test_shape(N, 0, IH, IW, H, W, mode, padding_mode, align_corners) # testing empty batch C = random.randint(2, 8) IH = random.randint(2, 8) IW = random.randint(2, 8) H = random.randint(3, IH + 2) W = random.randint(3, IW + 2) test_shape(0, C, IH, IW, H, W, mode, padding_mode, align_corners) for mode in ('bilinear', 'nearest', 'bicubic'): for padding_mode in ('zeros', 'border', 'reflection'): for align_corners in (True, False): # test known input on CPU input = torch.arange(1., 11).view(1, 1, 2, 5) grid = torch.tensor( [[[-0.9, -4.1], [0, 0.2000], [1, -1], [-0.333, 1e-6], [0.5, 1.0]], [[-1.0, -0.5], [0, 0.3333], [1, -1], [-0.200, 1e-6], [1.5, 0.5]]]).view(1, 2, 5, 2) if mode == 'bilinear': if padding_mode == 'zeros': if align_corners: groundtruth = torch.tensor( [[0.0000, 6.0000000000, 5.0000, 4.8340, 9.0000], [2.2500, 6.3332500450, 5.0000, 5.1000, 0.0000]]).view(1, 1, 2, 5) else: groundtruth = torch.tensor( [[0.0000, 6.5000000000, 1.2500, 4.6675000191, 4.6250], [0.5000, 7.1665000916, 1.2500, 5.0000000000, 0.0000]]).view(1, 1, 2, 5) elif padding_mode == 'border': if align_corners: groundtruth = torch.tensor( [[1.2000, 6.0000000000, 5.0000, 4.8340, 9.0000], [2.2500, 6.3332500450, 5.0000, 5.1000, 8.7500]]).view(1, 1, 2, 5) else: groundtruth = torch.tensor( [[1.0000, 6.5000000000, 5.0000, 4.6675000191, 9.2500], [1.0000, 7.1665000916, 5.0000, 5.0000000000, 10.0000]]).view(1, 1, 2, 5) elif padding_mode == 'reflection': if align_corners: groundtruth = torch.tensor( [[3.4500, 6.0000000000, 5.0000, 4.8340, 9.0000], [2.2500, 6.3332500450, 5.0000, 5.1000, 7.7500]]).view(1, 1, 2, 5) else: groundtruth = torch.tensor( [[3.0000004768, 6.5000000000, 5.0000, 4.6675000191, 9.2500], [1.0000000000, 7.1665000916, 5.0000, 5.0000000000, 9.2500]]).view(1, 1, 2, 5) else: raise AssertionError("missing groundtruth test for padding mode '{}'".format(padding_mode)) elif mode == 'nearest': if padding_mode == 'zeros': if align_corners: groundtruth = torch.tensor( [[0., 8., 5., 7., 9.], [1., 8., 5., 8., 0.]]).view(1, 1, 2, 5) else: groundtruth = torch.tensor( [[0., 8., 5., 7., 0.], [1., 8., 5., 8., 0.]]).view(1, 1, 2, 5) elif padding_mode == 'border': if align_corners: groundtruth = torch.tensor( [[1., 8., 5., 7., 9.], [1., 8., 5., 8., 10.]]).view(1, 1, 2, 5) else: groundtruth = torch.tensor( [[1., 8., 5., 7., 9.], [1., 8., 5., 8., 10.]]).view(1, 1, 2, 5) elif padding_mode == 'reflection': if align_corners: groundtruth = torch.tensor( [[1., 8., 5., 7., 9.], [1., 8., 5., 8., 9.]]).view(1, 1, 2, 5) else: groundtruth = torch.tensor( [[1., 8., 5., 7., 9.], [1., 8., 5., 8., 9.]]).view(1, 1, 2, 5) else: raise AssertionError("missing groundtruth test for padding mode '{}'".format(padding_mode)) elif mode == 'bicubic': if padding_mode == 'zeros': if align_corners: groundtruth = torch.tensor( [[-0.10424726, 7.1400003, 5.0000, 5.7842274, 9.0000], [2.4492188, 7.4814040, 5.0000, 6.0277520, 0.0000]]).view(1, 1, 2, 5) else: groundtruth = torch.tensor( [[0.00000, 7.6287503, 1.0625, 5.5977230, 5.3270264], [0.40625, 8.0288770, 1.0625, 5.9375067, -0.3515625]]).view(1, 1, 2, 5) elif padding_mode == 'border': if align_corners: groundtruth = torch.tensor( [[1.1520010, 6.0599990, 5.0000, 4.870930, 9.0000000], [2.1328125, 6.4258375, 5.0000, 5.076003, 8.8671875]]).view(1, 1, 2, 5) else: groundtruth = torch.tensor( [[0.894531, 6.6050020, 4.625, 4.7138715, 9.800781], [0.906250, 7.2822485, 4.625, 5.0000052, 10.00000]]).view(1, 1, 2, 5) elif padding_mode == 'reflection': if align_corners: groundtruth = torch.tensor( [[3.1822524, 6.239998, 5.0000, 4.8709273, 9.00000], [1.7812500, 6.703594, 5.0000, 5.0760007, 8.21875]]).view(1, 1, 2, 5) else: groundtruth = torch.tensor( [[2.7993753, 6.6050020, 4.25, 4.7138715, 10.269531], [0.8125000, 7.2822485, 4.25, 5.0000052, 9.332031]]).view(1, 1, 2, 5) else: raise AssertionError("missing groundtruth test for padding mode '{}'".format(padding_mode)) else: raise AssertionError("missing groundtruth test for interpolation mode '{}'".format(mode)) output = F.grid_sample(input, grid, mode=mode, padding_mode=padding_mode, align_corners=align_corners) self.assertEqual(output, groundtruth, atol=1e-5, rtol=0, msg="groundtruth comparison failed for mode={}, " "padding_mode={}".format(mode, padding_mode)) # See NOTE [ grid_sample CPU fallback ] output = torch._grid_sampler_2d_cpu_fallback( input.float(), grid.float(), F.GRID_SAMPLE_INTERPOLATION_MODES[mode], F.GRID_SAMPLE_PADDING_MODES[padding_mode], align_corners) self.assertEqual(output, groundtruth.float(), atol=1e-5, rtol=0) # explicit check for gradient edge cases input = torch.arange(0., 5).expand((1, 1, 5, 5)) grid = torch.tensor( [[[1.0, 1.0], [1.0, -1.0], [0.8, 0.8], [0.8, -0.8]], [[-1.0, -1.0], [-1.0, 1.0], [-0.8, -0.8], [-0.8, 0.8]]]).view(1, 2, 4, 2).requires_grad_() if mode == 'bilinear': if padding_mode == 'zeros': if align_corners: groundtruth = torch.tensor( [[[[-8., -8.], [-8., 0.], [2., 0.], [2., 0.]], [[2., 0.], [2., 0.], [2., 0.], [2., 0.]]]]).view(1, 2, 4, 2) else: groundtruth = torch.tensor( [[[[-5., -5.], [-5., 5.], [-10., -10.], [-10., 10.]], [[0., 0.], [0., 0.], [0., 0.], [0., 0.]]]]).view(1, 2, 4, 2) elif padding_mode == 'border': if align_corners: groundtruth = torch.tensor( [[[[-0., -0.], [-0., 0.], [2., 0.], [2., 0.]], [[0., 0.], [0., 0.], [2., 0.], [2., 0.]]]]).view(1, 2, 4, 2) else: groundtruth = torch.tensor( [[[[-0., -0.], [-0., 0.], [-0., -0.], [-0., 0.]], [[0., 0.], [0., 0.], [0., 0.], [0., 0.]]]]).view(1, 2, 4, 2) elif padding_mode == 'reflection': if align_corners: groundtruth = torch.tensor( [[[[-0., -0.], [-0., 0.], [2., 0.], [2., 0.]], [[0., 0.], [0., 0.], [2., 0.], [2., 0.]]]]).view(1, 2, 4, 2) else: groundtruth = torch.tensor( [[[[-0., -0.], [-0., 0.], [-0., -0.], [-0., 0.]], [[0., 0.], [0., 0.], [0., 0.], [0., 0.]]]]).view(1, 2, 4, 2) else: raise AssertionError("missing gradient groundtruth test for padding mode '{}'".format(padding_mode)) elif mode == 'nearest': groundtruth = torch.tensor( [[[[-0., -0.], [-0., 0.], [-0., -0.], [-0., 0.]], [[0., 0.], [0., 0.], [0., 0.], [0., 0.]]]]).view(1, 2, 4, 2) elif mode == 'bicubic': if padding_mode == 'zeros': if align_corners: groundtruth = torch.tensor( [[[[-4.5, -6.], [-4.5, 6.], [2.725679, 0.740878], [2.725679, -0.740878]], [[1.5, 0.], [1.5, 0.], [1.927921, -0.05688], [1.927921, 0.05688]]]]).view(1, 2, 4, 2) else: groundtruth = torch.tensor( [[[[-5.859375, -5.888672], [-5.859375, 5.888672], [-5.6250, -7.5000], [-5.6250, 7.5000]], [[-0.234375, -0.263672], [-0.234375, 0.263672], [1.8750, 0.], [1.8750, 0.]]]] ).view(1, 2, 4, 2) elif padding_mode == 'border': if align_corners: groundtruth = torch.tensor( [[[[1.5, 0.], [1.5, 0.], [1.74, 0.], [1.74, 0.]], [[1.5, 0.], [1.5, 0.], [1.74, 0.], [1.74, 0.]]]]).view(1, 2, 4, 2) else: groundtruth = torch.tensor( [[[[-0.46875, 0.], [-0.46875, 0.], [1.8750, 0.], [1.8750, 0.]], [[-0.46875, 0.], [-0.46875, 0.], [1.8750, 0.], [1.8750, 0.]]]]).view(1, 2, 4, 2) elif padding_mode == 'reflection': if align_corners: groundtruth = torch.tensor( [[[[0., 0.], [0., 0.], [1.92, 0.], [1.92, 0.]], [[0., 0.], [0., 0.], [1.92, 0.], [1.92, 0.]]]]).view(1, 2, 4, 2) else: groundtruth = torch.tensor( [[[[0., 0.], [0., 0.], [1.875, 0.], [1.875, 0.]], [[0., 0.], [0., 0.], [1.875, 0.], [1.875, 0.]]]]).view(1, 2, 4, 2) else: raise AssertionError("missing gradient groundtruth test for padding mode '{}'".format(padding_mode)) else: raise AssertionError("missing gradient groundtruth test for interpolation mode '{}'".format(mode)) for input_requires_grad in [False, True]: input = input.requires_grad_(input_requires_grad) F.grid_sample(input, grid, mode=mode, padding_mode=padding_mode, align_corners=align_corners).sum().backward() self.assertEqual(grid.grad, groundtruth, atol=1e-5, rtol=0, msg="gradient groundtruth comparison failed for mode={}, " "padding_mode={}, input_requires_grad={}".format(mode, padding_mode, input_requires_grad)) grid.grad.zero_() # See NOTE [ grid_sample CPU fallback ] torch._grid_sampler_2d_cpu_fallback( input.float(), grid.float(), F.GRID_SAMPLE_INTERPOLATION_MODES[mode], F.GRID_SAMPLE_PADDING_MODES[padding_mode], align_corners).sum().backward() self.assertEqual(grid.grad, groundtruth, atol=1e-5, rtol=0) # do gradcheck N = random.randint(2, 8) C = random.randint(2, 6) H = random.randint(2, 8) W = random.randint(2, 8) input = torch.randn(N, C, H, W, requires_grad=True) grid = torch.randn(N, H, W, 2, requires_grad=True) self.assertTrue(gradcheck( lambda inp, grid: F.grid_sample(inp, grid, mode=mode, padding_mode=padding_mode, align_corners=align_corners), (input, grid))) input = input.requires_grad_(False) self.assertTrue(gradcheck( lambda grid: F.grid_sample(input, grid, mode=mode, padding_mode=padding_mode, align_corners=align_corners), (grid,))) for input_requires_grad in [False, True]: test(N, C, H, W, mode, padding_mode, align_corners, input_requires_grad) if TEST_CUDNN: with cudnn.flags(enabled=False): test(N, C, H, W, mode, padding_mode, align_corners, input_requires_grad) def test_grid_sample_3d(self): def test(N, C, D, H, W, mode, padding_mode, align_corners): def test_shape(N, C, ID, IH, IW, D, H, W, mode, padding_mode, align_corners): input_cpu = torch.randn(C, N, ID, IH, IW).transpose(0, 1).requires_grad_() grid_cpu = torch.randn(D, N, H, W, 3).transpose(0, 1).requires_grad_() out_cpu = F.grid_sample(input_cpu, grid_cpu, mode=mode, padding_mode=padding_mode, align_corners=align_corners) self.assertTrue(out_cpu.size() == torch.Size([N, C, D, H, W])) gradients = torch.randn_like(out_cpu) out_cpu.backward(gradients) if TEST_CUDA: input_cuda = input_cpu.detach().transpose(0, 1).cuda().transpose(0, 1).requires_grad_() grid_cuda = grid_cpu.detach().transpose(0, 1).cuda().transpose(0, 1).requires_grad_() out_cuda = F.grid_sample(input_cuda, grid_cuda, mode=mode, padding_mode=padding_mode, align_corners=align_corners) self.assertEqual(out_cpu, out_cuda) out_cuda.backward(gradients.cuda()) self.assertEqual(input_cpu.grad, input_cuda.grad) self.assertEqual(grid_cpu.grad, grid_cuda.grad, atol=5e-5, rtol=0) # check that zero-dimensional input strides don't error out base_input = torch.randn(N, C, 1, IH, IW) input_cpu = base_input.expand_as(input_cuda).requires_grad_() grid_cpu = torch.randn(N, D, H, W, 3, requires_grad=True) out_cpu = F.grid_sample(input_cpu, grid_cpu, mode=mode, padding_mode=padding_mode, align_corners=align_corners) input_cuda = base_input.cuda().expand_as(input_cuda).requires_grad_() grid_cuda = grid_cpu.detach().cuda().requires_grad_() out_cuda = F.grid_sample(input_cuda, grid_cuda, mode=mode, padding_mode=padding_mode, align_corners=align_corners) self.assertEqual(out_cpu, out_cuda) # test same size output test_shape(N, C, D, H, W, D, H, W, mode, padding_mode, align_corners) # test larger output N = random.randint(2, 7) C = random.randint(2, 5) ID = random.randint(2, 7) IH = random.randint(2, 7) IW = random.randint(2, 7) D = random.randint(ID + 1, 10) H = random.randint(IH + 1, 10) W = random.randint(IW + 1, 10) test_shape(N, C, ID, IH, IW, D, H, W, mode, padding_mode, align_corners) # test smaller output N = random.randint(2, 7) C = random.randint(2, 5) ID = random.randint(2, 7) IH = random.randint(2, 7) IW = random.randint(2, 7) D = random.randint(2, ID) H = random.randint(2, IH) W = random.randint(2, IW) test_shape(N, C, ID, IH, IW, D, H, W, mode, padding_mode, align_corners) # test 1x1 inpput N = random.randint(2, 7) C = random.randint(2, 7) ID = 1 IH = 1 IW = 1 H = random.randint(2, 5) W = random.randint(2, 5) test_shape(N, C, ID, IH, IW, D, H, W, mode, padding_mode, align_corners) # testing empty grid N = random.randint(2, 7) C = random.randint(2, 5) ID = random.randint(2, 7) IH = random.randint(2, 7) IW = random.randint(2, 7) D = random.randint(3, ID + 2) W = random.randint(3, IW + 2) test_shape(N, C, ID, IH, IW, D, 0, W, mode, padding_mode, align_corners) # testing empty channel N = random.randint(2, 7) ID = random.randint(2, 5) IH = random.randint(2, 7) IW = random.randint(2, 7) D = random.randint(3, ID + 2) H = random.randint(3, IH + 2) W = random.randint(3, IW + 2) test_shape(N, 0, ID, IH, IW, D, H, W, mode, padding_mode, align_corners) # testing empty batch C = random.randint(2, 5) ID = random.randint(2, 7) IH = random.randint(2, 7) IW = random.randint(2, 7) D = random.randint(3, ID + 2) H = random.randint(3, IH + 2) W = random.randint(3, IW + 2) test_shape(0, C, ID, IH, IW, D, H, W, mode, padding_mode, align_corners) for mode in ('bilinear', 'nearest'): for padding_mode in ('zeros', 'border', 'reflection'): for align_corners in (True, False): # do gradcheck N = random.randint(2, 5) C = random.randint(2, 4) D = random.randint(2, 5) H = random.randint(2, 5) W = random.randint(2, 5) input = torch.randn(N, C, D, H, W, requires_grad=True) grid = torch.randn(N, D, H, W, 3, requires_grad=True) self.assertTrue(gradcheck( lambda inp, grid: F.grid_sample(inp, grid, mode=mode, padding_mode=padding_mode, align_corners=align_corners), (input, grid))) test(N, C, D, H, W, mode, padding_mode, align_corners) def test_affine_grid(self): # test known input on CPU input = torch.arange(1., 7).view(1, 2, 3) output = F.affine_grid(input, torch.Size([1, 1, 2, 2]), align_corners=True) groundtruth = torch.tensor( [[[0., -3.], [2., 5.]], [[4., 7.], [6., 15.]]]).view(1, 2, 2, 2) self.assertEqual(output, groundtruth) output = F.affine_grid(input, torch.Size([1, 1, 2, 2]), align_corners=False) groundtruth = torch.tensor( [[[1.5, 1.5], [2.5, 5.5]], [[3.5, 6.5], [4.5, 10.5]]]).view(1, 2, 2, 2) self.assertEqual(output, groundtruth) for align_corners in (True, False): # do gradcheck N = random.randint(1, 8) C = random.randint(1, 8) H = random.randint(1, 8) W = random.randint(1, 8) sz = torch.Size([N, C, H, W]) inp = torch.randn(N, 2, 3, requires_grad=True) with warnings.catch_warnings(record=True): warnings.simplefilter("always") # python2 requires this so other tests can trigger self.assertTrue(gradcheck( lambda inp: F.affine_grid(inp, sz, align_corners=align_corners), (inp,))) # test CPU against CUDA if TEST_CUDA: N = random.randint(1, 8) C = random.randint(1, 8) H = random.randint(1, 8) W = random.randint(1, 8) sz = torch.Size([N, C, H, W]) for align_corners in (True, False): input_cpu = torch.randn(N, 2, 3, requires_grad=True) with warnings.catch_warnings(record=True): warnings.simplefilter("always") # python2 requires this so other tests can trigger out_cpu = F.affine_grid(input_cpu, sz, align_corners=align_corners) gradients = torch.randn(out_cpu.size()) out_cpu.backward(gradients) input_gpu = input_cpu.detach().cuda().requires_grad_() with warnings.catch_warnings(record=True): warnings.simplefilter("always") # python2 requires this so other tests can trigger out_cuda = F.affine_grid(input_gpu, sz, align_corners=align_corners) out_cuda.backward(gradients.cuda()) self.assertEqual(out_cpu, out_cuda) self.assertEqual(input_cpu.grad, input_gpu.grad) def test_affine_grid_3d(self): # test known input on CPU input = torch.arange(1., 13).view(1, 3, 4) output = F.affine_grid(input, torch.Size([1, 1, 2, 2, 2]), align_corners=True) groundtruth = torch.tensor( [[[[[-2., -10., -18.], [0., 0., 0.]], [[2., 2., 2.], [4., 12., 20.]]], [[[4., 4., 4.], [6., 14., 22.]], [[8., 16., 24.], [10., 26., 42.]]]]]).view(1, 2, 2, 2, 3) self.assertEqual(output, groundtruth) output = F.affine_grid(input, torch.Size([1, 1, 2, 2, 2]), align_corners=False) groundtruth = torch.tensor( [[[[[1., -1., -3.], [2., 4., 6.]], [[3., 5., 7.], [4., 10., 16.]]], [[[4., 6., 8.], [5., 11., 17.]], [[6., 12., 18.], [7., 17., 27.]]]]]).view(1, 2, 2, 2, 3) self.assertEqual(output, groundtruth) for align_corners in (True, False): # do gradcheck N = random.randint(1, 8) C = random.randint(1, 8) D = random.randint(1, 8) H = random.randint(1, 8) W = random.randint(1, 8) sz = torch.Size([N, C, D, H, W]) inp = torch.randn(N, 3, 4, requires_grad=True) with warnings.catch_warnings(record=True): warnings.simplefilter("always") # python2 requires this so other tests can trigger self.assertTrue(gradcheck( lambda inp: F.affine_grid(inp, sz, align_corners=align_corners), (inp,))) # test CPU against CUDA if TEST_CUDA: N = random.randint(1, 8) C = random.randint(1, 8) D = random.randint(1, 8) H = random.randint(1, 8) W = random.randint(1, 8) sz = torch.Size([N, C, D, H, W]) for align_corners in (True, False): input_cpu = torch.randn(N, 3, 4, requires_grad=True) with warnings.catch_warnings(record=True): warnings.simplefilter("always") # python2 requires this so other tests can trigger out_cpu = F.affine_grid(input_cpu, sz, align_corners=align_corners) gradients = torch.randn(out_cpu.size()) out_cpu.backward(gradients) input_gpu = input_cpu.detach().cuda().requires_grad_() with warnings.catch_warnings(record=True): warnings.simplefilter("always") # python2 requires this so other tests can trigger out_cuda = F.affine_grid(input_gpu, sz, align_corners=align_corners) out_cuda.backward(gradients.cuda()) self.assertEqual(out_cpu, out_cuda) self.assertEqual(input_cpu.grad, input_gpu.grad) def test_channel_shuffle(self): # 3D tensor x = torch.tensor( [[[1, 2], [5, 6], [9, 10], [13, 14], ]] ) y_ref = torch.tensor( [[[1, 2], [9, 10], [5, 6], [13, 14], ]] ) # ChannelsFirst with warnings.catch_warnings(record=True) as w: y = F.channel_shuffle(x, 2) self.assertEqual(len(w), 0) self.assertEqual(y, y_ref) # ChannelsLast not supported for 3dim # 4D tensor x = torch.tensor( [[[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]], [[13, 14], [15, 16]], ]] ) y_ref = torch.tensor( [[[[1, 2], [3, 4]], [[9, 10], [11, 12]], [[5, 6], [7, 8]], [[13, 14], [15, 16]], ]] ) # ChannelsFirst NCHW with warnings.catch_warnings(record=True) as w: y = F.channel_shuffle(x, 2) self.assertEqual(len(w), 0) self.assertEqual(y, y_ref) # ChannelsLast NHWC with warnings.catch_warnings(record=True) as w: y = F.channel_shuffle(x.contiguous(memory_format=torch.channels_last), 2) self.assertEqual(len(w), 0) y = y.contiguous(memory_format=torch.contiguous_format) self.assertEqual(y, y_ref) # 5D tensor x = torch.tensor( [[[[[1, 2], [3, 4]]], [[[5, 6], [7, 8]]], [[[9, 10], [11, 12]]], [[[13, 14], [15, 16]]], ]] ) y_ref = torch.tensor( [[[[[1, 2], [3, 4]]], [[[9, 10], [11, 12]]], [[[5, 6], [7, 8]]], [[[13, 14], [15, 16]]], ]] ) # ChannelsFirst NCHW with warnings.catch_warnings(record=True) as w: y = F.channel_shuffle(x, 2) self.assertEqual(len(w), 0) self.assertEqual(y, y_ref) # ChannelsLast NHWC with warnings.catch_warnings(record=True) as w: y = F.channel_shuffle(x.contiguous(memory_format=torch.channels_last_3d), 2) self.assertEqual(len(w), 0) y = y.contiguous(memory_format=torch.contiguous_format) self.assertEqual(y, y_ref) def test_upsamplingLinear1d(self): for align_corners in [True, False]: for recompute_scale_factor in [True, False]: kwargs = dict( mode='linear', align_corners=align_corners, recompute_scale_factor=recompute_scale_factor ) # test float scale factor up & downsampling for scale_factor in [0.5, 1.5, 2]: m = nn.Upsample(scale_factor=scale_factor, **kwargs) in_t = torch.ones(1, 1, 2) out_size = int(math.floor(in_t.shape[-1] * scale_factor)) with warnings.catch_warnings(record=True) as w: out_t = m(in_t) self.assertEqual(torch.ones(1, 1, out_size), out_t.data) input = torch.randn(1, 1, 2, requires_grad=True) if not recompute_scale_factor: gradcheck(lambda x: F.interpolate(x, out_size, **kwargs), (input,)) else: gradcheck(lambda x: F.interpolate(x, scale_factor=scale_factor, **kwargs), (input,)) def test_upsamplingLinear1d_spatial_invariance(self): m = nn.Upsample(scale_factor=3, mode='linear', align_corners=False) in_t_9 = torch.zeros(1, 1, 9) in_t_9[:, :, :4].normal_() with warnings.catch_warnings(record=True) as w: out_t_9 = m(in_t_9) out_t_5 = m(in_t_9[:, :, :5]) self.assertEqual(out_t_9[:, :, :15], out_t_5) def test_upsampling_not_recompute_scale_factor(self): # test output against known input: result must match opencv in_t = torch.arange(8.).view(1, 2, 2, 2) expected_out_t = torch.tensor( [[[[-0.32725, -0.08843, 0.37933, 0.79744], [0.15039, 0.38921, 0.85697, 1.27508], [1.08591, 1.32473, 1.79249, 2.21060], [1.92213, 2.16095, 2.62871, 3.04682]], [[3.67275, 3.91157, 4.37933, 4.79744], [4.15039, 4.38921, 4.85697, 5.27508], [5.08591, 5.32473, 5.79249, 6.21060], [5.92213, 6.16095, 6.62871, 7.04682]]]]) if IS_PPC: # Both OpenCV and PyTorch give a slightly different result on PPC expected_out_t = torch.tensor( [[[[-0.32725, -0.08843, 0.37933, 0.79744], [0.15039, 0.38921, 0.85697, 1.27508], [1.08591, 1.32473, 1.79249, 2.21060], [1.92212, 2.16094, 2.62870, 3.04681]], [[3.67275, 3.91157, 4.37933, 4.79743], [4.15039, 4.38921, 4.85697, 5.27508], [5.08591, 5.32473, 5.79249, 6.21059], [5.92212, 6.16094, 6.62870, 7.04680]]]]) out_t = F.interpolate(in_t, scale_factor=2.3, mode='bicubic', align_corners=False, recompute_scale_factor=False) torch.set_printoptions(precision=5) self.assertEqual(out_t, expected_out_t, atol=1e-4, rtol=0) device_list = ['cpu'] if TEST_CUDA: device_list.append('cuda') for align_corners in [True, False]: kwargs = dict(mode='bicubic', align_corners=align_corners) # test float scale factor up & downsampling for device in device_list: for scale_factor in [0.6, 1.6, 2.3]: in_t = torch.ones(2, 2, 2, 2).to(device) out_t = F.interpolate(in_t, scale_factor=scale_factor, **kwargs) out_size = int(math.floor(in_t.shape[-1] * scale_factor)) self.assertEqual(torch.ones(2, 2, out_size, out_size), out_t.data, atol=1e-5, rtol=0) input = torch.randn(2, 2, 2, 2, requires_grad=True) gradcheck(lambda x: F.interpolate(x, out_size, **kwargs), [input]) def test_upsamplingBilinear2d_spatial_invariance(self): m = nn.Upsample(scale_factor=3, mode='bilinear', align_corners=False) in_t_9 = torch.zeros(1, 1, 9, 9) in_t_9[:, :, :4, :4].normal_() with warnings.catch_warnings(record=True) as w: out_t_9 = m(in_t_9) out_t_5 = m(in_t_9[:, :, :5, :5]) self.assertEqual(out_t_9[:, :, :15, :15], out_t_5) def test_upsamplingTrilinear3d(self): for align_corners in [True, False]: kwargs = dict(mode='trilinear', align_corners=align_corners) for memory_format in [torch.contiguous_format, torch.channels_last_3d]: # test float scale factor up & downsampling for scale_factor in [0.5, 1.5, 2]: m = nn.Upsample(scale_factor=scale_factor, **kwargs) in_t = torch.ones(1, 2, 2, 2, 2).contiguous(memory_format=memory_format) out_size = int(math.floor(in_t.shape[-1] * scale_factor)) with warnings.catch_warnings(record=True) as w: out_t = m(in_t) self.assertEqual(torch.ones(1, 2, out_size, out_size, out_size), out_t.data) # Assert that memory format is carried through to the output self.assertTrue(out_t.is_contiguous(memory_format=memory_format)) input = torch.randn(1, 2, 2, 2, 2, requires_grad=True) self.assertEqual( F.interpolate(input, (out_size, out_size, out_size), **kwargs), F.interpolate(input, scale_factor=scale_factor, **kwargs)) gradcheck(lambda x: F.interpolate(x, out_size, **kwargs), [input]) gradgradcheck(lambda x: F.interpolate(x, out_size, **kwargs), [input]) def test_upsamplingTrilinear3d_spatial_invariance(self): m = nn.Upsample(scale_factor=3, mode='trilinear', align_corners=False) in_t_9 = torch.zeros(1, 1, 9, 9, 9) in_t_9[:, :, :4, :4, :4].normal_() with warnings.catch_warnings(record=True) as w: out_t_9 = m(in_t_9) out_t_5 = m(in_t_9[:, :, :5, :5, :5]) self.assertEqual(out_t_9[:, :, :15, :15, :15], out_t_5) def test_upsampling_small_scale(self): m = torch.nn.Upsample(scale_factor=0.5, mode="bilinear") in_t = torch.arange(1, 5, dtype=torch.float64).reshape(1, 1, 2, 2) out_t = m(in_t) expected_out_t = torch.tensor([[[[2.5]]]]) self.assertEqual(expected_out_t, out_t) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") def test_interpolate_illegal_memory_access(self): in_s = 45 out_s = 14 input = torch.ones((1, 1, in_s), device='cuda', requires_grad=True) # note we allocated grad_output to be larger so out of bound access # woudl be visible in grad_input grad = torch.ones((1, 1, out_s * 2), device='cuda', requires_grad=True) grad = grad[:, :, :out_s] input_ref = input.detach().cpu().requires_grad_() grad_ref = grad.cpu() out = F.interpolate(input, size=(out_s,), mode='nearest') out.backward(grad) out_ref = F.interpolate(input_ref, size=(out_s,), mode='nearest') out_ref.backward(grad_ref) self.assertEqual(out_ref, out) self.assertEqual(input_ref.grad, input.grad) def test_interpolate(self): def _test_interpolate_helper(in_t, scale_factor, layer): out_size = int(math.floor(in_t.shape[-1] * scale_factor)) dim = len(in_t.shape) - 2 out_shape = [1, 1] + [out_size] * dim with warnings.catch_warnings(record=True) as w: out_t = layer(in_t) self.assertEqual(torch.ones(out_shape), out_t) self.assertEqual( F.interpolate(in_t, (out_size,) * dim, **kwargs), F.interpolate(in_t, scale_factor=scale_factor, **kwargs)) gradcheck(lambda x: F.interpolate(x, out_size, **kwargs), [in_t], nondet_tol=GRADCHECK_NONDET_TOL) gradgradcheck(lambda x: F.interpolate(x, out_size, **kwargs), [in_t], nondet_tol=GRADCHECK_NONDET_TOL) def _make_input(dim, device): size = [1, 1] size += [2] * dim return torch.ones(size, requires_grad=True, device=device) device_list = ['cpu'] if TEST_CUDA: device_list.append('cuda') for device in device_list: for scale_factor in [0.5, 1.5, 2]: for mode in ['nearest', 'area']: kwargs = dict(mode=mode) m = nn.Upsample(scale_factor=scale_factor, **kwargs).to(device) for input in [_make_input(1, device), _make_input(2, device), _make_input(3, device)]: _test_interpolate_helper(input, scale_factor, m) for align_corners in [True, False]: kwargs = dict(mode='linear', align_corners=align_corners) m = nn.Upsample(scale_factor=scale_factor, **kwargs).to(device) _test_interpolate_helper(_make_input(1, device), scale_factor, m) kwargs = dict(mode='bilinear', align_corners=align_corners) m = nn.Upsample(scale_factor=scale_factor, **kwargs).to(device) _test_interpolate_helper(_make_input(2, device), scale_factor, m) kwargs = dict(mode='bicubic', align_corners=align_corners) def m(t): return F.interpolate(t, scale_factor=scale_factor, **kwargs).to(device) _test_interpolate_helper(_make_input(2, device), scale_factor, m) kwargs = dict(mode='trilinear', align_corners=align_corners) m = nn.Upsample(scale_factor=scale_factor, **kwargs).to(device) _test_interpolate_helper(_make_input(3, device), scale_factor, m) def test_linear_broadcasting(self): m = nn.Linear(5, 8) inp = torch.randn(2, 3, 5) expected = m(inp.view(6, 5)).view(2, 3, 8) self.assertEqual(expected, m(inp)) def test_bilinear(self): module = nn.Bilinear(10, 10, 8) input1 = torch.randn(4, 10, requires_grad=True) input2 = torch.randn(4, 10, requires_grad=True) grad_output = torch.randn(4, 8) res = module(input1, input2) expected = (torch.einsum("bi,kij,bj->bk", input1, module.weight, input2) + module.bias) self.assertEqual(res, expected) grads = torch.autograd.grad(res, [module.weight, module.bias, input1, input2], grad_output) grads_expected = torch.autograd.grad(expected, [module.weight, module.bias, input1, input2], grad_output) for g, ge in zip(grads, grads_expected): self.assertEqual(g, ge) def test_bilinear_non_contiguous(self): module = nn.Bilinear(7, 7, 5) input1 = torch.randn(4, 7, 10, requires_grad=True) input2 = torch.randn(4, 7, 10, requires_grad=True) input1_tp = input1.transpose(1, 2) input2_tp = input2.transpose(1, 2) grad_output = torch.randn(4, 10, 5) def run(input1_tp, input2_tp): input1.grad = input2.grad = None output = module(input1_tp, input2_tp) output.backward(grad_output) return output.data, input1.grad.data, input2.grad.data out_nc, g1_nc, g2_nc = run(input1_tp, input2_tp) input1_tp = input1_tp.contiguous() input2_tp = input2_tp.contiguous() out, g1, g2 = run(input1_tp, input2_tp) self.assertEqual(out, out_nc) self.assertEqual(g1, g1_nc) self.assertEqual(g2, g2_nc) def test_bilinear_no_bias(self): module = nn.Bilinear(10, 10, 8) module_no_bias = nn.Bilinear(10, 10, 8, False) module.bias.data.zero_() module.weight.data.copy_(module_no_bias.weight) input1 = torch.randn(4, 10, requires_grad=True) input2 = torch.randn(4, 10, requires_grad=True) grad_output = torch.randn(4, 8) def run(net): input1.grad = input2.grad = None output = net(input1, input2) output.backward(grad_output) return output.data, input1.grad.data, input2.grad.data out, g1, g2 = run(module) out_nb, g1_nb, g2_nb = run(module_no_bias) self.assertEqual(out, out_nb) self.assertEqual(g1, g1_nb) self.assertEqual(g2, g2_nb) _assertGradAndGradgradChecks(self, lambda x1, x2: F.bilinear(x1, x2, module_no_bias.weight, module_no_bias.bias), (input1, input2)) def test_bilinear_broadcasting(self): m = nn.Bilinear(5, 6, 8) input1 = torch.randn(2, 3, 5) input2 = torch.randn(2, 3, 6) expected = m(input1.view(6, 5), input2.view(6, 6)).view(2, 3, 8) self.assertEqual(expected, m(input1, input2)) def test_conv_tbc(self): inp = torch.randn(9, 4, 5, requires_grad=True) weight = torch.randn(3, 5, 6, requires_grad=True) bias = torch.randn(6, requires_grad=True) gradcheck(lambda i, w, b, pad: F.conv_tbc(i, w, b, pad), (inp, weight, bias, 3)) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @unittest.skipIf(not TEST_CUDNN, "needs cudnn") @skipIfRocmVersionLessThan((4, 3)) @skipIfNotMiopenSuggestNHWC def test_grouped_conv_cudnn_nhwc_support(self): # in order to catch the hols in grouped convolution in nhwc support for earlier cudnn version input = torch.randn((16, 16, 8, 8), dtype=torch.float16, device="cuda").to(memory_format=torch.channels_last) weight = torch.randn((8, 4, 3, 3), dtype=torch.float16, device="cuda").to(memory_format=torch.channels_last) out = torch.convolution(input, weight, None, (1, 1), (1, 1), (1, 1), False, (0, 0), 4) input = torch.randn((16, 8, 8, 8), dtype=torch.float16, device="cuda").to(memory_format=torch.channels_last) out_transpose = torch.convolution(input, weight, None, (1, 1), (1, 1), (1, 1), True, (0, 0), 4) @unittest.expectedFailure @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") @unittest.skipIf(not TEST_CUDNN, "needs cudnn") def test_conv_cudnn_memory_layout_dominance(self): # desired behavior here is to have the memory_layout of conv.weight to # dominante the layout of output. # which is not the same as current behavior, we'll fix this in # following up PRs and remove the `expectedFailure` tag input = torch.randint(1, 10, (2, 8, 4, 4), dtype=torch.float32, device="cuda", requires_grad=True) conv = nn.Conv2d(8, 4, 3).cuda().float() out = conv(input) self.assertTrue(out.is_contiguous()) input = input.contiguous(memory_format=torch.channels_last) out = conv(input) self.assertTrue(out.is_contiguous()) conv.weight.data = conv.weight.contiguous(memory_format=torch.channels_last) out = conv(input) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) input = input.contiguous() out = conv(input) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") def test_cudnn_noncontiguous_weight(self): # Noncontiguous weights must be contiguous() before being # passed to cuDNN input = torch.tensor([1, 1, 1], dtype=torch.double, device="cuda").view(1, 1, 3) weights1 = torch.tensor([1], dtype=torch.double, device="cuda").expand(1, 1, 2) weights2 = torch.tensor([1], dtype=torch.double, device="cuda").expand(1, 1, 2).contiguous() self.assertEqual(F.conv1d(input, weights1, bias=None, stride=2, dilation=2), F.conv1d(input, weights2, bias=None, stride=2, dilation=2)) def run_grad_conv_test(self, func_forward, func_backward, dim=1, gradient='input'): for kern, inp_size in [(3, 6), (3, 7), (4, 9)]: for batch, stride, padding, chan_in, chan_out, dilation in \ product([1, 2], [1, 2], [0, 1, 2], [2], [3], [1]): for has_bias in [True, False]: input_shape = [batch, chan_in] weight_shape = [chan_out, chan_in] for _ in range(dim): input_shape.append(inp_size) weight_shape.append(kern) input = torch.randn(input_shape, requires_grad=True) weight = torch.randn(weight_shape, requires_grad=True) if has_bias: bias = torch.randn([chan_out], requires_grad=True) output = func_forward(input, weight, stride=stride, padding=padding, dilation=dilation, bias=bias) gradient_o = torch.randn(output.shape) gradient_w = torch.autograd.grad(output, input if (gradient == 'input') else weight, gradient_o) self.assertEqual(gradient_w[0], func_backward( input_shape if (gradient == 'input') else input, weight_shape if (gradient == 'weight') else weight, gradient_o, stride=stride, padding=padding, dilation=dilation)) def test_grad_conv1d_input(self): self.run_grad_conv_test(F.conv1d, F.grad.conv1d_input, 1, 'input') def test_grad_conv1d_weight(self): self.run_grad_conv_test(F.conv1d, F.grad.conv1d_weight, 1, 'weight') def test_grad_conv2d_input(self): self.run_grad_conv_test(F.conv2d, F.grad.conv2d_input, 2, 'input') def test_grad_conv2d_weight(self): self.run_grad_conv_test(F.conv2d, F.grad.conv2d_weight, 2, 'weight') def test_grad_conv3d_input(self): self.run_grad_conv_test(F.conv3d, F.grad.conv3d_input, 3, 'input') def test_grad_conv3d_weight(self): self.run_grad_conv_test(F.conv3d, F.grad.conv3d_weight, 3, 'weight') @unittest.skipIf(not torch._nnpack_available(), "NNPACK unavailable") def test_nnpack_conv(self): for kern, inp_size in [(3, 6), (3, 7), (4, 9)]: for batch, stride, padding, chan_in, chan_out in \ product([1, 2, 3, 4], [1, 2], [0, 1, 2], [2], [3]): for has_bias in [True, False]: input_shape = [batch, chan_in] weight_shape = [chan_out, chan_in] for _ in range(2): input_shape.append(inp_size) weight_shape.append(kern) input = torch.randn(input_shape, requires_grad=True, dtype=torch.float) weight = torch.randn(weight_shape, requires_grad=True, dtype=torch.float) if has_bias: bias = torch.randn([chan_out], requires_grad=True, dtype=torch.float) output = torch._nnpack_spatial_convolution(input, weight, stride=stride, padding=padding, bias=bias) output_expected = torch.nn.functional.conv2d(input, weight, stride=stride, padding=padding, bias=bias) self.assertEqual(output, output_expected, atol=3e-4, rtol=0) gradient_o = torch.randn(output.shape, dtype=torch.float) grads = torch.autograd.grad(output, [input, weight], gradient_o) grads_expected = torch.autograd.grad(output_expected, [input, weight], gradient_o) for gr, gr_expected in zip(grads, grads_expected): self.assertEqual(gr, gr_expected, atol=3e-4, rtol=0) def test_fold_invalid_arg(self): # input.size(1) not divisible by \prod(kernel_size) fold = nn.Fold(output_size=(4, 5), kernel_size=(2, 3)) with self.assertRaisesRegex(RuntimeError, r"be divisible by the product of kernel_size"): fold(torch.randn(1, 5, 9)) with self.assertRaisesRegex(RuntimeError, r"be divisible by the product of kernel_size"): fold(torch.randn(1, 19, 9)) # input.size(2) not matching the total number of sliding blocks with self.assertRaisesRegex(RuntimeError, r"match the calculated number of sliding blocks"): fold = nn.Fold(output_size=(4, 5), kernel_size=(2, 3)) fold(torch.randn(1, 6, 10)) with self.assertRaisesRegex(RuntimeError, r"match the calculated number of sliding blocks"): fold = nn.Fold(output_size=(4, 5), kernel_size=(2, 3), stride=(2, 2)) fold(torch.randn(1, 6, 5)) with self.assertRaisesRegex(RuntimeError, r"match the calculated number of sliding blocks"): fold = nn.Fold(output_size=(4, 5), kernel_size=(2, 3), stride=(2, 2), dilation=(1, 2), padding=(2, 0)) fold(torch.randn(1, 6, 5)) # should be 4 * 1 = 4 sliding blocks fold = nn.Fold(output_size=(4, 5), kernel_size=(2, 2), stride=1, dilation=8, padding=0) with self.assertRaisesRegex(RuntimeError, r"calculated shape of the array of sliding blocks as"): fold(torch.randn(1, 12, 12)) def test_unfold_invalid_arg(self): # input wrong dimension unfold = nn.Unfold(kernel_size=(2, 3)) with self.assertRaisesRegex(NotImplementedError, r"Only 4D input Tensors are supported"): unfold(torch.randn(1, 5, 2)) # calculated output shape is too small with self.assertRaisesRegex(RuntimeError, r"too small \(non-positive\)"): unfold = nn.Unfold(kernel_size=(2, 3)) unfold(torch.randn(1, 2, 2, 2)) with self.assertRaisesRegex(RuntimeError, r"too small \(non-positive\)"): unfold = nn.Unfold(kernel_size=(5, 3), padding=(1, 1)) unfold(torch.randn(1, 2, 2, 3)) with self.assertRaisesRegex(RuntimeError, r"too small \(non-positive\)"): unfold = nn.Unfold(kernel_size=(1, 3), padding=(1, 1), dilation=(1, 2)) unfold(torch.randn(1, 2, 2, 2)) def test_conv_padding_mode(self): with self.assertRaisesRegex(ValueError, "padding_mode must be one of"): nn.Conv2d(3, 3, 3, padding_mode="xyz") with self.assertRaisesRegex(ValueError, "padding_mode must be one of"): nn.Conv2d(3, 3, 3, padding_mode=3) with self.assertRaisesRegex(ValueError, "Only \"zeros\" "): nn.ConvTranspose2d(3, 3, 3, padding_mode="reflect") def test_softmin(self): x = torch.randn(2, 16) self.assertEqual(F.softmin(x, 1), F.softmax(-x, 1)) self.assertEqual(F.softmin(x, 0), F.softmax(-x, 0)) def test_log_softmax_cpu(self, dtype=torch.bfloat16): inputf = torch.rand(32, 100, device="cpu", dtype=torch.float, requires_grad=True) input = inputf.to(dtype).detach().requires_grad_(True) outf = F.log_softmax(inputf, dim=-1) out = F.log_softmax(input, dim=-1) self.assertEqual(out.dtype, dtype) # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 self.assertEqualIgnoreType(out, outf, atol=0.1, rtol=0) out.sum().backward() outf.sum().backward() self.assertEqual(input.grad.dtype, dtype) self.assertEqual(input.grad, inputf.grad.to(dtype), atol=0.1, rtol=0) def test_softmax_cpu(self, dtype=torch.bfloat16): inputf = torch.rand(32, 100, device="cpu", dtype=torch.float, requires_grad=True) input = inputf.to(dtype).detach().requires_grad_(True) outf = F.softmax(inputf, dim=-1) out = F.softmax(input, dim=-1) self.assertEqual(out.dtype, dtype) self.assertEqualIgnoreType(out, outf, atol=1e-3, rtol=0) out.sum().backward() outf.sum().backward() self.assertEqual(input.grad.dtype, dtype) self.assertEqual(input.grad, inputf.grad.to(dtype), atol=1e-3, rtol=0) def test_adaptive_log_softmax(self): # args validation with self.assertRaises(ValueError): _ = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 15, 15], div_value=2.) with self.assertRaises(ValueError): _ = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 15, 10], div_value=2.) with self.assertRaises(ValueError): _ = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 10, 25], div_value=2.) with self.assertRaisesRegex(ValueError, "cutoffs should be a sequence of unique,"): _ = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 10, 20], div_value=2.) # not raise _ = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 10, 19], div_value=2.) # input shapes with self.assertRaisesRegex(RuntimeError, r"Input and target should have the same size"): asfm = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 10, 15], div_value=2.) x = torch.randn(2, 16) y = torch.tensor([0, 5, 10]) asfm(x, y) # out-of-bound targets with self.assertRaisesRegex(RuntimeError, r"Target values should be in"): asfm = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 10, 15], div_value=2.) x = torch.randn(2, 16) y = torch.tensor([0, 20]) asfm(x, y) # cluster sizes asfm = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 10, 15], div_value=2.) x = torch.randn(2, 16) y = torch.tensor([0, 17]) self.assertEqual(asfm.head.weight.size(), (5 + 3, 16)) # 5 targets in head, 3 clusters, dimensionality 16 self.assertEqual(asfm.tail[0][1].weight.size(), (5, 8)) # 5 targets in this cluster, dimensionality 8 self.assertEqual(asfm.tail[1][1].weight.size(), (5, 4)) self.assertEqual(asfm.tail[2][1].weight.size(), (5, 2)) self.assertEqual(asfm(x, y).output.size(), (2, )) # test no_batch_dim support asfm = nn.AdaptiveLogSoftmaxWithLoss(16, 20, [5, 10, 15], div_value=2.) x = torch.randn(1, 16) y = torch.tensor([17]) x2 = x.squeeze(0) y2 = y.squeeze(0) self.assertEqual(asfm(x, y).output.squeeze(0), asfm(x2, y2).output) # log_probs actually returns log_proba asfm = nn.AdaptiveLogSoftmaxWithLoss(8, 4, [2], div_value=2.) x = torch.randn(4, 8) logprob_out = asfm.log_prob(x) self.assertEqual(torch.exp(logprob_out).data.sum(1), torch.ones(4)) # forward returns the same thing as log_probs for v in [0, 1, 2, 3]: y = torch.full((4,), v, dtype=torch.long) out, loss = asfm(x, y) self.assertEqual(out, logprob_out.gather(1, y.unsqueeze(1)).squeeze()) self.assertEqual(loss, F.nll_loss(logprob_out, y)) # predict x = torch.randn(64, 8).abs_() # argmax in shortlist asfm = nn.AdaptiveLogSoftmaxWithLoss(8, 10, [4, 8], div_value=2., head_bias=True) asfm.head.weight.data.abs_() asfm.head.bias.data.abs_() asfm.head.weight.data[asfm.shortlist_size:, :].zero_() out = asfm.predict(x) self.assertEqual(out, asfm.log_prob(x).argmax(dim=1)) # argmax outside of shortlist asfm = nn.AdaptiveLogSoftmaxWithLoss(8, 10, [4, 8], div_value=2., head_bias=True) asfm.head.weight.data.abs_() asfm.head.bias.data.abs_() asfm.head.weight.data[:asfm.shortlist_size, :].zero_() out = asfm.predict(x) self.assertEqual(out, asfm.log_prob(x).argmax(dim=1)) # half of the argmax in shortlist, half in clusters asfm = nn.AdaptiveLogSoftmaxWithLoss(8, 10, [4, 8], div_value=2., head_bias=True) asfm.head.weight.data.abs_() asfm.head.bias.data.abs_() x[:32, :asfm.shortlist_size].zero_() x[32:, asfm.shortlist_size:].zero_() asfm.head.weight.data[:asfm.shortlist_size, asfm.shortlist_size:].zero_() asfm.head.weight.data[asfm.shortlist_size:, :asfm.shortlist_size].zero_() out = asfm.predict(x) self.assertEqual(out, asfm.log_prob(x).argmax(dim=1)) def test_cross_entropy_loss(self, dtype=torch.bfloat16): loss_cpu = nn.CrossEntropyLoss().cpu() inputf = torch.randn(15, 10, device="cpu", dtype=torch.float, requires_grad=True) input = inputf.to(dtype).detach().requires_grad_(True) target = torch.empty(15, dtype=torch.long).random_(10) outf = loss_cpu(inputf, target) out = loss_cpu(input, target) self.assertEqual(out.dtype, dtype) # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 self.assertEqualIgnoreType(out, outf, atol=1e-1, rtol=0) outf.backward() out.backward() self.assertEqual(input.grad.dtype, dtype) # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 self.assertEqualIgnoreType(input.grad, inputf.grad, atol=1e-1, rtol=0) def test_cross_entropy_loss_precision(self): # Regression test for #55657 loss_cpu = nn.CrossEntropyLoss().cpu() inputf = torch.randn(128, 2, 768, 768, device="cpu", dtype=torch.float) inputd = inputf.double() target = torch.randint(2, (128, 768, 768), dtype=torch.long) outf = loss_cpu(inputf, target) outd = loss_cpu(inputd, target) self.assertEqual(outf, outd, exact_dtype=False) @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") def test_convert_sync_batchnorm(self): module = torch.nn.Sequential( torch.nn.BatchNorm1d(100), torch.nn.InstanceNorm1d(100) ).cuda() # necessary to have an anchor point for comparison, in case the # convert_sync_batchnorm updates in place comp_module = torch.nn.Sequential( torch.nn.BatchNorm1d(100), torch.nn.InstanceNorm1d(100) ).cuda() comp_module.load_state_dict(module.state_dict()) sync_bn_module = torch.nn.SyncBatchNorm.convert_sync_batchnorm(module) children = list(sync_bn_module.children()) self.assertEqual(children[0].__class__, torch.nn.SyncBatchNorm) self.assertEqual(children[1].__class__, torch.nn.InstanceNorm1d) for layer, converted_layer in zip(comp_module.children(), sync_bn_module.children()): for key in layer.state_dict().keys(): self.assertEqual(layer.state_dict()[key].device, converted_layer.state_dict()[key].device) self.assertEqual(layer.state_dict()[key], converted_layer.state_dict()[key]) @unittest.skipIf(not TEST_CUDA, "CUDA not available") def test_sync_batchnorm_backward_elemt(self): device = 'cuda' saved_input = torch.rand(2, 3, 2, 1, device=device) grad_output = torch.rand(2, 3, 2, 1, device=device) mean = torch.rand(3, device=device) invstd = torch.rand(3, device=device) weight = torch.rand(3, device=device) sum_dy = torch.rand(3, device=device) sum_dy_xmu = torch.rand(3, device=device) count_tensor = torch.tensor([5, 5, 5], dtype=torch.int32, device=device) gI_contiguous = torch.batch_norm_backward_elemt( grad_output, saved_input, mean, invstd, weight, sum_dy, sum_dy_xmu, count_tensor ) # Test batch_norm_backward_elemt gives the same answer for all # combinations of contiguous as channels_last input for a, b in [ (torch.channels_last, torch.contiguous_format), (torch.contiguous_format, torch.channels_last), (torch.channels_last, torch.channels_last), ]: gI_actual = torch.batch_norm_backward_elemt( grad_output.contiguous(memory_format=a), saved_input.contiguous(memory_format=b), mean, invstd, weight, sum_dy, sum_dy_xmu, count_tensor ) self.assertEqual(gI_actual, gI_contiguous) @unittest.skipIf(not TEST_CUDA, "CUDA not available") def test_sync_batchnorm_accuracy_cuda(self): # The target of this test is to test the functionality and accuracy of # those single-GPU cuda kernels used in SyncBatchNorm # They are: # fwd: torch.batch_norm_stats, torch.batch_norm_gather_stats_with_counts, torch.batch_norm_elemt # bwd: torch.batch_norm_backward_reduce, torch.batch_norm_backward_elemt def _batch_norm_stats(data): mean1, _ = torch.batch_norm_stats(data, 1e-5) mean2, _ = torch.batch_norm_stats(data.to(memory_format=torch.channels_last), 1e-5) mean_ref = torch.mean(data, (0, 2, 3), keepdim=False) self.assertEqual(mean_ref, mean1) self.assertEqual(mean_ref, mean2) data = torch.randn(1, 96, 112, 112, dtype=torch.float, device='cuda') _batch_norm_stats(data) def test_functional_grad_conv(self): # Conv 1D input = torch.randn(1, 1, 5, requires_grad=True) weight = torch.randn(1, 1, 3, requires_grad=True) output = F.conv1d(input, weight, dilation=2) grad_output = torch.randn(output.shape) grad_input_autograd = torch.autograd.grad(output, input, grad_output)[0] grad_input_functional = torch.nn.grad.conv1d_input(input.shape, weight, grad_output, dilation=2) self.assertEqual(grad_input_functional, grad_input_autograd) # Conv 2D input = torch.randn(1, 1, 5, 5, requires_grad=True) weight = torch.randn(1, 1, 3, 3, requires_grad=True) output = F.conv2d(input, weight, dilation=2) grad_output = torch.randn(output.shape) grad_input_autograd = torch.autograd.grad(output, input, grad_output)[0] grad_input_functional = torch.nn.grad.conv2d_input(input.shape, weight, grad_output, dilation=2) self.assertEqual(grad_input_functional, grad_input_autograd) # Conv 3D input = torch.randn(1, 1, 5, 5, 5, requires_grad=True) weight = torch.randn(1, 1, 3, 3, 3, requires_grad=True) output = F.conv3d(input, weight, dilation=2) grad_output = torch.randn(output.shape) grad_input_autograd = torch.autograd.grad(output, input, grad_output)[0] grad_input_functional = torch.nn.grad.conv3d_input(input.shape, weight, grad_output, dilation=2) self.assertEqual(grad_input_functional, grad_input_autograd) # Warning for _grad_input_padding with warnings.catch_warnings(record=True) as w: torch.nn.grad._grad_input_padding(torch.rand(1, 2, 3), [1, 2, 5], (1,), (0,), (3,)) self.assertEqual(len(w), 1) def test_flatten(self): tensor_input = torch.randn(2, 1, 2, 3) # Flatten Tensor flatten = nn.Flatten(start_dim=1, end_dim=-1) tensor_output = flatten(tensor_input) self.assertEqual(tensor_output.size(), torch.Size([2, 6])) def test_unflatten(self): tensor_input = torch.randn(2, 50) # Unflatten Tensor (unflattened_size as a tuple of ints and list of ints) for us in ((2, 5, 5), [2, 5, 5]): unflatten = nn.Unflatten(dim=1, unflattened_size=us) tensor_output = unflatten(tensor_input) self.assertEqual(tensor_output.size(), torch.Size([2, 2, 5, 5])) # Unflatten NamedTensor unflatten = nn.Unflatten(dim='features', unflattened_size=(('C', 2), ('H', 5), ('W', 5))) named_tensor_input = tensor_input.refine_names('N', 'features') named_tensor_output = unflatten(named_tensor_input) self.assertEqual(named_tensor_output.size(), torch.Size([2, 2, 5, 5])) def test_unflatten_invalid_arg(self): # Wrong type for unflattened_size (tuple of floats) with self.assertRaisesRegex( TypeError, r"unflattened_size must be tuple of ints, but found element of type float at pos 2"): nn.Unflatten(dim=1, unflattened_size=(2, 5, 5.0)) # Wrong type for unflattened_size (list of lists and list of tuples) for us in ([['C', 2], ['W', 5], ['H', 5]], [('C', 2), ('W', 5), ('H', 5)]): with self.assertRaisesRegex( TypeError, r"unflattened_size must be a tuple of tuples, but found type list"): nn.Unflatten(dim='features', unflattened_size=us) # Wrong type for unflattened_size (tuple of lists) with self.assertRaisesRegex( TypeError, r"unflattened_size must be tuple of tuples, but found element of type list at pos 0"): nn.Unflatten(dim='features', unflattened_size=(['C', 2], ['W', 5], ['H', 5])) # Wrong type for unflattened_size (tuple of dicts) with self.assertRaisesRegex( TypeError, r"unflattened_size must be tuple of tuples, but found element of type dict at pos 0"): nn.Unflatten(dim='features', unflattened_size=({'C': 2}, {'W': 5}, {'H': 5})) def test_layer_norm_grads_with_create_graph_flag(self): atol = 1e-5 rtol = 1e-3 x = torch.randn((4, 4, 16), requires_grad=True) layer_norm = nn.LayerNorm((16,), 1e-5, True) with torch.no_grad(): layer_norm.weight = torch.nn.Parameter(0.1 * torch.ones_like(layer_norm.weight)) grads1 = torch.autograd.grad(layer_norm(x).sum(), x, create_graph=False)[0] grads2 = torch.autograd.grad(layer_norm(x).sum(), x, create_graph=True)[0] self.assertEqual(grads1, grads2, rtol=rtol, atol=atol) if TEST_CUDA: x = x.to('cuda') layer_norm = layer_norm.to('cuda') grads1 = torch.autograd.grad(layer_norm(x).sum(), x, create_graph=False)[0] grads2 = torch.autograd.grad(layer_norm(x).sum(), x, create_graph=True)[0] self.assertEqual(grads1, grads2, rtol=rtol, atol=atol) def test_padding_list(self): # Padding can be a list, or tuple (regression test for gh-54452) x = torch.randn(4, 8, 32, 32) net = torch.nn.ConvTranspose2d(8, 16, kernel_size=3, padding=[3, 3]) y = net(x) net = torch.nn.ConvTranspose2d(8, 16, kernel_size=3, padding=(3, 3)) y = net(x) class TestNNInit(TestCase): def setUp(self): super(TestNNInit, self).setUp() random.seed(123) def _is_normal(self, tensor, mean, std): samples = tensor.view(-1).tolist() p_value = stats.kstest(samples, 'norm', args=(mean, std))[1] return p_value > 0.0001 def _is_trunc_normal(self, tensor, mean, std, a, b): # scipy's trunc norm is suited for data drawn from N(0, 1), # so we need to transform our data to test it using scipy. z_samples = (tensor.view(-1) - mean) / std z_samples = z_samples.tolist() a0 = (a - mean) / std b0 = (b - mean) / std p_value = stats.kstest(z_samples, 'truncnorm', args=(a0, b0))[1] return p_value > 0.0001 def _is_uniform(self, tensor, a, b): samples = tensor.view(-1).tolist() p_value = stats.kstest(samples, 'uniform', args=(a, (b - a)))[1] return p_value > 0.0001 def _create_random_nd_tensor(self, dims, size_min, size_max): size = [random.randint(size_min, size_max) for _ in range(dims)] tensor = torch.zeros(size) return tensor def _random_float(self, a, b): return (b - a) * random.random() + a def test_calculate_gain_linear(self): for fn in ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose2d', 'conv_transpose2d', 'conv_transpose3d']: gain = init.calculate_gain(fn) self.assertEqual(gain, 1) def test_calculate_gain_nonlinear(self): for fn in ['sigmoid', 'tanh', 'relu', 'leaky_relu']: gain = init.calculate_gain(fn) if fn == 'sigmoid': self.assertEqual(gain, 1) elif fn == 'tanh': # 5 / 3 self.assertEqual(gain, 1.6666666666666667) elif fn == 'relu': # sqrt(2) self.assertEqual(gain, 1.4142135623730951) elif fn == 'leaky_relu': # sqrt(2 / 1 + slope^2)) self.assertEqual(gain, 1.4141428569978354) elif fn == 'selu': self.assertEqual(gain, 0.75) def test_calculate_gain_leaky_relu(self): for param in [None, 0, 0.01, 10]: gain = init.calculate_gain('leaky_relu', param) if param is None: # Default slope is 0.01 self.assertEqual(gain, 1.4141428569978354) elif param == 0: # No slope = same gain as normal ReLU self.assertEqual(gain, 1.4142135623730951) elif param == 0.01: self.assertEqual(gain, 1.4141428569978354) elif param == 10: self.assertEqual(gain, 0.14071950894605836) def test_calculate_gain_leaky_relu_only_accepts_numbers(self): for param in [True, [1], {'a': 'b'}]: with self.assertRaises(ValueError): init.calculate_gain('leaky_relu', param) def test_calculate_gain_only_accepts_valid_nonlinearities(self): for n in [2, 5, 25]: # Generate random strings of lengths that definitely aren't supported random_string = ''.join([random.choice(string.ascii_lowercase) for i in range(n)]) with self.assertRaises(ValueError): init.calculate_gain(random_string) @unittest.skipIf(not TEST_SCIPY, "Scipy not found.") def test_uniform(self): for dims in [1, 2, 4]: input_tensor = self._create_random_nd_tensor(dims, size_min=30, size_max=50) a = self._random_float(-3, 3) b = a + self._random_float(1, 5) init.uniform_(input_tensor, a=a, b=b) assert self._is_uniform(input_tensor, a, b) @unittest.skipIf(not TEST_SCIPY, "Scipy not found.") def test_normal(self): for dims in [1, 2, 4]: input_tensor = self._create_random_nd_tensor(dims, size_min=30, size_max=50) mean = self._random_float(-3, 3) std = self._random_float(1, 5) init.normal_(input_tensor, mean=mean, std=std) assert self._is_normal(input_tensor, mean, std) @unittest.skipIf(not TEST_SCIPY, "Scipy not found.") def test_trunc_normal(self): for dims in [1, 2, 4]: input_tensor = self._create_random_nd_tensor(dims, size_min=30, size_max=50) mean = self._random_float(-3, 3) std = self._random_float(.01, 1) a = self._random_float(mean - 2 * std, mean) b = self._random_float(mean, mean + 2 * std) init.trunc_normal_(input_tensor, mean=mean, std=std, a=a, b=b) assert self._is_trunc_normal(input_tensor, mean, std, a, b) def test_constant(self): for dims in [1, 2, 4]: input_tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=5) val = self._random_float(1, 10) init.constant_(input_tensor, val) self.assertEqual(input_tensor, input_tensor.clone().fill_(val)) def test_ones_and_zeros(self): for init_fn_, val in zip([init.ones_, init.zeros_], [1, 0]): for dims in [1, 2, 4]: input_tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=5) init_fn_(input_tensor) self.assertEqual(input_tensor, input_tensor.clone().fill_(val)) def test_eye(self): input_tensor = self._create_random_nd_tensor(2, size_min=1, size_max=5) init.eye_(input_tensor) # Check every single element for i in range(input_tensor.size(0)): for j in range(input_tensor.size(1)): if i == j: assert input_tensor[i][j] == 1 else: assert input_tensor[i][j] == 0 def test_eye_only_works_on_2d_inputs(self): for dims in [1, 3]: with self.assertRaises(ValueError): tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3) init.eye_(tensor) def test_max_unpool(self): # Test 1D output, indices = F.max_pool1d(torch.randn([1, 1, 4]), 2, stride=2, return_indices=True) self.assertEqual(F.max_unpool1d(output, indices, 2), F.max_unpool1d(output, indices, 2, stride=2)) # Test list / tuple passed as argument to max_unpool1d input = torch.randn([1, 1, 5], requires_grad=True) output, indices = F.max_pool1d(input, 2, stride=2, return_indices=True) self.assertEqual(F.max_unpool1d(output, indices, 2, stride=2, output_size=input.shape), F.max_unpool1d(output, indices, 2, stride=2, output_size=input.size())) gradcheck(F.max_unpool1d, (output, indices, 2), check_forward_ad=True) # Test 2D output, indices = F.max_pool2d(torch.randn([1, 1, 4, 4], requires_grad=True), 2, stride=2, return_indices=True) self.assertEqual(F.max_unpool2d(output, indices, 2), F.max_unpool2d(output, indices, 2, stride=2)) gradcheck(F.max_unpool2d, (output, indices, 2), check_forward_ad=True) # Test 3D output, indices = F.max_pool3d(torch.randn([4, 4, 4, 4, 4], requires_grad=True), 2, stride=2, return_indices=True) self.assertEqual(F.max_unpool3d(output, indices, 2), F.max_unpool3d(output, indices, 2, stride=2)) gradcheck(F.max_unpool3d, (output, indices, 2), check_forward_ad=True) def test_dirac_properties(self): for dims in [3, 4, 5]: for groups in [1, 2, 3]: # prepare random tensor with random sizes, but fits groups a, c, d, e = (random.randint(1, 5) for _ in range(4)) b = random.randint(1, 5 * groups) # same range as a*groups but all range allowed # make sure first dim divides by groups input_tensor = torch.randn((a * groups, b, c, d, e)[:dims]) init.dirac_(input_tensor, groups) c_out, c_in = input_tensor.size(0) // groups, input_tensor.size(1) min_d = min(c_out, c_in) # Check number of nonzeros is equivalent to smallest dim (for each group) assert torch.nonzero(input_tensor).size(0) == min_d * groups # Check sum of values (can have precision issues, hence assertEqual) is also equivalent self.assertEqual(input_tensor.sum(), min_d * groups) def test_dirac_identity(self): for groups in [1, 3]: batch, in_c, out_c, size, kernel_size = 8, 3, 9, 5, 3 # in_c, out_c must divide by groups eff_out_c = out_c // groups # Test 1D input_var = torch.randn(batch, in_c, size) filter_var = torch.zeros(eff_out_c, in_c, kernel_size) filter_var = torch.cat([filter_var] * groups) init.dirac_(filter_var, groups) output_var = F.conv1d(input_var, filter_var) input_tensor, output_tensor = input_var.data, output_var.data # Variables do not support nonzero for g in range(groups): # Assert in_c outputs are preserved (per each group) self.assertEqual(input_tensor[:, :, 1:-1], output_tensor[:, eff_out_c * g:eff_out_c * g + in_c, :]) # Assert extra outputs are 0 assert torch.nonzero(output_tensor[:, eff_out_c * g + in_c:eff_out_c * (g + 1), :]).numel() == 0 # Test 2D input_var = torch.randn(batch, in_c, size, size) filter_var = torch.zeros(eff_out_c, in_c, kernel_size, kernel_size) filter_var = torch.cat([filter_var] * groups) init.dirac_(filter_var, groups) output_var = F.conv2d(input_var, filter_var) input_tensor, output_tensor = input_var.data, output_var.data # Variables do not support nonzero for g in range(groups): # Assert in_c outputs are preserved (per each group) self.assertEqual(input_tensor[:, :, 1:-1, 1:-1], output_tensor[:, eff_out_c * g:eff_out_c * g + in_c, :, :]) # Assert extra outputs are 0 assert torch.nonzero(output_tensor[:, eff_out_c * g + in_c:eff_out_c * (g + 1), :, :]).numel() == 0 # Test 3D input_var = torch.randn(batch, in_c, size, size, size) filter_var = torch.zeros(eff_out_c, in_c, kernel_size, kernel_size, kernel_size) filter_var = torch.cat([filter_var] * groups) init.dirac_(filter_var, groups) output_var = F.conv3d(input_var, filter_var) input_tensor, output_tensor = input_var.data, output_var.data for g in range(groups): # Assert in_c outputs are preserved (per each group) self.assertEqual(input_tensor[:, :, 1:-1, 1:-1, 1:-1], output_tensor[:, eff_out_c * g:eff_out_c * g + in_c, :, :, :]) # Assert extra outputs are 0 assert torch.nonzero(output_tensor[:, eff_out_c * g + in_c:eff_out_c * (g + 1), :, :, :]).numel() == 0 def test_dirac_only_works_on_3_4_5d_inputs(self): for dims in [1, 2, 6]: with self.assertRaises(ValueError): tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3) init.dirac_(tensor) def test_xavier_uniform_errors_on_inputs_smaller_than_2d(self): for dims in [0, 1]: tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1) with self.assertRaises(ValueError): init.xavier_uniform_(tensor) def test_xavier_normal_errors_on_inputs_smaller_than_2d(self): for dims in [0, 1]: tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1) with self.assertRaises(ValueError): init.xavier_normal_(tensor) @unittest.skipIf(not TEST_SCIPY, "Scipy not found.") def test_xavier_uniform(self): for use_gain in [True, False]: for dims in [2, 4]: input_tensor = self._create_random_nd_tensor(dims, size_min=20, size_max=25) gain = 1 if use_gain: gain = self._random_float(0.1, 2) init.xavier_uniform_(input_tensor, gain=gain) else: init.xavier_uniform_(input_tensor) fan_in = input_tensor.size(1) fan_out = input_tensor.size(0) if input_tensor.dim() > 2: fan_in *= input_tensor[0, 0].numel() fan_out *= input_tensor[0, 0].numel() expected_std = gain * math.sqrt(2.0 / (fan_in + fan_out)) bounds = expected_std * math.sqrt(3) assert self._is_uniform(input_tensor, -bounds, bounds) @unittest.skipIf(not TEST_SCIPY, "Scipy not found.") def test_xavier_normal(self): for use_gain in [True, False]: for dims in [2, 4]: input_tensor = self._create_random_nd_tensor(dims, size_min=20, size_max=25) gain = 1 if use_gain: gain = self._random_float(0.1, 2) init.xavier_normal_(input_tensor, gain=gain) else: init.xavier_normal_(input_tensor) fan_in = input_tensor.size(1) fan_out = input_tensor.size(0) if input_tensor.dim() > 2: fan_in *= input_tensor[0, 0].numel() fan_out *= input_tensor[0, 0].numel() expected_std = gain * math.sqrt(2.0 / (fan_in + fan_out)) assert self._is_normal(input_tensor, 0, expected_std) def test_kaiming_uniform_errors_on_inputs_smaller_than_2d(self): for dims in [0, 1]: with self.assertRaises(ValueError): tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1) init.kaiming_uniform_(tensor) def test_kaiming_normal_errors_on_inputs_smaller_than_2d(self): for dims in [0, 1]: with self.assertRaises(ValueError): tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=1) init.kaiming_normal_(tensor) def test_kaiming_uniform_warning_on_0element_tensor(self): tensor = torch.empty(0, 1) with self.assertWarnsRegex(UserWarning, "Initializing zero-element tensors is a no-op"): _ = init.kaiming_uniform_(tensor) def test_kaiming_normal_warning_on_0element_tensor(self): tensor = torch.empty(0, 1) with self.assertWarnsRegex(UserWarning, "Initializing zero-element tensors is a no-op"): _ = init.kaiming_normal_(tensor) @unittest.skipIf(not TEST_SCIPY, "Scipy not found.") def test_kaiming_uniform(self): for use_a in [True, False]: for dims in [2, 4]: for mode in ['fan_in', 'fan_out']: input_tensor = self._create_random_nd_tensor(dims, size_min=20, size_max=25) if use_a: a = self._random_float(0.1, 2) init.kaiming_uniform_(input_tensor, a=a, mode=mode) else: a = 0 init.kaiming_uniform_(input_tensor, mode=mode) fan_in = input_tensor.size(1) fan_out = input_tensor.size(0) if input_tensor.dim() > 2: fan_in *= input_tensor[0, 0].numel() fan_out *= input_tensor[0, 0].numel() if mode == 'fan_in': n = fan_in else: n = fan_out expected_std = math.sqrt(2.0 / ((1 + a**2) * n)) bounds = expected_std * math.sqrt(3.0) assert self._is_uniform(input_tensor, -bounds, bounds) @unittest.skipIf(not TEST_SCIPY, "Scipy not found.") def test_kaiming_normal(self): for use_a in [True, False]: for dims in [2, 4]: for mode in ['fan_in', 'fan_out']: input_tensor = self._create_random_nd_tensor(dims, size_min=20, size_max=25) if use_a: a = self._random_float(0.1, 2) init.kaiming_normal_(input_tensor, a=a, mode=mode) else: a = 0 init.kaiming_normal_(input_tensor, mode=mode) fan_in = input_tensor.size(1) fan_out = input_tensor.size(0) if input_tensor.dim() > 2: fan_in *= input_tensor[0, 0].numel() fan_out *= input_tensor[0, 0].numel() if mode == 'fan_in': n = fan_in else: n = fan_out expected_std = math.sqrt(2.0 / ((1 + a**2) * n)) assert self._is_normal(input_tensor, 0, expected_std) def test_sparse_only_works_on_2d_inputs(self): for dims in [1, 3]: with self.assertRaises(ValueError): sparsity = self._random_float(0.1, 0.9) tensor = self._create_random_nd_tensor(dims, size_min=1, size_max=3) init.sparse_(tensor, sparsity) @unittest.skipIf(not TEST_SCIPY, "Scipy not found.") def test_sparse_default_std(self): for use_random_std in [True, False]: input_tensor = self._create_random_nd_tensor(2, size_min=30, size_max=35) rows, cols = input_tensor.size(0), input_tensor.size(1) sparsity = self._random_float(0.1, 0.2) std = 0.01 # default std if use_random_std: std = self._random_float(0.01, 0.2) init.sparse_(input_tensor, sparsity=sparsity, std=std) else: init.sparse_(input_tensor, sparsity=sparsity) for col_idx in range(input_tensor.size(1)): column = input_tensor[:, col_idx] assert column[column == 0].nelement() >= math.ceil(sparsity * rows) assert self._is_normal(input_tensor[input_tensor != 0], 0, std) @skipIfNoLapack def test_orthogonal(self): for use_gain in [True, False]: for tensor_size in [[3, 4], [4, 3], [20, 2, 3, 4], [2, 3, 4, 5]]: input_tensor = torch.zeros(tensor_size) gain = 1.0 if use_gain: gain = self._random_float(0.1, 2) init.orthogonal_(input_tensor, gain=gain) else: init.orthogonal_(input_tensor) rows, cols = tensor_size[0], reduce(mul, tensor_size[1:]) flattened_tensor = input_tensor.view(rows, cols) if rows > cols: self.assertEqual(torch.mm(flattened_tensor.t(), flattened_tensor), torch.eye(cols) * gain ** 2, atol=1e-6, rtol=0) else: self.assertEqual(torch.mm(flattened_tensor, flattened_tensor.t()), torch.eye(rows) * gain ** 2, atol=1e-6, rtol=0) def test_deprecation(self): x = torch.randn(3, 3) def fn(): init.normal(x) with self.assertWarnsRegex(UserWarning, 'deprecated', msg='methods not suffixed with underscore should be deprecated'): fn() class TestFusionEval(TestCase): @given(X=hu.tensor(shapes=((5, 3, 5, 5),)), running_mean=hu.tensor(shapes=(6,)), running_var=hu.tensor(shapes=(6,))) def test_fuse_module_eval_numerics(self, X, running_mean, running_var): inputs, _ = X iC, oC = inputs.shape[1], len(running_mean[0]) inputs = torch.from_numpy(inputs).to(torch.double) kernel_size = (3, 3) conv_ref = torch.nn.Conv2d(iC, oC, bias=True, kernel_size=kernel_size) bn_ref = torch.nn.BatchNorm2d(oC) bn_ref.running_mean = torch.from_numpy(running_mean[0]).to(torch.double) bn_ref.running_var = torch.from_numpy(running_var[0]).to(torch.double) conv_ref.eval() bn_ref.eval() Y_ref = bn_ref(conv_ref(inputs)) conv_bn_fused = torch.nn.utils.fusion.fuse_conv_bn_eval(conv_ref, bn_ref) Y_hat = conv_bn_fused(inputs) self.assertEqual(Y_ref, Y_hat, msg="Conv+BN fusion results are off") na_bn_ref = torch.nn.BatchNorm2d(oC, affine=False) na_bn_ref.running_mean = torch.from_numpy(running_mean[0]).to(torch.double) na_bn_ref.running_var = torch.from_numpy(running_var[0]).to(torch.double) na_bn_ref.eval() Y_ref = na_bn_ref(conv_ref(inputs)) conv_na_bn_fused = torch.nn.utils.fusion.fuse_conv_bn_eval(conv_ref, na_bn_ref) Y_hat = conv_na_bn_fused(inputs) self.assertEqual(Y_ref, Y_hat, msg="Conv+BN(non-affine) fusion results are off") class TestConstantPadNd(TestCase): def test_constant_pad_nd(self): a = torch.tensor([[1, 2], [3, 4]]) res = torch.constant_pad_nd(a, [1, 2, 1, 0], 9) expected = torch.tensor([ [9, 9, 9, 9, 9], [9, 1, 2, 9, 9], [9, 3, 4, 9, 9] ]) self.assertEqual(res, expected) def test_preserves_memory_format(self): nchw_tensor = torch.rand((1, 2, 5, 3)) nchw_padded = torch.constant_pad_nd(nchw_tensor, [1, 2], 0.5) self.assertTrue(nchw_padded.is_contiguous(memory_format=torch.contiguous_format)) nhwc_tensor = nchw_tensor.contiguous(memory_format=torch.channels_last) nhwc_padded = torch.constant_pad_nd(nhwc_tensor, [1, 2], 0.5) self.assertTrue(nhwc_padded.is_contiguous(memory_format=torch.channels_last)) class TestAddRelu(TestCase): def test_add_relu(self): a = torch.rand((7, 11)) b = torch.rand((7, 11)) a = a.float() b = b.float() a = a * -10 a = a + 5 add_res = a + b relu_res = torch.relu(add_res) add_relu_res = torch._VF._add_relu(a, b) self.assertEqual(add_relu_res, relu_res) def test_add_relu_broadcasting(self): a = torch.rand((1, 32)) b = 1 b_scalar = torch.ones(1, 32) res = torch._VF._add_relu(a, b) broadcasted_res = torch._VF._add_relu(a, b_scalar) self.assertEqual(broadcasted_res, res) def add_test(test, decorator=None): def add(test_name, fn): if hasattr(TestNN, test_name): raise RuntimeError('Found two tests with the same name: ' + test_name) if decorator is not None: fn = decorator(fn) setattr(TestNN, test_name, fn) test_name = test.get_name() if not hasattr(test, 'test_cpu') or test.test_cpu: add(test_name, lambda self, test=test: test(self)) cuda_test_name = test_name + '_cuda' # With dtype enable, it's good enough to test against three floating types kwargs = {} if 'extra_args' in get_function_arglist(test.test_cuda): kwargs['extra_args'] = test.extra_args if 'dtype' in get_function_arglist(test.test_cuda): if tf32_is_not_fp32() and test.with_tf32: def with_tf32_off(self, test=test, kwargs=kwargs): with tf32_off(): test.test_cuda(self, dtype=torch.float, **kwargs) add(cuda_test_name + '_fp32', with_tf32_off) def with_tf32_on(self, test=test, kwargs=kwargs): with tf32_on(self, test.tf32_precision): test.test_cuda(self, dtype=torch.float, **kwargs) add(cuda_test_name + '_tf32', with_tf32_on) else: add(cuda_test_name + '_float', lambda self, test=test, kwargs=kwargs: test.test_cuda(self, dtype=torch.float, **kwargs)) add(cuda_test_name + '_double', lambda self, test=test, kwargs=kwargs: test.test_cuda(self, dtype=torch.double, **kwargs)) def test_half(self, test=test, kwargs=kwargs): test.test_cuda(self, dtype=torch.half, **kwargs) if getattr(test, 'check_half', True): add(cuda_test_name + '_half', test_half) def test_bfloat16(self, test=test, kwargs=kwargs): test.test_cuda(self, dtype=torch.bfloat16, **kwargs) if getattr(test, 'check_bfloat16', True): add(cuda_test_name + '_bfloat16', test_bfloat16) def test_cfloat(self, test=test, kwargs=kwargs): test.test_cuda(self, dtype=torch.cfloat, **kwargs) def test_cdouble(self, test=test, kwargs=kwargs): test.test_cuda(self, dtype=torch.cdouble, **kwargs) if getattr(test, 'check_complex', False): add(cuda_test_name + '_cfloat', test_cfloat) add(cuda_test_name + '_cdouble', test_cdouble) else: def with_tf32_off(self, test=test, kwargs=kwargs): with tf32_off(): test.test_cuda(self, **kwargs) if tf32_is_not_fp32() and test.with_tf32: add(cuda_test_name + '_fp32', with_tf32_off) def with_tf32_on(self, test=test, kwargs=kwargs): with tf32_on(self, test.tf32_precision): test.test_cuda(self, **kwargs) add(cuda_test_name + '_tf32', with_tf32_on) else: add(cuda_test_name, with_tf32_off) for test_params in module_tests + new_module_tests: # TODO: CUDA is not implemented yet if 'constructor' not in test_params: name = test_params.pop('module_name') test_params['constructor'] = getattr(nn, name) decorator = test_params.pop('decorator', None) test = NewModuleTest(**test_params) add_test(test, decorator) if 'check_eval' in test_params: # create a new test that is identical but that sets module.training to False desc = test_params.get('desc', None) test_params['desc'] = 'eval' if desc is None else desc + '_eval' def gen_eval_constructor(constructor): def eval_constructor(*args, **kwargs): cons = constructor(*args, **kwargs) cons.training = False return cons eval_constructor.__name__ = constructor.__name__ return eval_constructor test_params['constructor'] = gen_eval_constructor(test_params['constructor']) test = NewModuleTest(**test_params) add_test(test, decorator) if 'check_with_long_tensor' in test_params: fullname = test_params.get('fullname', None) if fullname: test_params['fullname'] = fullname + '_with_long_tensor' else: desc = test_params.get('desc', None) test_params['desc'] = 'with_long_tensor' if desc is None else desc + '_with_long_tensor' def double_equivalent_of_long_tensor(size): return torch.randint(-1000, 1000, size=size).double() def apply_to_cons(t): if t.is_floating_point(): if isinstance(t, Parameter): return Parameter(double_equivalent_of_long_tensor(t.size())) elif isinstance(t, torch.Tensor): return double_equivalent_of_long_tensor(t.size()) else: return t def gen_long_tensor_constructor(constructor): def long_tensor_constructor(*args, **kwargs): cons = constructor(*args, **kwargs) cons._apply(apply_to_cons) return cons long_tensor_constructor.__name__ = constructor.__name__ return long_tensor_constructor def gen_long_tensor_input(input_size): def input_func(): return double_equivalent_of_long_tensor(input_size) return input_func def reference_fn(i, p, m): # For bad reasons this would create LongTensors that requires gradients # Remove requires_grad to avoid this for p in m.parameters(): p.requires_grad_(False) m._apply(lambda t: t.long()) input = i.long() out = m.forward(input) return out test_params['constructor'] = gen_long_tensor_constructor(test_params['constructor']) test_params['input_fn'] = gen_long_tensor_input(test_params['input_size']) test_params['reference_fn'] = reference_fn test_params['check_forward_only'] = True # Currently we don't support conv2d/conv3d for LongTensor in CUDA test_params['test_cuda'] = False test = NewModuleTest(**test_params) add_test(test, decorator) for test_params in criterion_tests: if 'constructor' not in test_params: name = test_params.pop('module_name') test_params['constructor'] = getattr(nn, name) test = CriterionTest(**test_params) decorator = test_params.pop('decorator', None) add_test(test, decorator) if 'check_sum_reduction' in test_params: desc = test_params.get('desc', None) test_params['desc'] = 'sum_reduction' if desc is None else desc + '_sum_reduction' def gen_sum_reduction_constructor(constructor): def sum_reduction_constructor(*args, **kwargs): cons = constructor(*args, reduction='sum', **kwargs) return cons sum_reduction_constructor.__name__ = constructor.__name__ return sum_reduction_constructor test_params['constructor'] = gen_sum_reduction_constructor(test_params['constructor']) test = CriterionTest(**test_params) add_test(test, decorator) class UnpoolingNet(nn.Module): def __init__(self, pool, unpool): super(UnpoolingNet, self).__init__() self.pool = pool self.unpool = unpool def forward(self, input): return self.unpool(*self.pool(input)) add_test(NewModuleTest( constructor=lambda: UnpoolingNet( nn.MaxPool1d(2, return_indices=True), nn.MaxUnpool1d(2)), input_size=(1, 1, 4), fullname='MaxUnpool1d_net',)) add_test(NewModuleTest( constructor=lambda: UnpoolingNet( nn.MaxPool2d(2, return_indices=True), nn.MaxUnpool2d(2)), input_size=(1, 1, 2, 4), fullname='MaxUnpool2d_net',)) add_test(NewModuleTest( constructor=lambda: UnpoolingNet( nn.MaxPool3d(2, return_indices=True), nn.MaxUnpool3d(2)), input_size=(1, 1, 2, 4, 6), fullname='MaxUnpool3d_net', check_gradgrad=False,)) add_test(NewModuleTest( constructor=lambda: UnpoolingNet( nn.MaxPool1d(2, return_indices=True), nn.MaxUnpool1d(2)), input_size=(1, 4), reference_fn=single_batch_reference_fn, fullname='MaxUnpool1d_net_no_batch_dim',)) add_test(NewModuleTest( constructor=lambda: UnpoolingNet( nn.MaxPool2d(2, return_indices=True), nn.MaxUnpool2d(2)), input_size=(1, 2, 4), reference_fn=single_batch_reference_fn, fullname='MaxUnpool2d_net_no_batch_dim',)) add_test(NewModuleTest( constructor=lambda: UnpoolingNet( nn.MaxPool3d(2, return_indices=True), nn.MaxUnpool3d(2)), input_size=(1, 2, 4, 6), reference_fn=single_batch_reference_fn, fullname='MaxUnpool3d_net_no_batch_dim', check_gradgrad=False)) class _AdaptiveLogSoftmaxWithLoss(nn.AdaptiveLogSoftmaxWithLoss): def __call__(self, input): t = torch.tensor([0, 1, 4, 8]).to(input.device) return nn.AdaptiveLogSoftmaxWithLoss.__call__(self, input, t).output add_test(NewModuleTest( constructor=lambda: _AdaptiveLogSoftmaxWithLoss(16, 10, [2, 6]), input_size=(4, 16), fullname='AdaptiveLogSoftmax', with_tf32=True, tf32_precision=0.005)) # The following are helpers for TestNN.test_affine_* if torch.cuda.is_available(): def device_(): return ['cpu', 'cuda'] else: def device_(): return ['cpu'] def angle_rad_(): return [r * math.pi * 2 for r in [0.0, 0.5, 0.25, 0.125, random.random()]] def axis_vector_(): t = (random.random(), random.random(), random.random()) l = sum(x ** 2 for x in t) ** 0.5 return [(1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 0.0, 1.0), tuple(x / l for x in t)] def input_size2d_(): return [[1, 1, 3, 5], [1, 1, 3, 3], [1, 1, 4, 4], [1, 1, 3, 4]] def output_size2d_(): return [[1, 1, 5, 3], [1, 1, 3, 5], [1, 1, 4, 3], [1, 1, 5, 5], [1, 1, 6, 6]] def input_size2dsq_(): return [[1, 1, 2, 2], [1, 1, 3, 3], [1, 1, 4, 4], [1, 1, 6, 6]] def output_size2dsq_(): return [[1, 1, 2, 2], [1, 1, 3, 3], [1, 1, 4, 4], [1, 1, 5, 5], [1, 1, 6, 6]] def input_size3d_(): return [[1, 1, 2, 2, 2], [1, 1, 2, 3, 4], [1, 1, 3, 3, 3], [1, 1, 4, 4, 4], [1, 1, 3, 4, 5]] def input_size3dsq_(): return [[1, 1, 2, 2, 2], [1, 1, 3, 3, 3], [1, 1, 4, 4, 4], [1, 1, 6, 6, 6]] def output_size3dsq_(): return [[1, 1, 2, 2, 2], [1, 1, 3, 3, 3], [1, 1, 4, 4, 4], [1, 1, 5, 5, 5], [1, 1, 6, 6, 6]] def output_size3d_(): return [[1, 1, 2, 2, 2], [1, 1, 3, 3, 3], [1, 1, 3, 4, 5], [1, 1, 4, 3, 2], [1, 1, 5, 5, 5], [1, 1, 6, 6, 6]] def _buildEquivalentAffineTransforms2d(device, input_size, output_size, angle_rad): input_center = [(x - 1) / 2.0 for x in input_size] output_center = [(x - 1) / 2.0 for x in output_size] s = math.sin(angle_rad) c = math.cos(angle_rad) intrans_ary = np.array([ [1, 0, input_center[2]], [0, 1, input_center[3]], [0, 0, 1], ], dtype=np.float64) inscale_ary = np.array([ [input_center[2], 0, 0], [0, input_center[3], 0], [0, 0, 1], ], dtype=np.float64) rotation_ary = np.array([ [c, -s, 0], [s, c, 0], [0, 0, 1], ], dtype=np.float64) outscale_ary = np.array([ [1.0 / output_center[2], 0, 0], [0, 1.0 / output_center[3], 0], [0, 0, 1], ], dtype=np.float64) outtrans_ary = np.array([ [1, 0, -output_center[2]], [0, 1, -output_center[3]], [0, 0, 1], ], dtype=np.float64) reorder_ary = np.array([ [0, 1, 0], [1, 0, 0], [0, 0, 1], ], dtype=np.float64) transform_ary = np.dot(np.dot(np.dot(np.dot( intrans_ary, inscale_ary), rotation_ary.T), outscale_ary), outtrans_ary) grid_ary = np.dot(np.dot(np.dot(reorder_ary, rotation_ary.T), outscale_ary), outtrans_ary) transform_tensor = torch.from_numpy((rotation_ary)).to(device, torch.float32) transform_tensor = transform_tensor[:2].unsqueeze(0) return transform_tensor, transform_ary, grid_ary def _buildEquivalentAffineTransforms3d(device, input_size, output_size, angle_rad, axis_vector): input_center = [(x - 1) / 2.0 for x in input_size] output_center = [(x - 1) / 2.0 for x in output_size] s = math.sin(angle_rad) c = math.cos(angle_rad) c1 = 1 - c intrans_ary = np.array([ [1, 0, 0, input_center[2]], [0, 1, 0, input_center[3]], [0, 0, 1, input_center[4]], [0, 0, 0, 1], ], dtype=np.float64) inscale_ary = np.array([ [input_center[2], 0, 0, 0], [0, input_center[3], 0, 0], [0, 0, input_center[4], 0], [0, 0, 0, 1], ], dtype=np.float64) l, m, n = axis_vector scipyRotation_ary = np.array([ [l * l * c1 + c, m * l * c1 - n * s, n * l * c1 + m * s, 0], [l * m * c1 + n * s, m * m * c1 + c, n * m * c1 - l * s, 0], [l * n * c1 - m * s, m * n * c1 + l * s, n * n * c1 + c, 0], [0, 0, 0, 1], ], dtype=np.float64) z, y, x = axis_vector torchRotation_ary = np.array([ [x * x * c1 + c, y * x * c1 - z * s, z * x * c1 + y * s, 0], [x * y * c1 + z * s, y * y * c1 + c, z * y * c1 - x * s, 0], [x * z * c1 - y * s, y * z * c1 + x * s, z * z * c1 + c, 0], [0, 0, 0, 1], ], dtype=np.float64) outscale_ary = np.array([ [1.0 / output_center[2], 0, 0, 0], [0, 1.0 / output_center[3], 0, 0], [0, 0, 1.0 / output_center[4], 0], [0, 0, 0, 1], ], dtype=np.float64) outtrans_ary = np.array([ [1, 0, 0, -output_center[2]], [0, 1, 0, -output_center[3]], [0, 0, 1, -output_center[4]], [0, 0, 0, 1], ], dtype=np.float64) reorder_ary = np.array([ [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1], ], dtype=np.float64) transform_ary = np.dot(np.dot(np.dot(np.dot( intrans_ary, inscale_ary), np.linalg.inv(scipyRotation_ary)), outscale_ary), outtrans_ary) grid_ary = np.dot(np.dot(np.dot(reorder_ary, np.linalg.inv(scipyRotation_ary)), outscale_ary), outtrans_ary) transform_tensor = torch.from_numpy((torchRotation_ary)).to(device, torch.float32) transform_tensor = transform_tensor[:3].unsqueeze(0) return transform_tensor, transform_ary, grid_ary # end TestNN.test_affine_* helpers class TestNNDeviceType(NNTestCase): def run_conv_double_back_test(self, kern, stride, padding, chan_in, chan_out, batch_size, inp_size, dilation, no_weight, groups=1, use_cuda=False, use_bias=True, dtype=torch.double): if use_cuda: device = torch.device("cuda") else: device = torch.device("cpu") x = torch.randn(batch_size, chan_in, inp_size, inp_size, device=device, dtype=dtype, requires_grad=True) weight = torch.randn(chan_out, chan_in // groups, kern, kern, device=device, dtype=dtype, requires_grad=not no_weight) if use_bias: bias = torch.randn(chan_out, device=device, dtype=dtype, requires_grad=True) else: bias = None def func(*inputs): if use_bias: lx, lweight, lbias = inputs else: lx, lweight = inputs lbias = None # We disable cudnn during forward to avoid finite difference imprecision issues with cudnn.flags(enabled=False): out = F.conv2d(lx, lweight, lbias, stride, padding, dilation, groups) return out if use_bias: inputs = x, weight, bias else: inputs = x, weight dummy_out = func(*inputs) grad_y = torch.randn_like(dummy_out, device=device, dtype=dtype, requires_grad=True) # Issue #15353: test mkldnn double backward, don't run gradgradcheck due # to imprecision issues if dtype == torch.float: g, = torch.autograd.grad(dummy_out.sum(), x, create_graph=True) return g.requires_grad return gradgradcheck(func, inputs, (grad_y,)) def _test_dropout(self, cls, device, input, memory_format=torch.contiguous_format): p = 0.2 input = input.to(device).fill_(1 - p) module = cls(p) input_var = input.clone(memory_format=memory_format).requires_grad_() output = module(input_var) self.assertTrue(output.is_contiguous(memory_format=memory_format)) self.assertLess(abs(output.data.mean() - (1 - p)), 0.05) output.backward(input) self.assertTrue(input_var.grad.is_contiguous(memory_format=memory_format)) self.assertLess(abs(input_var.grad.data.mean() - (1 - p)), 0.05) module = cls(p, True) input_var = input.clone(memory_format=memory_format).requires_grad_() output = module(input_var + 0) self.assertTrue(output.is_contiguous(memory_format=memory_format)) self.assertLess(abs(output.data.mean() - (1 - p)), 0.05) output.backward(input) self.assertTrue(input_var.grad.is_contiguous(memory_format=memory_format)) self.assertLess(abs(input_var.grad.data.mean() - (1 - p)), 0.05) # check eval mode doesn't change anything for inplace in [True, False]: module = cls(p, inplace).eval() self.assertEqual(input, module(input)) # Check that these don't raise errors module.__repr__() str(module) def _test_dropout_discontiguous(self, cls, device, memory_format=torch.contiguous_format): # In this test, we verify that dropout preserves the layout and data for different memory formats. # We check whether, we get same values for the output of dropout, when the probability # of dropout is 0 or very close to 0. # Reference: https://github.com/pytorch/pytorch/issues/47176 close_to_zero_p = 1e-10 # Should be almost zero but not zero, as for p=0 different path is taken for p in [0, close_to_zero_p]: inp = torch.ones(2, 3, 3, 3, device=device) inp_discontiguous = torch.empty(2, 3, 3, 6, device=device, memory_format=memory_format)[..., ::2] inp_discontiguous.copy_(inp) mod = cls(p=p) out = mod(inp_discontiguous) if p != 0: # Zero will keep strides as is based on input. # When prob == 0, input stride (54, 18, 6, 2) -> output stride (54, 18, 6, 2) # When prob != 0, input stride (54, 18, 6, 2) -> output stride (27, 9, 3, 1) self.assertTrue(out.is_contiguous(memory_format=memory_format)) self.assertEqual(inp_discontiguous, out) def _test_dropout_stride_mean_preserve(self, cls, device): def invert_perm(p): d = {x: i for i, x in enumerate(p)} return (d[0], d[1], d[2], d[3]) inp = torch.ones(2, 3, 4, 5, device=device) shifts = [(0, 0), (1, 0), (0, 1), (1, 1)] for perm in itertools.permutations((0, 1, 2, 3), r=4): for shift in shifts: for p in [1e-10, 0.3, 0.5, 0.7]: mod = cls(p=p) permuted_inp = inp.permute(perm).contiguous().permute(invert_perm(perm)) permuted_inp = permuted_inp[shift[0]:, shift[1]:, :, :] out = mod(permuted_inp) self.assertTrue(out.permute(perm).is_contiguous()) self.assertEqual(inp.mean(), out.mean(), rtol=0.5, atol=0.5) if p == 1e-10: self.assertEqual(permuted_inp, out) else: self.assertNotEqual(permuted_inp, out) def _test_InstanceNorm_general(self, cls, input, device, dtype=torch.float): # default case track_running_stats=False b, c = input.size(0), input.size(1) input_var = input.to(device=device, dtype=dtype).requires_grad_() IN = cls(c, eps=0).to(device, dtype) output = IN(input_var) out_reshaped = output.view(b * c, -1) mean = out_reshaped.mean(1) var = out_reshaped.var(1, unbiased=False) self.assertEqual(torch.abs(mean.data).mean(), 0, atol=1e-5, rtol=0) self.assertEqual(torch.abs(var.data).mean(), 1, atol=1e-5, rtol=0) # check that eval mode doesn't change behavior grad_out = torch.randn_like(output) res1 = output.data.clone() output.backward(grad_out) grad1 = input_var.grad.data.clone() IN.eval() output = IN(input_var) input_var.grad = None output.backward(grad_out) res2 = output.data grad2 = input_var.grad.data self.assertEqual(res1, res2) self.assertEqual(grad1, grad2) # If track_running_stats=True and momentum=1, running_mean/var should be # equal to mean/var of the input (with unbias correction) IN = cls(c, momentum=1, eps=0, track_running_stats=True).to(device, dtype) output = IN(input_var) input_reshaped = input_var.transpose(1, 0).reshape(c, -1) mean = input_reshaped.mean(1) input_reshaped = input_var.transpose(1, 0).reshape(c, b, -1) var = input_reshaped.var(2, unbiased=True)[:, :] self.assertEqual(torch.abs(mean.data - IN.running_mean).mean(), 0, atol=1e-5, rtol=0) self.assertEqual(torch.abs(var.data.mean(1) - IN.running_var).mean(), 0, atol=1e-5, rtol=0) # in eval mode, adding X * std to a channel in input should make the # corresponding channel in output have mean X IN.eval() delta = IN.running_var.sqrt() * torch.arange(c, device=device, dtype=dtype) delta = delta.view(-1, *[1 for _ in range(2, input.dim())]) output = IN(input_var + delta) self.assertEqual(output.transpose(0, 1).reshape(c, -1).mean(1), torch.arange(c, dtype=dtype)) def _test_InstanceNorm_cuda_half(self, cls, input, device): # THNN input = input.to(device=device, dtype=torch.half).random_(1, 10).requires_grad_(True) m = cls(input.size(1), affine=True, track_running_stats=True).to(device, torch.half) thnn_output = m(input) thnn_output.sum().backward() thnn_input_grad = input.grad.data.clone() self.assertEqualTypeString(thnn_output, input) # cuDNN if TEST_CUDNN: input.grad = None m = m.float() cudnn_output = m(input) cudnn_output.sum().backward() cudnn_input_grad = input.grad.data.clone() self.assertEqualTypeString(cudnn_output, input) self.assertEqual(cudnn_output, thnn_output, atol=1e-4, rtol=0) self.assertEqual(cudnn_input_grad, thnn_input_grad, atol=1e-3, rtol=0) def _test_LayerNorm_general(self, device, dtype=torch.float): for i in range(2, 6): shape = torch.randint(3, 6, (i,), dtype=torch.long).tolist() x = torch.empty(*shape, device=device, dtype=dtype).uniform_(0, 10) normalized_ndim = random.randint(1, i - 1) # inclusive normalized_shape = shape[-normalized_ndim:] unnormalized_shape = shape[:-normalized_ndim] # test that LN normalizes to mean 0 and stddev 1 ln = nn.LayerNorm(normalized_shape, eps=0).to(device, dtype) ln.weight.data.fill_(1) ln.bias.data.fill_(0) output = ln(x) out_reshaped = output.view(*(unnormalized_shape + [-1])) mean = out_reshaped.mean(-1) var = out_reshaped.var(-1, unbiased=False) delta = 1e-1 if dtype == torch.bfloat16 else 1e-5 self.assertEqual(torch.abs(mean.data).mean(), 0, atol=delta, rtol=0) self.assertEqual(torch.abs(var.data).mean(), 1, atol=delta, rtol=0) # test that LN applies weight and bias correctly scale, bias = torch.empty(2).uniform_(0.2, 2).tolist() ln.weight.data.fill_(scale) ln.bias.data.fill_(bias) output = ln(x) out_reshaped = output.view(*(unnormalized_shape + [-1])) mean = out_reshaped.mean(-1) var = out_reshaped.var(-1, unbiased=False) self.assertEqual(torch.abs(mean.data).mean(), bias, atol=delta, rtol=0) self.assertEqual(torch.abs(var.data).mean(), scale ** 2, atol=delta, rtol=0) bad_norm_shape_input_shape = { (): (), (2, 3): (3,), (2,): (1, 2, 3), (10,): (2, 3), 10: (2, 3), } for norm_shape, input_shape in bad_norm_shape_input_shape.items(): ln = nn.LayerNorm(norm_shape) input = torch.empty(input_shape, device=device, dtype=dtype).uniform_(0, 10) self.assertRaises(RuntimeError, lambda: ln(input)) def _test_LayerNorm_cuda_half(self, device): input = torch.empty(2, 3, 3, 2, device=device, dtype=torch.half).random_(1, 10).requires_grad_(True) m = nn.LayerNorm([3, 2]).to(device, torch.half) output = m(input) output.sum().backward() self.assertEqualTypeString(output, input) def _test_GroupNorm_general(self, device, dtype=torch.float): good_shape_g = { (1, 2, 3, 4): 2, (2, 3, 10): 3, (3, 1, 1, 1, 2): 1, (2, 6, 4, 2, 2): 3, (1, 256, 1, 1): 32, } for shape_g, grad in product(good_shape_g.items(), [True, False]): shape, g = shape_g x = torch.empty(*shape, device=device, dtype=dtype).uniform_(0, 10) x.requires_grad_(grad) b = shape[0] c = shape[1] # test that GN normalizes to mean 0 and stddev 1 gn = nn.GroupNorm(g, c, eps=0).to(device, dtype) gn.weight.data.fill_(1) gn.bias.data.fill_(0) output = gn(x) out_reshaped = output.view(b, g, -1) mean = out_reshaped.mean(-1) var = out_reshaped.var(-1, unbiased=False) # TODO: fix numerical issue. See #44863 self.assertEqual(torch.abs(mean).mean(), 0, atol=1e-3, rtol=1e-3) self.assertEqual(torch.abs(var).mean(), 1, atol=1e-3, rtol=1e-3) output.backward(torch.randn_like(output)) if output.is_cuda: torch.cuda.synchronize() # test that GN applies weight and bias correctly scale = torch.empty(c, device=device, dtype=dtype).uniform_(0.2, 2) bias = torch.empty(c, device=device, dtype=dtype).uniform_(0.2, 2) gn.weight.data.copy_(scale) gn.bias.data.copy_(bias) output = gn(x) out_reshaped = output.view(b, c, -1) out_normed = (out_reshaped - bias.view(c, 1)) / scale.view(c, 1) out_normed_reshaped = out_normed.view(b, g, -1) mean = out_normed_reshaped.mean(-1) var = out_normed_reshaped.var(-1, unbiased=False) # TODO: fix numerical issue. See #44863 self.assertEqual(torch.abs(mean).mean(), 0, atol=1e-3, rtol=1e-3) self.assertEqual(torch.abs(var).mean(), 1, atol=1e-3, rtol=1e-3) bad_shape_g = { (1, 2, 3, 4): 3, (2, 3, 10): 2, (3, 1, 1, 1, 2): 10, (2, 6, 4, 2, 2): 4, } for shape, g in bad_shape_g.items(): gn = nn.GroupNorm(g, shape[1]) input = torch.empty(*shape, device=device, dtype=dtype).uniform_(0, 10) self.assertRaises(RuntimeError, lambda: gn(input)) def _test_GroupNorm_cuda_half(self): input = torch.zeros(2, 4, 3, 2, requires_grad=True).cuda().half().random_(1, 10) m = nn.GroupNorm(2, 4).to("cuda", torch.half) output = m(input) output.sum().backward() self.assertEqualTypeString(output, input) def _test_module_empty_input(self, module, inp, check_size=True): inp.requires_grad_(True) out = module(inp) gO = torch.rand_like(out) out.backward(gO) if check_size: self.assertEqual(out.size(), inp.size()) for p in module.parameters(): if p.requires_grad: self.assertEqual(p.grad, torch.zeros_like(p.grad)) self.assertEqual(inp.grad, torch.zeros_like(inp)) def _test_module_empty_inputs(self, module, inputs): for _inp in inputs: _inp.requires_grad_(True) out = module(*inputs) gO = torch.rand_like(out) out.backward(gO) for p in module.parameters(): if p.requires_grad: self.assertEqual(p.grad, torch.zeros_like(p.grad)) for _inp in inputs: self.assertEqual(_inp.grad, torch.zeros_like(_inp)) @unittest.skipIf((not TEST_NUMPY) or (not TEST_SCIPY) or (scipy.__version__ < '1.0.0'), "Scipy v1.0 and/or numpy not found") @tf32_on_and_off() def test_affine_2d_rotate0(self, device): # scipy before 1.0.0 do not support homogeneous coordinate # scipy.ndimage.affine_transform, so we need to skip. input_size = [1, 1, 3, 3] input_ary = np.array(np.random.random(input_size), dtype=np.float32) output_size = [1, 1, 5, 5] angle_rad = 0. transform_tensor, transform_ary, offset = \ _buildEquivalentAffineTransforms2d(device, input_size, output_size, angle_rad) scipy_ary = torch.from_numpy(scipy.ndimage.affine_transform( input_ary[0, 0], transform_ary, offset=offset, output_shape=output_size[2:], order=1, mode='nearest', prefilter=False)) affine_tensor = torch.nn.functional.affine_grid( transform_tensor, torch.Size(output_size), align_corners=True ) gridsample_ary = torch.nn.functional.grid_sample( torch.tensor(input_ary, device=device).to(device), affine_tensor, padding_mode='border', align_corners=True ).to('cpu') self.assertEqual(scipy_ary.mean(), gridsample_ary.mean()) self.assertEqual(scipy_ary, gridsample_ary.reshape_as(scipy_ary)) @unittest.skipIf((not TEST_NUMPY) or (not TEST_SCIPY) or (scipy.__version__ < '1.0.0'), "Scipy v1.0 and/or numpy not found") @tf32_on_and_off(0.001) def test_affine_2d_rotate90(self, device): # scipy before 1.0.0 do not support homogeneous coordinate # scipy.ndimage.affine_transform, so we need to skip. for input_size2dsq, output_size2dsq in \ itertools.product(input_size2dsq_(), output_size2dsq_()): input_size = input_size2dsq input_ary = np.array(np.random.random(input_size), dtype=np.float32) output_size = output_size2dsq angle_rad = 0.25 * math.pi * 2 transform_tensor, transform_ary, offset = \ _buildEquivalentAffineTransforms2d(device, input_size, output_size, angle_rad) scipy_ary = torch.from_numpy(scipy.ndimage.affine_transform( input_ary[0, 0], transform_ary, offset=offset, output_shape=output_size[2:], order=1, mode='nearest', prefilter=True)) if input_size2dsq == output_size2dsq: self.assertEqual(scipy_ary.mean(), input_ary.mean()) self.assertEqual(scipy_ary[0, 0], input_ary[0, 0, 0, -1]) self.assertEqual(scipy_ary[0, -1], input_ary[0, 0, -1, -1]) self.assertEqual(scipy_ary[-1, -1], input_ary[0, 0, -1, 0]) self.assertEqual(scipy_ary[-1, 0], input_ary[0, 0, 0, 0]) affine_tensor = torch.nn.functional.affine_grid( transform_tensor, torch.Size(output_size), align_corners=True ) gridsample_ary = torch.nn.functional.grid_sample( torch.tensor(input_ary, device=device).to(device), affine_tensor, padding_mode='border', align_corners=True ).to('cpu') self.assertEqual(scipy_ary.mean(), gridsample_ary.mean()) self.assertEqual(scipy_ary, gridsample_ary.reshape_as(scipy_ary)) @unittest.skipIf((not TEST_NUMPY) or (not TEST_SCIPY) or (scipy.__version__ < '1.0.0'), "Scipy v1.0 and/or numpy not found") @tf32_on_and_off(0.005) def test_affine_2d_rotate45(self, device): # scipy before 1.0.0 do not support homogeneous coordinate # scipy.ndimage.affine_transform, so we need to skip. input_size = [1, 1, 3, 3] input_ary = np.array(np.zeros(input_size), dtype=np.float32) input_ary[0, 0, 0, :] = 0.5 input_ary[0, 0, 2, 2] = 1.0 output_size = [1, 1, 3, 3] angle_rad = 0.125 * math.pi * 2 transform_tensor, transform_ary, offset = \ _buildEquivalentAffineTransforms2d(device, input_size, output_size, angle_rad) scipy_ary = torch.from_numpy(scipy.ndimage.affine_transform( input_ary[0, 0], transform_ary, offset=offset, output_shape=output_size[2:], order=1, mode='nearest', prefilter=False)) affine_tensor = torch.nn.functional.affine_grid( transform_tensor, torch.Size(output_size), align_corners=True ) gridsample_ary = torch.nn.functional.grid_sample( torch.tensor(input_ary, device=device).to(device), affine_tensor, padding_mode='border', align_corners=True ).to('cpu') self.assertEqual(scipy_ary, gridsample_ary.reshape_as(scipy_ary)) @unittest.skipIf((not TEST_NUMPY) or (not TEST_SCIPY) or (scipy.__version__ < '1.0.0'), "Scipy v1.0 and/or numpy not found") @tf32_on_and_off(0.005) def test_affine_2d_rotateRandom(self, device): # scipy before 1.0.0 do not support homogeneous coordinate # scipy.ndimage.affine_transform, so we need to skip. for angle_rad, input_size2d, output_size2d in \ itertools.product(angle_rad_(), input_size2d_(), output_size2d_()): input_size = input_size2d input_ary = np.array(np.random.random(input_size), dtype=np.float32).round(3) output_size = output_size2d input_ary[0, 0, 0, 0] = 2 input_ary[0, 0, 0, -1] = 4 input_ary[0, 0, -1, 0] = 6 input_ary[0, 0, -1, -1] = 8 transform_tensor, transform_ary, grid_ary = \ _buildEquivalentAffineTransforms2d(device, input_size, output_size, angle_rad) scipy_ary = torch.from_numpy(scipy.ndimage.affine_transform( input_ary[0, 0], transform_ary, output_shape=output_size[2:], order=1, mode='nearest', prefilter=False)) affine_tensor = torch.nn.functional.affine_grid( transform_tensor, torch.Size(output_size), align_corners=True ) gridsample_ary = torch.nn.functional.grid_sample( torch.tensor(input_ary, device=device).to(device), affine_tensor, padding_mode='border', align_corners=True ).to('cpu') affine_tensor = affine_tensor.to('cpu') for r in range(affine_tensor.size(1)): for c in range(affine_tensor.size(2)): grid_out = np.dot(grid_ary, [r, c, 1]) self.assertEqual(affine_tensor[0, r, c], grid_out[:2], exact_dtype=False) self.assertEqual(scipy_ary, gridsample_ary.reshape_as(scipy_ary)) @unittest.skipIf((not TEST_NUMPY) or (not TEST_SCIPY) or (scipy.__version__ < '1.0.0'), "Scipy v1.0 and/or numpy not found") @tf32_on_and_off(0.005) def test_affine_3d_rotateRandom(self, device): # scipy before 1.0.0 do not support homogeneous coordinate # scipy.ndimage.affine_transform, so we need to skip. for angle_rad, axis_vector, input_size3d, output_size3d in \ itertools.product(angle_rad_(), axis_vector_(), input_size3d_(), output_size3d_()): input_size = input_size3d input_ary = np.array(np.random.random(input_size), dtype=np.float32) output_size = output_size3d input_ary[0, 0, 0, 0, 0] = 2 input_ary[0, 0, 0, 0, -1] = 3 input_ary[0, 0, 0, -1, 0] = 4 input_ary[0, 0, 0, -1, -1] = 5 input_ary[0, 0, -1, 0, 0] = 6 input_ary[0, 0, -1, 0, -1] = 7 input_ary[0, 0, -1, -1, 0] = 8 input_ary[0, 0, -1, -1, -1] = 9 transform_tensor, transform_ary, grid_ary = \ _buildEquivalentAffineTransforms3d(device, input_size, output_size, angle_rad, axis_vector) scipy_ary = torch.from_numpy(scipy.ndimage.affine_transform( input_ary[0, 0], transform_ary, output_shape=output_size[2:], order=1, mode='nearest', prefilter=False)) affine_tensor = torch.nn.functional.affine_grid( transform_tensor, torch.Size(output_size), align_corners=True ) gridsample_ary = torch.nn.functional.grid_sample( torch.tensor(input_ary, device=device).to(device), affine_tensor, padding_mode='border', align_corners=True ).to('cpu') affine_tensor = affine_tensor.to('cpu') for i in range(affine_tensor.size(1)): for r in range(affine_tensor.size(2)): for c in range(affine_tensor.size(3)): grid_out = np.dot(grid_ary, [i, r, c, 1]) self.assertEqual(affine_tensor[0, i, r, c], grid_out[:3], exact_dtype=False) self.assertEqual(scipy_ary, gridsample_ary.reshape_as(scipy_ary)) @onlyCUDA @skipCUDAIfNoCudnn @dtypes(*get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM)) def test_Conv2d_deterministic_cudnn(self, device, dtype): inputs = torch.randn(2, 3, 5, 5, device=device, dtype=dtype, requires_grad=True) with cudnn.flags(enabled=True, benchmark=True, deterministic=True): conv1 = torch.nn.Conv2d(3, 3, 3).to(device, dtype) conv2 = torch.nn.Conv2d(3, 3, 3).to(device, dtype) conv2.bias.data.copy_(conv1.bias.data) conv2.weight.data.copy_(conv1.weight.data) out1 = conv1(inputs) out2 = conv2(inputs) self.assertEqual(out1, out2, atol=0.0, rtol=0) y = torch.randn(out1.size(), device=device, dtype=dtype) out1.backward(y) out2.backward(y) self.assertEqual(conv1.bias.grad.data, conv2.bias.grad.data, atol=0.0, rtol=0) self.assertEqual(conv1.weight.grad.data, conv2.weight.grad.data, atol=0.0, rtol=0) @onlyCUDA @dtypes(*get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM)) def test_Conv2d_large_workspace(self, device, dtype): # These sizes require huge cuDNN workspaces. Make sure we choose a # reasonable algorithm that does not run out of memory sizes = [ (1, 256, 109, 175), (1, 256, 80, 128), (1, 256, 120, 192), ] def run_test(benchmark): with torch.backends.cudnn.flags(benchmark=benchmark): conv = torch.nn.Conv2d(256, 256, kernel_size=3, padding=1).to(device, dtype) for size in sizes: x = torch.randn(size, device=device, dtype=dtype) out = conv(x.detach().clone().requires_grad_()) out.backward(torch.ones_like(out)) run_test(benchmark=False) run_test(benchmark=True) @onlyCUDA @dtypes(torch.half, torch.float) def test_ConvTranspose2d_large_output_padding(self, device, dtype): net1 = torch.nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)\ .to(device=device, dtype=dtype) net2 = torch.nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1)\ .to(device=device, dtype=dtype) net3 = torch.nn.ConvTranspose2d(32, 3, kernel_size=3, stride=2, padding=1, output_padding=1)\ .to(device=device, dtype=dtype) x = torch.rand(1, 128, 6, 6, device=device, dtype=dtype, requires_grad=True) x = net1(x) x = net2(x) x = net3(x) x.backward(torch.randn_like(x)) torch.cuda.synchronize() @onlyCUDA @tf32_on_and_off(0.01) @dtypes(torch.float, torch.double, torch.half) # Very similar to test_Conv2d_naive_groups but with special care to handle # the number of groups == number of input channels def test_Conv2d_depthwise_naive_groups(self, device, dtype): for depth_multiplier in [1, 2]: m = nn.Conv2d(2, 2 * depth_multiplier, kernel_size=3, groups=2).to(device, dtype) i = torch.randn(2, 2, 6, 6, device="cuda", dtype=dtype).div_(2).requires_grad_() output = m(i) grad_output = torch.randn(2, 2 * depth_multiplier, 4, 4, device=device, dtype=dtype) / 2 output.backward(grad_output) offset = 1 * depth_multiplier m1 = nn.Conv2d(1, 1 * depth_multiplier, kernel_size=3).to(device, dtype) m1.weight.data = m.weight.data[:offset].clone() m1.bias.data = m.bias.data[:offset].clone() i1 = i.detach()[:, :1].clone().requires_grad_() output1 = m1(i1) output1.backward(grad_output[:, :offset].contiguous()) m2 = nn.Conv2d(1, 1 * depth_multiplier, kernel_size=3).to(device, dtype) m2.weight.data.copy_(m.weight.data[offset:]) m2.bias.data.copy_(m.bias.data[offset:]) i2 = i.detach()[:, 1:].clone().requires_grad_() output2 = m2(i2) output2.backward(grad_output[:, offset:].contiguous()) self.assertEqual(output, torch.cat([output1, output2], 1), atol=dtype2prec_DONTUSE[dtype], rtol=0) self.assertEqual(i.grad.data, torch.cat([i1.grad.data, i2.grad.data], 1), atol=dtype2prec_DONTUSE[dtype], rtol=0) self.assertEqual(m.bias.grad.data, torch.cat([m1.bias.grad.data, m2.bias.grad.data], 0), atol=dtype2prec_DONTUSE[dtype], rtol=0) self.assertEqual(m.weight.grad.data, torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0), atol=dtype2prec_DONTUSE[dtype], rtol=0) @onlyCUDA @dtypes(torch.float, torch.double, torch.half) @tf32_on_and_off(0.005) def test_Conv3d_depthwise_naive_groups(self, device, dtype): for depth_multiplier in [1, 2]: m = nn.Conv3d(2, 2 * depth_multiplier, kernel_size=3, groups=2).to(device, dtype) i = torch.randn(2, 2, 6, 6, 6, device="cuda", dtype=dtype).div_(2).requires_grad_() output = m(i) grad_output = torch.randn(2, 2 * depth_multiplier, 4, 4, 4, device=device, dtype=dtype) / 2 output.backward(grad_output) offset = 1 * depth_multiplier m1 = nn.Conv3d(1, 1 * depth_multiplier, kernel_size=3).to(device, dtype) m1.weight.data = m.weight.data[:offset].clone() m1.bias.data = m.bias.data[:offset].clone() i1 = i.detach()[:, :1].clone().requires_grad_() output1 = m1(i1) output1.backward(grad_output[:, :offset].contiguous()) m2 = nn.Conv3d(1, 1 * depth_multiplier, kernel_size=3).to(device, dtype) m2.weight.data.copy_(m.weight.data[offset:]) m2.bias.data.copy_(m.bias.data[offset:]) i2 = i.detach()[:, 1:].clone().requires_grad_() output2 = m2(i2) output2.backward(grad_output[:, offset:].contiguous()) self.assertEqual(output, torch.cat([output1, output2], 1), atol=dtype2prec_DONTUSE[dtype], rtol=0) self.assertEqual(i.grad.data, torch.cat([i1.grad.data, i2.grad.data], 1), atol=dtype2prec_DONTUSE[dtype], rtol=0) self.assertEqual(m.bias.grad.data, torch.cat([m1.bias.grad.data, m2.bias.grad.data], 0), atol=dtype2prec_DONTUSE[dtype], rtol=0) self.assertEqual(m.weight.grad.data, torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0), atol=dtype2prec_DONTUSE[dtype], rtol=0) @onlyCUDA @dtypes(*get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM)) def test_noncontig_conv_grad(self, device, dtype): # FIXME: remove after adding non-contiguous grad tests for all modules module = nn.Conv2d(3, 5, kernel_size=3, padding=1).to(device, dtype) input = torch.randn(2, 3, 10, 10, dtype=dtype, device=device, requires_grad=True) output = module(input) grad = torch.randn(2, 2, 5, 10, 10, dtype=dtype, device=device)[:, 1] assert not grad.is_contiguous() output.backward(grad, retain_graph=True) self.assertIsNotNone(input.grad) result = input.grad.data.clone() input.grad.data.zero_() output.backward(grad.contiguous()) self.assertEqual(result, input.grad.data, atol=dtype2prec_DONTUSE[dtype], rtol=0) @onlyCUDA @dtypes(torch.float, torch.half) def test_batchnorm_large_batch(self, device, dtype): bn = nn.BatchNorm2d(1).to(device, dtype) data = torch.rand(880801, 1, 1, 1, device=device, dtype=dtype) out = bn(data).sum().backward() @onlyCUDA @dtypes(torch.double) def test_conv_double_backward(self, device, dtype): with torch.backends.cudnn.flags(deterministic=True): # Double backward only runs with DoubleTensor due to precision reason batch_size = 1 for kern, inp_size, dilations in [(3, 5, [1, 2]), (4, 9, [1])]: for stride, padding, chan_in, chan_out, dilation in product([1], [2], [2], [3], dilations): no_weight = stride == 2 result = self.run_conv_double_back_test(kern, stride, padding, chan_in, chan_out, batch_size, inp_size, dilation, no_weight, use_cuda=True, dtype=dtype) self.assertTrue(result, "Conv double backward test failed with parameters:" + "\nkern: " + str(kern) + "\nstride: " + str(stride) + "\npadding: " + str(padding) + "\nchan_in: " + str(chan_in) + "\nchan_out: " + str(chan_out) + "\nbatch_size: " + str(batch_size) + "\ninp_size: " + str(inp_size) + "\ndilation: " + str(dilation)) def test_conv_double_backward_no_bias(self): kern = 3 stride = 2 chan_in, chan_out = 2, 4 batch_size = 2 inp_size = 5 padding = 1 dilation = 1 no_weight = False use_bias = True result = self.run_conv_double_back_test(kern, stride, padding, chan_in, chan_out, batch_size, inp_size, dilation, no_weight, use_bias=use_bias) self.assertTrue(result, "Conv double backward test failed with parameters:" + "\nkern: " + str(kern) + "\nstride: " + str(stride) + "\npadding: " + str(padding) + "\nchan_in: " + str(chan_in) + "\nchan_out: " + str(chan_out) + "\nbatch_size: " + str(batch_size) + "\ninp_size: " + str(inp_size) + "\ndilation: " + str(dilation)) def test_conv_double_backward_groups(self): kern = 3 stride = 1 padding = 2 chan_in, chan_out = 2, 4 batch_size = 2 inp_size = 6 dilation = 1 no_weight = False groups = 2 result = self.run_conv_double_back_test(kern, stride, padding, chan_in * groups, chan_out * groups, batch_size, inp_size, dilation, no_weight, groups=groups) self.assertTrue(result, "Conv double backward test failed with parameters:" + "\nkern: " + str(kern) + "\nstride: " + str(stride) + "\npadding: " + str(padding) + "\nchan_in: " + str(chan_in) + "\nchan_out: " + str(chan_out) + "\nbatch_size: " + str(batch_size) + "\ninp_size: " + str(inp_size) + "\ndilation: " + str(dilation) + "\ngroups: " + str(groups)) def test_conv_double_backward_stride(self): batch_size = 2 # Cannot provide ggW when stride is > 1 for kern, inp_size, dilations in [(3, 5, [1, 2]), (3, 7, [1])]: for stride, padding, chan_in, chan_out, dilation in product([2], [0, 1], [1], [2], dilations): no_weight = False self.run_conv_double_back_test(kern, stride, padding, chan_in, chan_out, batch_size, inp_size, dilation, no_weight) def test_conv1d_same_padding(self, device): # Test padding='same' outputs the correct shape test_args = [ # in_size range(50, 55), # kernel_size [1, 2, 3, 8], # dilation range(1, 4), # stride [1], ] for in_size, k_size, dilation, stride in itertools.product(*test_args): x = torch.rand(1, 1, in_size, device=device) y = torch.rand(1, 1, k_size, device=device) z = F.conv1d(x, y, padding='same', dilation=dilation, stride=stride) self.assertEqual(z.size(2), int(math.ceil(in_size / stride))) # Compare F.conv1d padding='same' output against manual padding # Without strides/dilation x = torch.rand(1, 1, 12, device=device) y = torch.rand(1, 1, 3, device=device) expect = F.conv1d(x, y, padding=1) actual = F.conv1d(x, y, padding='same') self.assertEqual(expect, actual) # With dilation x = torch.rand(1, 1, 12, device=device) y = torch.rand(1, 1, 4, device=device) expect = F.conv1d(x, y, padding=3, dilation=2) actual = F.conv1d(x, y, padding='same', dilation=2) self.assertEqual(expect, actual) # Dilation with asymmetric padding expect = F.conv1d(x, y, padding=5, dilation=3)[..., 1:] actual = F.conv1d(x, y, padding='same', dilation=3) self.assertEqual(expect, actual) def test_conv2d_same_padding(self, device): # Compare F.conv2d padding='same' output against manual padding # Without strides/dilation x = torch.rand(1, 1, 10, 11, device=device) y = torch.rand(1, 1, 4, 5, device=device) expect = F.conv2d(x, y, padding=(2, 2))[..., 1:, :] actual = F.conv2d(x, y, padding='same') self.assertEqual(expect, actual) # With dilation y = torch.rand(1, 1, 3, 4, device=device) expect = F.conv2d(x, y, padding=(2, 3), dilation=2) actual = F.conv2d(x, y, padding='same', dilation=2) self.assertEqual(expect, actual) # Dilation with asymmetric padding y = torch.rand(1, 1, 4, 4, device=device) expect = F.conv2d(x, y, padding=5, dilation=3)[..., 1:, 1:] actual = F.conv2d(x, y, padding='same', dilation=3) self.assertEqual(expect, actual) def test_conv3d_same_padding(self, device): # Compare F.conv3d padding='same' output against manual padding # Without strides/dilation x = torch.rand(1, 1, 10, 11, 12, device=device) y = torch.rand(1, 1, 1, 2, 5, device=device) expect = F.conv3d(x, y, padding=(0, 1, 2))[..., :, 1:, :] actual = F.conv3d(x, y, padding='same') self.assertEqual(expect, actual) # With dilation expect = F.conv3d(x, y, padding=(0, 1, 4), dilation=2) actual = F.conv3d(x, y, padding='same', dilation=2) self.assertEqual(expect, actual) # Dilation with asymmetric padding y = torch.rand(1, 1, 4, 4, 4, device=device) expect = F.conv3d(x, y, padding=5, dilation=3)[..., 1:, 1:, 1:] actual = F.conv3d(x, y, padding='same', dilation=3) self.assertEqual(expect, actual) def test_conv1d_valid_padding(self, device): # Test F.conv1d padding='valid' is the same as no padding x = torch.rand(1, 1, 10, device=device) y = torch.rand(1, 1, 4, device=device) expect = F.conv1d(x, y) actual = F.conv1d(x, y, padding='valid') self.assertEqual(expect, actual) def test_conv2d_valid_padding(self, device): # Test F.conv2d padding='valid' is the same as no padding x = torch.rand(1, 1, 1, 10, device=device) y = torch.rand(1, 1, 1, 4, device=device) expect = F.conv2d(x, y) actual = F.conv2d(x, y, padding='valid') self.assertEqual(expect, actual) def test_conv3d_valid_padding(self, device): # Test F.conv3d padding='valid' is the same as no padding x = torch.rand(1, 1, 1, 1, 10, device=device) y = torch.rand(1, 1, 1, 1, 4, device=device) expect = F.conv3d(x, y) actual = F.conv3d(x, y, padding='valid') self.assertEqual(expect, actual) def test_conv1d_same_padding_backward(self, device): # Test F.conv1d gradients work with padding='same' x = torch.rand(1, 1, 12, device=device, requires_grad=True) y = torch.rand(1, 1, 4, device=device, requires_grad=True) # Symmetric padding z = F.conv1d(x, y, padding=3, dilation=2) z.sum().backward() gx_expect, gy_expect = x.grad, y.grad x.grad, y.grad = None, None z = F.conv1d(x, y, padding='same', dilation=2) z.sum().backward() self.assertEqual(gx_expect, x.grad) self.assertEqual(gy_expect, y.grad) x.grad, y.grad = None, None # Asymmetric padding z = F.conv1d(x, y, padding=2)[..., 1:] z.sum().backward() gx_expect, gy_expect = x.grad, y.grad x.grad, y.grad = None, None z = F.conv1d(x, y, padding='same') z.sum().backward() self.assertEqual(gx_expect, x.grad) self.assertEqual(gy_expect, y.grad) def test_conv2d_same_padding_backward(self, device): # Test F.conv2d gradients work with padding='same' x = torch.rand(1, 1, 10, 11, device=device, requires_grad=True) y = torch.rand(1, 1, 4, 5, device=device, requires_grad=True) # Symmetric padding z = F.conv2d(x, y, padding=(3, 4), dilation=2) z.sum().backward() gx_expect, gy_expect = x.grad, y.grad x.grad, y.grad = None, None z = F.conv2d(x, y, padding='same', dilation=2) z.sum().backward() self.assertEqual(gx_expect, x.grad) self.assertEqual(gy_expect, y.grad) x.grad, y.grad = None, None # Asymmetric padding y = torch.rand(1, 1, 4, 4, device=device, requires_grad=True) z = F.conv2d(x, y, padding=2)[..., 1:, 1:] z.sum().backward() gx_expect, gy_expect = x.grad, y.grad x.grad, y.grad = None, None z = F.conv2d(x, y, padding='same') z.sum().backward() self.assertEqual(gx_expect, x.grad) self.assertEqual(gy_expect, y.grad) def test_conv3d_same_padding_backward(self, device): check_forward_ad = torch.device(device).type != 'xla' # Test F.conv3d gradients work with padding='same' x = torch.rand(1, 1, 1, 11, 12, device=device, requires_grad=True) y = torch.rand(1, 1, 1, 2, 5, device=device, requires_grad=True) # Symmetric padding z = F.conv3d(x, y, padding=(0, 1, 4), dilation=2) z.sum().backward() gx_expect, gy_expect = x.grad, y.grad x.grad, y.grad = None, None z = F.conv3d(x, y, padding='same', dilation=2) z.sum().backward() self.assertEqual(gx_expect, x.grad) self.assertEqual(gy_expect, y.grad) x.grad, y.grad = None, None gradcheck(lambda x, y: F.conv3d(x, y, padding='same', dilation=2), (x, y), check_forward_ad=check_forward_ad, nondet_tol=1e-5) if torch.device(device).type != 'cuda': # https://github.com/pytorch/pytorch/issues/70702 gradgradcheck(lambda x, y: F.conv3d(x, y, padding='same', dilation=2), (x, y), check_fwd_over_rev=True) # Asymmetric padding y = torch.rand(1, 1, 1, 4, 4, device=device, requires_grad=True) z = F.conv3d(x, y, padding=2)[..., 1:, 1:] z.sum().backward() gx_expect, gy_expect = x.grad, y.grad x.grad, y.grad = None, None z = F.conv3d(x, y, padding='same') z.sum().backward() self.assertEqual(gx_expect, x.grad) self.assertEqual(gy_expect, y.grad) gradcheck(lambda x, y: F.conv3d(x, y, padding='same'), (x, y), check_forward_ad=check_forward_ad, nondet_tol=1e-5) if torch.device(device).type != 'cuda': # https://github.com/pytorch/pytorch/issues/70702 gradgradcheck(lambda x, y: F.conv3d(x, y, padding='same'), (x, y), check_fwd_over_rev=True) def test_conv1d_valid_padding_backward(self, device): # Test F.conv1d gradients work with padding='valid' x = torch.rand(1, 1, 10, device=device, requires_grad=True) y = torch.rand(1, 1, 4, device=device, requires_grad=True) F.conv1d(x, y, padding=0).sum().backward() gx_expect, gy_expect = x.grad, y.grad x.grad, y.grad = None, None F.conv1d(x, y, padding='valid').sum().backward() gx_actual, gy_actual = x.grad, y.grad self.assertEqual(gx_expect, gx_actual) self.assertEqual(gy_expect, gy_actual) def test_conv2d_valid_padding_backward(self, device): # Test F.conv2d gradients work with padding='valid' x = torch.rand(1, 1, 1, 10, device=device, requires_grad=True) y = torch.rand(1, 1, 1, 4, device=device, requires_grad=True) F.conv2d(x, y, padding=0).sum().backward() gx_expect, gy_expect = x.grad, y.grad x.grad, y.grad = None, None F.conv2d(x, y, padding='valid').sum().backward() gx_actual, gy_actual = x.grad, y.grad self.assertEqual(gx_expect, gx_actual) self.assertEqual(gy_expect, gy_actual) def test_conv3d_valid_padding_backward(self, device): check_forward_ad = torch.device(device).type != 'xla' # Test F.conv3d gradients work with padding='valid' x = torch.rand(1, 1, 1, 1, 10, device=device, requires_grad=True) y = torch.rand(1, 1, 1, 1, 4, device=device, requires_grad=True) F.conv3d(x, y, padding=0).sum().backward() gx_expect, gy_expect = x.grad, y.grad x.grad, y.grad = None, None F.conv3d(x, y, padding='valid').sum().backward() gx_actual, gy_actual = x.grad, y.grad self.assertEqual(gx_expect, gx_actual) self.assertEqual(gy_expect, gy_actual) gradcheck(lambda x, y: F.conv3d(x, y, padding='valid'), (x, y), check_forward_ad=check_forward_ad) gradgradcheck(lambda x, y: F.conv3d(x, y, padding='valid'), (x, y), check_fwd_over_rev=check_forward_ad) @skipMeta @parametrize_test("input_shape,transposed,dilated,groups,layout,backend_expected", [ # === slow === subtest(((2, 6, 7), False, False, 3, torch.strided, torch._C._ConvBackend.Slow2d), decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow1d'), subtest(((2, 6, 7), True, False, 3, torch.strided, torch._C._ConvBackend.SlowTranspose2d), decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow1d_transposed'), subtest(((2, 6, 7), False, True, 3, torch.strided, torch._C._ConvBackend.SlowDilated2d), decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow1d_dilated'), subtest(((2, 6, 7), True, True, 3, torch.strided, torch._C._ConvBackend.SlowTranspose2d), decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow1d_dilated_transposed'), subtest(((2, 6, 7, 8), False, False, 3, torch.strided, torch._C._ConvBackend.Slow2d), decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow2d'), subtest(((2, 6, 7, 8), True, False, 3, torch.strided, torch._C._ConvBackend.SlowTranspose2d), decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow2d_transposed'), subtest(((2, 6, 7, 8), False, True, 3, torch.strided, torch._C._ConvBackend.SlowDilated2d), decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow2d_dilated'), subtest(((2, 6, 7, 8), True, True, 3, torch.strided, torch._C._ConvBackend.SlowTranspose2d), decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow2d_dilated_transposed'), subtest(((2, 6, 7, 8, 9), False, False, 3, torch.strided, torch._C._ConvBackend.Slow3d), decorators=[onlyCPU, disableMkldnn], name='slow3d_cpu'), # CUDA doesn't have a slow 3D implementation, so it goes to the dilated 3D implementation instead subtest(((2, 6, 7, 8, 9), False, False, 3, torch.strided, torch._C._ConvBackend.SlowDilated3d), decorators=[onlyCUDA, disablecuDNN], name='slow3d_cuda'), subtest(((2, 6, 7, 8, 9), True, False, 3, torch.strided, torch._C._ConvBackend.SlowTranspose3d), decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow3d_transposed'), subtest(((2, 6, 7, 8, 9), False, True, 3, torch.strided, torch._C._ConvBackend.SlowDilated3d), decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow3d_dilated'), subtest(((2, 6, 7, 8, 9), True, True, 3, torch.strided, torch._C._ConvBackend.SlowTranspose3d), decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow3d_dilated_transposed'), subtest(((0, 6, 7), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_batch1d'), subtest(((2, 0, 7), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_channel1d'), subtest(((0, 0, 7), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_batch_channel1d'), subtest(((0, 6, 7, 8), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_batch2d'), subtest(((2, 0, 7, 8), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_channel2d'), subtest(((0, 0, 7, 8), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_batch_channel2d'), subtest(((0, 6, 7, 8, 9), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_batch3d'), subtest(((2, 0, 7, 8, 9), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_channel3d'), subtest(((0, 0, 7, 8, 9), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_batch_channel3d'), # === cuda === # Note that disablecuDNN disables miopen as well. subtest(((2, 6, 7), False, False, 6, torch.strided, torch._C._ConvBackend.CudaDepthwise2d), decorators=[onlyCUDA, disablecuDNN], name='cuda_depthwise1d'), subtest(((2, 6, 7, 8), False, False, 6, torch.strided, torch._C._ConvBackend.CudaDepthwise2d), decorators=[onlyCUDA, disablecuDNN], name='cuda_depthwise2d'), subtest(((2, 6, 7, 8, 9), False, False, 6, torch.strided, torch._C._ConvBackend.CudaDepthwise3d), decorators=[onlyCUDA, disablecuDNN], name='cuda_depthwise3d'), # === cudnn === subtest(((2, 6, 7), False, False, 3, torch.strided, torch._C._ConvBackend.Cudnn), decorators=[onlyCUDA, skipCUDAIfNoCudnn, skipCUDAIfMiopen], name='cudnn1d'), subtest(((2, 6, 7, 8), False, False, 3, torch.strided, torch._C._ConvBackend.Cudnn), decorators=[onlyCUDA, skipCUDAIfNoCudnn, skipCUDAIfMiopen], name='cudnn2d'), subtest(((2, 6, 7, 8, 9), False, False, 3, torch.strided, torch._C._ConvBackend.Cudnn), decorators=[onlyCUDA, skipCUDAIfNoCudnn, skipCUDAIfMiopen], name='cudnn3d'), subtest(((2, 6, 7), True, False, 3, torch.strided, torch._C._ConvBackend.CudnnTranspose), decorators=[onlyCUDA, skipCUDAIfNoCudnn, skipCUDAIfMiopen], name='cudnn1d_transposed'), subtest(((2, 6, 7, 8), True, False, 3, torch.strided, torch._C._ConvBackend.CudnnTranspose), decorators=[onlyCUDA, skipCUDAIfNoCudnn, skipCUDAIfMiopen], name='cudnn2d_transposed'), subtest(((2, 6, 7, 8, 9), True, False, 3, torch.strided, torch._C._ConvBackend.CudnnTranspose), decorators=[onlyCUDA, skipCUDAIfNoCudnn, skipCUDAIfMiopen], name='cudnn3d_transposed'), # === miopen === subtest(((2, 6, 7), False, False, 3, torch.strided, torch._C._ConvBackend.Miopen), decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen1d'), subtest(((2, 6, 7, 8), False, False, 3, torch.strided, torch._C._ConvBackend.Miopen), decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen2d'), subtest(((2, 6, 7, 8, 9), False, False, 3, torch.strided, torch._C._ConvBackend.Miopen), decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen3d'), subtest(((2, 6, 7), True, False, 3, torch.strided, torch._C._ConvBackend.MiopenTranspose), decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen1d_transposed'), subtest(((2, 6, 7, 8), True, False, 3, torch.strided, torch._C._ConvBackend.MiopenTranspose), decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen2d_transposed'), subtest(((2, 6, 7, 8, 9), True, False, 3, torch.strided, torch._C._ConvBackend.MiopenTranspose), decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen3d_transposed'), subtest(((2, 6, 7), False, False, 6, torch.strided, torch._C._ConvBackend.MiopenDepthwise), decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen_depthwise1d'), subtest(((2, 6, 7, 8), False, False, 6, torch.strided, torch._C._ConvBackend.MiopenDepthwise), decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen_depthwise2d'), subtest(((2, 6, 7, 8, 9), False, False, 6, torch.strided, torch._C._ConvBackend.MiopenDepthwise), decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen_depthwise3d'), # === mkldnn === subtest(((2, 6, 7), False, False, 3, torch._mkldnn, torch._C._ConvBackend.Mkldnn), decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn1d'), subtest(((2, 6, 7, 8), False, False, 3, torch._mkldnn, torch._C._ConvBackend.Mkldnn), decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn2d'), subtest(((2, 6, 7, 8, 9), False, False, 3, torch._mkldnn, torch._C._ConvBackend.Mkldnn), decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn3d'), # Transposed convolution is broken for mkldnn. See https://github.com/pytorch/pytorch/issues/68775. subtest(((2, 6, 7), True, False, 3, torch._mkldnn, torch._C._ConvBackend.Mkldnn), decorators=[onlyCPU, skipCPUIfNoMkldnn, unittest.expectedFailure], name='mkldnn1d_transposed'), subtest(((2, 6, 7, 8), True, False, 3, torch._mkldnn, torch._C._ConvBackend.Mkldnn), decorators=[onlyCPU, skipCPUIfNoMkldnn, unittest.expectedFailure], name='mkldnn2d_transposed'), subtest(((2, 6, 7, 8, 9), True, False, 3, torch._mkldnn, torch._C._ConvBackend.Mkldnn), decorators=[onlyCPU, skipCPUIfNoMkldnn, unittest.expectedFailure], name='mkldnn3d_transposed'), subtest(((2, 6, 7), False, True, 3, torch.strided, torch._C._ConvBackend.Mkldnn), decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn1d_cpu_input'), subtest(((2, 6, 7, 8), False, True, 3, torch.strided, torch._C._ConvBackend.Mkldnn), decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn2d_cpu_input'), subtest(((2, 6, 7, 8, 9), False, True, 3, torch.strided, torch._C._ConvBackend.Mkldnn), decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn3d_cpu_input'), subtest(((0, 6, 7), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_batch1d'), subtest(((2, 0, 7), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_channel1d'), subtest(((0, 0, 7), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_batch_channel1d'), subtest(((0, 6, 7, 8), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_batch2d'), subtest(((2, 0, 7, 8), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_channel2d'), subtest(((0, 0, 7, 8), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_batch_channel2d'), subtest(((0, 6, 7, 8, 9), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_batch3d'), subtest(((2, 0, 7, 8, 9), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_channel3d'), subtest(((0, 0, 7, 8, 9), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_batch_channel3d'), # Note: Tests for mobile backends are not currently supported. This comprises # NnpackSpatial, Winograd3x3Depthwise, and Xnnpack2d backends. Testing these # requires the ability to gate tests by whether PyTorch is built with USE_MOBILE=1. ]) # Test with both bias and no bias. @parametrize_test("has_bias", [False, True]) # Test with both stride=1 and stride>1 cases. @parametrize_test("strided", [False, True]) # Test with both contiguous and non-contiguous inputs. @parametrize_test("contiguous", [False, True]) def test_conv_backend( self, device, input_shape, has_bias, strided, contiguous, transposed, dilated, groups, layout, backend_expected): # Build up inputs. dtype = torch.float32 C_in, C_out, dim, kernel_size = input_shape[1], 12, len(input_shape) - 2, 3 x = torch.randn(*input_shape, device=device, dtype=dtype, requires_grad=True) weight = torch.randn(C_in if transposed else C_out, C_out // groups if transposed else C_in // groups, *[kernel_size for _ in range(dim)], device=device, dtype=dtype, requires_grad=True) bias = torch.randn(C_out, device=device, dtype=dtype, requires_grad=True) if has_bias else None def _make_noncontiguous(inp): if inp is None: return None old_requires_grad = inp.requires_grad inp = torch.repeat_interleave(inp, 2, dim=-1) inp = inp[..., ::2].detach().requires_grad_(old_requires_grad) return inp if not contiguous: x = _make_noncontiguous(x) weight = _make_noncontiguous(weight) bias = _make_noncontiguous(bias) if layout is torch._mkldnn: x = x.to_mkldnn() # Note that weight and bias are not supported as mkldnn tensors during training. stride = (2,) * dim if strided else (1,) * dim padding = (0,) * dim dilation = (2,) * dim if dilated else (1,) * dim output_padding = (0,) * dim inputs = [x, weight, bias, stride, padding, dilation, transposed, output_padding, groups] # Ensure correct backend is selected. backend_actual = torch._C._select_conv_backend(*inputs) self.assertEqual(backend_actual, backend_expected) # Ensure backward call succeeds. convolution = torch.ops.aten.convolution output = convolution(*inputs) grad_output = torch.randn(output.shape, device=device, dtype=dtype) if not contiguous: grad_output = _make_noncontiguous(grad_output) if layout is torch._mkldnn: grad_output = grad_output.to_mkldnn() output.backward(grad_output) # mkldnn doesn't support gradcheck :( if layout is torch._mkldnn: return # Convert to float64 for gradcheck. x = x.to(torch.float64).detach().requires_grad_(True) weight = weight.to(torch.float64).detach().requires_grad_(True) if bias is not None: bias = bias.to(torch.float64).detach().requires_grad_(True) inputs = [x, weight, bias, stride, padding, dilation, transposed, output_padding, groups] # Set some backend-specific validation settings. gradcheck_nondet_tol = 0.0 if torch.backends.cudnn.is_available(): # cuDNN introduces non-determinism gradcheck_nondet_tol = GRADCHECK_NONDET_TOL self.assertTrue(gradcheck(convolution, inputs, nondet_tol=gradcheck_nondet_tol)) # double backward doesn't support bias gradients if bias is not None: bias.requires_grad_(False) self.assertTrue(gradgradcheck(convolution, inputs, nondet_tol=gradcheck_nondet_tol)) def test_Dropout(self, device): input = torch.empty(1000) self._test_dropout(nn.Dropout, device, input) self._test_dropout_discontiguous(nn.Dropout, device) self._test_dropout_discontiguous(nn.Dropout, device, memory_format=torch.channels_last) self._test_dropout_stride_mean_preserve(nn.Dropout, device) if self.device_type == 'cuda' or self.device_type == 'cpu': input = input.bfloat16() self._test_dropout(nn.Dropout, device, input) def _test_dropoutNd_no_batch(self, dropout, input): input_clone = input.clone() with freeze_rng_state(): res_no_batch = dropout(input) with freeze_rng_state(): res_batched = dropout(input_clone.unsqueeze(0)).squeeze(0) self.assertEqual(res_no_batch, res_batched) def _test_dropoutNd_channel_zero(self, dropout, input): # Verify the number of zeros in a channel is 0 or the number of elements in the channel # for a fully positive input tensor shape = input.shape B = shape[0] C = shape[1] channel_numel = torch.tensor(shape[2:]).prod() result = dropout(input) for b, c in product(range(B), range(C)): self.assertTrue(result[b, c].count_nonzero() in (0, channel_numel)) @expectedFailureXLA # seems like freeze_rng_state is not honoured by XLA def test_Dropout2d(self, device): b = random.randint(1, 5) w = random.randint(1, 5) h = random.randint(1, 5) num_features = 1000 input = torch.empty(num_features, b, w, h) self._test_dropout(nn.Dropout2d, device, input) self._test_dropout(nn.Dropout2d, device, input, memory_format=torch.channels_last) self._test_dropout_discontiguous(nn.Dropout2d, device) self._test_dropout_discontiguous(nn.Dropout2d, device, memory_format=torch.channels_last) with self.assertWarnsRegex(UserWarning, "Received a 5-D input to dropout2d"): nn.Dropout2d(p=0.5)(torch.rand(1, 2, 2, 2, 2, device=device)) with self.assertWarnsRegex(UserWarning, "Received a 2-D input to dropout2d"): nn.Dropout2d(p=0.5)(torch.rand(1, 2, device=device)) # no batch dims input = torch.rand(50, 2, 2, device=device) self._test_dropoutNd_no_batch(nn.Dropout2d(p=0.5), input) self._test_dropoutNd_no_batch(nn.Dropout2d(p=0.5, inplace=True), input) # check that complete channels are dropped input = torch.ones(10, 4, 2, 2, device=device) self._test_dropoutNd_channel_zero(nn.Dropout2d(p=0.5), input) self._test_dropoutNd_channel_zero(nn.Dropout2d(p=0.5, inplace=True), input) @expectedFailureXLA # seems like freeze_rng_state is not honoured by XLA def test_Dropout3d(self, device): b = random.randint(1, 5) w = random.randint(1, 5) h = random.randint(1, 5) d = random.randint(1, 2) num_features = 1000 input = torch.empty(num_features, b, d, w, h) self._test_dropout(nn.Dropout3d, device, input) self._test_dropout_discontiguous(nn.Dropout3d, device) self._test_dropout_discontiguous(nn.Dropout3d, device, memory_format=torch.channels_last) with self.assertWarnsRegex(UserWarning, "Received a 6-D input to dropout3d"): nn.Dropout3d(p=0.5)(torch.rand(1, 2, 2, 2, 2, 2, device=device)) with self.assertWarnsRegex(UserWarning, "Received a 3-D input to dropout3d"): nn.Dropout3d(p=0.5)(torch.rand(1, 2, 2, device=device)) # no batch dims input = torch.rand(50, 2, 2, 2, device=device) self._test_dropoutNd_no_batch(nn.Dropout3d(p=0.5), input) self._test_dropoutNd_no_batch(nn.Dropout3d(p=0.5, inplace=True), input) # check that complete channels are dropped input = torch.ones(10, 4, 2, 2, 2, device=device) self._test_dropoutNd_channel_zero(nn.Dropout3d(p=0.5), input) self._test_dropoutNd_channel_zero(nn.Dropout3d(p=0.5, inplace=True), input) def test_InstanceNorm1d_general(self, device): b = random.randint(3, 5) c = random.randint(3, 5) d = random.randint(8, 10) input = torch.rand(b, c, d) self._test_InstanceNorm_general(nn.InstanceNorm1d, input, device) if self.device_type == 'cuda': self._test_InstanceNorm_cuda_half(nn.InstanceNorm1d, input, device) def test_InstanceNorm2d_general(self, device): b = random.randint(3, 5) c = random.randint(3, 5) w = random.randint(3, 6) h = random.randint(6, 8) input = torch.rand(b, c, h, w) self._test_InstanceNorm_general(nn.InstanceNorm2d, input, device) if self.device_type == 'cuda': self._test_InstanceNorm_cuda_half(nn.InstanceNorm2d, input, device) def test_InstanceNorm3d_general(self, device): b = random.randint(3, 5) c = random.randint(3, 5) w = random.randint(2, 5) h = random.randint(2, 5) d = random.randint(2, 5) input = torch.rand(b, c, h, w, d) self._test_InstanceNorm_general(nn.InstanceNorm3d, input, device) if self.device_type == 'cuda': self._test_InstanceNorm_cuda_half(nn.InstanceNorm3d, input, device) def test_instancenorm_raises_error_if_less_than_one_value_per_channel(self, device): x = torch.rand(10)[None, :, None] with self.assertRaises(ValueError): torch.nn.InstanceNorm1d(10)(x).to(device) def test_instancenorm_raises_error_for_single_spatial_element_during_training(self, device): BATCH_SIZE = 10 NUM_CHANNELS = 3 norms = [torch.nn.InstanceNorm1d, torch.nn.InstanceNorm2d, torch.nn.InstanceNorm3d] for i, norm in enumerate(norms): m = norm(NUM_CHANNELS, track_running_stats=True) m.to(device) # Create an appropriately-sized input with a single spatial element. input = torch.randn(BATCH_SIZE, NUM_CHANNELS, *[1 for _ in range(i + 1)], device=device) with self.assertRaises(ValueError): m(input) # Single spatial element should be fine in eval. m.eval() m(input) def test_LayerNorm_general(self, device): self._test_LayerNorm_general(device) if self.device_type == 'cuda' or self.device_type == 'cpu': self._test_LayerNorm_general(device, dtype=torch.bfloat16) if self.device_type == 'cuda': self._test_LayerNorm_cuda_half(device) @onlyNativeDeviceTypes def test_LayerNorm_numeric(self, device): def layer_norm_ref(X, gamma, beta, normalized_shape, eps): feature_size = np.prod(normalized_shape) X_view = X.view(-1, feature_size) mean = X_view.mean(dim=-1, keepdim=True) var = X_view.var(dim=-1, unbiased=False, keepdim=True) Y = (X_view - mean) / torch.sqrt(var + eps) Y = Y * gamma.view(-1) + beta.view(-1) return Y.view(*X.size()) normalized_shape = [256, 256, 144] layer_norm = nn.LayerNorm(normalized_shape).float().to(device) X = torch.rand(2, *normalized_shape, dtype=torch.float32, device=device) Y = layer_norm(X) Y_ref = layer_norm_ref(X, layer_norm.weight.data, layer_norm.bias.data, normalized_shape, layer_norm.eps) self.assertEqual(Y, Y_ref, rtol=0, atol=1e-5) if self.device_type == 'cuda': layer_norm.cpu() Y_cpu = layer_norm(X.cpu()) self.assertEqual(Y_cpu, Y, rtol=0, atol=1e-5) @onlyNativeDeviceTypes def test_GroupNorm_general(self, device): self._test_GroupNorm_general(device) if self.device_type == 'cuda': self._test_GroupNorm_cuda_half() def test_GroupNorm_raises_error_if_one_value_per_group(self, device): x = torch.rand(10)[None, :, None] with self.assertRaises(ValueError): torch.nn.GroupNorm(10, 10)(x).to(device) def test_GroupNorm_empty(self, device): mod = torch.nn.GroupNorm(2, 4).to(device) inp = torch.randn(0, 4, 2, 2, device=device) self._test_module_empty_input(mod, inp) if self.device_type == 'cuda' and self.has_cudnn(): with torch.backends.cudnn.flags(enabled=False): self._test_module_empty_input(mod, inp) @onlyCPU @dtypes(torch.float, torch.double) def test_groupnorm_nhwc(self, device, dtype): def helper(self, size, groups): channels = size[1] input = torch.randn(size, dtype=dtype, device=device, requires_grad=True) input = input.contiguous(memory_format=torch.channels_last) input.retain_grad() grad = torch.randn(size, dtype=dtype, device=device) grad = grad.contiguous(memory_format=torch.channels_last) gn = nn.GroupNorm(groups, channels).to(device).to(dtype) gn.weight.data.uniform_() gn.bias.data.uniform_() ref_input = input.detach().clone().contiguous().requires_grad_(True) ref_grad = grad.detach().clone().contiguous() ref_gn = nn.GroupNorm(groups, channels).to(device).to(dtype) ref_gn.load_state_dict(gn.state_dict()) out = gn(input) out.backward(grad) ref_out = ref_gn(ref_input) ref_out.backward(ref_grad) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(ref_out.is_contiguous()) self.assertEqual(out, ref_out) self.assertEqual(gn.weight.grad, ref_gn.weight.grad) self.assertEqual(gn.bias.grad, ref_gn.bias.grad) self.assertEqual(input.grad, ref_input.grad) helper(self, (4, 8, 10, 10), 4) helper(self, (2, 30, 9, 9), 3) @onlyNativeDeviceTypes def test_GroupNorm_numeric(self, device): def group_norm_ref(X, gamma, beta, groups, channels, eps): batch_size = X.size()[0] X_view = X.view(batch_size, groups, -1) mean = X_view.mean(dim=-1, keepdim=True) var = X_view.var(dim=-1, unbiased=False, keepdim=True) Y = ((X_view - mean) / torch.sqrt(var + eps)).view( batch_size, channels, -1) Y = Y * gamma.view(channels, 1) + beta.view(channels, 1) return Y.view(*X.size()) batch_size = 1 groups = 2 channels = 8 group_norm = nn.GroupNorm(groups, channels).float().to(device) X = torch.rand(batch_size, channels, 256, 256, 72, dtype=torch.float32, device=device) Y = group_norm(X) Y_ref = group_norm_ref( X, group_norm.weight.data, group_norm.bias.data, groups, channels, group_norm.eps) self.assertEqual(Y, Y_ref, rtol=0, atol=1e-5) if self.device_type == 'cuda': group_norm.cpu() Y_cpu = group_norm(X.cpu()) self.assertEqual(Y_cpu, Y, rtol=0, atol=1e-5) @onlyNativeDeviceTypes @dtypes(torch.float64, torch.complex128) def test_pad(self, device, dtype): # Assert assertion errors are raised for invalid circular padding values inputs = torch.randn(1, 1, 4, device=device, dtype=dtype, requires_grad=True) # Should raise error when trying to wrap around more than once self.assertRaises(AssertionError, lambda: F.pad(inputs, (5, 4), mode='circular')) self.assertRaises(AssertionError, lambda: F.pad(inputs, (3, 6), mode='circular')) # Should raise error when negative padding results in negative output shape self.assertRaises(AssertionError, lambda: F.pad(inputs, (-3, -2), mode='circular')) # assert that relfection padding errors when pad >= input size expected_err_msg = r"Padding size should be less than the corresponding input dimension" inputs = torch.randn(1, 1, 2, 3, device=device, dtype=dtype) self.assertRaisesRegex(RuntimeError, expected_err_msg, lambda: F.pad(inputs, (1, 1, 3, 0), mode='reflect')) inputs = torch.randn(1, 1, 2, device=device, dtype=dtype) self.assertRaisesRegex(RuntimeError, expected_err_msg, lambda: F.pad(inputs, (2, 1), mode='reflect')) inputs = torch.rand(1, 3, 4, 4, device=device, dtype=dtype) # assert that pad doesn't return a view into the input tensor for mode in 'constant', 'reflect', 'replicate', 'circular': out = F.pad(inputs, (0, 0, 0, 0), mode=mode) out.fill_(4) self.assertTrue(torch.all(torch.abs(inputs) < 2)) out = F.pad(inputs, (0, 0, -1, -1), mode=mode) out.fill_(4) self.assertTrue(torch.all(torch.abs(inputs) < 2)) @onlyNativeDeviceTypes @dtypes(torch.float64, torch.complex128) def test_ReplicationPad_empty(self, device, dtype): for mod, inp in [ (torch.nn.ReplicationPad1d(3), torch.randn(0, 3, 10, device=device, dtype=dtype)), (torch.nn.ReplicationPad2d(3), torch.randn(0, 3, 10, 10, device=device, dtype=dtype)), (torch.nn.ReplicationPad3d(3), torch.randn(0, 3, 10, 10, 10, device=device, dtype=dtype))]: self._test_module_empty_input(mod, inp, check_size=False) with self.assertRaisesRegex(RuntimeError, 'Expected 2D or 3D'): mod = torch.nn.ReplicationPad1d(2) inp = torch.randn(3, 0, 10, device=device, dtype=dtype) mod(inp) with self.assertRaisesRegex(RuntimeError, 'Expected 3D or 4D'): mod = torch.nn.ReplicationPad2d((2, 2, 2, 2)) inp = torch.randn(43, 0, 10, 10, device=device, dtype=dtype) mod(inp) with self.assertRaisesRegex(RuntimeError, 'Expected 4D or 5D'): mod = torch.nn.ReplicationPad3d((2, 2, 2, 2, 2, 2)) inp = torch.randn(3, 0, 10, 10, 10, device=device, dtype=dtype) mod(inp) def test_ReplicationPad1d_large(self, device): shapes = ([2, 65736, 4], [65736, 2, 4]) pl, pr = 3, 4 for shape in shapes: x = torch.randn(shape, device=device, requires_grad=True) model = torch.nn.ReplicationPad1d((pl, pr)) # forward out = model(x) self.assertEqual(out[:, :, pl : -pr], x) left_padding = out[:, :, : pl] self.assertEqual(left_padding, x[:, :, :1].expand_as(left_padding)) right_padding = out[:, :, -pr :] self.assertEqual(right_padding, x[:, :, -1:].expand_as(right_padding)) # backward g = torch.randn_like(out) out.backward(g) self.assertEqual(x.grad[:, :, 1 : -1], g[:, :, pl + 1 : -pr - 1]) self.assertEqual(x.grad[:, :, 0], g[:, :, : pl + 1].sum(-1)) self.assertEqual(x.grad[:, :, -1], g[:, :, -pr - 1:].sum(-1)) def test_ReplicationPad2d_large(self, device): shapes = ([2, 65736, 4, 4], [65736, 2, 4, 4]) pl, pr, pt, pb = 3, 4, 5, 6 for shape in shapes: x = torch.randn(shape, device=device, requires_grad=True) model = torch.nn.ReplicationPad2d((pl, pr, pt, pb)) # forward center, edge out = model(x) self.assertEqual(out[:, :, pt : -pb, pl : -pr], x) left_padding = out[:, :, pt : -pb, : pl] self.assertEqual(left_padding, x[:, :, :, :1].expand_as(left_padding)) right_padding = out[:, :, pt : -pb, -pr :] self.assertEqual(right_padding, x[:, :, :, -1:].expand_as(right_padding)) top_padding = out[:, :, : pt, pl : -pr] self.assertEqual(top_padding, x[:, :, :1, :].expand_as(top_padding)) bottom_padding = out[:, :, -pb : , pl : -pr] self.assertEqual(bottom_padding, x[:, :, -1:, :].expand_as(bottom_padding)) # forward corner tl_padding = out[:, :, : pt + 1, : pl + 1] self.assertEqual(tl_padding, x[:, :, :1, :1].expand_as(tl_padding)) tr_padding = out[:, :, : pt + 1, -pr - 1:] self.assertEqual(tr_padding, x[:, :, :1, -1:].expand_as(tr_padding)) bl_padding = out[:, :, -pb - 1:, : pl + 1] self.assertEqual(bl_padding, x[:, :, -1:, :1].expand_as(bl_padding)) br_padding = out[:, :, -pb - 1:, -pr - 1:] self.assertEqual(br_padding, x[:, :, -1:, -1:].expand_as(br_padding)) # backward center, edge g = torch.randn_like(out) out.backward(g) self.assertEqual(x.grad[:, :, 1:-1, 1:-1], g[:, :, pt + 1 : -pb - 1, pl + 1 : -pr - 1]) self.assertEqual(x.grad[:, :, 1:-1, 0], g[:, :, pt + 1 : -pb - 1, : pl + 1].sum(-1)) self.assertEqual(x.grad[:, :, 1:-1, -1], g[:, :, pt + 1 : -pb - 1, -pr - 1 :].sum(-1)) self.assertEqual(x.grad[:, :, 0, 1:-1], g[:, :, : pt + 1, pl + 1 : -pr - 1].sum(-2)) self.assertEqual(x.grad[:, :, -1, 1:-1], g[:, :, -pb - 1 :, pl + 1 : -pr - 1].sum(-2)) # backward corner self.assertEqual(x.grad[:, :, 0, 0], g[:, :, : pt + 1, : pl + 1].sum((-2, -1))) self.assertEqual(x.grad[:, :, 0, -1], g[:, :, : pt + 1, -pr - 1 :].sum((-2, -1))) self.assertEqual(x.grad[:, :, -1, 0], g[:, :, -pb - 1 :, : pl + 1].sum((-2, -1))) self.assertEqual(x.grad[:, :, -1, -1], g[:, :, -pb - 1 :, -pr - 1 :].sum((-2, -1))) @largeTensorTest("6GB") def test_ReplicationPad3d_large(self, device): shapes = ([1, 65736, 2, 2, 2], [65736, 1, 2, 2, 2]) pl, pr, pt, pbt, pf, pbk = 3, 4, 5, 6, 7, 8 for shape in shapes: x = torch.randn(shape, device=device, requires_grad=True) model = torch.nn.ReplicationPad3d((pl, pr, pt, pbt, pf, pbk)) # forward center out = model(x) self.assertEqual(out[:, :, pf : -pbk, pt : -pbt, pl : -pr], x) # backward center g = torch.randn_like(out) out.backward(g) self.assertEqual(x.grad[:, :, 1:-1, 1:-1, 1:-1], g[:, :, pf + 1 : -pbk - 1, pt + 1 : -pbt - 1, pl + 1 : -pr - 1]) @onlyNativeDeviceTypes def test_Bilinear_empty(self, device): mod = torch.nn.Bilinear(20, 30, 40).to(device) inp1 = torch.randn(0, 10, 20, requires_grad=True, device=device) inp2 = torch.randn(0, 10, 30, requires_grad=True, device=device) output = mod(inp1, inp2) output.sum().backward() self.assertEqual(inp1, torch.zeros_like(inp1)) self.assertEqual(inp2, torch.zeros_like(inp2)) self.assertEqual(inp1.grad, torch.zeros_like(inp1)) self.assertEqual(inp2.grad, torch.zeros_like(inp2)) @expectedFailureMeta # RuntimeError: cannot reshape tensor of 0 elements into shape [1, 0, -1] @onlyNativeDeviceTypes def test_TransformerEncoderLayer_empty(self, device): for batch_first, input_shape in [(True, (0, 10, 512)), (False, (10, 0, 512))]: input = torch.rand(*input_shape, device=device) encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=batch_first).to(device) self._test_module_empty_input(encoder_layer, input, check_size=False) @expectedFailureMeta # RuntimeError: cannot reshape tensor of 0 elements into shape [1, 0, -1] @onlyNativeDeviceTypes def test_TransformerEncoder_empty(self, device): for batch_first, input_shape in [(True, (0, 10, 512)), (False, (10, 0, 512))]: input = torch.rand(*input_shape, device=device) encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=batch_first).to(device) transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6).to(device) self._test_module_empty_input(transformer_encoder, input, check_size=False) @expectedFailureMeta # RuntimeError: cannot reshape tensor of 0 elements into shape [1, 0, -1] @onlyNativeDeviceTypes def test_TransformerDecoderLayer_empty(self, device): for batch_first, memory_shape, tgt_shape in [(True, (0, 10, 512), (0, 20, 512)), (False, (10, 0, 512), (20, 0, 512))]: memory = torch.rand(*memory_shape, device=device) tgt = torch.rand(*tgt_shape, requires_grad=True, device=device) decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8, batch_first=batch_first).to(device) self._test_module_empty_inputs(decoder_layer, [tgt, memory]) @expectedFailureMeta # RuntimeError: cannot reshape tensor of 0 elements into shape [1, 0, -1] @onlyNativeDeviceTypes def test_TransformerDecoder_empty(self, device): for batch_first, memory_shape, tgt_shape in [(True, (0, 10, 512), (0, 20, 512)), (False, (10, 0, 512), (20, 0, 512))]: memory = torch.rand(*memory_shape, device=device) tgt = torch.rand(*tgt_shape, requires_grad=True, device=device) decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8, batch_first=batch_first).to(device) transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6).to(device) self._test_module_empty_inputs(transformer_decoder, [tgt, memory]) @expectedFailureMeta # RuntimeError: cannot reshape tensor of 0 elements into shape [1, 0, -1] @onlyNativeDeviceTypes def test_Transformer_empty(self, device): for batch_first, src_shape, tgt_shape in [(True, (10, 0, 512), (20, 0, 512))]: transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12).to(device) src = torch.rand(*src_shape, requires_grad=True, device=device) tgt = torch.rand(*tgt_shape, requires_grad=True, device=device) self._test_module_empty_inputs(transformer_model, [src, tgt]) @onlyNativeDeviceTypes @dtypes(torch.float32, torch.complex64) def test_ReflectionPad_empty(self, device, dtype): for mod, inp in [ (torch.nn.ReflectionPad1d(2), torch.randn(0, 3, 10, device=device, dtype=dtype)), (torch.nn.ReflectionPad2d(2), torch.randn(0, 3, 10, 10, device=device, dtype=dtype)), (torch.nn.ReflectionPad3d(3), torch.randn(0, 3, 10, 10, 10, device=device, dtype=dtype))]: self._test_module_empty_input(mod, inp, check_size=False) with self.assertRaisesRegex(RuntimeError, '2D or 3D'): mod = torch.nn.ReflectionPad1d(2) inp = torch.randn(3, 0, 10, device=device, dtype=dtype) mod(inp) with self.assertRaisesRegex(RuntimeError, '3D or 4D'): mod = torch.nn.ReflectionPad2d(2) inp = torch.randn(3, 0, 10, 10, device=device, dtype=dtype) mod(inp) with self.assertRaisesRegex(RuntimeError, '4D or 5D'): mod = torch.nn.ReflectionPad3d(3) inp = torch.randn(3, 0, 10, 10, 10, device=device, dtype=dtype) mod(inp) @onlyCUDA # Test if CPU and GPU results match def test_ReflectionPad2d_large(self, device): shapes = ([2, 65736, 6, 6], [65736, 2, 6, 6]) pad = (1, 2, 3, 4) for shape in shapes: x = torch.randn(shape, device=device, requires_grad=True) ref_x = x.detach().cpu().requires_grad_() out = F.pad(x, pad, mode='reflect') ref_out = F.pad(ref_x, pad, mode='reflect') self.assertEqual(out, ref_out) g = torch.randn_like(out) ref_g = g.cpu() out.backward(g) ref_out.backward(ref_g) self.assertEqual(x.grad, ref_x.grad) @onlyNativeDeviceTypes def test_LocalResponseNorm_empty(self, device): mod = torch.nn.LocalResponseNorm(2).to(device) inp = torch.ones(0, 5, 24, 24, device=device) self._test_module_empty_input(mod, inp, check_size=False) @onlyCUDA # Test if CPU and GPU results match def test_ReflectionPad3d_large(self, device): shapes = ([2, 1000, 7, 7, 7], [1000, 2, 7, 7, 7]) pad = (1, 2, 3, 4, 5, 6) for shape in shapes: x = torch.randn(shape, device=device, requires_grad=True) ref_x = x.detach().cpu().requires_grad_() out = F.pad(x, pad, mode='reflect') ref_out = F.pad(ref_x, pad, mode='reflect') self.assertEqual(out, ref_out) g = torch.randn_like(out) ref_g = g.cpu() out.backward(g) ref_out.backward(ref_g) self.assertEqual(x.grad, ref_x.grad) @onlyNativeDeviceTypes @dtypes(torch.float, torch.double) def test_MarginLoss_empty(self, device, dtype): for mod, x, y in [ (torch.nn.MultiMarginLoss().to(device), torch.randn(0, 10, requires_grad=True, device=device, dtype=dtype), torch.ones(0, device=device).type(torch.long)), (torch.nn.MultiLabelMarginLoss().to(device), torch.randn(0, 10, requires_grad=True, device=device, dtype=dtype), torch.ones(0, 10, device=device).type(torch.long))]: out = mod(x, y) out.sum().backward() self.assertEqual(x, torch.zeros_like(x)) self.assertEqual(x.grad, torch.zeros_like(x)) with self.assertRaisesRegex(RuntimeError, 'Expected'): x = torch.randn(0, requires_grad=True, device=device, dtype=dtype) y = torch.ones(10, device=device).type(torch.long) mod(x, y) with self.assertRaisesRegex(RuntimeError, 'Expected'): x = torch.randn(10, 0, requires_grad=True, device=device, dtype=dtype) y = torch.ones(10, 0, device=device).type(torch.long) mod(x, y) @onlyNativeDeviceTypes @dtypes(torch.float, torch.double) def test_adaptive_pooling_zero_batch(self, dtype, device): inp = torch.ones(0, 10, dtype=dtype, device=device) mod = torch.nn.AdaptiveAvgPool1d(5).to(device) self._test_module_empty_input(mod, inp, check_size=False) inp = torch.ones(0, 10, 10, dtype=dtype, device=device) mod = torch.nn.AdaptiveAvgPool2d((5, 5)).to(device) self._test_module_empty_input(mod, inp, check_size=False) inp = torch.ones(0, 10, 10, 10, dtype=dtype, device=device) mod = torch.nn.AdaptiveAvgPool3d((5, 5, 5)).to(device) self._test_module_empty_input(mod, inp, check_size=False) @onlyNativeDeviceTypes def test_FractionalMaxPool2d_zero_batch(self, device): mod = nn.FractionalMaxPool2d(3, output_ratio=(0.5, 0.5)) inp = torch.ones(0, 16, 50, 32, device=device) self._test_module_empty_input(mod, inp, check_size=False) with self.assertRaisesRegex(RuntimeError, "Expected input"): inp = torch.randn(1, 0, 50, 32, device=device) mod(inp) @onlyNativeDeviceTypes def test_FractionalMaxPool3d_zero_batch(self, device): mod = nn.FractionalMaxPool3d(3, output_ratio=(0.5, 0.5, 0.5)).to(device) inp = torch.ones(0, 16, 50, 32, 32, device=device) self._test_module_empty_input(mod, inp, check_size=False) with self.assertRaisesRegex(RuntimeError, "Expected input"): inp = torch.randn(1, 0, 50, 32, 32, device=device) mod(inp) @onlyNativeDeviceTypes def test_Unfold_empty(self, device): inp = torch.randn(0, 3, 3, 4, device=device) unfold = torch.nn.Unfold(kernel_size=(2, 3)).to(device) self._test_module_empty_input(unfold, inp, check_size=False) with self.assertRaisesRegex(RuntimeError, 'Expected 3D or 4D'): inp = torch.randn(3, 0, 3, 4, device=device) unfold = torch.nn.Unfold(kernel_size=(2, 3)).to(device) unfold(inp) @onlyNativeDeviceTypes def test_MaxPool_zero_batch_dim(self, device): inp = torch.randn(0, 16, 50, device=device) mod = torch.nn.MaxPool1d(3, stride=2).to(device) self._test_module_empty_input(mod, inp, check_size=False) # 1D is supposed to be okay with 0 numel() inputs so dont test # error raising for that case. inp = torch.randn(0, 16, 50, 32, device=device) mod = torch.nn.MaxPool2d(3, stride=2).to(device) self._test_module_empty_input(mod, inp, check_size=False) with self.assertRaisesRegex(RuntimeError, "Expected"): inp = torch.randn(1, 0, 50, 32, device=device) mod(inp) inp = torch.ones(0, 16, 50, 44, 31, device=device) mod = torch.nn.MaxPool3d(3, stride=2).to(device) self._test_module_empty_input(mod, inp, check_size=False) with self.assertRaisesRegex(RuntimeError, "Expected"): inp = torch.ones(1, 0, 50, 44, 31, device=device) mod(inp) @onlyNativeDeviceTypes def test_MaxUnpool_zero_batch_dim(self, device): pool = torch.nn.MaxPool1d(2, stride=2, return_indices=True).to(device) unpool = torch.nn.MaxUnpool1d(2, stride=2).to(device) inp = torch.randn(0, 10, 10, requires_grad=True, device=device) output, indices = pool(inp) output.requires_grad_(True) unpool_out = unpool(output, indices) unpool_out.sum().backward() self.assertEqual(inp.grad, torch.zeros_like(inp)) self.assertEqual(unpool_out, torch.zeros_like(unpool_out)) pool = torch.nn.MaxPool2d(2, stride=2, return_indices=True).to(device) unpool = torch.nn.MaxUnpool2d(2, stride=2).to(device) inp = torch.randn(0, 10, 10, 10, requires_grad=True, device=device) output, indices = pool(inp) unpool_out = unpool(output, indices) unpool_out.sum().backward() self.assertEqual(inp.grad, torch.zeros_like(inp)) self.assertEqual(unpool_out, torch.zeros_like(unpool_out)) pool = torch.nn.MaxPool3d(2, stride=2, return_indices=True).to(device) unpool = torch.nn.MaxUnpool3d(2, stride=2).to(device) inp = torch.randn(0, 10, 10, 10, 10, requires_grad=True, device=device) output, indices = pool(inp) output.requires_grad_(True) unpool_out = unpool(output, indices) unpool_out.sum().backward() self.assertEqual(inp.grad, torch.zeros_like(inp)) self.assertEqual(unpool_out, torch.zeros_like(unpool_out)) @onlyNativeDeviceTypes def test_AdaptiveMaxPool_zero_batch_dim(self, device): inp = torch.randn(0, 16, 50, device=device) mod = torch.nn.AdaptiveMaxPool1d(3).to(device) self._test_module_empty_input(mod, inp, check_size=False) with self.assertRaisesRegex(RuntimeError, "Expected"): inp = torch.randn(1, 0, 50, device=device) mod(inp) inp = torch.randn(0, 16, 50, 32, device=device) mod = torch.nn.AdaptiveMaxPool2d(3).to(device) self._test_module_empty_input(mod, inp, check_size=False) with self.assertRaisesRegex(RuntimeError, "Expected"): inp = torch.randn(1, 0, 50, 32, device=device) mod(inp) inp = torch.ones(0, 16, 50, 44, 31, device=device) mod = torch.nn.AdaptiveMaxPool3d(3).to(device) self._test_module_empty_input(mod, inp, check_size=False) with self.assertRaisesRegex(RuntimeError, "Expected"): inp = torch.ones(1, 0, 50, 44, 31, device=device) mod(inp) @onlyCUDA @dtypes(torch.float, torch.double) @tf32_on_and_off(0.005) def test_rnn_fused(self, device, dtype): def copy_rnn(rnn1, rnn2): for x_layer, y_layer in zip(rnn1.all_weights, rnn2.all_weights): for x, y in zip(x_layer, y_layer): x.data.copy_(y.data) def check_rnn_grads(rnn1, rnn2): for x_layer, y_layer in zip(rnn1.all_weights, rnn2.all_weights): for x, y in zip(x_layer, y_layer): self.assertEqual(x.grad, y.grad, atol=5e-5, rtol=0) input_size = 10 hidden_size = 6 num_layers = 2 seq_length = 7 batch = 6 input_val = torch.randn(seq_length, batch, input_size, dtype=dtype) grad_output = torch.randn(seq_length, batch, hidden_size, dtype=dtype) hx_val = torch.randn(num_layers, batch, hidden_size, dtype=dtype) grad_hy = torch.randn(num_layers, batch, hidden_size, dtype=dtype) with torch.backends.cudnn.flags(enabled=False, allow_tf32=None): for module in (nn.GRU, nn.LSTM): for bias in (True, False): rnn = module(input_size, hidden_size, num_layers, bias=bias).to(dtype) rnn_device = module(input_size, hidden_size, num_layers, bias=bias).to(device, dtype) copy_rnn(rnn, rnn_device) is_lstm = isinstance(rnn, nn.LSTM) if is_lstm: hx = (hx_val.clone().requires_grad_(True), hx_val.clone().add(1).requires_grad_(True)) hx_device = (hx_val.clone().to(device).requires_grad_(True), hx_val.clone().to(device).add(1).requires_grad_(True)) else: hx = hx_val.clone().requires_grad_(True) hx_device = hx_val.clone().to(device).requires_grad_(True) inp = input_val.clone().requires_grad_(True) inp_cu = input_val.clone().to(device).requires_grad_(True) output1, hy1 = rnn(inp, hx) output2, hy2 = rnn_device(inp_cu, hx_device) if is_lstm: torch.autograd.backward( [output1, hy1[0], hy1[1]], [grad_output, grad_hy, grad_hy + 1] ) torch.autograd.backward( [output2, hy2[0], hy2[1]], [grad_output.to(device), grad_hy.to(device), (grad_hy + 1).to(device)] ) else: torch.autograd.backward([output1, hy1], [grad_output, grad_hy]) torch.autograd.backward([output2, hy2], [grad_output.to(device), grad_hy.to(device)]) self.assertEqual(output1, output2) self.assertEqual(hy1, hy2) check_rnn_grads(rnn, rnn_device) self.assertEqual(inp.grad, inp_cu.grad) if is_lstm: self.assertEqual(hx[0].grad, hx_device[0].grad) self.assertEqual(hx[1].grad, hx_device[1].grad) else: self.assertEqual(hx.grad, hx_device.grad) def test_BatchNorm_empty(self, device): mod = torch.nn.BatchNorm2d(3).to(device) inp = torch.randn(0, 3, 2, 2, device=device) self._test_module_empty_input(mod, inp) if self.device_type == 'cuda' and self.has_cudnn(): with torch.backends.cudnn.flags(enabled=False): self._test_module_empty_input(mod, inp) self.assertEqual(mod.running_mean, torch.tensor([0., 0, 0], device=device)) self.assertEqual(mod.running_var, torch.tensor([1., 1, 1], device=device)) self.assertEqual(mod.weight.grad, torch.tensor([0., 0, 0], device=device)) self.assertEqual(mod.bias.grad, torch.tensor([0., 0, 0], device=device)) def test_conv_empty_channel(self, device): in_channels = 0 mod = torch.nn.Conv1d(in_channels, 8, 2, stride=2).to(device) inp = torch.randn(2, 0, 15, device=device) self._test_module_empty_input(mod, inp, check_size=False) with self.assertRaisesRegex(RuntimeError, "Given groups=1, weight"): inp = torch.randn(2, 1, 0, device=device) mod(inp) mod = torch.nn.Conv2d(in_channels, 33, 3, stride=2).to(device) inp = torch.randn(2, 0, 50, 100, device=device) self._test_module_empty_input(mod, inp, check_size=False) with self.assertRaisesRegex(RuntimeError, "Given groups=1, weight"): inp = torch.randn(2, 1, 40, 0, device=device) mod(inp) mod = torch.nn.Conv3d(in_channels, 33, 3, stride=2).to(device) inp = torch.randn(2, 0, 50, 20, 40, device=device) self._test_module_empty_input(mod, inp, check_size=False) with self.assertRaisesRegex(RuntimeError, "Given groups=1, weight"): inp = torch.randn(2, 1, 50, 0, 40, device=device) mod(inp) def test_group_conv_empty(self, device): mod = torch.nn.Conv2d(4, 4, stride=2, kernel_size=3, padding=1, groups=4).to(device) inp = torch.randn(0, 4, 4, 4, device=device) self._test_module_empty_input(mod, inp, check_size=False) if self.device_type == 'cuda' and self.has_cudnn(): with torch.backends.cudnn.flags(enabled=False): self._test_module_empty_input(mod, inp, check_size=False) def test_group_convTranspose_empty(self, device): mod = torch.nn.ConvTranspose2d(4, 4, stride=2, kernel_size=3, padding=1, groups=4).to(device) inp = torch.randn(0, 4, 4, 4, device=device) self._test_module_empty_input(mod, inp, check_size=False) if self.device_type == 'cuda' and self.has_cudnn(): with torch.backends.cudnn.flags(enabled=False): self._test_module_empty_input(mod, inp, check_size=False) def test_convTranspose_empty(self, device): mod = torch.nn.ConvTranspose2d(4, 4, stride=2, kernel_size=3, padding=1).to(device) inp = torch.randn(0, 4, 4, 4, device=device) self._test_module_empty_input(mod, inp, check_size=False) if self.device_type == 'cuda' and self.has_cudnn(): with torch.backends.cudnn.flags(enabled=False): self._test_module_empty_input(mod, inp, check_size=False) @onlyNativeDeviceTypes def test_AvgPool2d_empty(self, device): avgpool = torch.nn.AvgPool2d(3, stride=2).to(device) inp = torch.randn(0, 16, 20, 32, device=device) self._test_module_empty_input(avgpool, inp, check_size=False) clast_inp = torch.randn(0, 16, 20, 32, device=device).contiguous(memory_format=torch.channels_last) self._test_module_empty_input(avgpool, clast_inp, check_size=False) # test with empty non-batch input with self.assertRaisesRegex(RuntimeError, '3D or 4D'): inp = torch.randn(16, 0, 20, 32, device=device) avgpool(inp) @onlyCUDA @largeTensorTest('16GB') def test_prelu_backward_32bit_indexing(self, device): m = torch.nn.PReLU().cuda().half() input_ = torch.ones((1024, 1024, 1024, 2), dtype=torch.half, device=device) output = m(input_) output.backward(input_) def test_linear_empty(self, device): mod = torch.nn.Linear(7, 7).to(device) inp = torch.randn(0, 7, device=device) self._test_module_empty_input(mod, inp) def test_one_hot(self, device): if self.device_type != 'cuda': # cuda throws device assert for invalid data with self.assertRaises(RuntimeError): torch.nn.functional.one_hot(torch.tensor([3, 4, -1, 0], device=device), -1) with self.assertRaises(RuntimeError): torch.nn.functional.one_hot(torch.tensor([3, 4, 1, 0], device=device), 3) t = torch.nn.functional.one_hot(torch.tensor([3, 4, 1, 0], device=device)) expected = torch.tensor([[0, 0, 0, 1, 0], [0, 0, 0, 0, 1], [0, 1, 0, 0, 0], [1, 0, 0, 0, 0]], device=device) self.assertEqual(t, expected) t = torch.nn.functional.one_hot(torch.tensor([3, 4, 1, 0], device=device), -1) expected = torch.tensor([[0, 0, 0, 1, 0], [0, 0, 0, 0, 1], [0, 1, 0, 0, 0], [1, 0, 0, 0, 0]], device=device) self.assertEqual(t, expected) t = torch.nn.functional.one_hot(torch.tensor([3, 4, 1, 0], device=device), 6) expected = torch.tensor([[0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0]], device=device) self.assertEqual(t, expected) t = torch.nn.functional.one_hot(torch.tensor([[3, 4], [1, 0]], device=device)) expected = torch.tensor([[[0, 0, 0, 1, 0], [0, 0, 0, 0, 1]], [[0, 1, 0, 0, 0], [1, 0, 0, 0, 0]]], device=device) self.assertEqual(t, expected) t = torch.nn.functional.one_hot(torch.tensor(4, device=device)) expected = torch.tensor([0, 0, 0, 0, 1], device=device) self.assertEqual(t, expected) t = torch.nn.functional.one_hot(torch.empty([4, 0], dtype=torch.long, device=device), 100) expected = torch.empty([4, 0, 100], dtype=torch.long) self.assertEqual(t, expected) with self.assertRaises(RuntimeError): torch.nn.functional.one_hot(torch.empty([4, 0], dtype=torch.long, device=device)) with self.assertRaises(RuntimeError): torch.nn.functional.one_hot(torch.tensor([3, 4, 1, 0], device=device), -2) def test_nn_scalars(self, device): # One off tests to ensure scalars from nn.yaml are properly applied def verify_scalars(input, output): if input.dim() == 0: self.assertEqual((), output.shape) else: self.assertNotEqual((), output.shape) output.sum().backward() self.assertEqual(input.shape, input.grad.shape) for input_shape in [(5, 6), ()]: for module in [torch.nn.ELU, torch.nn.Hardtanh, torch.nn.LeakyReLU, torch.nn.LogSigmoid, torch.nn.RReLU, torch.nn.Softshrink, torch.nn.Softplus, torch.nn.Sigmoid, torch.nn.Tanh]: input = torch.randn(input_shape, device=device, requires_grad=True) m = module() output = m(input) verify_scalars(input, output) def test_nn_scalars_reductions(self, device): # One off tests to ensure scalars from nn.yaml are properly applied def verify_reduction_scalars(input, reduction, output): if reduction != 'none' or input.dim() == 0: self.assertEqual((), output.shape) else: self.assertNotEqual((), output.shape) output.sum().backward() self.assertEqual(input.shape, input.grad.shape) for input_shape in [(5, 6), ()]: for reduction in ['none', 'mean', 'sum']: for module in [torch.nn.BCELoss, torch.nn.L1Loss, torch.nn.MSELoss, torch.nn.SmoothL1Loss, torch.nn.SoftMarginLoss]: input = torch.randn(input_shape, device=device, requires_grad=True) target = torch.empty(input_shape, device=device).random_(2) sigmoid = nn.Sigmoid() input = torch.randn(input_shape, device=device, requires_grad=True) m = module(reduction=reduction) output = m(sigmoid(input), target) verify_reduction_scalars(input, reduction, output) # verify that bogus reduction strings are errors @onlyNativeDeviceTypes def test_invalid_reduction_strings(self, device): input = torch.randn(3, 5, requires_grad=True, device=device) cinput = torch.randn(3, 5, requires_grad=True, device=device, dtype=torch.cfloat) target = torch.tensor([1, 0, 4], device=device) var = torch.ones(size=input.size(), requires_grad=True, device=device) for reduction in ['none', 'invalid']: def v(fn): if reduction == 'invalid': self.assertRaises(ValueError, lambda: fn()) else: fn() v(lambda: F.nll_loss(input, target, reduction=reduction)) v(lambda: F.cross_entropy(input, target, reduction=reduction)) v(lambda: F.multi_margin_loss(input, target, reduction=reduction)) v(lambda: F.kl_div(input, input, reduction=reduction)) v(lambda: F.huber_loss(input, input, reduction=reduction)) v(lambda: F.smooth_l1_loss(input, input, reduction=reduction)) v(lambda: F.l1_loss(input, input, reduction=reduction)) v(lambda: F.l1_loss(cinput, cinput, reduction=reduction)) v(lambda: F.mse_loss(input, input, reduction=reduction)) v(lambda: F.hinge_embedding_loss(input, input, reduction=reduction)) v(lambda: F.poisson_nll_loss(input, input, reduction=reduction)) v(lambda: F.gaussian_nll_loss(input, input, var, reduction=reduction)) v(lambda: F.binary_cross_entropy(torch.sigmoid(input), input, reduction=reduction)) v(lambda: F.binary_cross_entropy_with_logits(input, input, reduction=reduction)) zeros = torch.zeros_like(input).to(torch.int64) v(lambda: F.multilabel_soft_margin_loss(input, zeros, reduction=reduction)) v(lambda: F.multilabel_margin_loss(input, zeros, reduction=reduction)) v(lambda: F.triplet_margin_loss(input, input, input, reduction=reduction)) v(lambda: F.triplet_margin_with_distance_loss(input, input, input, reduction=reduction)) v(lambda: F.margin_ranking_loss(input, input, input.sign(), reduction=reduction)) v(lambda: F.cosine_embedding_loss(input, input, input[:, 0].sign(), reduction=reduction)) log_probs = torch.randn(50, 16, 20, requires_grad=True, device=device).log_softmax(2) targets = torch.randint(1, 20, (16, 30), dtype=torch.long, device=device) input_lengths = torch.full((16,), 50, dtype=torch.long, device=device) target_lengths = torch.randint(10, 30, (16,), dtype=torch.long, device=device) v(lambda: F.ctc_loss(log_probs, targets, input_lengths, target_lengths, reduction=reduction)) # FIXME: should we allow derivatives on these? v(lambda: F.soft_margin_loss(input, input.sign().detach(), reduction=reduction)) @onlyNativeDeviceTypes def test_smooth_l1_loss_vs_huber_loss(self, device): def _make_test_tensor(shape, contiguous=True): if contiguous: test_tensor = torch.randn(shape, device=device) else: # Select every other element in the innermost dimension to # make it non-contiguous. doubled_shape = list(shape) doubled_shape[-1] *= 2 test_tensor = torch.randn(doubled_shape, device=device) test_tensor = test_tensor[..., ::2] return test_tensor def _test_smooth_l1_loss_vs_huber_loss_helper(input, target, beta, require_equal): for reduction in ['mean', 'sum', 'none']: smooth_l1 = torch.nn.SmoothL1Loss(beta=beta, reduction=reduction) # beta hyper-parameter is called delta for Huber huber = torch.nn.HuberLoss(delta=beta, reduction=reduction) smooth_l1_loss = smooth_l1(input, target) huber_loss = huber(input, target) if require_equal: self.assertEqual(smooth_l1_loss, huber_loss) else: # Huber loss should be larger than smooth L1 loss by a factor of beta. self.assertEqual(smooth_l1_loss * beta, huber_loss) def _test_smooth_l1_loss_vs_huber_loss_multi_input_helper(beta, require_equal): # Test the non-vectorized case. shape = (2, 2) _test_smooth_l1_loss_vs_huber_loss_helper(input=_make_test_tensor(shape), target=_make_test_tensor(shape), beta=beta, require_equal=require_equal) # Test the vectorized case (innermost dim > 32). shape = (64, 64) _test_smooth_l1_loss_vs_huber_loss_helper(input=_make_test_tensor(shape), target=_make_test_tensor(shape), beta=beta, require_equal=require_equal) # Test the non-contiguous case. _test_smooth_l1_loss_vs_huber_loss_helper(input=_make_test_tensor(shape, contiguous=False), target=_make_test_tensor(shape, contiguous=False), beta=beta, require_equal=require_equal) def test_equal_when_beta_is_one(): _test_smooth_l1_loss_vs_huber_loss_multi_input_helper(beta=1.0, require_equal=True) def test_unequal_when_beta_is_less_than_one(): _test_smooth_l1_loss_vs_huber_loss_multi_input_helper(beta=0.5, require_equal=False) def test_unequal_when_beta_is_greater_than_one(): _test_smooth_l1_loss_vs_huber_loss_multi_input_helper(beta=1.5, require_equal=False) test_equal_when_beta_is_one() test_unequal_when_beta_is_less_than_one() test_unequal_when_beta_is_greater_than_one() # We don't want to make propagating NaN a hard requirement on ops, but for # these easy ones, we should make them do so. def test_nonlinearity_propagate_nan(self, device): def test(nonlinearity, *args, **kwargs): x = torch.tensor([nan], device=device) fn = getattr(F, nonlinearity) try: self.assertTrue(math.isnan(fn(x, *args, **kwargs).item())) except Exception as e: if 'not implemented' not in str(e): raise test('relu') test('relu', inplace=True) test('relu6') test('elu') test('selu') test('celu') test('rrelu') test('rrelu', inplace=True) test('hardtanh') test('tanh') test('sigmoid') test('logsigmoid') test('hardshrink') test('tanhshrink') test('softsign') test('softmin', 0) test('softmax', 0) test('log_softmax', 0) test('leaky_relu', 0.2) test('threshold', 3, 2) test('threshold', 3, 2, inplace=True) def test_pooling_shape(self, device): ''' Test the output shape calculation for pooling functions ''' # Checks output shape against expected for 1D, 2D and 3D def check(expected_out_shape, sizes, *args, **kwargs): for kernel in ['max', 'avg']: for i in [1, 2, 3]: if hasattr(torch.nn.functional, f'{kernel}_pool{i}d'): op = getattr(torch.nn.functional, f'{kernel}_pool{i}d') t = torch.randn(sizes[:i + 2], device=device) self.assertEqual(op(t, *args, **kwargs).shape, expected_out_shape[:i + 2]) check((1, 1, 3, 3, 4), (1, 1, 5, 6, 7), kernel_size=1, stride=2, padding=0, ceil_mode=True) check((1, 1, 2, 3, 3), (1, 1, 3, 4, 5), kernel_size=2, stride=2, padding=1, ceil_mode=False) check((1, 1, 2, 3, 3), (1, 1, 3, 4, 5), kernel_size=2, stride=2, padding=1, ceil_mode=True) # Test case from issue https://github.com/pytorch/pytorch/issues/45357 x = torch.randn(1, 1, 6, 7, device=device) y = torch.nn.functional.max_pool2d(x, 1, stride=(2, 2), padding=0, ceil_mode=True) self.assertEqual(y.size(), (1, 1, 3, 4)) @onlyNativeDeviceTypes # TODO: fix on XLA def test_adaptive_avg_pool2d_output_size_one(self, device): def helper(size, memory_format): x = torch.randint(1, 10, size, dtype=torch.float, device=device, requires_grad=True) if memory_format == 'non_contiguous': x = x[::2, ::2, ::2, ::2] else: x = x.to(memory_format=memory_format) net = torch.nn.AdaptiveAvgPool2d((1, 1)) out = net(x) ref_out = x.contiguous().mean((-1, -2)).view((x.size(0), x.size(1), 1, 1)) out.sum().backward() # make sure it doesn't crash self.assertEqual(out, ref_out) if memory_format == torch.channels_last: self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) c = out.size(1) self.assertEqual(out.stride(), [c, 1, c, c]) else: self.assertTrue(out.is_contiguous()) c = out.size(1) self.assertEqual(out.stride(), [c, 1, 1, 1]) for mf in (torch.contiguous_format, torch.channels_last, 'non_contiguous'): helper((2, 3, 6, 6), mf) @onlyNativeDeviceTypes def test_adaptive_avg_pool3d_output_size_one(self, device): x = torch.randn((2, 3, 6, 6, 6) , dtype=torch.float, device=device, requires_grad=True) net = torch.nn.AdaptiveAvgPool3d(1) out = net(x) ref_out = x.contiguous().mean((-1, -2, -3)).view(out.shape) out.sum().backward() # make sure it doesn't crash self.assertEqual(out, ref_out) self.assertTrue(out.is_contiguous()) c = out.size(1) self.assertEqual(out.stride(), [c, 1, 1, 1, 1]) @expectedFailureMeta # Runtime Error not raised for meta @onlyNativeDeviceTypes @dtypes(torch.uint8, torch.int8, torch.short, torch.int, torch.long) def test_adaptive_pooling_no_suppot_input(self, device, dtype): for numel in (2, 3): for pool_type in ('Max', 'Avg'): cls_name = 'Adaptive{}Pool{}d'.format(pool_type, numel) module_cls = getattr(nn, cls_name) output_size = (2,) * numel module = module_cls(output_size) input = torch.randn((4,) * (numel + 1), device=device).to(dtype) with self.assertRaisesRegex(RuntimeError, "not implemented"): output = module(input) @onlyNativeDeviceTypes @dtypes(torch.float, torch.double) @dtypesIfCUDA(torch.half, torch.float, torch.double) def test_avg_pool2d_nhwc(self, device, dtype): def helper(n, c, h, w, kernel_size, stride=None, count_include_pad=True, divisor_override=None, padding=0): if stride is None: stride = kernel_size input = torch.randn(n, c, h, w, dtype=dtype, device=device) input = input.contiguous(memory_format=torch.channels_last).requires_grad_() grad = torch.randn(n, c, (h - kernel_size) // stride + 1, (w - kernel_size) // stride + 1, dtype=dtype, device=device) pool = torch.nn.AvgPool2d(kernel_size, stride=stride, count_include_pad=count_include_pad, divisor_override=divisor_override).to(device) ref_input = input.detach().clone().contiguous().requires_grad_(True) ref_grad = grad.detach().clone().contiguous() ref_pool = torch.nn.AvgPool2d(kernel_size, stride=stride, count_include_pad=count_include_pad, divisor_override=divisor_override).to(device) out = pool(input) out.backward(grad) ref_out = ref_pool(ref_input) ref_out.backward(ref_grad) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(ref_out.is_contiguous()) self.assertEqual(out, ref_out) self.assertEqual(input.grad, ref_input.grad) helper(4, 8, 8, 8, 3) helper(4, 8, 8, 8, 3, count_include_pad=False, padding=1) helper(4, 8, 8, 8, 3, count_include_pad=False, padding=2, stride=2) helper(4, 8, 8, 8, 3, divisor_override=42) helper(4, 8, 8, 8, 7) # ROCm 16GB MI25 hits OOM error. Clear caching allocator prior to running large subtest. if TEST_WITH_ROCM and 'cuda' in device: torch.cuda.empty_cache() helper(200, 512, 28, 28, 2) helper(4, 8, 7, 7, 3, stride=1) helper(4, 8, 7, 7, 3, padding=2, stride=1) helper(10, 512, 31, 31, 3, stride=2) helper(1, 129, 8, 8, 3, stride=2) @onlyCPU @dtypes(torch.float) def test_max_pool1d_errors(self, device, dtype): def check(x, args, message): model = torch.nn.MaxPool1d(*args) with self.assertRaisesRegex(RuntimeError, r'max_pool1d\(\) ' + message): model(torch.tensor(x, device=device, dtype=dtype)) # Pooling args: (kernel_size, stride, padding, dilation, return_indices, ceil_mode) check(0, (1,), "Expected 2D or 3D input tensor, but got") check([], (1,), "Expected 2D or 3D input tensor, but got") check([[]], (1, 0), "stride must be greater than zero, but got 0") check([[]], (1, 1, -1), "padding must be non-negative, but got -1") check([[]], (1, 1, 2), "padding should be at most half of kernel size, but got padding=2 and kernel_size=1") check([[]], (1, 1, 0, 0), "dilation must be greater than zero, but got 0") check([[]], (5, 1, 0, 1), "Invalid computed output size: -4") @onlyCPU @dtypes(torch.float, torch.double) def test_max_pool1d_corner_cases(self, device, dtype): def check(x, args, expected): model = torch.nn.MaxPool1d(*args) if isinstance(x, list): x = torch.tensor(x, device=device, dtype=dtype) expected = torch.tensor(expected, device=device, dtype=dtype) self.assertEqual(model(x), expected) # Pooling args: (kernel_size, stride, padding, dilation, return_indices, ceil_mode) check([[]], (1, None, 0, 1, False, False), [[]]) check([[[]]], (1, None, 0, 1, False, False), [[[]]]) check([[[]]], (2, 1, 1, 2, False, True), [[[]]]) check([[1]], (1, None, 0, 1, False, False), [[1]]) check([[1]], (2, None, 1, 2, False, False), [[float('-inf')]]) check([[1], [1]], (2, None, 1, 2, False, False), [[float('-inf')], [float('-inf')]]) check([[1, 2]], (2, 1, 1, 2, False, False), [[2, 1]]) check([[1, 2]], (2, 2, 1, 2, False, True), [[2, 2]]) empty_tensor = torch.empty((2, 0, 1), device=device, dtype=dtype) check(empty_tensor, (1, None, 0, 1, False, False), empty_tensor) @onlyCPU @dtypes(torch.float, torch.double) def test_max_pool1d(self, device, dtype): # FIXME For now compare against max_pool1d with indices def check(x, *args, **kwargs): model = torch.nn.MaxPool1d(*args, **kwargs) ref_model = torch.nn.MaxPool1d(*args, **kwargs, return_indices=True) self.assertEqual(model(x), ref_model(x)[0]) sizes = [random.sample(range(8, 128), 3) for _ in range(3)] kernel_sizes = random.sample(range(1, 5), 3) strides = random.sample(range(1, 5), 3) dilations = random.sample(range(1, 5), 3) ceil_modes = [True, False] for size, kernel_size, stride, dilation, ceil_mode in \ itertools.product(sizes, kernel_sizes, strides, dilations, ceil_modes): padding = random.sample(range(0, math.floor(kernel_size / 2) + 1), 1) check(torch.randn(size, device=device, dtype=dtype), kernel_size, stride, padding, dilation, ceil_mode=ceil_mode) # Non-contiguous test tensor = torch.randn(5, 151, 33, device=device, dtype=dtype)[::2, ::3, ::2] check(tensor, 3, 2, 1, 2, ceil_mode=True) check(tensor.transpose(1, 2), 3, 2, 1, 2, ceil_mode=True) @onlyCUDA def test_max_pool2d(self, device): def helper(n, c, h, w, ks): x = torch.randn(n, c, h, w, device='cuda', dtype=torch.float, requires_grad=True) ref_x = x.detach().clone().cpu().requires_grad_() pool = torch.nn.MaxPool2d(kernel_size=ks) y = pool(x) ref_y = pool(ref_x) y.sum().backward() ref_y.sum().backward() self.assertEqual(y, ref_y) self.assertEqual(x.grad, ref_x.grad) helper(2, 8, 4, 4, ks=2) helper(1, 100000, 32, 32, ks=4) helper(1, 100000, 1, 4, ks=(1, 4)) # test for max_pool1d @onlyNativeDeviceTypes @dtypes(torch.float, torch.double) @dtypesIfCUDA(torch.half, torch.float, torch.double) def test_max_pool2d_nhwc(self, device, dtype): def helper(n, c, h, w, kernel_size, stride=None): if stride is None: stride = kernel_size input = torch.randn(n, c, h, w, dtype=dtype, device=device) input = input.contiguous(memory_format=torch.channels_last).requires_grad_() grad = torch.randn(n, c, (h - kernel_size) // stride + 1, (w - kernel_size) // stride + 1, dtype=dtype, device=device) pool = torch.nn.MaxPool2d(kernel_size, stride, return_indices=True).to(device) ref_input = input.detach().clone().contiguous().requires_grad_(True) ref_grad = grad.detach().clone().contiguous() ref_pool = torch.nn.MaxPool2d(kernel_size, stride, return_indices=True).to(device) out, ind = pool(input) out.backward(grad) ref_out, ref_ind = ref_pool(ref_input) ref_out.backward(ref_grad) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(ref_out.is_contiguous()) self.assertTrue(ind.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(ref_ind.is_contiguous()) self.assertEqual(out, ref_out) self.assertEqual(ind, ref_ind) self.assertEqual(input.grad, ref_input.grad) helper(4, 8, 8, 8, 7) helper(200, 512, 28, 28, 2) helper(4, 8, 7, 7, 3, stride=1) helper(10, 512, 31, 31, 3, stride=2) helper(1, 129, 8, 8, 3, stride=2) @onlyCPU def test_max_pool2d_bfloat16(self, device): def helper(n, c, h, w, kernel_size, stride, memory_format): input = torch.randn(n, c, h, w, dtype=torch.float32, device=device).bfloat16() input = input.to(memory_format=memory_format).requires_grad_() pool = torch.nn.MaxPool2d(kernel_size, stride, return_indices=True).to(device) input2 = input.detach().clone().float().requires_grad_(True) out, ind = pool(input) out.sum().backward() out2, ind2 = pool(input2) out2.sum().backward() self.assertTrue(out.is_contiguous(memory_format=memory_format)) self.assertEqual(out.dtype, torch.bfloat16) self.assertEqual(input.grad.dtype, torch.bfloat16) self.assertEqual(out, out2.bfloat16()) self.assertEqual(ind, ind2) self.assertEqual(input.grad, input2.grad.bfloat16()) helper(4, 30, 8, 8, 7, 1, torch.contiguous_format) helper(4, 65, 8, 8, 7, 1, torch.channels_last) helper(1, 19, 20, 10, 8, 2, torch.contiguous_format) helper(1, 19, 20, 10, 8, 2, torch.channels_last) @onlyCUDA def test_max_pool2d_indices(self, device): def helper(n, c, h, w, ks): if n is None: x = torch.randn(c, h, w, device='cuda', dtype=torch.float, requires_grad=True) else: x = torch.randn(n, c, h, w, device='cuda', dtype=torch.float, requires_grad=True) ref_x = x.detach().clone().cpu().requires_grad_() pool = torch.nn.MaxPool2d(kernel_size=ks, return_indices=True) y, idx = pool(x) ref_y, ref_idx = pool(ref_x) y.sum().backward() ref_y.sum().backward() self.assertEqual(y, ref_y) self.assertEqual(idx, ref_idx) # assertEqual implicitly compares shape for tensors self.assertEqual(x.grad, ref_x.grad) helper(2, 8, 4, 4, ks=2) helper(None, 3, 50, 50, ks=5) @onlyCPU def test_avg_pool2d_bfloat16(self, device): def helper(n, c, h, w, kernel_size, stride, memory_format): input = torch.randn(n, c, h, w, dtype=torch.float32, device=device).bfloat16() input = input.to(memory_format=memory_format).requires_grad_() pool = torch.nn.AvgPool2d(kernel_size, stride).to(device) input2 = input.detach().clone().float().requires_grad_(True) out = pool(input) out.sum().backward() out2 = pool(input2) out2.sum().backward() self.assertTrue(out.is_contiguous(memory_format=memory_format)) self.assertEqual(out.dtype, torch.bfloat16) self.assertEqual(input.grad.dtype, torch.bfloat16) self.assertEqual(out, out2.bfloat16()) self.assertEqual(input.grad, input2.grad.bfloat16()) helper(4, 30, 8, 8, 7, 1, torch.contiguous_format) helper(4, 65, 8, 8, 7, 1, torch.channels_last) helper(1, 19, 20, 10, 8, 2, torch.contiguous_format) helper(1, 19, 20, 10, 8, 2, torch.channels_last) def test_upsamplingNearest1d(self, device): # Forward AD does not support XLA because XLA tensors don't have storage check_forward_ad = torch.device(device).type != 'xla' def helper(mode): m = nn.Upsample(size=4, mode=mode) in_t = torch.ones(1, 1, 2, device=device) in_uint8_t = torch.ones(1, 1, 2, dtype=torch.uint8, device=device) with warnings.catch_warnings(record=True) as w: out_t = m(in_t) out_uint8_t = m(in_uint8_t) self.assertEqual(torch.ones(1, 1, 4, device=device), out_t.data) self.assertEqual(torch.ones(1, 1, 4, dtype=torch.uint8, device=device), out_uint8_t.data) # Checks upsampling input = torch.randn(1, 1, 2, requires_grad=True, device=device) gradcheck(lambda x: F.interpolate(x, 4, mode=mode), [input], check_forward_ad=check_forward_ad) gradgradcheck(lambda x: F.interpolate(x, 4, mode=mode), [input], check_fwd_over_rev=check_forward_ad) # Checks downsampling input = torch.randn(1, 1, 20, requires_grad=True, device=device) gradcheck(lambda x: F.interpolate(x, 11, mode=mode), [input], check_forward_ad=check_forward_ad) gradgradcheck(lambda x: F.interpolate(x, 4, mode=mode), [input], check_fwd_over_rev=check_forward_ad) # consistency CUDA/CPU check if torch.device(device).type == 'cuda': input_cuda = torch.randn(1, 1, 20, device=device) input_cpu = input_cuda.cpu() output_cuda = F.interpolate(input_cuda, 4, mode=mode) output_cpu = F.interpolate(input_cpu, 4, mode=mode) self.assertEqual(output_cuda.cpu(), output_cpu) output_cuda = F.interpolate(input_cuda, 24, mode=mode) output_cpu = F.interpolate(input_cpu, 24, mode=mode) self.assertEqual(output_cuda.cpu(), output_cpu) helper("nearest") helper("nearest-exact") def test_upsamplingNearest1d_correctness(self, device): # Here we check if output matches OpenCV's INTER_NEAREST-like result def helper(isize, osize): in_t = torch.arange(isize, dtype=torch.float, device=device).unsqueeze(0).unsqueeze(0) out_t = F.interpolate( in_t, size=(osize, ), recompute_scale_factor=False, mode="nearest" ) # compute expected output as OpenCV expected_out = torch.zeros(osize, dtype=torch.float).unsqueeze(0).unsqueeze(0) scale = 1.0 * isize / osize for o in range(osize): i_f32 = o * scale i = int(i_f32) expected_out[0, 0, o] = in_t[0, 0, i] expected_out = expected_out.to(device=device) self.assertEqual(out_t, expected_out) helper(20, 11) helper(10, 15) def test_upsamplingNearestExact1d_rescale(self, device): # Checks https://github.com/pytorch/pytorch/issues/62237 isize = 20 in_t = torch.arange(isize, dtype=torch.float, device=device).unsqueeze(0).unsqueeze(0) # for s in [1.00001, 0.99999]: # 0.9999 case is broken # See issue: https://github.com/pytorch/pytorch/issues/62396 for s in [1.00001, ]: out_t = F.interpolate( in_t, scale_factor=s, recompute_scale_factor=False, mode="nearest-exact" ) expected_out = in_t self.assertEqual(out_t, expected_out, msg=f"scale: {s}") # checks data duplication if output_size == 2 * input_size # for s in [2.00001, 1.99999]: # 1.99999 case is broken # See issue: https://github.com/pytorch/pytorch/issues/62396 for s in [2.00001, ]: out_t = F.interpolate( in_t, scale_factor=s, recompute_scale_factor=False, mode="nearest-exact" ) # input is [[[0, 1, 2, 3, ..., 9]]] # expected out is [[[0, 0, 1, 1, 2, 2, ..., 9, 9]]] expected_out = in_t.repeat_interleave(2, dim=-1) self.assertEqual(out_t, expected_out) def test_upsamplingNearestExact1d_correctness(self, device): # Here we check if output matches Scikit-Image/Scipy-like result # Checks https://github.com/pytorch/pytorch/issues/34808 def helper(isize, osize): in_t = torch.arange(isize, dtype=torch.float, device=device).unsqueeze(0).unsqueeze(0) out_t = F.interpolate( in_t, size=(osize, ), recompute_scale_factor=False, mode="nearest-exact" ) # compute expected output as scikit-image/scipy expected_out = torch.zeros(osize, dtype=torch.float).unsqueeze(0).unsqueeze(0) scale = 1.0 * isize / osize for o in range(osize): i_f32 = (o + 0.5) * scale i = int(i_f32) expected_out[0, 0, o] = in_t[0, 0, i] expected_out = expected_out.to(device=device) self.assertEqual(out_t, expected_out) helper(20, 11) helper(10, 15) def test_upsamplingNearest2d(self, device): # Forward AD does not support XLA because XLA tensors don't have storage check_forward_ad = torch.device(device).type != 'xla' def helper(memory_format, mode): in_t = torch.ones(1, 2, 2, 2, device=device).contiguous(memory_format=memory_format) in_uint8_t = torch.ones(1, 2, 2, 2, dtype=torch.uint8, device=device).contiguous(memory_format=memory_format) with warnings.catch_warnings(record=True) as w: out_t = F.interpolate(in_t, size=4, mode=mode) out_uint8_t = F.interpolate(in_uint8_t, size=4, mode=mode) self.assertEqual(len(w), 0) self.assertEqual(torch.ones(1, 2, 4, 4, device=device), out_t) self.assertEqual(torch.ones(1, 2, 4, 4, dtype=torch.uint8, device=device), out_uint8_t) # Assert that memory format is carried through to the output self.assertTrue(out_t.is_contiguous(memory_format=memory_format)) # test forward when input's height is not same as width in_t = torch.ones(1, 2, 2, 1, device=device).contiguous(memory_format=memory_format).requires_grad_() out_t = F.interpolate(in_t, size=(4, 2), mode=mode) self.assertEqual(torch.ones(1, 2, 4, 2, device=device), out_t) self.assertTrue(out_t.is_contiguous(memory_format=memory_format)) out_t.backward(torch.randn_like(out_t)) self.assertTrue(in_t.grad.is_contiguous(memory_format=memory_format)) # test backward when input's height is not same as width input = torch.ones(1, 2, 2, 1, requires_grad=True, device=device).contiguous(memory_format=memory_format) gradcheck(lambda x: F.interpolate(x, size=(4, 2), mode=mode), [input], check_forward_ad=check_forward_ad) gradgradcheck(lambda x: F.interpolate(x, size=(4, 2), mode=mode), [input], check_fwd_over_rev=check_forward_ad) input = torch.randn(1, 2, 2, 2, requires_grad=True, device=device).contiguous(memory_format=memory_format) self.assertEqual( F.interpolate(input, 4, mode=mode), F.interpolate(input, scale_factor=2, mode=mode)) gradcheck(lambda x: F.interpolate(x, 4, mode=mode), [input], check_forward_ad=check_forward_ad) gradgradcheck(lambda x: F.interpolate(x, 4, mode=mode), [input], check_fwd_over_rev=check_forward_ad) # Assert that cpu and cuda handle channels_last memory format in the same way # https://github.com/pytorch/pytorch/issues/54590 if torch.device(device).type == 'cuda': for shapes, scale_factor in product([ (2, 2, 3, 4), (2, 3, 4, 5), (3, 1, 2, 2), (1, 5, 3, 2) ], [0.5, 1.5, 2]): a_cuda = torch.randn(*shapes, device=device).contiguous(memory_format=memory_format).requires_grad_() a_cpu = a_cuda.detach().cpu().requires_grad_() out_cuda = F.interpolate(a_cuda, scale_factor=scale_factor, mode=mode) out_cpu = F.interpolate(a_cpu, scale_factor=scale_factor, mode=mode) self.assertEqual(out_cpu.cuda(), out_cuda) g_cuda = torch.randn_like(out_cuda) g_cpu = g_cuda.cpu() out_cuda.backward(g_cuda) out_cpu.backward(g_cpu) self.assertEqual(a_cuda.grad, a_cpu.grad) helper(torch.contiguous_format, "nearest") helper(torch.channels_last, "nearest") # Uncomment below once F.interpolate is updated helper(torch.contiguous_format, "nearest-exact") helper(torch.channels_last, "nearest-exact") def test_upsamplingNearest2d_correctness(self, device): # Here we check if output matches OpenCV's INTER_NEAREST-like result def helper(memory_format, isize, osize): in_t = torch.arange(isize * isize, dtype=torch.float, device=device).reshape(1, 1, isize, isize) in_t = in_t.contiguous(memory_format=memory_format) out_t = F.interpolate( in_t, size=(osize, osize), recompute_scale_factor=False, mode="nearest" ) # compute expected output as OpenCV expected_out = torch.zeros(1, 1, osize, osize, dtype=torch.float) scale = 1.0 * isize / osize for o1 in range(osize): i1_f32 = o1 * scale i1 = int(i1_f32) for o2 in range(osize): i2_f32 = o2 * scale i2 = int(i2_f32) expected_out[0, 0, o1, o2] = in_t[0, 0, i1, i2] expected_out = expected_out.to(device=device) self.assertEqual(out_t, expected_out) helper(torch.contiguous_format, 20, 11) helper(torch.channels_last, 20, 11) helper(torch.contiguous_format, 10, 15) helper(torch.channels_last, 10, 15) def test_upsamplingNearestExact2d_correctness(self, device): # Here we check if output matches Scikit-Image/Scipy-like result # Checks https://github.com/pytorch/pytorch/issues/34808 def helper(memory_format, isize, osize): in_t = torch.arange(isize * isize, dtype=torch.float, device=device).reshape(1, 1, isize, isize) in_t = in_t.contiguous(memory_format=memory_format) out_t = F.interpolate( in_t, size=(osize, osize), recompute_scale_factor=False, mode="nearest-exact" ) # compute expected output as Scikit-Image/Scipy expected_out = torch.zeros(1, 1, osize, osize, dtype=torch.float) scale = 1.0 * isize / osize for o1 in range(osize): i1_f32 = (o1 + 0.5) * scale i1 = int(i1_f32) for o2 in range(osize): i2_f32 = (o2 + 0.5) * scale i2 = int(i2_f32) expected_out[0, 0, o1, o2] = in_t[0, 0, i1, i2] expected_out = expected_out.to(device=device) self.assertEqual(out_t, expected_out) helper(torch.contiguous_format, 20, 11) helper(torch.channels_last, 20, 11) helper(torch.contiguous_format, 10, 15) helper(torch.channels_last, 10, 15) def test_upsamplingNearest3d(self, device): # Forward AD does not support XLA because XLA tensors don't have storage check_forward_ad = torch.device(device).type != 'xla' def helper(memory_format, mode): m = nn.Upsample(size=4, mode=mode) in_t = torch.ones(1, 2, 2, 2, 2, device=device).contiguous(memory_format=memory_format) in_uint8_t = torch.ones( 1, 2, 2, 2, 2, dtype=torch.uint8, device=device ).contiguous(memory_format=memory_format) with warnings.catch_warnings(record=True) as w: out_t = m(in_t) out_uint8_t = m(in_uint8_t) expected_output = torch.ones(1, 2, 4, 4, 4, device=device) self.assertEqual(expected_output, out_t) self.assertEqual(expected_output.to(torch.uint8), out_uint8_t) # Assert that memory format is carried through to the output self.assertTrue(out_t.is_contiguous(memory_format=memory_format)) input = torch.randn( 1, 2, 2, 2, 2, requires_grad=True, device=device ).contiguous(memory_format=memory_format) gradcheck(lambda x: F.interpolate(x, 4, mode=mode), [input], check_forward_ad=check_forward_ad) gradgradcheck(lambda x: F.interpolate(x, 4, mode=mode), [input], check_fwd_over_rev=check_forward_ad) # Assert that cpu and cuda handle channels_last memory format in the same way # https://github.com/pytorch/pytorch/issues/54590 if torch.device(device).type == 'cuda': a = torch.ones( 2, 2, 2, 3, 4, device=device, requires_grad=True ).contiguous(memory_format=torch.channels_last_3d) # make the data asymmetric; ensure that cuda/cpu handle channels_last appropriately. a[1][1][1][2][2] = a[1][1][1][2][3] = 0 out_cuda = torch.nn.functional.interpolate(a, scale_factor=2, mode=mode) out_cpu = torch.nn.functional.interpolate(a.to('cpu'), scale_factor=2, mode=mode) self.assertEqual(out_cpu, out_cuda.to('cpu')) gradcheck(lambda x: F.interpolate(x, 4, mode=mode), [a], check_forward_ad=check_forward_ad) gradgradcheck(lambda x: F.interpolate(x, 4, mode=mode), [a], check_fwd_over_rev=check_forward_ad) gradcheck(lambda x: F.interpolate(x, 4, mode=mode), [a.to('cuda')], check_forward_ad=check_forward_ad) gradgradcheck(lambda x: F.interpolate(x, 4, mode=mode), [a.to('cuda')], check_fwd_over_rev=check_forward_ad) helper(torch.contiguous_format, "nearest") helper(torch.channels_last_3d, "nearest") helper(torch.contiguous_format, "nearest-exact") helper(torch.channels_last_3d, "nearest-exact") def test_upsamplingNearest3d_correctness(self, device): # Here we check if output matches OpenCV's INTER_NEAREST-like result def helper(memory_format, isize, osize): in_t = torch.arange(isize * isize * isize, dtype=torch.float, device=device) in_t = in_t.reshape(1, 1, isize, isize, isize) in_t = in_t.contiguous(memory_format=memory_format) out_t = F.interpolate( in_t, size=(osize, osize, osize), recompute_scale_factor=False, mode="nearest" ) # compute expected output as OpenCV expected_out = torch.zeros(1, 1, osize, osize, osize, dtype=torch.float) scale = 1.0 * isize / osize for o1 in range(osize): i1_f32 = o1 * scale i1 = int(i1_f32) for o2 in range(osize): i2_f32 = o2 * scale i2 = int(i2_f32) for o3 in range(osize): i3_f32 = o3 * scale i3 = int(i3_f32) expected_out[0, 0, o1, o2, o3] = in_t[0, 0, i1, i2, i3] expected_out = expected_out.to(device=device) self.assertEqual(out_t, expected_out) helper(torch.contiguous_format, 20, 11) helper(torch.channels_last_3d, 20, 11) helper(torch.contiguous_format, 10, 15) helper(torch.channels_last_3d, 10, 15) def test_upsamplingNearestExact3d_correctness(self, device): # Here we check if output matches Scikit-Image/Scipy-like result # Checks https://github.com/pytorch/pytorch/issues/34808 def helper(memory_format, isize, osize): in_t = torch.arange(isize * isize * isize, dtype=torch.float, device=device) in_t = in_t.reshape(1, 1, isize, isize, isize) in_t = in_t.contiguous(memory_format=memory_format) out_t = F.interpolate( in_t, size=(osize, osize, osize), recompute_scale_factor=False, mode="nearest-exact" ) # compute expected output as Scikit-Image/Scipy expected_out = torch.zeros(1, 1, osize, osize, osize, dtype=torch.float) scale = 1.0 * isize / osize for o1 in range(osize): i1_f32 = (o1 + 0.5) * scale i1 = int(i1_f32) for o2 in range(osize): i2_f32 = (o2 + 0.5) * scale i2 = int(i2_f32) for o3 in range(osize): i3_f32 = (o3 + 0.5) * scale i3 = int(i3_f32) expected_out[0, 0, o1, o2, o3] = in_t[0, 0, i1, i2, i3] expected_out = expected_out.to(device=device) self.assertEqual(out_t, expected_out) helper(torch.contiguous_format, 20, 11) helper(torch.channels_last_3d, 20, 11) helper(torch.contiguous_format, 10, 15) helper(torch.channels_last_3d, 10, 15) @parametrize_test("antialias", [True, False]) @parametrize_test("align_corners", [True, False]) def test_upsamplingBilinear2d(self, device, antialias, align_corners): # Forward AD does not support XLA because XLA tensors don't have storage check_forward_ad = torch.device(device).type != 'xla' kwargs = dict(mode='bilinear', align_corners=align_corners, antialias=antialias) for memory_format in [torch.contiguous_format, torch.channels_last]: # test float scale factor up & downsampling for scale_factor in [0.5, 1.5, 2]: in_t = torch.ones(2, 3, 8, 8, device=device).contiguous(memory_format=memory_format).requires_grad_() out_size = int(math.floor(in_t.shape[-1] * scale_factor)) with warnings.catch_warnings(record=True) as w: out_t = F.interpolate(in_t, scale_factor=scale_factor, **kwargs) self.assertEqual(torch.ones(2, 3, out_size, out_size, device=device), out_t.data) # Assert that memory format is carried through to the output self.assertTrue(out_t.is_contiguous(memory_format=memory_format)) out_t.backward(torch.randn_like(out_t)) self.assertTrue(in_t.grad.is_contiguous(memory_format=memory_format)) if torch.device(device).type == 'cuda': # Bilinear backward is nondeterministic because of atomicAdd usage nondet_tol = 1e-5 else: nondet_tol = 0.0 input = torch.randn(2, 3, 8, 8, device=device).contiguous(memory_format=memory_format).requires_grad_() gradcheck( lambda x: F.interpolate(x, out_size, **kwargs), [input], check_forward_ad=check_forward_ad, nondet_tol=nondet_tol ) gradgradcheck( lambda x: F.interpolate(x, out_size, **kwargs), [input], check_fwd_over_rev=check_forward_ad, nondet_tol=nondet_tol ) # Assert that cpu and cuda give same results if torch.device(device).type == 'cuda': for shapes in [ (2, 2, 3, 4), (2, 3, 4, 5), (3, 1, 2, 2), (1, 5, 3, 2) ]: a_cuda = torch.randn( *shapes, device=device ).contiguous(memory_format=memory_format).requires_grad_() a_cpu = a_cuda.detach().cpu().requires_grad_() with warnings.catch_warnings(record=True): out_cuda = F.interpolate(a_cuda, scale_factor=scale_factor, **kwargs) out_cpu = F.interpolate(a_cpu, scale_factor=scale_factor, **kwargs) self.assertEqual(out_cpu, out_cuda.cpu()) g_cuda = torch.randn_like(out_cuda) g_cpu = g_cuda.cpu() out_cuda.backward(g_cuda) out_cpu.backward(g_cpu) self.assertEqual(a_cuda.grad, a_cpu.grad) @parametrize_test("memory_format", [torch.contiguous_format, torch.channels_last]) def test_upsamplingBilinear2d_aa_correctness(self, device, memory_format): t_in = torch.arange(3 * 8 * 8, dtype=torch.float, device=device).reshape(1, 3, 8, 8) t_in = t_in.contiguous(memory_format=memory_format) # This expected result is obtain using PIL.Image.resize # for c in range(3): # a_in = t_in.numpy()[0, c, ...] # pil_in = Image.fromarray(a_in) # pil_out = pil_in.resize((2, 2), resample=Image.LINEAR) expected_out = torch.tensor([ 17.035713, 20.25, 42.75, 45.964287, 81.03572, 84.25, 106.75, 109.96428, 145.0357, 148.25, 170.75, 173.9643 ], device=device, dtype=t_in.dtype).reshape(1, 3, 2, 2) t_out = F.interpolate(t_in, size=(2, 2), mode="bilinear", align_corners=False, antialias=True) self.assertEqual(expected_out, t_out) @parametrize_test("antialias", [True, False]) @parametrize_test("align_corners", [True, False]) def test_upsamplingBicubic2d(self, device, antialias, align_corners): kwargs = dict(mode='bicubic', align_corners=align_corners, antialias=antialias) # test float scale factor up & downsampling # for scale_factor in [0.5, 1, 1.5, 2]: for scale_factor in [2, ]: in_t = torch.ones(2, 3, 8, 8, device=device) print("dtype: ", in_t.dtype) out_t = F.interpolate(in_t, scale_factor=scale_factor, **kwargs) print(out_t) out_size = int(math.floor(in_t.shape[-1] * scale_factor)) expected_out = torch.ones(2, 3, out_size, out_size, device=device) self.assertEqual(expected_out, out_t, atol=1e-5, rtol=0) if torch.device(device).type == 'cuda': # Bicubic backward is nondeterministic because of atomicAdd usage nondet_tol = 1e-5 else: nondet_tol = 0.0 inpt = torch.ones(2, 3, 8, 8, requires_grad=True, device=device) gradcheck(lambda x: F.interpolate(x, out_size, **kwargs), [inpt], nondet_tol=nondet_tol) def test_upsamplingBicubic2d_correctness(self, device): # test output against known input: align_corners=False result must match opencv in_t = torch.arange(8., device=device).view(1, 2, 2, 2) expected_out_t = torch.tensor( [[[[-0.31641, 0.01562, 0.56250, 0.89453], [0.34766, 0.67969, 1.22656, 1.55859], [1.44141, 1.77344, 2.32031, 2.65234], [2.10547, 2.43750, 2.98438, 3.31641]], [[3.68359, 4.01562, 4.56250, 4.89453], [4.34766, 4.67969, 5.22656, 5.55859], [5.44141, 5.77344, 6.32031, 6.65234], [6.10547, 6.43750, 6.98438, 7.31641]]]], device=device) out_t = F.interpolate(in_t, scale_factor=2, mode='bicubic', align_corners=False) torch.set_printoptions(precision=5) self.assertEqual(out_t, expected_out_t, atol=1e-5, rtol=0) @parametrize_test("memory_format", [torch.contiguous_format, torch.channels_last]) def test_upsamplingBicubic2d_aa_correctness(self, device, memory_format): t_in = torch.arange(3 * 8 * 8, dtype=torch.float, device=device).reshape(1, 3, 8, 8) t_in = t_in.contiguous(memory_format=memory_format) # This expected result is obtain using PIL.Image.resize # for c in range(3): # a_in = t_in.numpy()[0, c, ...] # pil_in = Image.fromarray(a_in) # pil_out = pil_in.resize((2, 2), resample=Image.BICUBIC) expected_out = torch.tensor([ 15.1205635, 18.760439, 44.23956, 47.879436, 79.12056, 82.76044, 108.23956, 111.87944, 143.12057, 146.76044, 172.23956, 175.87943 ], device=device, dtype=t_in.dtype).reshape(1, 3, 2, 2) t_out = F.interpolate(t_in, size=(2, 2), mode="bicubic", align_corners=False, antialias=True) self.assertEqual(expected_out, t_out) @dtypes(torch.float, torch.double) def test_adaptive_pooling_max_nhwc(self, device, dtype): def helper(n, c, h, w, output_height, output_width, contig): input = torch.randint(1, 10, (n, c, h, w), device=device, dtype=dtype) input = input.contiguous(memory_format=torch.channels_last) grad = torch.randint(1, 10, (4, 8, output_height, output_width), device=device, dtype=dtype) grad = grad.contiguous(memory_format=torch.channels_last) if not contig: input = input[:, ::2, :, :] grad = grad[:, ::2, :, :] input.requires_grad_(True) pool = torch.nn.AdaptiveMaxPool2d((output_height, output_width), return_indices=True).to(device) ref_input = input.detach().clone().contiguous().requires_grad_(True) ref_grad = grad.detach().clone().contiguous() ref_pool = torch.nn.AdaptiveMaxPool2d((output_height, output_width), return_indices=True).to(device) out, ind = pool(input) out.backward(grad) ref_out, ref_ind = ref_pool(ref_input) ref_out.backward(ref_grad) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(ref_out.is_contiguous()) self.assertTrue(ind.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(ref_ind.is_contiguous()) self.assertEqual(out, ref_out) self.assertEqual(ind, ref_ind) self.assertEqual(input.grad, ref_input.grad) for contig in [True, False]: helper(4, 8, 10, 10, 7, 7, contig) helper(4, 8, 9, 14, 5, 8, contig) helper(4, 8, 11, 11, 1, 1, contig) def test_embedding_dense_grad(self, device): embd = nn.Embedding(20, 20).to(device) weight = embd.weight def fn_wrapper(device): def fn(weight): inp = torch.tensor([[0, 1, 1, 2], [3, 5, 7, 11]], dtype=torch.long).to(device) return torch.nn.functional.embedding(inp, weight) return fn fn = fn_wrapper(device) _assertGradAndGradgradChecks(self, fn, (weight, )) def test_embedding_scalar_weight_error(self, device): indices = torch.rand(2, 2, device=device).long() weights = [ torch.tensor(1.0, device=device), torch.tensor(1.0, device=device).reshape(1, 1, 1), ] for weight in weights: with self.assertRaisesRegex(RuntimeError, "'weight' must be 2-D"): torch.nn.functional.embedding(indices, weight) @dtypesIfCUDA(torch.float16, torch.float64) @dtypes(torch.float64) def test_embedding_backward(self, device, dtype): embedding = nn.Embedding(10, 3, sparse=True) tensor = torch.tensor([[7, 1, 3]]) ones = torch.tensor(1., dtype=dtype).expand(3, 3) tensorTwice = tensor.repeat(1, 2) onesTwice = torch.cat((ones, ones)) embedding = embedding.to(dtype=dtype).to(device) tensor = tensor.to(device) ones = ones.to(device) tensorTwice = tensorTwice.to(device) onesTwice = onesTwice.to(device) embedding.zero_grad() embedding(tensor[0]).sum().backward() self.assertEqual(embedding.weight.grad._indices(), tensor) self.assertEqual(embedding.weight.grad._values(), ones) embedding.zero_grad() embedding(tensor[0]).sum().backward() embedding(tensor[0]).sum().backward() self.assertEqual(embedding.weight.grad._indices(), tensorTwice) self.assertEqual(embedding.weight.grad._values(), onesTwice) embedding.zero_grad() embedding(tensor[0]).sum().backward() tensor[0, 0] = 8 embedding(tensor[0]).sum().backward() tensorTwice[0, 3] = 8 self.assertEqual(embedding.weight.grad._indices(), tensorTwice) self.assertEqual(embedding.weight.grad._values(), onesTwice) @dtypesIfCUDA(*((torch.float, torch.double, torch.bfloat16, torch.half) if TEST_WITH_ROCM else (torch.float, torch.double, torch.half))) @dtypes(torch.float32) def test_embedding_padding_idx(self, device, dtype): embedding = nn.Embedding(10, 20, padding_idx=0).to(device, dtype) input = torch.tensor([[0, 2, 4, 5], [4, 3, 0, 9]], dtype=torch.long).to(device) output = embedding(input) self.assertEqual(output[0][0].sum(), 0) self.assertEqual(output[1][2].sum(), 0) embedding = nn.Embedding(10, 20, padding_idx=0, sparse=True).to(device, dtype) input = torch.tensor([[0, 2, 4, 5], [4, 3, 0, 9]], dtype=torch.long).to(device) output = embedding(input) self.assertEqual(output[0][0].sum(), 0) self.assertEqual(output[1][2].sum(), 0) # negative indexing check for padding_idx # padding_idx=-2, num_embeddings=10 ==> index 8 padded embedding = nn.Embedding(10, 20, padding_idx=-2).to(device, dtype) input = torch.tensor([[0, 2, 8, 5], [4, 8, 0, 9]], dtype=torch.long).to(device) output = embedding(input) self.assertEqual(output[0][2].sum(), 0) self.assertEqual(output[1][1].sum(), 0) embedding = nn.Embedding(10, 20, padding_idx=-2, sparse=True).to(device, dtype) input = torch.tensor([[0, 2, 8, 5], [4, 8, 0, 9]], dtype=torch.long).to(device) output = embedding(input) self.assertEqual(output[0][2].sum(), 0) self.assertEqual(output[1][1].sum(), 0) # change padding vector padding_vector = torch.ones(20, dtype=dtype, device=device) embedding = nn.Embedding(10, 20, padding_idx=2, sparse=True).to(device, dtype) with torch.no_grad(): embedding.weight[2] = padding_vector input = torch.tensor([0, 2], dtype=torch.long).to(device) output = embedding(input) self.assertEqual(output[1], padding_vector) # out of bounds check for padding_idx self.assertRaises(AssertionError, nn.Embedding, num_embeddings=10, embedding_dim=20, padding_idx=25) self.assertRaises(AssertionError, nn.Embedding, num_embeddings=10, embedding_dim=20, padding_idx=-25) padding_idx = 0 embedding = nn.Embedding(5, 2, padding_idx=padding_idx).to(device, dtype) for n in (1, 2, 1000): # Need large N to trigger all the methods we have implemented for other_indices in ([], [1, 3], [2]): indices = torch.tensor(other_indices + [padding_idx] * n, dtype=torch.long).to(device) pre = embedding.weight[padding_idx].clone() embedding(indices).sum().backward() after = (embedding.weight + embedding.weight.grad)[padding_idx] embedding.zero_grad() self.assertEqual(after, pre) # test double backward emb_sum = embedding(indices).sum() emb_grad = torch.autograd.grad(outputs=emb_sum, inputs=list(embedding.parameters()), retain_graph=True) scalar = emb_grad[0].sum() + emb_sum scalar.backward() after = (embedding.weight + embedding.weight.grad)[padding_idx] embedding.zero_grad() self.assertEqual(after, pre) # Check correctness of torch.nn.functional.embedding_bag forward and # backward functions with padding_idx, given a 1D input separated into bags # with an offset array. Compare against an equivalent 2D input that uses # padding indices to fill in the gaps indicated by the offset array @onlyNativeDeviceTypes @dtypes(torch.float32, torch.float64) @dtypesIfCUDA(torch.half, torch.bfloat16) def test_embedding_bag_1D_padding_idx(self, device, dtype): num_features = 3 max_indices_per_bag = 10 num_bags = 10 num_words = 100 def gen_1D_indices_offsets(include_last_offset, allpad): indices = [] offsets = [] cur_offset = 0 # Make one bag full and one bag empty, for extra coverage empty_bag = random.randint(0, num_bags - 1) full_bag = empty_bag while full_bag == empty_bag: full_bag = random.randint(0, num_bags - 1) for bag in range(num_bags): offsets.append(cur_offset) if bag == full_bag: bag_size = max_indices_per_bag elif bag == empty_bag: bag_size = 0 else: bag_size = random.randint(1, max_indices_per_bag - 1) indices += [1 if allpad else random.randint(0, num_words - 1) for _ in range(bag_size)] cur_offset += bag_size # embedding_bag requires first entry of offsets to be 0 assert offsets[0] == 0 indices = torch.tensor(indices, device=device) if include_last_offset: offsets.append(indices.size(0)) offsets = torch.tensor(offsets, device=device) return indices, offsets # Convert a 1-D indices-offsets representation into 2-D. Fill any empty # indices with padding_idx def gen_2D_indices_from_1D(indices_1D, offsets, include_last_offset, padding_idx): assert offsets[0] == 0 if include_last_offset: offsets = offsets[:-1] indices_2D = torch.empty(num_bags, max_indices_per_bag, device=device, dtype=torch.long) for bag in range(num_bags): # Determine the start and end position of the bag within indices_1D start = offsets[bag] end = len(indices_1D) if bag + 1 == num_bags else offsets[bag + 1] end = min(len(indices_1D), end) # Pull out the bag's indices from indices_1D, and fill any # remaining space with padding indices indices_in_bag = [] for item_pos in range(0, max_indices_per_bag): if (start + item_pos) < end: indices_in_bag.append(indices_1D[start + item_pos]) else: indices_in_bag.append(padding_idx) indices_2D[bag] = torch.tensor(indices_in_bag, device=device) return indices_2D test_cases = product(['max', 'mean', 'sum'], [False, True], [False, True], [False, True]) for mode, sparse, include_last_offset, allpad in test_cases: # Max sparse and bfloat16 are not supported if mode == 'max': if sparse or (dtype == torch.bfloat16): continue indices_1D, offsets = gen_1D_indices_offsets(include_last_offset, allpad) for padding_idx_1D in list(set(indices_1D.tolist())) + [None]: msg = ( f"mode: '{mode}', sparse: {sparse}, include_last_offset: {include_last_offset}, " f"padding_idx_1D: {padding_idx_1D}") # If 1D input does not use a padding index, we still need one for the 2D input, # so we can add one dummy word to the weights to act as the padded word padding_idx_2D = padding_idx_1D if padding_idx_1D is not None else num_words num_words_with_padding = num_words if padding_idx_1D is not None else num_words + 1 indices_2D = gen_2D_indices_from_1D( indices_1D, offsets, include_last_offset, padding_idx_2D) weights = torch.randn( num_words_with_padding, num_features, dtype=dtype, device=device, requires_grad=True) weights_check = weights.clone().detach().requires_grad_(True) bag = torch.nn.functional.embedding_bag( indices_1D, weights, offsets, padding_idx=padding_idx_1D, mode=mode, sparse=sparse, include_last_offset=include_last_offset) bag_check = torch.nn.functional.embedding_bag( indices_2D, weights_check, padding_idx=padding_idx_2D, mode=mode, sparse=sparse) self.assertEqual(bag, bag_check, msg=msg) bag.sum().backward() bag_check.sum().backward() # Sometimes, half dtype gradients mismatch by a greater amount # than other dtypes if dtype in [torch.half, torch.bfloat16]: atol = 0.01 rtol = 0.01 else: atol = None rtol = None self.assertEqual(weights.grad, weights_check.grad, msg=msg, atol=atol, rtol=rtol) # Check correctness of torch.nn.functional.embedding_bag forward and # backward functions with padding_idx, given a 2D indices input. Compare # against torch.nn.functional.embedding followed by a reduction. @onlyNativeDeviceTypes @dtypes(torch.float32, torch.float64) @dtypesIfCUDA(torch.half, torch.bfloat16) def test_embedding_bag_2D_padding_idx(self, device, dtype): # Use a Python implementation of embedding_bag with padding_idx support # to check torch.nn.functional.embedding_bag correctness def embedding_bag_check(indices, weights, mode, sparse, padding_idx): assert padding_idx is not None embedding = torch.nn.functional.embedding( indices, weights, padding_idx=padding_idx, sparse=sparse) reduction_dim = indices.dim() - 1 if mode == 'sum' or mode == 'mean': # We must avoid including elements at padding_idx in the # sum/mean, so multiply those elements by 0, and multiply # all other elements by 1 per_sample_weights = indices.ne(padding_idx).to(dtype).unsqueeze(-1) res = embedding.mul(per_sample_weights).sum(dim=reduction_dim) if mode == 'mean': weights_sum = per_sample_weights.sum(dim=reduction_dim) res = res.div(weights_sum) elif mode == 'max': # We must avoid allowing elements at padding_idx to be chosen # as the max, so set those elements to negative infinity res = embedding.masked_fill( indices.unsqueeze(-1) == padding_idx, -float('inf') ).amax(dim=reduction_dim) else: raise RuntimeError(f"mode '{mode}' is not available") # If a row is all padding, set its corresponding result row to 0. # This is needed because the above mean and max mode # implementations set these elements to nan and -inf, respectively if mode in ['mean', 'max']: res = res.masked_fill( indices.eq(padding_idx).all(dim=-1).unsqueeze(-1), 0) return res num_features = 3 num_words = 10 indices_dim1 = 10 for mode, sparse, allpad, indices_dim0 in product(['max', 'mean', 'sum'], [False, True], [False, True], [1, 10]): # Max sparse and bfloat16 are not supported if mode == 'max': if sparse or (dtype == torch.bfloat16): continue if allpad: indices = torch.empty(indices_dim0, indices_dim1, dtype=torch.long, device=device).fill_(1) else: indices = torch.randint(0, num_words, (indices_dim0, indices_dim1), device=device) if indices_dim0 > 1: # Fill one row with duplicate index so we can test with a fully # padded row duplicate_row = random.randint(0, indices_dim0 - 1) indices[duplicate_row] = indices[duplicate_row][0] for padding_idx in list(set(indices.flatten(0, -1).tolist())): weights = torch.randn(num_words, num_features, dtype=dtype, device=device, requires_grad=True) weights_check = weights.clone().detach().requires_grad_(True) msg = ( f"mode: '{mode}', sparse: {sparse}, padding_idx: {padding_idx}, " f"allpad: {allpad}, indices.size(): {indices.size()}") # Check forward with a Python implementation of padding_idx embedding_bag bag_check = embedding_bag_check( indices, weights_check, mode, sparse, padding_idx) bag = torch.nn.functional.embedding_bag( indices, weights, padding_idx=padding_idx, mode=mode, sparse=sparse) self.assertEqual(bag, bag_check, msg=msg) bag_check.sum().backward() grad_check = weights_check.grad bag.sum().backward() grad = weights.grad # Sometimes, half dtype gradients mismatch by a greater amount # than other dtypes if dtype in [torch.half, torch.bfloat16]: atol = 0.01 rtol = 0.01 else: atol = None rtol = None self.assertEqual(grad, grad_check, msg=msg, atol=atol, rtol=rtol) def test_masked_softmax(self, device): sizes = [(1, 1, 32), (3, 16, 310), (12, 4, 1024), (4, 2, 1200)] for (B, num_heads, L) in sizes: input = torch.randn((B, num_heads, L, L)) mask = torch.randint(0, 2, (B, L)) if (self.device_type == "cuda"): input = input.cuda() mask = mask.cuda() mask = mask.reshape(B, 1, 1, L).expand(B, num_heads, L, L).bool() native_res = torch._masked_softmax(input, mask) mask = mask.float() def slow_masked_softmax(input, mask): exp = torch.exp(input) exp = exp * mask s = exp.sum(dim=3, keepdim=True).expand(exp.size()) return exp / s pt_res = slow_masked_softmax(input, mask) self.assertEqual(pt_res, native_res, exact_dtype=True) @onlyCUDA def test_masked_softmax_transformer_layout(self, device): B = 211 num_heads = 16 L = 42 input = torch.randn((B, num_heads, L, L)) mask = torch.randint(0, 2, (B, L)) if (self.device_type == "cuda"): input = input.cuda() mask = mask.cuda() mask = mask.bool() native_res = torch._masked_softmax(input, mask) mask = mask.reshape(B, 1, 1, L).expand(B, num_heads, L, L) mask = mask.float() def slow_masked_softmax(input, mask): exp = torch.exp(input) exp = exp * mask s = exp.sum(dim=3, keepdim=True).expand(exp.size()) return exp / s pt_res = slow_masked_softmax(input, mask) self.assertEqual(pt_res, native_res, exact_dtype=True) # Test fails on Vg20 @skipCUDAIfRocm @dtypesIfCUDA(torch.half, torch.float) @dtypes(torch.float) def test_softmax_results(self, device, dtype): # Non-even sizes and non-zero shifts test fallback paths in vectorized kernel # Note: dim1 > 1024 is needed to exercise the vectorized (non-persistent) path, (16, 30576) is BERT-esque sizes = [(0, 10), (32, 20), (10, 0), (31, 20), (32, 21), (31, 23), (32, 1536), (31, 2048), (33, 2049), (16, 30576)] shifts = [(0, 0), (1, 0), (0, 1), (1, 1)] for fn in [F.softmax, F.log_softmax]: for size in sizes: for shift in shifts: input = torch.rand(size, device=device, dtype=dtype) # Note: With the largest tests we can hit upper limit of fp16 when we # sum, so scale the input down to stay in a nicer range. if dtype == torch.float16: input = input / 100. input = input[shift[0]:, shift[1]:] # Note; Don't want to bprop back through slice op input = input.detach().requires_grad_(True) ref_input = input.clone().cpu().detach().requires_grad_(True) for dim in [0, 1]: ref_output = fn(ref_input, dtype=torch.float, dim=dim) output = fn(input, dtype=torch.float, dim=dim) grad_output = torch.rand(size, device=device, dtype=dtype) grad_output = grad_output[shift[0]:, shift[1]:] ref_grad_output = grad_output.clone().cpu().detach() grad_input, = torch.autograd.grad(output, input, grad_outputs=(grad_output), create_graph=True) ref_grad_input, = torch.autograd.grad(ref_output, ref_input, grad_outputs=(ref_grad_output), create_graph=True) grad_input.sum().backward() ref_grad_input.sum().backward() self.assertEqual(output, ref_output) self.assertEqual(grad_input, ref_grad_input) self.assertEqual(input.grad, ref_input.grad) @onlyCUDA @dtypes(torch.float, torch.half) @largeTensorTest("20GB") @largeTensorTest("90GB", "cpu") @precisionOverride({torch.half: 0.001}) def test_softmax_64bit_indexing(self, device, dtype): def run_test(*shape): x = torch.randn(shape, device="cuda", dtype=torch.float16, requires_grad=True) y = F.log_softmax(x, dim=-1, dtype=dtype) y.backward(y) with torch.no_grad(): xx = x.cpu().requires_grad_() yy = F.log_softmax(xx.float(), dim=-1).to(dtype) yy.backward(yy) self.assertEqual(y, yy) self.assertEqual(x.grad, xx.grad) run_test(1100000000, 2) # Illegal memory access https://github.com/pytorch/pytorch/issues/52715 run_test(2200000000, 1) # invalid configuration argument https://github.com/pytorch/pytorch/issues/52716 @dtypes(torch.float) @dtypesIfCUDA(torch.float, torch.half) def test_log_softmax_big(self, device, dtype): def _test_helper(shape): # generate a tensor with big numbers that are exactly representable in dtype # and are at a constant offset from tensor with small numbers # the logsoftmax of a small and big tensors should be equal x_small = torch.randint(100, shape, dtype=dtype, device=device) offset = 1.5e3 if dtype == torch.half else 1e7 x_big = x_small + offset self.assertEqual(F.log_softmax(x_small, -1), F.log_softmax(x_big, -1)) _test_helper((16, 4)) if self.device_type == 'cuda': # test non-persistent softmax kernel _test_helper((4, 1536)) @onlyCUDA @largeTensorTest('12GB') def test_conv_large_nosplit(self, device): # Here we just test the convolution correctly route to the fallback implementation # that is, it does not crash. The correctness of fallback implementation should be # covered in other tests dtype = torch.half if self.device_type == 'cuda' else torch.float conv1 = nn.Conv2d(2, 2, 8, 8).to(device).to(dtype) input_large = torch.randn(1, 2, 1024, 1024 * 1024, dtype=dtype, device=device) conv1(input_large) conv2 = torch.nn.Conv2d(1, 1024, 1, 1).to(device).to(dtype) input_large = torch.randn(1, 1, 2048, 1024 , dtype=dtype, device=device) conv2(input_large) def test_conv_noncontig_weights(self, device): for dim in (1, 2, 3): for grouped in (False, True): nc = 3 groups = 3 if grouped else 1 w = torch.randn([3] * dim, device=device) w = w.expand([nc, int(nc / groups)] + list(w.shape)) w = w.detach().requires_grad_() x = torch.randn([1, nc] + ([5] * dim), device=device, requires_grad=True) y = getattr(F, 'conv{}d'.format(dim))(x, w, groups=groups) y.sum().backward() y = getattr(F, 'conv_transpose{}d'.format(dim))(x, w, groups=groups) y.sum().backward() def test_conv_noncontig_weights_and_bias(self, device): # need floats to exercise https://github.com/pytorch/pytorch/issues/16018 for bias in [True, False]: conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=bias).to(device, torch.float) input_nc = torch.randn((1, 3, 224, 224, 2), device=device, dtype=torch.float)[:, :, :, :, 1] input_c = input_nc.contiguous() weight_nc = torch.randn((64, 3, 7, 7, 2), device=device, dtype=torch.float)[:, :, :, :, 1] conv1.weight = nn.Parameter(weight_nc) weight_c = conv1.weight.contiguous() if bias: bias_nc = torch.randn((64, 2), device=device, dtype=torch.float)[:, 1] conv1.bias = nn.Parameter(bias_nc) bias_c = conv1.bias.contiguous() out1 = conv1(input_nc) conv1.weight = nn.Parameter(weight_c) if bias: conv1.bias = nn.Parameter(bias_c) out2 = conv1(input_c) self.assertEqual(out1, out2) def test_save_lstm_compatibility(self, device): # Test that saving an LSTM in PyTorch 1.7 and older can still be # loaded in newer versions of PyTorch. model = nn.LSTM(2, 3) x = torch.randn(32, 5, 2) expected = model(x) # Get a state dict for PyTorch 1.7 LSTM. Before PyTorch 1.8, proj_size # didn't exist. assert model.proj_size == 0 state_dict = model.__dict__ del state_dict['proj_size'] # load a model loaded_model = nn.LSTM(2, 3) loaded_model.__setstate__(state_dict) result = loaded_model(x) self.assertEqual(result, expected) @onlyCUDA @tf32_on_and_off(0.005) def test_grid_sample_large(self, device): def issue_35202(): input_tensor = torch.rand(1, 1, 480, 640, dtype=torch.float, device=device, requires_grad=True) coords = torch.tensor([[-10059144, 67680944], [67680944, 67680944]], dtype=torch.float, device=device) coords = coords.unsqueeze(0).unsqueeze(0).repeat(1, 1, 1, 1) result = torch.nn.functional.grid_sample(input_tensor, coords) self.assertEqual(result, torch.tensor([[[[0., 0.]]]], dtype=torch.float, device=device)) result.backward(torch.ones_like(result)) torch.cuda.synchronize() issue_35202() def issue_24823_1(dtype): image = torch.arange(27, 0, -1, dtype=dtype, device=device).view(1, 1, 3, 3, 3) image.requires_grad_() grid = torch.nn.functional.affine_grid( torch.tensor([[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]], dtype=dtype, device=device), (1, 1, 3, 3, 3)) grid[:, 1, 1, 1, 0] = float('inf') result = torch.nn.functional.grid_sample(image, grid, padding_mode='zeros') self.assertEqual(result, torch.tensor([[[[[27., 26., 25.], [24., 23., 22.], [21., 20., 19.]], [[18., 17., 16.], [15., 0., 13.], [12., 11., 10.]], [[9., 8., 7.], [6., 5., 4.], [3., 2., 1.]]]]], device=device, dtype=dtype)) result.backward(torch.ones_like(result)) expected_grad = torch.ones_like(image) expected_grad[0, 0, 1, 1, 1] = 0 self.assertEqual(image.grad, expected_grad, atol=0.005, rtol=0) issue_24823_1(torch.half) issue_24823_1(torch.float) issue_24823_1(torch.double) def issue_24823_2(): param = torch.tensor([[[-1.0e+20, 0.0, 0.0], [0.0, -1.0e+20, 0.0]]], dtype=torch.float, device=device) img = torch.zeros((1, 1, 4, 4), dtype=torch.float, device=device, requires_grad=True) grid = torch.nn.functional.affine_grid(param, img.size()) result = torch.nn.functional.grid_sample(img, grid) self.assertEqual(result, torch.zeros(1, 1, 4, 4, device=device, dtype=torch.float)) result.backward(torch.ones_like(result)) torch.cuda.synchronize() issue_24823_2() @dtypes(torch.float, torch.double) @largeTensorTest(lambda self, device, dtype: # Compute sum of the large tensor sizes: # (im.numel() + small_image.numel() + small_image.grad.numel() + # large_view.grad.numel()) * sizeof(dtype) 32769 * (65536 + 3 * 65536 / 128) * torch.tensor([], dtype=dtype).element_size()) def test_grid_sample_large_index_2d(self, device, dtype): # Test 64-bit indexing with grid_sample (gh-41656) # Try accessing the corners, there should be no segfault coords = torch.tensor([[[-1., -1.], [+1., -1.]], [[-1., +1.], [+1., +1.]]], device=device, dtype=dtype) coords = coords.expand(1, 2, 2, 2) im = torch.zeros([1, 1, 32769, 65536], device=device, dtype=dtype) # Compare sampling with large strides to the same op on a contiguous tensor coords = torch.rand(1, 4, 4, 2, device=device, dtype=dtype) large_view = im[..., 127::128] small_image = torch.rand_like(large_view) large_view[...] = small_image large_view.requires_grad, small_image.requires_grad = True, True self.assertTrue( sum(i * s for i, s in zip(large_view.size(), large_view.stride())) >= 2 ** 31, msg="View must use 64-bit indexing") for mode, padding_mode, align_corners in itertools.product( ('nearest', 'bilinear', 'bicubic'), ('zeros', 'border', 'reflection'), (True, False)): a = F.grid_sample( small_image, coords, mode=mode, padding_mode=padding_mode, align_corners=align_corners) a.sum().backward() b = F.grid_sample( large_view, coords, mode=mode, padding_mode=padding_mode, align_corners=align_corners) b.sum().backward() self.assertEqual(a, b) self.assertEqual(small_image.grad, large_view.grad) small_image.grad.zero_() large_view.grad.zero_() @dtypes(torch.float, torch.double) @largeTensorTest(lambda self, device, dtype: # Compute sum of the large tensor sizes: # (im.numel() + small_image.numel() + small_image.grad.numel() + # large_view.grad.numel()) * sizeof(dtype) 2 * 32769 * (32768 + 3 * 32768 / 128) * torch.tensor([], dtype=dtype).element_size()) def test_grid_sample_large_index_3d(self, device, dtype): # Test 64-bit indexing with grid_sample (gh-41656) # Try accessing the corners, there should be no segfault coords = torch.full((1, 2, 2, 2, 3), 1., device=device, dtype=dtype) im = torch.zeros([1, 1, 2, 32769, 32768], device=device, dtype=dtype) result = F.grid_sample(im, coords, align_corners=False) self.assertEqual(result, torch.zeros((1, 1, 2, 2, 2), device=device, dtype=dtype)) # Compare sampling with large strides to the same op on a contiguous tensor coords = torch.rand(1, 1, 4, 4, 3, device=device, dtype=dtype) large_view = im[..., 127::128] small_image = torch.rand_like(large_view) large_view[...] = small_image small_image.requires_grad, large_view.requires_grad = True, True self.assertTrue( sum(i * s for i, s in zip(large_view.size(), large_view.stride())) >= 2 ** 31, msg="View must use 64-bit indexing") for mode, padding_mode, align_corners in itertools.product( ('nearest', 'bilinear'), ('zeros', 'border', 'reflection'), (True, False)): a = F.grid_sample( small_image, coords, mode=mode, padding_mode=padding_mode, align_corners=align_corners) a.sum().backward() b = F.grid_sample( large_view, coords, mode=mode, padding_mode=padding_mode, align_corners=align_corners) b.sum().backward() self.assertEqual(a, b) self.assertEqual(small_image.grad, large_view.grad) small_image.grad.zero_() large_view.grad.zero_() @onlyCUDA @largeTensorTest('12GB') def test_conv_transposed_large(self, device): dtype = torch.half if self.device_type == 'cuda' else torch.float conv = nn.ConvTranspose2d(1, 1, 1, 1, bias=False).to(device).to(dtype) input_large = torch.randn(4096, 1, 512, 1024, dtype=dtype, device=device) # forward ret = conv(input_large) maxdiff0 = (ret.narrow(0, 0, 1024) - conv(input_large.narrow(0, 0, 1024))).abs_().max().item() maxdiff1 = (ret.narrow(0, 1024, 1024) - conv(input_large.narrow(0, 1024, 1024))).abs_().max().item() maxdiff2 = (ret.narrow(0, 2048, 1024) - conv(input_large.narrow(0, 2048, 1024))).abs_().max().item() maxdiff3 = (ret.narrow(0, 3072, 1024) - conv(input_large.narrow(0, 3072, 1024))).abs_().max().item() self.assertEqual(maxdiff0, 0) self.assertEqual(maxdiff1, 0) self.assertEqual(maxdiff2, 0) self.assertEqual(maxdiff3, 0) @onlyCUDA @skipCUDAIfRocm @largeTensorTest('12GB') def test_conv_large(self, device): dtype = torch.half if self.device_type == 'cuda' else torch.float conv = nn.Conv2d(2, 2, 8, 8, bias=False).to(device).to(dtype) conv.weight = torch.nn.Parameter(torch.randn(2, 2, 8, 8, device=device, dtype=dtype) / 64) input_large = torch.randn(4097, 2, 512, 512, dtype=dtype, device=device) # forward ret = conv(input_large) self.assertEqual(ret[:2048], conv(input_large[:2048])) self.assertEqual(ret[2048:4096], conv(input_large[2048:4096])) self.assertEqual(ret[4096:], conv(input_large[4096:])) # backward conv.zero_grad() # When computing the backward, we are using the `max(dim=1)`` to create # some sparsity. Without this sparsity, the rounding error would be # too large (as large as 1e-5) to satisfy the creterion (1e-6) of `assertEqual` ret.view(4097, -1).max(dim=1).values.sum().backward() del ret grad1 = conv.weight.grad.detach().clone() conv.zero_grad() conv(input_large[:2048]).view(2048, -1).max(dim=1).values.sum().backward() conv(input_large[2048:4096]).view(2048, -1).max(dim=1).values.sum().backward() conv(input_large[4096:]).view(1, -1).max(dim=1).values.sum().backward() grad2 = conv.weight.grad.detach().clone() # gradients are at the order of hundreds, we need to scale it to # the order of one so that we can compare scale = 1 / grad2.abs().mean() grad1 = grad1 * scale grad2 = grad2 * scale self.assertEqual(grad1, grad2, atol=5e-2, rtol=5e-3) def _test_gumbel_softmax_st_shapes(self, device, dtype, shape, dim, count_expected): logits = torch.randn(shape, dtype=torch.float, device=device) logits = logits.to(dtype) y_draw = F.gumbel_softmax(logits, hard=True, dim=dim) # All values positive self.assertGreaterEqual(y_draw.min(), 0) # Shape unchanged self.assertTrue(y_draw.shape == logits.shape) # One choice per draw self.assertEqual(y_draw.sum(), count_expected, atol=torch.finfo(y_draw.dtype).eps, rtol=0) def _test_gumbel_softmax_straight_through(self, device, dtype): num_draws = 100 logits = torch.tensor([[0.2, 0.8, 0.1]], device=device) logits = logits.reshape([1, 3]) logits = logits.to(dtype).requires_grad_() probs = logits.softmax(dim=-1) counts = torch.zeros_like(logits) for _ in range(num_draws): y_draw = F.gumbel_softmax(logits, hard=True) counts = counts + y_draw # All values positive self.assertGreaterEqual(y_draw.min(), 0) # Each experiment should result in 1 draw. self.assertEqual(counts.sum(), num_draws, atol=torch.finfo(counts.dtype).eps, rtol=0) # check results is asymptotically as expected. expected = probs * num_draws # ~z is approximately N(0,1) for unbiased count z = (counts - expected) / (expected * (1 - probs)).sqrt() # A (lazy) approximate 99% two-sided test: # occurs with prob alpha~>=0.01 if unbiased self.assertLess(z.abs().max().item(), 2.58) def _test_gumbel_softmax_grad(self, device, dtype): # "hard" and "not hard" should propagate same gradient. logits_soft = torch.zeros(10, 10, dtype=dtype, device=device, requires_grad=True) logits_hard = torch.zeros(10, 10, dtype=dtype, device=device, requires_grad=True) seed = torch.random.get_rng_state() y_soft = F.gumbel_softmax(logits_soft, hard=False) torch.random.set_rng_state(seed) y_hard = F.gumbel_softmax(logits_hard, hard=True) y_soft.sum().backward() y_hard.sum().backward() # 2eps = 1x addition + 1x subtraction. tol = 2 * torch.finfo(dtype).eps self.assertEqual(logits_soft.grad, logits_hard.grad, atol=tol, rtol=0) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float, torch.double) def test_gumbel_softmax(self, device, dtype): self._test_gumbel_softmax_st_shapes(device, dtype, shape=[5], dim=0, count_expected=1) self._test_gumbel_softmax_st_shapes(device, dtype, shape=[5], dim=-1, count_expected=1) self._test_gumbel_softmax_st_shapes(device, dtype, shape=[5, 4], dim=1, count_expected=5) self._test_gumbel_softmax_st_shapes(device, dtype, shape=[5, 4, 3], dim=1, count_expected=5 * 3) self._test_gumbel_softmax_st_shapes(device, dtype, shape=[5, 4, 3], dim=-1, count_expected=5 * 4) self._test_gumbel_softmax_straight_through(device, dtype) self._test_gumbel_softmax_grad(device, dtype) def _test_rnn_retain_variables(self, device, dtype): rnns = [nn.LSTM(10, 20, num_layers=2).to(device, dtype), nn.GRU(10, 20, num_layers=2).to(device, dtype), nn.RNN(10, 20, num_layers=2).to(device, dtype)] for rnn in rnns: input = torch.randn(5, 6, 10, device=device, dtype=dtype, requires_grad=True) output = rnn(input) output[0].sum().backward(retain_graph=True) grads = [input.grad.data.clone()] + [p.grad.data.clone() for p in rnn.parameters()] for _ in range(4): rnn.zero_grad() input.grad.data.zero_() output[0].sum().backward(retain_graph=True) grads2 = [input.grad.data] + [p.grad.data for p in rnn.parameters()] self.assertEqual(grads, grads2) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.double) def test_rnn_retain_variables(self, device, dtype): self._test_rnn_retain_variables(device, dtype) if self.device_type == 'cuda' and self.has_cudnn(): with torch.backends.cudnn.flags(enabled=False): self._test_rnn_retain_variables(device, dtype) @onlyCUDA @dtypes(torch.double) def test_lstmcell_backward_only_one_output_grad(self, device, dtype): # checks that undefined gradients doen't hamper the backward # see #11872 l = torch.nn.LSTMCell(2, 3).to(device).to(dtype=dtype) s = torch.randn(1, 2, device=device, dtype=dtype, requires_grad=True) for i in range(2): out = l(s)[i] out.sum().backward() self.assertFalse(s.grad is None or s.grad.abs().sum().item() == 0) def _test_rnn_mod(self, mod, inp): def flatten_out(mod, inp): out = mod(inp) return tuple([t if isinstance(t, torch.Tensor) else tt for t in out for tt in t]) gradcheckfunc = partial(flatten_out, mod) with torch.backends.cudnn.flags(enabled=False): gradcheck(gradcheckfunc, inp, check_batched_grad=False) gradgradcheck(gradcheckfunc, inp, check_batched_grad=False) if inp.is_cuda and not TEST_WITH_ROCM: # Assert that we have good error message around unsupported CuDNN double backward # NB: we trigger double backward using .backward() instead of autograd.grad due to # https://github.com/pytorch/pytorch/issues/37874 with torch.backends.cudnn.flags(enabled=True): result = gradcheckfunc(inp) result[0].sum().backward(create_graph=True) grad0 = next(mod.parameters()).grad with self.assertRaisesRegex(RuntimeError, "please disable the CuDNN backend temporarily"): grad0.sum().backward() # Here we avoid the backward(create_graph=True) memory leak # described in https://github.com/pytorch/pytorch/issues/7343 for param in mod.parameters(): param.grad = None inp.grad = None # Merge into OpInfo? @skipMeta # LSTM cell reuses output which was resized @dtypes(torch.double) def test_LSTM_grad_and_gradgrad(self, device, dtype): hsize = 4 inp = torch.rand(1, 3, hsize, device=device, dtype=dtype, requires_grad=True) for bias in [True, False]: mod = torch.nn.LSTM(hsize, hsize, bias=bias).to(device).to(dtype) self._test_rnn_mod(mod, inp) @skipMeta # GRU cell reuses output which was resized @dtypes(torch.double) def test_GRU_grad_and_gradgrad(self, device, dtype): hsize = 4 inp = torch.rand(1, 3, hsize, device=device, dtype=dtype, requires_grad=True) for bias in [True, False]: mod = torch.nn.GRU(hsize, hsize, bias=bias).to(device).to(dtype) self._test_rnn_mod(mod, inp) @onlyCUDA def test_upsamplingNearest1d_launch_config(self, device): m = nn.Upsample(scale_factor=2) inp = torch.rand(2**25, 1, 1, device=device) out = m(inp) inp_ref = inp.cpu() out_ref = m(inp_ref) self.assertEqual(out_ref, out) @onlyCUDA def test_upsamplingNearest2d_launch_config(self, device): m = nn.Upsample(scale_factor=2) inp = torch.rand(2**25, 1, 1, 1, device=device) out = m(inp) inp_ref = inp.cpu() out_ref = m(inp_ref) self.assertEqual(out_ref, out) @onlyCUDA def test_upsamplingNearest3d_launch_config(self, device): m = nn.Upsample(scale_factor=2) inp = torch.rand(2**25, 1, 1, 1, 1, device=device) out = m(inp) inp_ref = inp.cpu() out_ref = m(inp_ref) self.assertEqual(out_ref, out) @unittest.expectedFailure @skipIfRocm @onlyCUDA def test_upsamplingNearest2d_launch_fail(self, device): m = nn.Upsample(scale_factor=2) # launch grid_y == 2**16 (larger than maximum y-dimension limit 65535) inp = torch.rand(1, 1, 2**15, 2**8, device=device) out = m(inp) @onlyCUDA @skipCUDAIfNotRocm def test_upsamplingNearest2d_launch_rocm(self, device): # test_upsamplingNearest2d_launch_fail should run OK on ROCm m = nn.Upsample(scale_factor=2) inp = torch.rand(1, 1, 2**15, 2**8, device=device) out = m(inp) @onlyCUDA @skipCUDAIfCudnnVersionLessThan(7600) def test_CTCLoss_cudnn(self, device): def _helper(zero_infinity): target_lengths = [30, 25, 20] input_lengths = [50, 50, 50] targets = torch.randint(1, 15, (sum(target_lengths),), dtype=torch.int) log_probs = torch.randn(50, 3, 15, dtype=torch.float, device=device).log_softmax(2).requires_grad_() log_probs_ref = log_probs.detach().clone().requires_grad_() with torch.backends.cudnn.flags(enabled=True): res = torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths, zero_infinity=zero_infinity) res.backward() expected = ctcloss_reference(log_probs, targets.cuda(), input_lengths, target_lengths).float() with torch.backends.cudnn.flags(enabled=False): res2 = torch.nn.functional.ctc_loss(log_probs_ref, targets.cuda().long(), input_lengths, target_lengths, zero_infinity=zero_infinity) res2.backward() self.assertEqual(res, expected) self.assertEqual(res2, res) self.assertEqual(log_probs.grad, log_probs_ref.grad) _helper(zero_infinity=True) _helper(zero_infinity=False) def _CTCLoss_gen_losses(self, device, input_length, vocab_size, target_length, reduction, use_module_form): batch_size = 1 log_probs = torch.randn(input_length, batch_size, vocab_size, dtype=torch.float, device=device) \ .log_softmax(2).requires_grad_() targets = torch.randint(low=1, high=vocab_size - 1, size=(batch_size, target_length), dtype=torch.int, device=device) input_lengths = batch_size * [input_length] target_lengths = batch_size * [target_length] log_probs_no_bd = log_probs.squeeze(1).detach().clone().requires_grad_() targets_no_bd = targets.squeeze(0).detach().clone() input_lengths_no_bd = torch.tensor(input_length) target_lengths_no_bd = torch.tensor(target_length) # currently only length 2 and 1 right now, but left flexible for additional potential cases log_probs_refs = [log_probs.detach().clone().requires_grad_() for _ in range(2)] log_probs_no_bd_refs = [log_probs_no_bd.detach().clone().requires_grad_() for _ in range(1)] losses = [] losses_no_bd = [] has_cuda = torch.cuda.is_available() has_cudnn = has_cuda and 'cuda' in device and self.has_cudnn() # cudnn requires a cpu target if has_cuda and has_cudnn: targets = targets.cpu() targets_no_bd = targets_no_bd.cpu() ctc_loss = ( nn.CTCLoss(reduction=reduction, zero_infinity=True) if use_module_form else partial(torch.nn.functional.ctc_loss, reduction=reduction, zero_infinity=True) ) with torch.backends.cudnn.flags(enabled=has_cudnn): # batched case. log_probs.shape = (T, N, C), targets = (N, S), input_lengths/target_lengths = (N,) losses.append(ctc_loss(log_probs_refs[0], targets, input_lengths, target_lengths)) # batched case. input.shape = (T, N, C), targets = (S,), input_lengths/target_lengths = (N,) losses.append(ctc_loss(log_probs_refs[1], targets_no_bd, input_lengths, target_lengths)) # unbatched case. input.shape = (T, C), targets = (S,), input_lengths/target_lengths = (N,) losses_no_bd.append(ctc_loss(log_probs_no_bd_refs[0], targets_no_bd, input_lengths_no_bd, target_lengths_no_bd)) for loss in losses + losses_no_bd: loss.backward() return losses, losses_no_bd, log_probs_refs, log_probs_no_bd_refs def _assertEqual_list(self, expected, list_to_compare, atol=None, rtol=None): for ele in list_to_compare: self.assertEqual(expected, ele, atol=atol, rtol=rtol) @parametrize_test("reduction", ['none', 'mean', 'sum']) @parametrize_test("use_module_form", [True, False]) def test_CTCLoss_no_batch_dim(self, device, reduction, use_module_form): input_length = 40 vocab_size = 3 target_length = 12 args = self._CTCLoss_gen_losses(device, input_length, vocab_size, target_length, reduction, use_module_form) losses, losses_no_bd, log_probs_refs, log_probs_no_bd_refs = args # test output values self._assertEqual_list(losses[0], losses[1:], atol=1e-4, rtol=0) self._assertEqual_list(losses[0].squeeze(0), losses_no_bd, atol=1e-4, rtol=0) # test gradient values self._assertEqual_list(log_probs_refs[0].grad, [t.grad for t in log_probs_refs[1:]], atol=1e-4, rtol=0) self._assertEqual_list( log_probs_refs[0].grad.squeeze(1), [t.grad for t in log_probs_no_bd_refs], atol=1e-4, rtol=0, ) # checking the output's shape # batch dim case should be (N,). no batch dim case should be () self._assertEqual_list((1,) if reduction == 'none' else (), [loss.shape for loss in losses]) self._assertEqual_list((), [loss.shape for loss in losses_no_bd]) # checking the gradient's shape # batch dim case should have shape (T, N, C). no batch dim case should have shape (T, C) self._assertEqual_list((input_length, 1, vocab_size), [t.grad.shape for t in log_probs_refs]) self._assertEqual_list((input_length, vocab_size), [t.grad.shape for t in log_probs_no_bd_refs]) @onlyCUDA @skipCUDAIfNoCudnn def test_contig_wrong_stride_cudnn(self, device): # x has to have batch_size 1 to test contiguous checks x = torch.randn(1, 16, 5, 5, device=device) stride = list(x.stride()) stride[0] = 20 # change the stride in dimension 0. the tensor is still contiguous because size[0] is 1 x.set_(x.storage(), 0, x.size(), stride) self.assertTrue(x.is_contiguous()) F.conv_transpose2d(x, torch.randn(16, 1, 1, 1, device=device)) F.conv2d(x, torch.randn(1, 16, 1, 1, device=device)) @onlyCUDA def test_Conv2d_size_1_kernel(self, device): x_cpu = torch.randn(2, 3, 5, 5) conv_cpu = torch.nn.Conv2d(3, 3, kernel_size=1) y_cpu = conv_cpu(x_cpu) y = torch.rand_like(y_cpu) y_cpu.backward(y) with cudnn.flags(enabled=False): conv_cuda = torch.nn.Conv2d(3, 3, kernel_size=1).to(device) conv_cuda.bias.data.copy_(conv_cpu.bias.data) conv_cuda.weight.data.copy_(conv_cpu.weight.data) y_cuda = conv_cuda(x_cpu.to(device)) y_cuda.backward(y.to(device)) self.assertEqual(y_cpu, y_cuda, atol=1e-5, rtol=0, exact_device=False) self.assertEqual(conv_cpu.bias.grad.data, conv_cuda.bias.grad.data, atol=1e-5, rtol=0, exact_device=False) self.assertEqual(conv_cpu.weight.grad.data, conv_cuda.weight.grad.data, atol=1e-5, rtol=0, exact_device=False) @onlyCUDA def test_ConvTranspose2d_size_1_kernel(self, device): x_cpu = torch.randn(2, 3, 5, 5) conv_cpu = torch.nn.ConvTranspose2d(3, 3, kernel_size=1) y_cpu = conv_cpu(x_cpu) y = torch.rand_like(y_cpu) y_cpu.backward(y) with cudnn.flags(enabled=False): conv_cuda = torch.nn.ConvTranspose2d(3, 3, kernel_size=1).to(device) conv_cuda.bias.data.copy_(conv_cpu.bias.data) conv_cuda.weight.data.copy_(conv_cpu.weight.data) y_cuda = conv_cuda(x_cpu.to(device)) y_cuda.backward(y.to(device)) self.assertEqual(y_cpu, y_cuda, atol=1e-5, rtol=0, exact_device=False) self.assertEqual(conv_cpu.bias.grad.data, conv_cuda.bias.grad.data, atol=1e-5, rtol=0, exact_device=False) self.assertEqual(conv_cpu.weight.grad.data, conv_cuda.weight.grad.data, atol=1e-5, rtol=0, exact_device=False) @onlyCUDA def test_ConvTranspose3d_size_1_kernel(self, device): x_cpu = torch.randn(2, 3, 3, 5, 5) conv_cpu = torch.nn.ConvTranspose3d(3, 3, kernel_size=1) y_cpu = conv_cpu(x_cpu) y = torch.rand_like(y_cpu) y_cpu.backward(y) with cudnn.flags(enabled=False): conv_cuda = torch.nn.ConvTranspose3d(3, 3, kernel_size=1).to(device) conv_cuda.bias.data.copy_(conv_cpu.bias.data) conv_cuda.weight.data.copy_(conv_cpu.weight.data) y_cuda = conv_cuda(x_cpu.to(device)) y_cuda.backward(y.to(device)) self.assertEqual(y_cpu, y_cuda, atol=1e-5, rtol=0, exact_device=False) self.assertEqual(conv_cpu.bias.grad.data, conv_cuda.bias.grad.data, atol=1e-5, rtol=0, exact_device=False) self.assertEqual(conv_cpu.weight.grad.data, conv_cuda.weight.grad.data, atol=1e-5, rtol=0, exact_device=False) def _ordered_sequence(self, device, dtype): """Create ordered list of random sequences""" seqs = [torch.empty(random.randint(1, 6), device=device, dtype=dtype) for _ in range(5)] seqs = [s.random_(-128, 128) for s in seqs] ordered = sorted(seqs, key=len, reverse=True) return ordered def _padded_sequence(self, device, dtype): """Create Tensor of random padded sequences""" ordered = self._ordered_sequence(device, dtype) lengths = [len(i) for i in ordered] padded_tensor = rnn_utils.pad_sequence(ordered) return padded_tensor, lengths @onlyCUDA def test_device_mask(self, device): for enforce_sorted in [True, False]: padded, lengths = self._padded_sequence('cpu', torch.float) packed = rnn_utils.pack_padded_sequence( padded, lengths, enforce_sorted=enforce_sorted) self.assertFalse(packed.is_cuda) packed = packed.to(device) self.assertTrue(packed.is_cuda) unpacked, _ = rnn_utils.pad_packed_sequence(packed) self.assertTrue(unpacked.is_cuda) self.assertEqual(unpacked.dtype, torch.float) @onlyCUDA def test_overwrite_module_params_on_conversion_cpu_device(self, device): # Test that under the current default settings # (`torch.__future__.get_overwrite_module_params_on_conversion() == False`), # a view to a module's parameters is not pointing to the same storage as # its base variable after converting the module to a different device. m = nn.Linear(20, 10) mw = m.weight[:] m.to(device) with torch.no_grad(): # Without using `torch.no_grad()`, this will leak CUDA memory. # (Issue is filed at https://github.com/pytorch/pytorch/issues/21875) mw[0][0] = 5 self.assertTrue(mw[0][0].device.type == "cpu") self.assertTrue(mw._base[0][0].device.type == "cuda") try: torch.__future__.set_overwrite_module_params_on_conversion(True) # Test that if `torch.__future__.get_overwrite_module_params_on_conversion() == True`, # a view to a module's parameters is still pointing to the same storage as # its base variable after converting the module to a different device. m = nn.Linear(20, 10) mw = m.weight[:] m.to(device) with torch.no_grad(): mw[0][0] = 5 self.assertTrue(mw[0][0] == mw._base[0][0]) # Test that if `torch.__future__.get_overwrite_module_params_on_conversion() == True`, # `cpu_module.to("cuda")` doesn't preserve previous references to # `cpu_module`'s parameters or gradients. m = nn.Linear(20, 10) m.weight.grad = torch.randn(10, 20) weight_ref = m.weight weight_grad_ref = m.weight.grad m.to(device) self.assertNotEqual(weight_ref.device, m.weight.device) self.assertNotEqual(weight_grad_ref.device, m.weight.grad.device) finally: torch.__future__.set_overwrite_module_params_on_conversion(False) @onlyCUDA @dtypes(*((torch.float, torch.double, torch.bfloat16, torch.half) if TEST_WITH_ROCM else (torch.float, torch.double, torch.half))) def test_embedding_max_norm_device(self, device, dtype): embedding = nn.Embedding(22, 5, max_norm=1.0).to(device, dtype=dtype) # nn.Embedding only takes LongTensor as input input = torch.tensor([2, 8, 8, 6], device=device, dtype=torch.long) output = embedding(input) self.assertEqual(output[1], output[2]) self.assertTrue(output.data.norm(p=2, dim=1).le(1).all()) # Test fails on Vg20 @skipCUDAIfRocm @onlyCUDA @dtypes(torch.half, torch.float) def test_softmax(self, device, dtype): input = torch.rand(32, 100, device=device, dtype=dtype, requires_grad=True) inputf = input.to(torch.float).detach().requires_grad_(True) out = F.softmax(input, dim=-1, dtype=torch.float) outf = F.softmax(inputf, dim=-1) # should be bitwise equal self.assertEqual(out, outf, atol=0, rtol=0) gO = torch.empty_like(outf).uniform_() out.backward(gO) outf.backward(gO) # should be bitwise equal self.assertEqual(input.grad, inputf.grad.to(dtype), atol=0, rtol=0) @onlyCUDA def test_pool3d_size_one_feature_dim(self, device): # Tests crazy strides for feature dim of size 1 x = torch.randn(7, 1, 5, 3, 2, device=device) strange_strides = [30, 1234, 6, 2, 1] y = x.as_strided(x.size(), strange_strides) x = x.cpu().as_strided(x.size(), strange_strides) to_test = { 'max_pool3d': lambda t: F.max_pool3d(t, (5, 1, 1), stride=(5, 1, 1)), 'avg_pool3d': lambda t: F.avg_pool3d(t, (5, 1, 1), stride=(5, 1, 1)), } for test, fn in to_test.items(): # Should not crash out_y = fn(y) out_x = fn(x) self.assertEqual(out_y, out_x.to(device), msg=test) @onlyCUDA @largeTensorTest('6GB') def test_pool3d_large_size_int64(self, device): # See https://github.com/pytorch/pytorch/issues/52822 x = torch.randn(70, 32, 100, 100, 100, dtype=torch.half, device=device) y = torch.nn.functional.max_pool3d(x, 5) torch.cuda.synchronize() ref_x = x.cpu().float() # max_pool3d_cpu is not implemented for half ref_y = torch.nn.functional.max_pool3d(ref_x, 5) self.assertEqual(y, ref_y, exact_dtype=False) @onlyCUDA def test_AvgPool3d_backward_after_cat_dim1_device(self, device): # x has to have batch_size 1 to test contiguous checks x = torch.randn(1, 3, 4, 4, 4, device=device, requires_grad=True) y = F.avg_pool3d(x, kernel_size=3, padding=1, stride=2) grad = torch.randn(y.size(), device=device) # increase the stride in dimension 0. the tensor is still contiguous because size[0] is 1 stride = list(grad.stride()) stride[0] = stride[0] * 2 grad.set_(grad.storage(), 0, grad.size(), stride) assert grad.is_contiguous() y.backward(grad) def test_pooling_size_empty(self, device): t = torch.rand([1, 2, 3, 4], device=device) self.assertRaises(RuntimeError, lambda: F.adaptive_avg_pool1d(t, [])) self.assertRaises(RuntimeError, lambda: F.adaptive_avg_pool2d(t, [])) self.assertRaises(RuntimeError, lambda: F.adaptive_avg_pool3d(t, [])) self.assertRaises(RuntimeError, lambda: F.adaptive_max_pool1d(t, [])) self.assertRaises(RuntimeError, lambda: F.adaptive_max_pool2d(t, [])) self.assertRaises(RuntimeError, lambda: F.adaptive_max_pool3d(t, [])) @dtypes(*itertools.product((torch.int, torch.long), (torch.int, torch.long))) def test_embedding_bag_empty_input(self, device, dtypes): m = 4 n = 3 x = torch.tensor([], device=device, dtype=dtypes[0]) for sparse in [True, False]: Embed = torch.nn.EmbeddingBag(m, n, sparse=sparse) Embed.to(device) output = Embed(input=x, offsets=torch.tensor([0], device=device, dtype=dtypes[1])) self.assertEqual(output, torch.zeros_like(output)) output = Embed(input=x, offsets=torch.tensor([0, 0], device=device, dtype=dtypes[1])) self.assertEqual(output, torch.zeros_like(output)) @skipCUDAIf(True, "cuda assert is not recovarable.") @dtypes(*itertools.product((torch.float, torch.double), (torch.int, torch.long))) @parametrize_test("padding_idx", [None, 0]) @parametrize_test("mode", ["sum", "mean", "max"]) def test_embedding_bag_out_of_bounds_idx(self, device, dtypes, padding_idx, mode): padding_idx = 0 w_dtype, idx_dtype = dtypes # negative out-of-bound idx1 = torch.tensor([[-1, 1]], device=device, dtype=idx_dtype) # positive out-of-bound idx2 = torch.tensor([[11, 8]], device=device, dtype=idx_dtype) weight = torch.randn(10, 2, device=device, dtype=w_dtype) if mode == 'sum': # Only `sum` supports per_sample_weight per_sample_weights = (None, torch.randn_like(idx1, device=device, dtype=w_dtype)) else: per_sample_weights = (None,) for p_s_weights, idx in itertools.product(per_sample_weights, (idx1, idx2)): msg = "Expected idx >= 0 && idx < num_embeddings" with self.assertRaisesRegex(RuntimeError, msg): torch.nn.functional.embedding_bag(idx, weight, per_sample_weights=p_s_weights, padding_idx=padding_idx, mode=mode) @dtypes(*itertools.product((torch.int, torch.long), (torch.int, torch.long))) def test_EmbeddingBag_per_sample_weights_failures(self, device, dtypes): # Failure 1: mismatched embeddings / per_sample_weights dtype es = nn.EmbeddingBag(5, 2, mode='sum').to(dtype=torch.float, device=device) input = torch.tensor([3, 1, 1, 1, 4, 0], dtype=dtypes[0], device=device) offsets = torch.tensor([0, 0, 3, 3, 6], dtype=dtypes[1], device=device) per_sample_weights = torch.randn_like(input, dtype=torch.double, device=device) if device == 'cpu': with self.assertRaisesRegex(RuntimeError, 'have the same type as'): es(input, offsets, per_sample_weights) else: with self.assertRaisesRegex(RuntimeError, 'expected scalar type'): es(input, offsets, per_sample_weights) # Failure 2.1: input/per_sample_weights have different sizes (1d input) input = torch.tensor([3, 1, 1, 1, 4, 0], dtype=dtypes[0], device=device) offsets = torch.tensor([0, 0, 3, 3, 6], dtype=dtypes[1], device=device) per_sample_weights = torch.randn(5, dtype=torch.float, device=device) with self.assertRaisesRegex(ValueError, 'same shape as the input'): es(input, offsets, per_sample_weights) # Failure 2.2: input/per_sample_weights have different sizes (2d input) input = torch.randint(5, (7, 3), dtype=dtypes[0], device=device) offsets = None per_sample_weights = torch.randn(7 * 3, dtype=torch.float, device=device) with self.assertRaisesRegex(ValueError, 'same shape as the input'): es(input, offsets, per_sample_weights) # Failure 3: Unsupported per_sample_weights and mode=('max', 'mean') for unsupported_mode in ('max', 'mean'): es = nn.EmbeddingBag(5, 2, mode=unsupported_mode).to( dtype=torch.float, device=device) input = torch.randint(5, (7, 3), dtype=dtypes[0], device=device) offsets = None per_sample_weights = torch.randn(7, 3, dtype=torch.float, device=device) with self.assertRaisesRegex(NotImplementedError, "only supported for mode='sum'"): es(input, offsets, per_sample_weights) def _embedding_bag_reference_impl(self, input, weight, offsets=None, mode='sum', per_sample_weights=None, include_last_offset=False): assert mode == 'sum' or per_sample_weights is None assert offsets is not None if per_sample_weights is None: per_sample_weights = torch.ones(input.size()).to( dtype=weight.dtype, device=weight.device ) assert input.numel() == per_sample_weights.numel() bags = [] long_input = input.to(torch.long) embeddings = weight.index_select(0, long_input) * per_sample_weights.unsqueeze(1) if include_last_offset: for index in range(len(offsets) - 1): offset = offsets[index] next_offset = offsets[index + 1] length = next_offset - offset if length == 0: bags.append( torch.tensor([0] * weight.size(1)).to( dtype=embeddings.dtype, device=embeddings.device ) ) else: if mode == 'sum': bags.append(embeddings.narrow(0, offset, length).sum(0)) elif mode == 'mean': bags.append(embeddings.narrow(0, offset, length).sum(0).div(length)) else: assert mode == 'max' bags.append(embeddings.narrow(0, offset, length).max(0)[0]) else: for index, offset in enumerate(offsets): if index + 1 < len(offsets): next_offset = offsets[index + 1] else: next_offset = len(long_input) length = next_offset - offset if length == 0: bags.append( torch.tensor([0] * weight.size(1)).to( dtype=embeddings.dtype, device=embeddings.device ) ) else: if mode == 'sum': bags.append(embeddings.narrow(0, offset, length).sum(0)) elif mode == 'mean': bags.append(embeddings.narrow(0, offset, length).sum(0).div(length)) else: assert mode == 'max' bags.append(embeddings.narrow(0, offset, length).max(0)[0]) return torch.stack(bags) @dtypesIfCUDA(*itertools.product((torch.int, torch.long), (torch.int, torch.long), (torch.float, torch.double, torch.half))) @dtypes(*itertools.product((torch.int, torch.long), (torch.int, torch.long), (torch.float, torch.double))) def test_EmbeddingBag_empty_per_sample_weights_and_offsets(self, device, dtypes): # Test empty input and per sample weight, and backward pass. There was a CUDA # invalid configuration bug (more context in #46572) def test_per_sample_weights(mode, trainable_scale): es = nn.EmbeddingBag(5, 2, mode=mode).to(dtype=dtypes[2], device=device) es.weight.data.copy_( torch.arange(1, 11, device=device, dtype=dtypes[2]).view_as(es.weight)) input = torch.tensor([], device=device, dtype=dtypes[0]) offsets = torch.tensor([0, 0, 0, 0, 0], device=device, dtype=dtypes[1]) per_sample_weights = torch.randn_like(input, dtype=dtypes[2]) \ .requires_grad_(trainable_scale) ref_per_sample_weights = \ per_sample_weights.detach().requires_grad_(trainable_scale) reference_weights = es.weight.detach().requires_grad_() expected = self._embedding_bag_reference_impl( input, reference_weights, offsets, mode, ref_per_sample_weights) result = es(input, offsets, per_sample_weights) self.assertEqual(result, expected, atol=dtype2prec_DONTUSE[dtypes[2]], rtol=0) grad = torch.randn_like(expected) result.backward(grad) # the reference impl doesn't have grad fn for empty input; but the grad should # simply be a zero tensor ref_weights_grad = torch.zeros_like(es.weight) self.assertEqual(es.weight.grad, ref_weights_grad, atol=dtype2prec_DONTUSE[dtypes[2]], rtol=0) if trainable_scale: ref_per_sample_weights_grad = torch.empty_like(per_sample_weights) self.assertEqual(per_sample_weights.grad, ref_per_sample_weights_grad, atol=dtype2prec_DONTUSE[dtypes[2]], rtol=0) modes = ('sum',) trainable_scale = (True, False) for mode, trainable in itertools.product(modes, trainable_scale): test_per_sample_weights(mode, trainable) @dtypesIfCUDA(*itertools.product((torch.int, torch.long), (torch.int, torch.long), (torch.float, torch.double, torch.half))) @dtypes(*itertools.product((torch.int, torch.long), (torch.int, torch.long), (torch.float, torch.double))) def test_EmbeddingBag_per_sample_weights_and_offsets(self, device, dtypes): def test_per_sample_weights(mode, trainable_scale): es = nn.EmbeddingBag(5, 2, mode=mode).to(dtype=dtypes[2], device=device) es.weight.data.copy_( torch.arange(1, 11, device=device, dtype=dtypes[2]).view_as(es.weight)) input = torch.tensor([3, 1, 1, 1, 4, 0], device=device, dtype=dtypes[0]) offsets = torch.tensor([0, 0, 3, 3, 6], device=device, dtype=dtypes[1]) per_sample_weights = torch.randn_like(input, dtype=dtypes[2]) \ .requires_grad_(trainable_scale) ref_per_sample_weights = \ per_sample_weights.detach().requires_grad_(trainable_scale) reference_weights = es.weight.detach().requires_grad_() expected = self._embedding_bag_reference_impl( input, reference_weights, offsets, mode, ref_per_sample_weights) result = es(input, offsets, per_sample_weights) self.assertEqual(result, expected, atol=dtype2prec_DONTUSE[dtypes[2]], rtol=0) grad = torch.randn_like(expected).to(dtype=dtypes[2], device=device) result.backward(grad) expected.backward(grad) self.assertEqual(es.weight.grad, reference_weights.grad, atol=dtype2prec_DONTUSE[dtypes[2]], rtol=0) if trainable_scale: self.assertEqual(per_sample_weights.grad, ref_per_sample_weights.grad, atol=dtype2prec_DONTUSE[dtypes[2]], rtol=0) modes = ('sum',) trainable_scale = (True, False) for mode, trainable in itertools.product(modes, trainable_scale): test_per_sample_weights(mode, trainable) @dtypesIfCUDA(*itertools.product((torch.int, torch.long), (torch.int, torch.long), (torch.float, torch.double, torch.half))) @dtypes(*itertools.product((torch.int, torch.long), (torch.int, torch.long), (torch.float, torch.double))) def test_EmbeddingBag_per_sample_weights_and_new_offsets(self, device, dtypes): def test_per_sample_weights_new_offsets(mode, trainable_scale, include_last_offset, has_weight=True): es = nn.EmbeddingBag(5, 2, mode=mode, include_last_offset=include_last_offset).to(dtype=dtypes[2], device=device) es.weight.data.copy_( torch.arange(1, 11, device=device, dtype=dtypes[2]).view_as(es.weight)) input = torch.tensor([3, 1, 1, 1, 4, 0], device=device, dtype=dtypes[0]) offsets = torch.tensor([0, 0, 3, 3, 6], device=device, dtype=dtypes[1]) if include_last_offset: offsets = torch.cat((offsets, torch.tensor([input.size(0)], device=device, dtype=dtypes[1])), 0) if has_weight: per_sample_weights = torch.randn_like(input, device=device, dtype=dtypes[2]) \ .requires_grad_(trainable_scale) ref_per_sample_weights = \ per_sample_weights.detach().requires_grad_(trainable_scale) else: per_sample_weights = None ref_per_sample_weights = None reference_weights = es.weight.detach().requires_grad_() expected = self._embedding_bag_reference_impl( input, reference_weights, offsets, mode, ref_per_sample_weights, include_last_offset) result = es(input, offsets, per_sample_weights) self.assertEqual(result, expected, atol=dtype2prec_DONTUSE[dtypes[2]], rtol=0) grad = torch.randn_like(expected) result.backward(grad) expected.backward(grad) self.assertEqual(es.weight.grad, reference_weights.grad, atol=dtype2prec_DONTUSE[dtypes[2]], rtol=0) if has_weight and trainable_scale: self.assertEqual(per_sample_weights.grad, ref_per_sample_weights.grad, atol=dtype2prec_DONTUSE[dtypes[2]], rtol=0) trainable_scale = (True, False) include_last_offset = (True, False) modes = (('sum', False), ('sum', True), ('max', False), ('mean', False)) for (mode, has_weight), trainable, include_last_offset in itertools.product( modes, trainable_scale, include_last_offset ): test_per_sample_weights_new_offsets( mode, trainable, include_last_offset, has_weight ) def _test_EmbeddingBag_vs_Embedding(self, N, D, B, L, max_norm=None, mode='mean', device='cpu', wdtype=torch.float, dtype=torch.long, test_per_sample_weights=False, trainable_per_sample_weights=False, sparse=False, test_backward=True, backward_prec=None): es = nn.EmbeddingBag(N, D, mode=mode, sparse=sparse, max_norm=max_norm).to(device, wdtype) e = nn.Embedding(N, D, max_norm=max_norm).to(device, wdtype) e.weight.data.copy_(es.weight) input = torch.randint(N, (B, L), device=device, dtype=dtype) offsets = torch.arange(0, B, device=device, dtype=dtype).mul_(L) grad_output = torch.rand(B, D, device=device, dtype=wdtype) if test_per_sample_weights: # To prevent large gradients, weights should sum to 1 for each bag per_sample_weights = \ torch.randn(B, L, device=device, dtype=wdtype).softmax(dim=-1) per_sample_weights_reference = \ per_sample_weights.clone().requires_grad_(trainable_per_sample_weights) per_sample_weights.requires_grad_(trainable_per_sample_weights) output = es(input.view(-1), offsets, per_sample_weights.view(-1)) else: output = es(input.view(-1), offsets) per_sample_weights = None per_sample_weights_reference = None if mode == 'sum': if test_per_sample_weights: ref_output = (e(input) * per_sample_weights_reference.unsqueeze(-1)).sum(1) else: ref_output = e(input).sum(1) elif mode == 'mean': assert not test_per_sample_weights ref_output = e(input).mean(1) elif mode == 'max': assert not test_per_sample_weights ref_output = e(input).max(1)[0] self.assertEqual(output, ref_output, atol=dtype2prec_DONTUSE[wdtype], rtol=0) if not test_backward: return output.backward(grad_output) ref_output.backward(grad_output) es_weight_grad = es.weight.grad.data if sparse: es_weight_grad = es.weight.grad.data.to_dense() # We have more floating point error here because we are dealing with larger numbers if backward_prec is None: needed_prec = dtype2prec_DONTUSE[wdtype] * 5 else: needed_prec = backward_prec self.assertEqual(es_weight_grad, e.weight.grad, atol=needed_prec, rtol=0) if test_per_sample_weights and trainable_per_sample_weights: self.assertEqual(per_sample_weights.grad, per_sample_weights_reference.grad, atol=dtype2prec_DONTUSE[wdtype], rtol=0) @skipCUDAIf(True, "Temporarily disabled. See t54369166") @dtypesIfCUDA(*itertools.product((torch.int, torch.long), (torch.half, torch.float, torch.double))) @dtypes(*itertools.product((torch.int, torch.long), (torch.float, torch.double))) def test_EmbeddingBag_per_sample_weights_and_no_offsets(self, device, dtypes): def run_tests(mode, sparse, trainable_per_sample_weights): kwargs = dict(test_per_sample_weights=True, device=device, mode=mode, wdtype=dtypes[1], dtype=dtypes[0], sparse=sparse, trainable_per_sample_weights=trainable_per_sample_weights) # Simple case self._test_EmbeddingBag_vs_Embedding(2, 3, 5, 7, **kwargs) # B * L > 1000 self._test_EmbeddingBag_vs_Embedding(2, 5, 53, 23, **kwargs) # Large num_embedding self._test_EmbeddingBag_vs_Embedding(101, 5, 3, 7, **kwargs) # Large embedding_dim self._test_EmbeddingBag_vs_Embedding(2, 101, 3, 7, **kwargs) modes = ('sum',) sparsity = (True, False) trainable_scale = (True, False) for mode, sparse, trainable_per_sample_weights in \ itertools.product(modes, sparsity, trainable_scale): run_tests(mode, sparse, trainable_per_sample_weights) # Test CUDA Dense on half precision if device == 'cuda': modes = ('sum',) sparsity = (False,) trainable_scale = (True, False) for mode, sparse, trainable_per_sample_weights in \ itertools.product(modes, sparsity, trainable_scale): run_tests(mode, sparse, trainable_per_sample_weights) def _test_EmbeddingBag( self, device, mode, sparse, wdtype=torch.double, dtype=torch.long, odtype=torch.long, test_backward=True, ): # check a known test example es = nn.EmbeddingBag(5, 2, mode=mode, sparse=sparse).to(device, wdtype) es.weight.data.copy_(torch.arange(1, 11, device=device, dtype=wdtype).view_as(es.weight)) input = torch.tensor([3, 1, 1, 1, 4, 0], device=device, dtype=dtype) offsets = torch.tensor([0, 0, 3, 3, 6], device=device, dtype=odtype) grad_output = torch.tensor( [1, 2, 3, 4], device=device, dtype=wdtype).view(2, 2) grad_output_with_empty = torch.tensor( [99, 99, 1, 2, 99, 99, 3, 4, 99, 99], device=device, dtype=wdtype).view(5, 2) if mode == "sum" or mode == "mean": denominator = 1 if mode == "sum" else 3 expected_output = torch.tensor( [[13, 16], [13, 16]], device=device, dtype=wdtype) / denominator expected_output_with_empty = torch.tensor( [[0, 0], [13, 16], [0, 0], [13, 16], [0, 0]], device=device, dtype=wdtype) / denominator expected_grad_weight = torch.tensor( [[3, 4], [5, 8], [0, 0], [1, 2], [3, 4]], device=device, dtype=wdtype) / denominator elif mode == "max": expected_output = torch.tensor( [[7, 8], [9, 10]], device=device, dtype=wdtype) expected_output_with_empty = torch.tensor( [[0, 0], [7, 8], [0, 0], [9, 10], [0, 0]], device=device, dtype=wdtype) expected_grad_weight = torch.tensor( [[0, 0], [0, 0], [0, 0], [1, 2], [3, 4]], device=device, dtype=wdtype) output = es(input, offsets) output.backward(grad_output_with_empty) es_weight_grad = es.weight.grad.data if sparse: es_weight_grad = es.weight.grad.to_dense() self.assertEqual(output, expected_output_with_empty) self.assertEqual(es_weight_grad, expected_grad_weight, atol=dtype2prec_DONTUSE[wdtype], rtol=0) # check same example except as 2D (2 x 3) input = input.view(2, -1) es.zero_grad() output = es(input) output.backward(grad_output) es_weight_grad = es.weight.grad if sparse: es_weight_grad = es.weight.grad.to_dense() self.assertEqual(output, expected_output) self.assertEqual(es_weight_grad, expected_grad_weight, atol=dtype2prec_DONTUSE[wdtype], rtol=0) # test all empty bags es.zero_grad() inputs = torch.tensor([], dtype=dtype, device=device) offsets = torch.tensor([0, 0, 0, 0], dtype=odtype, device=device) es(inputs, offsets).sum().backward() dense_grad = es.weight.grad if dense_grad.is_sparse: dense_grad = dense_grad.to_dense() self.assertEqual(dense_grad, torch.zeros_like(es.weight)) # now compare EmbeddingBag vs Embedding + Sum/Mean, for constant bag length N, D, B, L = random.randint(1, 100), random.randint(1, 100), random.randint(1, 50), random.randint(1, 50) kwargs = dict(mode=mode, sparse=sparse, device=device, wdtype=wdtype, dtype=dtype, test_backward=test_backward) self._test_EmbeddingBag_vs_Embedding(N, D, B, L, **kwargs) for max_norm in (None, 3): for p in itertools.product([1, 2], repeat=4): self._test_EmbeddingBag_vs_Embedding(*p, max_norm=max_norm, **kwargs) # check that giving illegal input combos raises error es = nn.EmbeddingBag(10, 20, mode=mode, sparse=sparse) input = torch.ones(3, 4, dtype=dtype) offset = torch.arange(0, 3, dtype=odtype) self.assertRaises(ValueError, lambda: es(input, offset)) self.assertRaises(ValueError, lambda: es(input.view(-1))) offset[0] = 1 if self.device_type == "cpu": self.assertRaises(RuntimeError, lambda: es(input.view(-1), offset)) offset[0] = 0 offset[-1] = 100 self.assertRaises(RuntimeError, lambda: es(input.view(-1), offset)) @dtypesIfCUDA(*itertools.product((torch.int, torch.long), (torch.int, torch.long), (torch.float, torch.double, torch.half))) @dtypes(*itertools.product((torch.int, torch.long), (torch.int, torch.long), (torch.float, torch.double))) def test_embedding_bag_device(self, device, dtypes): self._test_EmbeddingBag(device, 'sum', False, wdtype=dtypes[2], dtype=dtypes[0], odtype=dtypes[1]) self._test_EmbeddingBag(device, 'mean', False, wdtype=dtypes[2], dtype=dtypes[0], odtype=dtypes[1]) self._test_EmbeddingBag(device, 'max', False, wdtype=dtypes[2], dtype=dtypes[0], odtype=dtypes[1]) test_backward = False if self.device_type == 'cuda': # see 'todo' in test_embedding_bag. test_backward = dtypes[2] is not torch.float16 elif self.device_type == 'cpu': # TODO: figure out why precision on sparse embeddings isn't the # same as for dense. test_backward = dtypes[2] is not torch.float self._test_EmbeddingBag( device, 'sum', True, wdtype=dtypes[2], dtype=dtypes[0], odtype=dtypes[1], test_backward=test_backward, ) self._test_EmbeddingBag( device, 'mean', True, wdtype=dtypes[2], dtype=dtypes[0], odtype=dtypes[1], test_backward=test_backward, ) @dtypesIfCUDA(*itertools.product((torch.int, torch.long), (torch.int, torch.long), (torch.float, torch.double, torch.half))) @dtypes(*itertools.product((torch.int, torch.long), (torch.int, torch.long), (torch.float, torch.double))) def test_embedding_bag_non_contiguous_weight(self, device, dtypes): weight_tensor = torch.randn(3, 4, dtype=dtypes[2], device=device) weight_tensor_non_contig = weight_tensor[:, :3] # This is non-contiguous strided. weight_tensor_contig = weight_tensor_non_contig.clone().contiguous() # Contig-strided. index = torch.tensor([0, 1, 2], dtype=dtypes[0], device=device) offsets = torch.tensor([0, 2], dtype=dtypes[1], device=device) for mode in ['sum', 'mean', 'max']: output_non_contig = F.embedding_bag( input=index, weight=weight_tensor_non_contig, offsets=offsets, mode=mode, ) output_contig = F.embedding_bag( input=index, weight=weight_tensor_contig, offsets=offsets, mode=mode, ) self.assertEqual(output_non_contig, output_contig) @onlyCUDA @dtypes(*itertools.product((torch.int, torch.long), (torch.int, torch.long))) def test_embedding_bag_bfloat16(self, device, dtypes): self._test_EmbeddingBag(device, 'sum', True, wdtype=torch.bfloat16, dtype=dtypes[0], odtype=dtypes[1], test_backward=True) self._test_EmbeddingBag(device, 'mean', True, wdtype=torch.bfloat16, dtype=dtypes[0], odtype=dtypes[1], test_backward=True) @onlyCUDA @dtypes(torch.half, torch.float, torch.double) def test_multihead_attention_dtype(self, device, dtype): embed_dim = 128 num_heads = 8 sl = 10 bs = 8 model = nn.MultiheadAttention(embed_dim, num_heads).cuda().to(dtype) q = torch.randn(sl, bs, embed_dim, device=device, dtype=dtype) k = torch.randn(sl, bs, embed_dim, device=device, dtype=dtype) v = torch.randn(sl, bs, embed_dim, device=device, dtype=dtype) out = model(q, k, v) self.assertEqual(q.size(), out[0].size()) self.assertEqual(dtype, out[0].dtype) @dtypesIfCUDA(*get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM)) @dtypes(torch.float) def test_Conv2d_naive_groups(self, device, dtype): # Check that grouped convolutions matches two half convolutions m = nn.Conv2d(4, 4, kernel_size=3, groups=2).to(device, dtype) i = torch.randn(2, 4, 6, 6, device=device, dtype=dtype, requires_grad=True) output = m(i) grad_output = torch.randn(2, 4, 4, 4, device=device, dtype=dtype) output.backward(grad_output) m1 = nn.Conv2d(2, 2, kernel_size=3).to(device, dtype) m1.weight.data.copy_(m.weight.data[:2]) m1.bias.data.copy_(m.bias.data[:2]) i1 = i.data[:, :2].contiguous().requires_grad_(True) output1 = m1(i1) output1.backward(grad_output[:, :2].contiguous()) m2 = nn.Conv2d(2, 2, kernel_size=3).to(device, dtype) m2.weight.data.copy_(m.weight.data[2:]) m2.bias.data.copy_(m.bias.data[2:]) i2 = i.data[:, 2:].contiguous().requires_grad_(True) output2 = m2(i2) output2.backward(grad_output[:, 2:].contiguous()) self.assertEqual(output, torch.cat([output1, output2], 1)) self.assertEqual(i.grad.data, torch.cat([i1.grad.data, i2.grad.data], 1), atol=dtype2prec_DONTUSE[dtype], rtol=0) self.assertEqual(m.bias.grad.data, torch.cat([m1.bias.grad.data, m2.bias.grad.data], 0), atol=dtype2prec_DONTUSE[dtype], rtol=0) self.assertEqual(m.weight.grad.data, torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0), atol=dtype2prec_DONTUSE[dtype], rtol=0) @dtypes(torch.double) def test_Conv2d_backward_depthwise(self, device, dtype): x = torch.randn(2, 2, 4, 20, device=device, dtype=dtype, requires_grad=True) weight = torch.randn(2, 1, 3, 5, device=device, dtype=dtype, requires_grad=True) def conv2d_depthwise(x, weight): return torch.nn.functional.conv2d( x, weight, bias=None, stride=(1, 10), groups=2) for cudnn_enabled in [False, True]: with torch.backends.cudnn.flags(enabled=cudnn_enabled): torch.autograd.gradcheck(conv2d_depthwise, (x, weight)) def _test_batchnorm_grad(self, device, dtype=torch.double): bs, n_feat, size_feat = 4, 5, 6 input = torch.arange(bs * n_feat * size_feat, device=device, requires_grad=True, dtype=dtype).view(bs, n_feat, size_feat) weight = torch.arange(1, n_feat + 1, device=device, requires_grad=True, dtype=dtype) bias = torch.arange(n_feat, device=device, requires_grad=True, dtype=dtype) running_mean = 1 - torch.arange(n_feat, device=device, dtype=dtype) running_var = 2 * torch.arange(n_feat, device=device, dtype=dtype) for training in [False, True]: _assertGradAndGradgradChecks(self, F.batch_norm, (input, running_mean, running_var, weight, bias, training, 0.1, 0.0001)) def test_batchnorm_grad(self, device): self._test_batchnorm_grad(device) if self.device_type == 'cuda' and self.has_cudnn(): with torch.backends.cudnn.flags(enabled=False): self._test_batchnorm_grad(device) @onlyCUDA def test_layernorm_half_precision(self): width = 128 input = torch.rand(1, 5, width, device="cuda", dtype=torch.half) * 0.1 normalized_shape = (width,) weight = torch.ones(width, device="cuda", dtype=torch.half) bias = torch.zeros(width, device="cuda", dtype=torch.half) eps = 1e-5 output_fp16 = torch.layer_norm(input, normalized_shape, weight, bias, eps) output_fp32 = torch.layer_norm(input.float(), normalized_shape, weight.float(), bias.float(), eps).half() self.assertEqual(output_fp16, output_fp32, atol=0, rtol=0) @onlyCUDA def test_layernorm_weight_bias(self): width = 128 input = torch.rand(1, 5, width, device="cuda", dtype=torch.float32) * 0.1 normalized_shape = (width,) data = torch.randn(width, device="cuda", dtype=torch.float32) weight = torch.ones(width, device="cuda", dtype=torch.float32) bias = torch.zeros(width, device="cuda", dtype=torch.float32) eps = 1e-5 out_none_weight = torch.layer_norm(input, normalized_shape, None, data, eps) out_one_weight = torch.layer_norm(input, normalized_shape, weight, data, eps) self.assertEqual(out_none_weight, out_one_weight) out_none_bias = torch.layer_norm(input, normalized_shape, data, None, eps) out_zero_bias = torch.layer_norm(input, normalized_shape, data, bias, eps) self.assertEqual(out_none_bias, out_zero_bias) def test_hardsigmoid_grad(self, device): inputs = (torch.randn(4, 16, 16, device=device) - 0.5) * 10 inputs.requires_grad = True self.assertTrue(gradcheck(F.hardsigmoid, (inputs,))) # currently fails on XLA @onlyNativeDeviceTypes def test_hardswish_grad(self, device): inputs = (torch.randn(4, 16, 16, device=device) - 0.5) * 10 inputs.requires_grad = True self.assertTrue(gradcheck(F.hardswish, (inputs,))) def _test_batchnorm_eval(self, ndim, device, dtype, module_dtype=None): module_dtype = module_dtype or dtype module = nn.BatchNorm1d(3).to(device, module_dtype) module.eval() data = torch.rand([3] * ndim, device=device, dtype=dtype, requires_grad=True) grad = torch.rand([3] * ndim, device=device, dtype=dtype) # 1st pass res1 = module(data) res1.backward(grad) grad1 = data.grad.clone() # 2nd pass if data.grad is not None: data.grad.data.zero_() res2 = module(data) res2.backward(grad) grad2 = data.grad.clone() self.assertEqual(res1, res2) self.assertEqual(grad1, grad2) # track_running_stats=False module = nn.BatchNorm1d(3, track_running_stats=False).to(device, module_dtype) data = torch.rand(4, 3, device=device, dtype=dtype, requires_grad=True) grad = torch.rand(4, 3, device=device, dtype=dtype) # 1st pass res1 = module(data) res1.backward(grad) grad1 = data.grad.clone() # set eval module.eval() # 2nd pass if data.grad is not None: data.grad.data.zero_() res2 = module(data) res2.backward(grad) grad2 = data.grad.clone() self.assertEqual(res1, res2) self.assertEqual(grad1, grad2) @dtypes(torch.float) @dtypesIfCUDA(torch.float, torch.bfloat16) def test_batchnorm_eval(self, device, dtype): self._test_batchnorm_eval(2, device, dtype) self._test_batchnorm_eval(3, device, dtype) if self.device_type == 'cuda' and self.has_cudnn(): with torch.backends.cudnn.flags(enabled=False): self._test_batchnorm_eval(2, device, dtype) self._test_batchnorm_eval(3, device, dtype) @onlyCUDA @dtypes(torch.bfloat16, torch.half) def test_batchnorm_eval_mixed(self, device, dtype): # Test bfloat16 input with float module self._test_batchnorm_eval(2, device, dtype, torch.float) self._test_batchnorm_eval(3, device, dtype, torch.float) if self.device_type == 'cuda' and self.has_cudnn(): with torch.backends.cudnn.flags(enabled=False): self._test_batchnorm_eval(2, device, dtype, torch.float) self._test_batchnorm_eval(3, device, dtype, torch.float) def _test_batchnorm_affine(self, ndim, device, dtype, module_dtype=None): # Compare affine against no-op weights and bias module_dtype = module_dtype or dtype module = nn.BatchNorm1d(3, affine=False).to(device, module_dtype) module_affine = nn.BatchNorm1d(3, affine=True).to(device, module_dtype) with torch.no_grad(): module_affine.weight.fill_(1.0) module_affine.bias.zero_() data = torch.rand([3] * ndim, device=device, dtype=dtype, requires_grad=True) grad = torch.ones_like(data, requires_grad=False) # With weights all ones and bias all zeros res1 = module_affine(data) res1.backward(grad) grad1 = data.grad.clone() data.grad.zero_() # Without any weights or bias res2 = module(data) res2.backward(grad) grad2 = data.grad self.assertEqual(res1, res2) self.assertEqual(grad1, grad2) @dtypes(torch.float) @dtypesIfCUDA(torch.float, torch.bfloat16) def test_batchnorm_affine(self, device, dtype): self._test_batchnorm_affine(2, device, dtype) self._test_batchnorm_affine(3, device, dtype) if self.device_type == 'cuda' and self.has_cudnn(): with torch.backends.cudnn.flags(enabled=False): self._test_batchnorm_affine(2, device, dtype) self._test_batchnorm_affine(3, device, dtype) @onlyCUDA @dtypes(torch.bfloat16, torch.half) def test_batchnorm_affine_mixed(self, device, dtype): cudnn_enabled = [False] if self.device_type == 'cuda' and self.has_cudnn(): # TODO: Test fails with cudnn, see gh-62034 # cudnn_enabled = [False, True] pass # Test bfloat16 input with float module for enabled in cudnn_enabled: with torch.backends.cudnn.flags(enabled=enabled): self._test_batchnorm_affine(2, device, dtype, torch.float) self._test_batchnorm_affine(3, device, dtype, torch.float) def _test_batchnorm_simple_average(self, device, dtype, module_dtype=None): module_dtype = module_dtype or dtype module = nn.BatchNorm1d(3, momentum=None).to(dtype=module_dtype, device=device) zeros = torch.zeros(3, dtype=module_dtype, device=device) ones = torch.ones(3, dtype=module_dtype, device=device) self.assertEqual(module.running_mean, zeros) self.assertEqual(module.running_var, ones) data1 = torch.rand(4, 3, dtype=dtype, device=device) data2 = torch.rand(4, 3, dtype=dtype, device=device) # 1st pass res1 = module(data1) running_mean1 = module.running_mean.clone() running_var1 = module.running_var.clone() self.assertNotEqual(running_mean1, zeros) self.assertNotEqual(running_var1, ones) # reset stats module.reset_running_stats() self.assertEqual(module.running_mean, zeros) self.assertEqual(module.running_var, ones) # 2nd pass res2 = module(data2) running_mean2 = module.running_mean.clone() running_var2 = module.running_var.clone() self.assertNotEqual(running_mean2, zeros) self.assertNotEqual(running_var2, ones) # reset stats module.reset_running_stats() self.assertEqual(module.running_mean, zeros) self.assertEqual(module.running_var, ones) # 3rd (combined) pass res3 = module(data1) res4 = module(data2) self.assertEqual(res3, res1) self.assertEqual(res4, res2) self.assertEqual(module.running_mean, (running_mean1 + running_mean2) / 2) self.assertEqual(module.running_var, (running_var1 + running_var2) / 2) @dtypes(torch.float) @dtypesIfCUDA(torch.float, torch.bfloat16) def test_batchnorm_simple_average(self, device, dtype): self._test_batchnorm_simple_average(device, dtype) if self.device_type == 'cuda' and self.has_cudnn(): with torch.backends.cudnn.flags(enabled=False): self._test_batchnorm_simple_average(device, dtype) @onlyCUDA @dtypes(torch.bfloat16, torch.half) def test_batchnorm_simple_average_mixed(self, device, dtype): self._test_batchnorm_simple_average(device, dtype, torch.float) if self.device_type == 'cuda' and self.has_cudnn(): with torch.backends.cudnn.flags(enabled=False): self._test_batchnorm_simple_average(device, dtype, torch.float) def _test_maxpool_indices(self, num_dim, adaptive=False, device="cpu", dtype=torch.float): def expected_indices(dim): if dim == 1: return torch.tensor([1, 3], dtype=torch.double).repeat(2, 2, 1) if dim == 2: return torch.tensor([[5, 7], [13, 15]], dtype=torch.double).repeat(2, 2, 1, 1) def expected_grad(dim): if dim == 1: return torch.tensor([0, 1, 0, 1], dtype=torch.double).repeat(2, 2, 1) grad = expected_grad(dim - 1) zero = torch.zeros(grad.size()) return torch.stack((zero, grad, zero, grad), 2) def expected_output(dim): if dim == 1: return torch.arange(2, 17, 2).view(2, 2, 2) if dim == 2: col = torch.arange(6, 63, 8) return torch.stack([col, col + 2], 1).view(2, 2, 2, 2) if adaptive: cls_name = 'AdaptiveMaxPool{}d'.format(num_dim) else: cls_name = 'MaxPool{}d'.format(num_dim) module_cls = getattr(nn, cls_name) module = module_cls(2, return_indices=True).to(device, dtype=dtype) numel = 4 ** (num_dim + 1) input = torch.arange(1, numel + 1).view(2, 2, *repeat(4, num_dim)).to(device, dtype=dtype) input_var = input.clone().detach().requires_grad_() # Check forward output, indices = module(input_var) if num_dim != 3: expected_indices = expected_indices(num_dim) expected_output = expected_output(num_dim) self.assertEqual(indices.dim(), input.dim()) # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 self.assertEqualIgnoreType(indices.data.squeeze(), expected_indices) # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 self.assertEqualIgnoreType(output.data.squeeze(), expected_output) self.assertTrue(output.requires_grad) self.assertFalse(indices.requires_grad) # Make sure backward works grad_output = torch.ones(output.size(), device=device, dtype=dtype) output.backward(grad_output, retain_graph=True) expected_grad = expected_grad(num_dim) # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 self.assertEqualIgnoreType(input_var.grad.data, expected_grad.view_as(input)) # Make sure backward after changing indices will result in an error indices.add_(1) self.assertRaises(RuntimeError, lambda: output.backward(grad_output)) # Make sure -Infinity is handled correctly t = torch.tensor([[[float("-inf")]]]) m = nn.MaxPool1d(kernel_size=1, return_indices=True) output, indices = m(t) self.assertEqual(output[0, 0, 0], float("-inf")) self.assertEqual(indices[0, 0, 0], 0) t = torch.tensor([[[float("-inf")]]]) m = nn.MaxPool2d(kernel_size=1, return_indices=True) output, indices = m(t) self.assertEqual(output[0, 0, 0], float("-inf")) self.assertEqual(indices[0, 0, 0], 0) t = torch.tensor([[[[float("-inf")]]]]) m = nn.MaxPool3d(kernel_size=1, return_indices=True) output, indices = m(t) self.assertEqual(output[0, 0, 0, 0], float("-inf")) self.assertEqual(indices[0, 0, 0, 0], 0) @dtypesIfCUDA(*get_all_fp_dtypes()) @dtypes(torch.float) def test_MaxPool1d_indices(self, device, dtype): self._test_maxpool_indices(1, device=device, dtype=dtype) @dtypesIfCUDA(*get_all_fp_dtypes()) @dtypes(torch.float) def test_MaxPool2d_indices(self, device, dtype): self._test_maxpool_indices(2, device=device, dtype=dtype) @dtypesIfCUDA(*get_all_fp_dtypes()) @dtypes(torch.float) def test_MaxPool3d_indices(self, device, dtype): self._test_maxpool_indices(3, device=device, dtype=dtype) @dtypesIfCUDA(*get_all_fp_dtypes()) @dtypes(torch.float) def test_AdaptiveMaxPool1d_indices(self, device, dtype): self._test_maxpool_indices(1, adaptive=True, device=device, dtype=dtype) @dtypesIfCUDA(*get_all_fp_dtypes()) @dtypes(torch.float) def test_AdaptiveMaxPool2d_indices(self, device, dtype): self._test_maxpool_indices(2, adaptive=True, device=device, dtype=dtype) @dtypesIfCUDA(*get_all_fp_dtypes()) @dtypes(torch.float) def test_AdaptiveMaxPool3d_indices(self, device, dtype): self._test_maxpool_indices(3, adaptive=True, device=device, dtype=dtype) @dtypesIfCUDA(*get_all_fp_dtypes()) @dtypes(torch.float) def test_maxpool_indices_no_batch_dim(self, device, dtype): """Check that indices with no batch dim is consistent with a single batch.""" max_pool_cases = [ (nn.MaxPool1d(3, return_indices=True), torch.randn(3, 5, device=device, dtype=dtype)), (nn.MaxPool2d(3, return_indices=True), torch.randn(3, 5, 6, device=device, dtype=dtype)), (nn.MaxPool3d(3, return_indices=True), torch.randn(3, 5, 6, 7, device=device, dtype=dtype)), (nn.AdaptiveMaxPool1d(3, return_indices=True), torch.randn(3, 5, device=device, dtype=dtype)), (nn.AdaptiveMaxPool2d(3, return_indices=True), torch.randn(3, 5, 6, device=device, dtype=dtype)), (nn.AdaptiveMaxPool3d(3, return_indices=True), torch.randn(3, 5, 6, 7, device=device, dtype=dtype))] for module, input in max_pool_cases: _, indices_no_batch = module(input) _, indicies_single_batch = module(input.unsqueeze(0)) self.assertEqual(indices_no_batch, indicies_single_batch.squeeze(0)) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float) @onlyNativeDeviceTypes # TODO: Fails on XLA def test_max_pool_nan_inf(self, device, dtype): for adaptive in ['', 'adaptive_']: for num_dim in [1, 2, 3]: fn_name = '{}max_pool{}d'.format(adaptive, num_dim) fn = getattr(F, fn_name) x = torch.full([1, 1] + num_dim * [3], nan, device=device, dtype=dtype, requires_grad=True) res = fn(x, 1 if adaptive else 3) res.backward(torch.randn_like(res)) self.assertTrue(math.isnan(res.item())) x.requires_grad_(False) res = fn(x, 1 if adaptive else 3) self.assertTrue(math.isnan(res.item())) x2 = torch.full([1, 1] + num_dim * [3], -inf, device=device, dtype=dtype, requires_grad=True) res2 = fn(x2, 1 if adaptive else 3) res2.backward(torch.randn_like(res2)) self.assertTrue(math.isinf(res2.item())) x2.requires_grad_(False) res2 = fn(x2, 1 if adaptive else 3) self.assertTrue(math.isinf(res2.item())) @onlyNativeDeviceTypes @dtypes(torch.float, torch.double) def test_grid_sample_nan_inf(self, device, dtype): input = torch.zeros([1, 1, 3, 3], device=device, dtype=dtype) grid = torch.tensor([[[[nan, 0], [0, inf]]]], device=device, dtype=dtype) for padding_mode in ('reflection', 'border', 'zeros'): sample = torch.nn.functional.grid_sample(input=input, grid=grid, mode='nearest', padding_mode=padding_mode, align_corners=False) self.assertEqual(sample, torch.zeros([1, 1, 1, 2], device=device, dtype=dtype)) @expectedFailureMeta # RuntimeError: Unrecognized tensor type ID: Meta @onlyNativeDeviceTypes def test_fractional_max_pool2d(self, device): x = torch.randn(1, 2, 7, 7, requires_grad=True, device=device) samples = x.new(1, 2, 2).uniform_() def func(x): return F.fractional_max_pool2d( x, (2, 2), output_size=(3, 3), _random_samples=samples) self.assertEqual(func(x).shape, (1, 2, 3, 3)) gradcheck(func, [x]) gradgradcheck(func, [x]) x = torch.randn(2, 7, 7, requires_grad=True, device=device) self.assertEqual(func(x).shape, (2, 3, 3)) if self.device_type != 'cuda': # Reference: https://github.com/pytorch/pytorch/issues/52427 # Raises -> RuntimeError: TensorAccessor expected 4 dims but tensor has 3 # on CUDA in gradcheck gradcheck(func, [x]) gradgradcheck(func, [x]) for kernel_size in [(), (1,)]: with self.assertRaisesRegex(RuntimeError, "kernel_size must either"): # Incorrect kernel_size F.fractional_max_pool2d(x, kernel_size=kernel_size, output_size=(3, 3), _random_samples=samples) err_large_msg = "too large relative to input " err_out_size_msg = "output_size must either" for output_size, msg in [((9, 3), err_large_msg + "height"), ((3, 9), err_large_msg + "width"), ((3,), err_out_size_msg), ((), err_out_size_msg)]: with self.assertRaisesRegex(RuntimeError, msg): # Incorrect output_size F.fractional_max_pool2d(x, (2, 2), output_size=output_size, _random_samples=samples) @expectedFailureMeta # RuntimeError: Unrecognized tensor type ID: Meta @onlyNativeDeviceTypes def test_fractional_max_pool3d(self, device): x = torch.randn(1, 2, 7, 7, 7, requires_grad=True, device=device) samples = x.new(1, 2, 3).uniform_() def func(x): return F.fractional_max_pool3d( x, (2, 2, 2), output_size=(3, 3, 3), _random_samples=samples) self.assertEqual(func(x).shape, (1, 2, 3, 3, 3)) gradcheck(func, [x]) gradgradcheck(func, [x]) x = torch.randn(2, 7, 7, 7, requires_grad=True, device=device) self.assertEqual(func(x).shape, (2, 3, 3, 3)) gradcheck(func, [x]) gradgradcheck(func, [x]) for kernel_size in [(), (1,), (1, 1)]: with self.assertRaisesRegex(RuntimeError, "kernel_size must either"): # Incorrect kernel_size F.fractional_max_pool3d(x, kernel_size=kernel_size, output_size=(3, 3, 3), _random_samples=samples) err_large_msg = "too large relative to input " err_out_size_msg = "output_size must either" for output_size, msg in [((9, 3, 3), err_large_msg + "time"), ((3, 9, 3), err_large_msg + "height"), ((3, 3, 9), err_large_msg + "width"), ((3, 3), err_out_size_msg), ((3,), err_out_size_msg), ((), err_out_size_msg)]: with self.assertRaisesRegex(RuntimeError, msg): # Incorrect output_size F.fractional_max_pool3d(x, (2, 2, 2), output_size=output_size, _random_samples=samples) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float) @onlyNativeDeviceTypes # TODO: Fails on XLA def test_fractional_max_pool_nan_inf(self, device, dtype): for num_dim in [2, 3]: fn_name = 'FractionalMaxPool{}d'.format(num_dim) fn = getattr(nn, fn_name)(kernel_size=2, output_size=1) x = torch.full([1, 1] + num_dim * [3], nan, device=device, dtype=dtype, requires_grad=True) res = fn(x) res.backward(torch.randn_like(res)) self.assertTrue(math.isnan(res.item())) x2 = torch.full([1, 1] + num_dim * [3], -inf, device=device, dtype=dtype, requires_grad=True) res2 = fn(x2) res2.backward(torch.randn_like(res2)) self.assertTrue(math.isinf(res2.item())) @onlyNativeDeviceTypes # TODO: RuntimeError message different on XLA def test_pooling_zero_stride(self, device): for op in ('max', 'avg'): for num_dim in [1, 2, 3]: fn_name = '{}_pool{}d'.format(op, num_dim) fn = getattr(F, fn_name) x = torch.ones([1, 2] + num_dim * [4], device=device, dtype=torch.float) self.assertRaisesRegex(RuntimeError, r"stride should not be zero|stride must be greater than zero", lambda: fn(x, kernel_size=2, stride=0)) fn_module_name = '{}Pool{}d'.format(op.title(), num_dim) fn_module = getattr(nn, fn_module_name)(kernel_size=2, stride=0) self.assertRaisesRegex(RuntimeError, r"stride should not be zero|stride must be greater than zero", lambda: fn_module(x)) @dtypesIfCUDA(*get_all_fp_dtypes()) @dtypes(torch.float) def test_pool_large_size(self, device, dtype): for op in ('max', 'avg'): for num_dim in [1, 2, 3]: fn_name = '{}_pool{}d'.format(op, num_dim) fn = getattr(F, fn_name) # 16777217 is the smallest integer not expressible in float32 x = torch.ones([1, 1, 16777217] + (num_dim - 1) * [1], device=device, dtype=dtype) res = fn(x, 1, stride=1, padding=0) # check if the output shape was still computed correctly self.assertEqual(x.shape[2], res.shape[2]) @dtypesIfCUDA(*get_all_fp_dtypes()) @dtypes(torch.float) def test_pool_invalid_size(self, device, dtype): for op in ('max', 'avg'): for num_dim in [1, 2, 3]: fn_name = '{}_pool{}d'.format(op, num_dim) if op == 'max': # New implementation without indices supports empty tensors # TODO(Heitor) change once with_indices code is updated fn_name += '_with_indices' fn = getattr(F, fn_name) # use a configuration that gives zero outputs only # when doing a correct floor division by the stride x = torch.ones([1, 1] + num_dim * [4], device=device, dtype=dtype) with self.assertRaisesRegex(RuntimeError, r"too small|smaller than"): try: res = fn(x, 3, stride=2, padding=0, dilation=2) except TypeError: # some implementations do not support dilation res = fn(x, 6, stride=2, padding=0) def test_CTCLoss_empty_target(self, device): target_lengths = [0, 0, 0] input_lengths = [50, 50, 50] targets = torch.randint(1, 15, (0,), dtype=torch.long, device=device) log_probs = torch.randn(50, 3, 15, dtype=torch.double, device=device).log_softmax(2) loss = torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths, reduction='none') self.assertTrue((loss >= 0).all().item()) self.assertEqual(-log_probs.sum(0)[:, 0], loss) target_lengths = [0, 9, 0] input_lengths = [50, 50, 50] targets = torch.randint(1, 15, (9,), dtype=torch.long, device=device) log_probs = torch.randn(50, 3, 15, dtype=torch.double, device=device).log_softmax(2) loss = torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths, reduction='none') self.assertTrue((loss >= 0).all().item()) self.assertEqual(-log_probs.sum(0)[[0, 2], 0], loss[[0, 2]]) # Merge into OpInfo? @skipCUDAIf(True, """Test is flaky on Linux and Windows, typical error message: https://github.com/pytorch/pytorch/issues/34870""") def test_ctc_loss(self, device): batch_size = 64 num_labels = 101 target_length = 15 gradcheck_input_size = 10 ZERO_NONE = 0 ZERO_SOME = 1 ZERO_ALL = 2 # input_length, vary_lengths, zero_lengths tests = [(150, False, ZERO_NONE), (150, True, ZERO_NONE), (50, True, ZERO_SOME), (50, True, ZERO_ALL)] if 'cuda' in device: tests += [(50, False, ZERO_NONE), (50, True, ZERO_NONE), (150, True, ZERO_SOME), (150, True, ZERO_ALL)] for input_length, vary_lengths, zero_mode in tests: targets = torch.randint(1, num_labels, (batch_size, target_length), device=device, dtype=torch.long) x = torch.randn(gradcheck_input_size, dtype=torch.double, device=device, requires_grad=True) tile_factors = torch.randn(input_length * batch_size * num_labels // gradcheck_input_size + 1, device=device) input_lengths = [(torch.randint(input_length // 2, input_length + 1, ()).item() if vary_lengths or i == 0 else input_length) for i in range(batch_size)] if zero_mode == ZERO_ALL: target_lengths = [0 for _ in range(batch_size)] else: target_lengths = [(torch.randint(target_length // 2, target_length + 1, ()).item() if vary_lengths else target_length) for _ in range(batch_size)] if zero_mode == ZERO_SOME: idxes = torch.randint(0, batch_size, (10,)) for i in idxes: target_lengths[i] = 0 def ctc_after_softmax(x): x_full = ((x[:, None] * tile_factors[None, :]).view(-1)[:input_length * batch_size * num_labels] .view(input_length, batch_size, num_labels)) log_probs = torch.log_softmax(x_full, 2) return torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths) gradcheck(ctc_after_softmax, [x]) @onlyCUDA @skipCUDAIfRocm @skipCUDAIfCudnnVersionLessThan(7600) def test_ctc_loss_cudnn(self, device): batch_size = 16 input_length = 30 num_labels = 101 target_length = 15 targets = torch.randint(1, num_labels, (batch_size * target_length,), device='cuda', dtype=torch.long) log_probs = torch.log_softmax(torch.randn(input_length, batch_size, num_labels, device='cuda', dtype=torch.float), 2) log_probs.requires_grad_() input_lengths = batch_size * [input_length] target_lengths = batch_size * [target_length] grad_out = torch.randn(batch_size, device='cuda', dtype=torch.float) with torch.backends.cudnn.flags(enabled=False): loss_native = torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths, reduction='none') grad_native, = torch.autograd.grad(loss_native, log_probs, grad_out) loss_cudnn = torch.nn.functional.ctc_loss(log_probs, targets.to('cpu', torch.int32), input_lengths, target_lengths, reduction='none') self.assertTrue("Cudnn" in str(loss_cudnn.grad_fn)) grad_cudnn, = torch.autograd.grad(loss_cudnn, log_probs, grad_out) self.assertEqual(grad_cudnn, grad_native, atol=1e-4, rtol=0) def test_empty_dropout(self, device): x = torch.tensor([]).to(device) out = torch.nn.functional.dropout(x) self.assertEqual(out.size(), x.size()) @dtypesIfCUDA(torch.half, torch.float, torch.double) @dtypes(torch.float) @tf32_on_and_off(0.005) def test_variable_sequence(self, device, dtype): def pad(var, length): if var.size(0) == length: return var return torch.cat([var, var.new_zeros(length - var.size(0), *var.size()[1:])]) def maybe_index_tuple(maybe_tuple_of_tensors, index): if maybe_tuple_of_tensors is None: return None return tuple(maybe_tuple_of_tensors[j][:, index:index + 1, :].contiguous() for j in range(2)) def check_lengths(lengths, enforce_sorted, use_default_hiddens, proj_size): input_size = 3 hidden_size = 4 num_layers = 2 bidirectional = True max_length = max(lengths) x_leaf = torch.randn(max_length, len(lengths), input_size, device=device, dtype=dtype, requires_grad=True) num_directions = 2 if bidirectional else 1 lstm = nn.LSTM(input_size, hidden_size, bidirectional=bidirectional, num_layers=num_layers, proj_size=proj_size).to(device, dtype) lstm2 = deepcopy(lstm).to(device, dtype) x = x_leaf hidden0 = None if not use_default_hiddens: real_hidden_size = hidden_size if proj_size == 0 else proj_size hidden0 = (torch.randn(num_directions * num_layers, len(lengths), real_hidden_size, device=device, dtype=dtype), torch.randn(num_directions * num_layers, len(lengths), hidden_size, device=device, dtype=dtype)) # Compute sequences separately seq_outs = [] seq_hiddens = [] for i, l in enumerate(lengths): hidden_i = maybe_index_tuple(hidden0, i) out, hid = lstm2(x[:l, i:i + 1], hidden_i) out_pad = pad(out, max_length) seq_outs.append(out_pad) seq_hiddens.append(hid) seq_out = torch.cat(seq_outs, 1) seq_hidden = tuple(torch.cat(hids, 1) for hids in zip(*seq_hiddens)) # Use packed format packed = rnn_utils.pack_padded_sequence(x, lengths, enforce_sorted=enforce_sorted) packed_out, packed_hidden = lstm(packed, hidden0) unpacked, unpacked_len = rnn_utils.pad_packed_sequence(packed_out) # Check forward prec = dtype2prec_DONTUSE[dtype] self.assertEqual(packed_hidden, seq_hidden, atol=prec, rtol=0) self.assertEqual(unpacked, seq_out, atol=prec, rtol=0) self.assertEqual(unpacked_len, lengths, atol=prec, rtol=0) # Check backward seq_out.sum().backward() grad_x = x_leaf.grad.data.clone() x_leaf.grad.data.zero_() unpacked.sum().backward() self.assertEqual(x_leaf.grad, grad_x, atol=dtype2prec_DONTUSE[dtype], rtol=0) for p1, p2 in zip(lstm.parameters(), lstm2.parameters()): prec = dtype2prec_DONTUSE[dtype] if dtype == torch.float16: prec = 4e-2 self.assertEqual(p1.grad, p2.grad, atol=prec, rtol=0) tests = [ # enforce_sorted, lengths [True, [5]], [False, [5]], [True, [10, 10, 6, 2, 2, 1, 1]], [False, [10, 10, 6, 2, 2, 1, 1]], [False, [2, 1, 3, 2, 10, 5, 3]], ] for enforce_sorted, seq_lens, in tests: for use_default_hiddens in (True, False): for proj_size in [0, 2]: check_lengths(seq_lens, enforce_sorted, use_default_hiddens, proj_size) def _test_batchnorm_update_stats(self, device, dtype=torch.float): module = nn.BatchNorm1d(3).to(device, dtype) data = torch.rand(4, 3, device=device, dtype=dtype) # training pass old_running_mean = module.running_mean.clone() old_running_var = module.running_var.clone() old_num_batches_tracked = module.num_batches_tracked.clone() module(data) self.assertNotEqual(old_running_mean, module.running_mean) self.assertNotEqual(old_running_var, module.running_var) self.assertEqual(old_num_batches_tracked + 1, module.num_batches_tracked) # eval pass module.eval() old_running_mean = module.running_mean.clone() old_running_var = module.running_var.clone() old_num_batches_tracked = module.num_batches_tracked.clone() module(data) self.assertEqual(old_running_mean, module.running_mean) self.assertEqual(old_running_var, module.running_var) self.assertEqual(old_num_batches_tracked, module.num_batches_tracked) def test_batchnorm_update_stats(self, device): self._test_batchnorm_update_stats(device) if self.device_type == 'cuda' and self.has_cudnn(): with torch.backends.cudnn.flags(enabled=False): self._test_batchnorm_update_stats(device) def test_multi_margin_loss_errors(self, device): self.assertRaises(RuntimeError, lambda: nn.functional.multi_margin_loss(torch.randn(5, device=device), torch.zeros(3, device=device))) def _test_bfloat16_ops(self, op, device, inp_dims=(), prec=1e-2, scale_factor=None): # fp32 compute input1 = torch.randn(inp_dims, dtype=torch.float32, device=device, requires_grad=True) if scale_factor is not None: input1 = (torch.rand(inp_dims, dtype=torch.bfloat16, device=device) * scale_factor).float().requires_grad_() out1 = op(input1) grad_input1 = torch.randn_like(out1, device=device) out1.backward(grad_input1) # bfloat16 compute op_bfp16 = op.bfloat16() input2 = input1.detach().bfloat16().requires_grad_() grad_input2 = grad_input1.bfloat16() out2 = op_bfp16(input2) out2.backward(grad_input2) self.assertEqual(out1, out2, atol=prec, rtol=prec, exact_dtype=False) self.assertEqual(input1.grad.data, input2.grad.data, atol=prec, rtol=prec, exact_dtype=False) @onlyCUDA def test_activations_bfloat16(self, device): self._test_bfloat16_ops(torch.nn.ReLU(), device, inp_dims=(5), prec=1e-2) self._test_bfloat16_ops(torch.nn.Threshold(0.1, 20), device, inp_dims=(5), prec=1e-2) self._test_bfloat16_ops(torch.nn.ELU(), device, inp_dims=(5), prec=1e-2) self._test_bfloat16_ops(torch.nn.Softplus(), device, inp_dims=(5), prec=1e-2) self._test_bfloat16_ops(torch.nn.Hardshrink(), device, inp_dims=(5), prec=1e-2) self._test_bfloat16_ops(torch.nn.Softshrink(), device, inp_dims=(5), prec=1e-2) self._test_bfloat16_ops(torch.nn.LeakyReLU(), device, inp_dims=(5), prec=1e-2) @onlyCUDA def test_pooling_bfloat16(self, device): self._test_bfloat16_ops(torch.nn.AvgPool1d(3, stride=2), device, inp_dims=(8, 4, 16), prec=0.05) self._test_bfloat16_ops(torch.nn.AvgPool2d(3, stride=2), device, inp_dims=(8, 4, 16, 16), prec=0.05) self._test_bfloat16_ops(torch.nn.AvgPool3d(3, stride=2), device, inp_dims=(8, 4, 16, 16, 16), prec=0.05) self._test_bfloat16_ops(torch.nn.AdaptiveAvgPool1d(3), device, inp_dims=(8, 4, 16), prec=0.05) self._test_bfloat16_ops(torch.nn.AdaptiveAvgPool2d((3, 5)), device, inp_dims=(8, 4, 16, 16), prec=0.05) self._test_bfloat16_ops(torch.nn.AdaptiveAvgPool3d((3, 5, 7)), device, inp_dims=(8, 4, 16, 16, 16), prec=0.05) @onlyNativeDeviceTypes def test_softmax_bfloat16(self, device): for dim in [0, 1, 2, 3]: self._test_bfloat16_ops(torch.nn.Softmax(dim=dim), device, inp_dims=(16, 33, 15, 16), prec=1e-2) # test softmax with large input value which casues exp() to overflow self._test_bfloat16_ops(torch.nn.Softmax(dim=dim), device, inp_dims=(16, 33, 15, 16), prec=0.05, scale_factor=1000.0) @onlyCUDA @skipCUDAIfRocmVersionLessThan((4, 3)) @skipCUDAIfNotMiopenSuggestNHWC @skipCUDAIfCudnnVersionLessThan(7603) @dtypes(torch.half, torch.float) def test_conv_cudnn_nhwc(self, device, dtype): def helper(n, c, h, w, out_channels, kernel_size, groups): input = torch.randint(-3, 3, (n, c, h, w), dtype=dtype, device=device)\ .to(memory_format=torch.channels_last) input.requires_grad_() conv = nn.Conv2d(c, out_channels, kernel_size, groups=groups)\ .to(device='cuda', dtype=dtype, memory_format=torch.channels_last) for p in conv.parameters(): p.data = torch.randint_like(p, -3, 3) # use FP64 channels-first conv as reference ref_input = input.detach().clone().contiguous().double().requires_grad_() ref_conv = nn.Conv2d(c, out_channels, kernel_size, groups=groups) # load_state_dict will restore the stride & memory_layout on ref_conv.weight. ref_conv.load_state_dict(conv.state_dict()) ref_conv = ref_conv.to(device='cuda', dtype=torch.double, memory_format=torch.contiguous_format) out = conv(input) ref_out = ref_conv(ref_input) grad = torch.randint_like(out, -3, 3) ref_grad = grad.detach().clone().double().contiguous() out.backward(grad) ref_out.backward(ref_grad) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(input.grad.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(conv.weight.grad.is_contiguous(memory_format=torch.channels_last)) self.assertTrue(ref_out.is_contiguous()) self.assertTrue(ref_input.grad.is_contiguous()) self.assertTrue(ref_conv.weight.grad.is_contiguous()) self.assertEqual(out, ref_out, exact_dtype=False) self.assertEqual(conv.weight.grad, ref_conv.weight.grad, exact_dtype=False) self.assertEqual(conv.bias.grad, ref_conv.bias.grad, exact_dtype=False) self.assertEqual(input.grad, ref_input.grad, exact_dtype=False) helper(2, 8, 4, 4, out_channels=4, kernel_size=3, groups=1) helper(2, 8, 4, 4, out_channels=8, kernel_size=3, groups=8) helper(1, 16, 56, 56, out_channels=16, kernel_size=3, groups=1) helper(1, 16, 56, 56, out_channels=16, kernel_size=3, groups=16) @onlyCUDA @skipCUDAIfRocm @skipCUDAIfCudnnVersionLessThan(8005) @dtypes(torch.half, torch.float) def test_conv_cudnn_ndhwc(self, device, dtype): def helper(n, c, d, h, w, out_channels, kernel_size, groups): input = torch.randint(-2, 2, (n, c, d, h, w), dtype=dtype, device=device)\ .to(memory_format=torch.channels_last_3d) input.requires_grad_() conv = nn.Conv3d(c, out_channels, kernel_size, groups=groups)\ .to(device='cuda', dtype=dtype, memory_format=torch.channels_last_3d) for p in conv.parameters(): p.data = torch.randint_like(p, -2, 2) # use FP64 channels-first conv as reference ref_input = input.detach().clone().contiguous().double().requires_grad_() ref_conv = nn.Conv3d(c, out_channels, kernel_size, groups=groups) # load_state_dict will restore the stride & memory_layout on ref_conv.weight. ref_conv.load_state_dict(conv.state_dict()) ref_conv = ref_conv.to(device='cuda', dtype=torch.double, memory_format=torch.contiguous_format) out = conv(input) ref_out = ref_conv(ref_input) grad = torch.randint_like(out, -2, 2) ref_grad = grad.detach().clone().double().contiguous() out.backward(grad) ref_out.backward(ref_grad) self.assertTrue(out.is_contiguous(memory_format=torch.channels_last_3d)) self.assertTrue(input.grad.is_contiguous(memory_format=torch.channels_last_3d)) self.assertTrue(conv.weight.grad.is_contiguous(memory_format=torch.channels_last_3d)) self.assertTrue(ref_out.is_contiguous()) self.assertTrue(ref_input.grad.is_contiguous()) self.assertTrue(ref_conv.weight.grad.is_contiguous()) self.assertEqual(out, ref_out, exact_dtype=False) self.assertEqual(conv.weight.grad, ref_conv.weight.grad, exact_dtype=False) self.assertEqual(conv.bias.grad, ref_conv.bias.grad, exact_dtype=False) self.assertEqual(input.grad, ref_input.grad, exact_dtype=False) helper(2, 8, 4, 4, 4, out_channels=4, kernel_size=3, groups=1) helper(2, 8, 4, 4, 4, out_channels=8, kernel_size=3, groups=8) helper(1, 16, 18, 18, 18, out_channels=16, kernel_size=3, groups=1) helper(1, 16, 18, 18, 18, out_channels=16, kernel_size=3, groups=16) def _run_conv(self, layer, device, inp, grad, ref_conv, ref_input, ref_out, input_format, weight_format, grad_format, output_format): conv = layer(inp.size(1), grad.size(1), ref_conv.weight.size(2)).float().to(device) # load_state_dict will restore the stride & memory_layout on ref_conv.weight. conv.load_state_dict(ref_conv.state_dict()) weight_data = conv.weight.detach().clone().contiguous(memory_format=weight_format) conv.weight.data = weight_data.resize_(weight_data.size(), memory_format=weight_format) input = inp.clone().contiguous(memory_format=input_format) input.resize_(input.size(), memory_format=input_format) input = input.requires_grad_() grad = grad.contiguous(memory_format=grad_format) grad.resize_(grad.size(), memory_format=grad_format) out = conv(input) out.backward(grad) self.assertTrue(out.is_contiguous(memory_format=output_format)) self.assertEqual(out, ref_out) self.assertEqual(conv.weight.grad, ref_conv.weight.grad) self.assertEqual(conv.bias.grad, ref_conv.bias.grad) self.assertEqual(input.grad, ref_input.grad) def _test_conv_cudnn_nhwc_nchw(self, layer, n, c, h, w, k, filter_size, device): data = torch.randint(1, 10, (n, c, h, w), dtype=torch.float32, device=device) ref_input = data.clone().contiguous().requires_grad_(True) ref_conv = layer(c, k, filter_size).float().to(device) ref_out = ref_conv(ref_input) grad = torch.randint(1, 10, ref_out.size(), dtype=torch.float32, device="cuda") ref_out.backward(grad) for w_f in [torch.contiguous_format, torch.channels_last]: for g_f in [torch.contiguous_format, torch.channels_last]: for input_format in [torch.contiguous_format, torch.channels_last]: output_format = torch.contiguous_format # Older versions of CudNN have Channels Last support disabled if torch.backends.cudnn.version() >= 7603: if input_format == torch.channels_last: output_format = torch.channels_last # This is because we have N111 weight that cannot handle # the ambiguous memory_format if w_f == torch.channels_last: if layer == nn.Conv2d and filter_size * c != 1: output_format = torch.channels_last if layer == nn.ConvTranspose2d and filter_size * k != 1: output_format = torch.channels_last self._run_conv(layer, device, data, grad, ref_conv, ref_input, ref_out, input_format, w_f, g_f, output_format) @onlyCUDA @skipCUDAIfRocmVersionLessThan((4, 3)) @skipCUDAIfNotMiopenSuggestNHWC @skipCUDAIfCudnnVersionLessThan(7603) @tf32_on_and_off(0.05) def test_conv_cudnn_mismatch_memory_format(self, device): configs = [ [4, 2, 8, 8, 4, 2], [4, 1, 8, 8, 4, 2], [1, 1, 8, 8, 4, 2], [4, 2, 2, 8, 4, 1], [4, 2, 1, 8, 4, 1], [4, 2, 8, 8, 4, 1], [4, 1, 8, 8, 4, 1], ] for n, c, h, w, k, filter_size in configs: self._test_conv_cudnn_nhwc_nchw(nn.Conv2d, n, c, h, w, k, filter_size, device) self._test_conv_cudnn_nhwc_nchw(nn.ConvTranspose2d, n, c, h, w, k, filter_size, device) # torch.half is erroring out on Windows with CUDA 10.1 + cuDNN 7.6.4 # returning CUDNN_STATUS_BAD_PARAM # Disabling that specific test for now [see issue # 33918] @onlyCUDA @skipCUDAIfNoCudnn @dtypes(torch.float, torch.double) def test_conv_cudnn_nhwc_support(self, device, dtype): input = torch.randn((1, 16, 1, 1), dtype=dtype, device="cuda", requires_grad=True) weight = torch.randn((8, 16, 3, 3), dtype=dtype, device="cuda", requires_grad=True) weight = weight.to(memory_format=torch.channels_last) o = torch.conv2d(input, weight, None, (2, 1), (1, 1), (1, 1), 1) self.assertTrue(o.is_contiguous(memory_format=torch.channels_last)) o.sum().backward() # Test that faster algorithms used for inference produce the same results # Validates depthwise3x3 bug reported in https://github.com/pytorch/pytorch/issues/60176 @onlyCPU @dtypes(torch.float) def test_conv2d_no_grad(self, device, dtype): for batch in [1, 2, 3]: for groups in [1, 2, 4]: input = torch.rand(batch, groups, 8, 8, dtype=dtype, device=device) m = nn.Conv2d(groups, 8, kernel_size=(3, 3), groups=groups, dtype=dtype, device=device) with torch.no_grad(): output_ng = m(input) output = m(input) self.assertEqual(output, output_ng, rtol=1e-2, atol=1e-5) @onlyCUDA @skipCUDAIfRocm @skipCUDAIfNoCudnn @dtypes(torch.float, torch.float16) @precisionOverride({torch.half: 0.002, torch.float: 1e-4}) def test_cudnn_convolution_relu(self, device, dtype): for batch, groups, image_size, kernel_size, memory_format in \ product((1, 2, 3), (1, 2, 4), ((1, 1), (8, 8)), ((1, 1), (3, 3)), (torch.channels_last, torch.contiguous_format)): if image_size[0] < kernel_size[0]: continue inp = torch.rand(batch, groups, *image_size, dtype=dtype, device=device) w = torch.randn(8, groups, *kernel_size, dtype=dtype, device=device) conv2d_out = torch.conv2d(inp, w, None, (1, 1), (0, 0), (1, 1), 1) inp = inp.to(memory_format=memory_format) w = w.to(memory_format=memory_format) cudnn_out = torch.cudnn_convolution_relu(inp, w, None, (1, 1), (0, 0), (1, 1), 1) self.assertTrue(cudnn_out.is_contiguous(memory_format=memory_format)) self.assertEqual(conv2d_out.relu(), cudnn_out) @onlyCUDA @skipCUDAIfRocm @skipCUDAIfNoCudnn @dtypes(torch.float, torch.float16) @precisionOverride({torch.half: 0.002, torch.float: 1e-4}) def test_cudnn_convolution_add_relu(self, device, dtype): for batch, groups, image_size, kernel_size, memory_format in \ product((1, 2, 3), (1, 2, 4), ((1, 1), (8, 8)), ((1, 1), (3, 3)), (torch.channels_last, torch.contiguous_format)): if image_size[0] < kernel_size[0]: continue inp = torch.rand(batch, groups, *image_size, dtype=dtype, device=device) w = torch.randn(8, groups, *kernel_size, dtype=dtype, device=device) conv2d_out = torch.conv2d(inp, w, None, (1, 1), (0, 0), (1, 1), 1) alpha = 2.0 z = torch.randn_like(conv2d_out) inp = inp.to(memory_format=memory_format) w = w.to(memory_format=memory_format) z = z.to(memory_format=memory_format) cudnn_out = torch.cudnn_convolution_add_relu(inp, w, z, alpha, None, (1, 1), (0, 0), (1, 1), 1) self.assertTrue(cudnn_out.is_contiguous(memory_format=memory_format)) self.assertEqual(F.relu(conv2d_out + alpha * z), cudnn_out) @onlyCUDA @skipCUDAIfRocm @skipCUDAIfCudnnVersionLessThan(7603) def test_convert_conv2d_weight_memory_format(self, device): input = torch.randint(1, 10, (2, 8, 4, 4), dtype=torch.float32, device=device) model = nn.Sequential( nn.Conv2d(8, 4, 3), nn.BatchNorm2d(4)).to(device).float() for memory_format in [torch.channels_last, torch.contiguous_format]: model = nn.utils.convert_conv2d_weight_memory_format(model, memory_format) out = model(input) self.assertTrue(out.is_contiguous(memory_format=memory_format)) model = nn.Sequential( nn.ConvTranspose2d(8, 4, 3), nn.BatchNorm2d(4)).to(device).float() for memory_format in [torch.channels_last, torch.contiguous_format]: model = nn.utils.convert_conv2d_weight_memory_format(model, memory_format) out = model(input) self.assertTrue(out.is_contiguous(memory_format=memory_format)) def test_conv_double_backward_strided_with_3D_input_and_weight(self, device): # Test that _convolution_double_backward() outputs the correct grad shapes # for 3D input / weight when stride > 1. This is an ad-hoc regression test for a # specific case that was uncovered during the convolution consolidation effort. # The test can be safely deleted if _convolution_double_backward() is removed. input = torch.randn(2, 3, 6, device=device) weight = torch.randn(3, 3, 3, device=device) bias = torch.randn(3, device=device) stride = (2,) padding = (1,) dilation = (1,) transposed = False output_padding = (0,) groups = 1 output = torch.ops.aten.convolution(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups) ggI = torch.randn(input.shape, device=device) ggW = torch.randn(weight.shape, device=device) ggB = torch.randn(bias.shape, device=device) gO = torch.randn(output.shape, device=device) output_mask = [True, True, True] grad_grad_output, grad_input, grad_weight = torch.ops.aten._convolution_double_backward( ggI, ggW, ggB, gO, weight, input, stride, padding, dilation, transposed, output_padding, groups, output_mask) # Make sure the correct shapes are computed. self.assertEqual(grad_grad_output.shape, gO.shape) self.assertEqual(grad_input.shape, input.shape) self.assertEqual(grad_weight.shape, weight.shape) def test_nll_loss_mismatched_batch(self, device): x = torch.randn((10, 3), requires_grad=True, device=device) # t should have size (10,) t = torch.zeros((3,), dtype=torch.int64, device=device) with self.assertRaisesRegex(ValueError, 'Expected.*batch_size'): F.nll_loss(x, t) def test_nll_loss_out_of_bounds_ignore_index(self, device): x = torch.randn(6, 3, requires_grad=True, device=device) t = torch.tensor([0, 1, 255, 0, 1, 2], dtype=torch.int64, device=device) for reduction in ['mean', 'none']: F.nll_loss(x, t, ignore_index=255, reduction=reduction).sum().backward() def test_nll_loss_invalid_target_dim(self, device): x = torch.randn((10, 3), device=device) t = torch.zeros((10, 2), dtype=torch.int64, device=device) with self.assertRaisesRegex(RuntimeError, "1D target tensor expected"): F.nll_loss(x, t) def test_nll_loss_invalid_weights(self, device): x = torch.randn((10, 3), device=device) t = torch.empty(10, dtype=torch.int64, device=device).random_(0, 3) invalid_weights = [ torch.randn(4, device=device), torch.randn(1, 3, device=device), ] msg = "weight tensor should be defined either for all 3 classes or no classes" for weight in invalid_weights: with self.assertRaisesRegex(RuntimeError, msg): F.nll_loss(x, t, weight=weight) def _nll_loss_helper(self, input_size, reduction, expected, device): input = torch.rand(input_size, requires_grad=True, device=device) num_channels = input_size[1] target_size = (input_size[0], ) + tuple(input_size[2:]) target = torch.randint(num_channels, target_size, device=device) output = F.nll_loss(input, target, reduction=reduction) # TODO(#38095): Replace assertEqualIgnoreType. See issue #38095 self.assertEqualIgnoreType(output, expected) output.sum().backward() self.assertEqual(input.grad.size(), input.size()) def test_nll_loss_empty_tensor_reduction_none(self, device): self._nll_loss_helper([0, 3], "none", torch.empty([0], device=device), device) self._nll_loss_helper([0, 3, 5, 7], "none", torch.empty([0, 5, 7], device=device), device) self._nll_loss_helper([2, 3, 0, 7], "none", torch.empty([2, 0, 7], device=device), device) self._nll_loss_helper([2, 3, 5, 0], "none", torch.empty([2, 5, 0], device=device), device) self._nll_loss_helper([2, 3, 5, 7, 0], "none", torch.empty([2, 5, 7, 0], device=device), device) @unittest.skipIf(TEST_WITH_UBSAN, "division-by-zero error with UBSAN") def test_nll_loss_empty_tensor_reduction_mean(self, device): nan = torch.tensor(float('nan'), device=device) self._nll_loss_helper([0, 3], "mean", nan, device) self._nll_loss_helper([0, 3, 5, 7], "mean", nan, device) self._nll_loss_helper([2, 3, 0, 7], "mean", nan, device) self._nll_loss_helper([2, 3, 5, 0], "mean", nan, device) self._nll_loss_helper([2, 3, 5, 7, 0], "mean", nan, device) def test_nll_loss_empty_tensor_reduction_sum(self, device): zero = torch.tensor(0, device=device) self._nll_loss_helper([0, 3], "sum", zero, device) self._nll_loss_helper([0, 3, 5, 7], "sum", zero, device) self._nll_loss_helper([2, 3, 0, 7], "sum", zero, device) self._nll_loss_helper([2, 3, 5, 0], "sum", zero, device) self._nll_loss_helper([2, 3, 5, 7, 0], "sum", zero, device) @unittest.skipIf(TEST_WITH_UBSAN, "division-by-zero error with UBSAN") def test_nll_loss_total_weight_is_zero(self, device): def helper(input_size): input = torch.ones(input_size, requires_grad=True, device=device) num_channels = input_size[1] target_size = (input_size[0], ) + tuple(input_size[2:]) target = torch.zeros(target_size, dtype=torch.long, device=device) weight = torch.zeros([num_channels], device=device) self.assertEqual(F.nll_loss(input, target, weight, reduction="sum").item(), 0.) self.assertEqual(F.nll_loss(input, target, weight, reduction="mean").item(), float("nan")) self.assertEqual(F.nll_loss(input, target, weight, reduction="none"), torch.zeros(target.shape, device=device)) helper([2, 3]) helper([2, 3, 5, 7]) helper([2, 3, 5, 7, 9]) @unittest.skipIf(TEST_WITH_UBSAN, "division-by-zero error with UBSAN") def test_nll_loss_all_ignored(self, device): def helper(input_size): input = torch.ones(input_size, device=device) num_channels = input_size[1] target_size = (input_size[0], ) + tuple(input_size[2:]) target = torch.zeros(target_size, dtype=torch.long, device=device) self.assertEqual(F.nll_loss(input, target, ignore_index=0, reduction="sum").item(), 0) self.assertEqual(F.nll_loss(input, target, ignore_index=0, reduction="mean").item(), float("nan")) self.assertEqual(F.nll_loss(input, target, ignore_index=0, reduction="none"), torch.zeros(target.shape, device=device)) helper([2, 3]) helper([2, 3, 5, 7]) helper([2, 3, 5, 7, 9]) def test_nll_loss_byte_target_matches_long(self, device): N, C = 10, 4 input = torch.randn(N, C, device=device, requires_grad=True) target = torch.empty(N, dtype=torch.long, device=device).random_(0, C) def compute_result_and_gradient(reduction, target_dtype): input_ = input.detach() input_.requires_grad_() prob = F.log_softmax(input_, dim=-1) loss = nn.NLLLoss(reduction=reduction) result = loss(prob, target.to(target_dtype)) result.sum().backward() return result, input_.grad for reduction in ["none", "mean", "sum"]: result_long, grad_long = compute_result_and_gradient(reduction, torch.long) result_byte, grad_byte = compute_result_and_gradient(reduction, torch.uint8) self.assertEqual(result_long, result_byte) self.assertEqual(grad_long, grad_byte) def test_cross_entropy_loss_prob_target_all_reductions(self, device): # Test with k-dimensional loss. for k in range(5): N, C = 5, 4 other_dims = [torch.randint(2, 5, size=(1,)).item() for _ in range(k)] input = torch.randn(N, C, *other_dims, device=device, requires_grad=True) target = torch.randn(N, C, *other_dims, device=device, requires_grad=True) weight = torch.randn(C, device=device).abs() for reduction, w in product(['none', 'mean', 'sum'], [None, weight]): m = torch.nn.CrossEntropyLoss(weight=w, reduction=reduction) output = m(input, target) output_ref = loss_reference_fns['CrossEntropyLoss']( input, target, reduction=reduction, weight=w) self.assertEqual(output, output_ref) def test_cross_entropy_loss_prob_target_unit_weights(self, device): # Test with k-dimensional loss. for k in range(5): N, C = 5, 4 other_dims = [torch.randint(2, 5, size=(1,)).item() for _ in range(k)] input = torch.randn(N, C, *other_dims, device=device, requires_grad=True) target = torch.randn(N, C, *other_dims, device=device, requires_grad=True) for reduction in ['none', 'mean', 'sum']: # Ensure result with unit weights is equivalent to result without weights. m = torch.nn.CrossEntropyLoss(reduction=reduction) unit_weight = torch.ones(C, device=device, dtype=target.dtype) m_unit = torch.nn.CrossEntropyLoss(weight=unit_weight, reduction=reduction) output = m(input, target) output_unit = m_unit(input, target) self.assertEqual(output, output_unit) def test_cross_entropy_loss_index_target_unit_weights(self, device): # Test with k-dimensional loss. for k in range(5): N, C = 5, 4 other_dims = [torch.randint(2, 5, size=(1,)).item() for _ in range(k)] input = torch.randn(N, C, *other_dims, device=device, requires_grad=True) target = torch.empty(N, *other_dims, dtype=torch.long, device=device).random_(0, C) for reduction in ['none', 'mean', 'sum']: # Ensure result with unit weights is equivalent to result without weights. m = torch.nn.CrossEntropyLoss(reduction=reduction) unit_weight = torch.ones(C, device=device, dtype=input.dtype) m_unit = torch.nn.CrossEntropyLoss(weight=unit_weight, reduction=reduction) output = m(input, target) output_unit = m_unit(input, target) self.assertEqual(output, output_unit) def test_cross_entropy_loss_one_hot_target(self, device): # Test with k-dimensional loss. for k in range(5): N, C = 5, 4 other_dims = [torch.randint(2, 5, size=(1,)).item() for _ in range(k)] input = torch.randn(N, C, *other_dims, device=device, requires_grad=True) target = torch.empty(N, *other_dims, dtype=torch.long, device=device).random_(0, C) weight = torch.randn(C, device=device).abs() # Get one-hot representation of the target. target_one_hot = F.one_hot(target, num_classes=C).to(input.dtype) # Need to put the C dim at index 1. target_one_hot = target_one_hot.permute(0, -1, *range(1, target_one_hot.dim() - 1)) for reduction, w in product(['none', 'mean', 'sum'], [None, weight]): # Skip this case for now because soft and hard label CE are not consistent # in the way they apply class weights (see issue #61309). if reduction == 'mean' and weight is not None: continue # Ensure loss computed with class indices matches loss # computed with one-hot class probs. m = torch.nn.CrossEntropyLoss(weight=w, reduction=reduction) output = m(input, target) output_one_hot = m(input, target_one_hot) self.assertEqual(output, output_one_hot) def test_cross_entropy_label_smoothing_errors(self, device): N, C = 3, 4 input_args = [ (torch.randn((N, C), device=device), torch.arange(0, C, device=device)), (torch.randn((N, C), device=device), torch.randn(N, C, device=device)) ] for input_arg in input_args: loss = nn.CrossEntropyLoss(label_smoothing=1.2) with self.assertRaisesRegex(RuntimeError, r"label_smoothing must be between 0\.0"): loss(*input_arg) def test_cross_entropy_label_smoothing_consistent_index_target_and_probs(self, device): N, C = 10, 4 ks = range(5) reductions = ['none', 'mean', 'sum'] label_smoothings = [0.05, 0.15] for k, reduction, label_smoothing in product(ks, reductions, label_smoothings): other_dims = [torch.randint(2, 5, size=(1,)).item() for _ in range(k)] input = torch.randn(N, C, *other_dims, device=device, requires_grad=True) target = torch.empty(N, *other_dims, dtype=torch.long, device=device).random_(0, C) # construct target probablity that should have the same result as label_smoothing target_proba = F.one_hot(target, num_classes=C) # Need to put the C dim at index 1. target_proba = target_proba.permute(0, -1, *range(1, target_proba.dim() - 1)) target_mask = (target_proba == 1) target_proba = target_proba.to(dtype=input.dtype) # y_k^ls = y_k * (1 - label_smoothing) + label_smoothing / n_classes # Get one-hot representation of the target. target_proba.masked_fill_(target_mask, 1 - label_smoothing + label_smoothing / C) target_proba.masked_fill_(~target_mask, label_smoothing / C) loss = nn.CrossEntropyLoss(reduction=reduction) output_with_prob = loss(input, target_proba) loss = nn.CrossEntropyLoss( reduction=reduction, label_smoothing=label_smoothing) output_with_index = loss(input, target) self.assertEqual(output_with_prob, output_with_index, rtol=1e-07, atol=1e-05) def test_cross_entropy_label_smoothing_with_probs(self, device): N, C = 10, 4 ks = range(5) reductions = ['none', 'mean', 'sum'] label_smoothings = [0.05, 0.15] # Test with k-dimensional loss. for k, label_smoothing in product(ks, label_smoothings): other_dims = [torch.randint(2, 5, size=(1,)).item() for _ in range(k)] input = torch.randn(N, C, *other_dims, device=device, requires_grad=True) target = F.log_softmax(torch.randn(N, C, *other_dims, device=device), dim=1) for reduction in reductions: # use with label_smoothing loss = nn.CrossEntropyLoss(reduction=reduction, label_smoothing=label_smoothing) output_with_smoothing = loss(input, target) # manually smoothing target # class_proba^ls = class_proba * (1 - label_smoothing) + # label_smoothing / n_classes target_with_smoothing = target * (1 - label_smoothing) + label_smoothing / C loss = nn.CrossEntropyLoss(reduction=reduction) output_with_manual_smoothing = loss(input, target_with_smoothing) self.assertEqual(output_with_smoothing, output_with_manual_smoothing) def test_cross_entropy_label_smoothing_weight_ignore_indices(self, device): reductions = ['none', 'sum', 'mean'] label_smoothings = [0.05, 0.15] weight = torch.tensor([0.3, 0.6], device=device) inp1 = torch.tensor([[0.3, 0.4], [1, 2]], device=device) inp2 = torch.tensor([[0.3, 0.6], [1, 2]], device=device) targ_default_ignore_index = torch.tensor([-100, 1], device=device) targ_negative_ignore_index = torch.tensor([-2, 1], device=device) targ_positive_ignore_index = torch.tensor([2, 1], device=device) for reduction, label_smoothing, weight in product(reductions, label_smoothings, (None, weight)): def check_equal(loss, inp_targ_1, inp_targ_2): inp1, targ1 = inp_targ_1 inp2, targ2 = inp_targ_2 l1 = loss(inp1, targ1) l2 = loss(inp2, targ2) self.assertEqual(l1, l2) # Default ignore_index loss = nn.CrossEntropyLoss(reduction=reduction, label_smoothing=label_smoothing, weight=weight) check_equal(loss, (inp1, targ_default_ignore_index), (inp2, targ_default_ignore_index)) if reduction != 'none': # Check that we correctly tally the denominator for `mean` # i.e. we don't count the ignored_idx at all. check_equal(loss, (inp1, targ_default_ignore_index), (inp2[1:], targ_default_ignore_index[1:])) # negative ignore_index loss = nn.CrossEntropyLoss(reduction=reduction, label_smoothing=label_smoothing, ignore_index=-2, weight=weight) check_equal(loss, (inp1, targ_negative_ignore_index), (inp2, targ_negative_ignore_index)) if reduction != 'none': # Check that we correctly tally the denominator for `mean` # i.e. we don't count the ignored_idx at all. check_equal(loss, (inp1, targ_negative_ignore_index), (inp2[1:], targ_negative_ignore_index[1:])) # positive ignore_index loss = nn.CrossEntropyLoss(reduction=reduction, label_smoothing=label_smoothing, ignore_index=2, weight=weight) check_equal(loss, (inp1, targ_positive_ignore_index), (inp2, targ_positive_ignore_index)) if reduction != 'none': # Check that we correctly tally the denominator for `mean` # i.e. we don't count the ignored_idx at all. check_equal(loss, (inp1, targ_positive_ignore_index), (inp2[1:], targ_positive_ignore_index[1:])) def test_softshrink_negative(self, device): input = torch.randn(5, device=device, requires_grad=True) m = torch.nn.Softshrink(-1) with self.assertRaisesRegex(RuntimeError, r'lambda must be greater or equal to 0, but found to be -1\.'): m(input) def test_fold(self, device): def test_dtype(fn, input, dtype): input = input.detach().clone().to(dtype=dtype).requires_grad_(True) input2 = input.detach().clone().float().requires_grad_(True) out = fn(input) out.sum().backward() out2 = fn(input2) out2.sum().backward() self.assertEqual(out.dtype, dtype) self.assertEqual(input.grad.dtype, dtype) self.assertEqual(out, out2.to(dtype=dtype), atol=0.05, rtol=0) self.assertEqual(input.grad, input2.grad.to(dtype=dtype)) def func(x): return F.fold(x, output_size=(4, 5), kernel_size=(2, 2)) seeds = (44, 83, 71, 25, 999) for sd in seeds: torch.manual_seed(sd) x = torch.randn(1, 12, 12, device=device, requires_grad=True) gradcheck(func, [x], check_forward_ad=True) gradgradcheck(func, [x], check_fwd_over_rev=True) if device == 'cpu': test_dtype(func, x, torch.bfloat16) def test_logsigmoid_out(self, device): # this isn't actually documented, but was broken previously: # https://github.com/pytorch/pytorch/issues/36499 x = torch.randn(2, 3, device=device).t() empty_out = torch.randn(0, device=device) self.assertEqual(F.logsigmoid(x), F.logsigmoid(x, out=empty_out)) noncontig_out = torch.randn(2, 3, device=device).t() self.assertEqual(F.logsigmoid(x), F.logsigmoid(x, out=noncontig_out)) def test_maxpool3d_non_square_backward(self, device): # previous CUDA routine of this backward calculates kernel launch grid size # with last two dimensions interchanged, so the tailing along the longer dim # get ignored. Here we test whether every position gets gradient. for dim in (2, 3, 4): shape = tuple(32 if i != dim else 256 for i in range(4)) x = torch.randn(shape, device=device, requires_grad=True) F.max_pool3d(x, kernel_size=(1, 1, 1)).sum().backward() self.assertEqual(x.grad, torch.ones_like(x.grad)) # Check that clip_grad_norm_ raises an error if the total norm of the # parameters' gradients is non-finite def test_clip_grad_norm_error_if_nonfinite(self, device): norms_pos = [0.1, 1, 2, 3.5, inf] norms_neg = [-0.1, -1, -2, -3.5] norms_except_0 = norms_pos + norms_neg norms_all = norms_except_0 + [0] # Each entry in test_cases has the following values, in this order: # # grad_only_one_elem If True, only one element of the parameter's # gradient is set to the scalar grad, and the # rest of the elements are 0. If False, all grad # elements are equal to the scalar. # # prefix_finite_grad_param If True, prefix a parameter that has a grad # of 1. # # scalars Scalars to use as the parameter's grad, through # multiplication # # norms_nonfinite Norm types that should produce nonfinite total norm # # norms_finite Norm types that should produce finite total norm test_cases = [ # Test errors from an infinite grad (False, False, [inf, -inf], norms_except_0, [0]), (False, True, [inf, -inf], norms_pos, norms_neg + [0]), (True, False, [inf, -inf], norms_pos, norms_neg + [0]), (True, True, [inf, -inf], norms_pos, norms_neg + [0]), # Test errors from a NaN grad (False, False, [nan], norms_except_0, [0]), (False, True, [nan], norms_except_0, [0]), (True, False, [nan], norms_except_0, [0]), (True, True, [nan], norms_except_0, [0]), # Test a grad that should never error (False, False, [2e22, -2e22], [], norms_all), (False, True, [2e22, -2e22], [], norms_all), (True, False, [2e22, -2e22], [], norms_all), (True, True, [2e22, -2e22], [], norms_all), # Test a grad that will overflow to inf for only some norm orders (False, False, [2e200, -2e200], [3.5, 2, -2, -3.5], [inf, 1, 0.1, 0, -1, -0.1]), (False, True, [2e200, -2e200], [3.5, 2], norms_neg + [inf, 1, 0.1, 0]), (True, False, [2e200, -2e200], [3.5, 2], norms_neg + [inf, 1, 0.1, 0]), (True, True, [2e200, -2e200], [3.5, 2], norms_neg + [inf, 1, 0.1, 0]), ] def gen_parameters(scalar, grad_only_one_elem, prefix_finite_grad_param): param = torch.ones(10, dtype=torch.float64, device=device, requires_grad=True) if grad_only_one_elem: param[1].mul(scalar).sum().backward() else: param.mul(scalar).sum().backward() if prefix_finite_grad_param: prefix_param = torch.ones(1, dtype=torch.float64, device=device, requires_grad=True) prefix_param.mul(1).sum().backward() parameters = [prefix_param, param] else: parameters = [param] return parameters def run_test_case(norm_type, error_if_nonfinite, scalar, grad_only_one_elem, prefix_finite_grad_param, is_norm_nonfinite): msg = ( f'norm_type: {norm_type}, ', f'error_if_nonfinite: {error_if_nonfinite}, ' f'scalar: {scalar}, ' f'grad_only_one_elem: {grad_only_one_elem}, ' f'prefix_finite_grad_param: {prefix_finite_grad_param}, ' f'is_norm_nonfinite: {is_norm_nonfinite}') parameters = gen_parameters(scalar, grad_only_one_elem, prefix_finite_grad_param) # Should only throw an error if the total norm is expected to be # nonfinite and `error_if_nonfinite=True` if is_norm_nonfinite and error_if_nonfinite: error_msg = f'The total norm of order {float(norm_type)} for gradients' grads_before = [p.grad.clone() for p in parameters] with self.assertRaisesRegex(RuntimeError, error_msg, msg=msg): clip_grad_norm_(parameters, 1, norm_type=norm_type, error_if_nonfinite=True) # Grad should not change if error is thrown grads_after = [p.grad for p in parameters] self.assertEqual(grads_before, grads_after, msg=msg) else: clip_grad_norm_(parameters, 1, norm_type=norm_type, error_if_nonfinite=error_if_nonfinite) for grad_only_one_elem, prefix_finite_grad_param, scalars, norms_nonfinite, norms_finite in test_cases: for error_if_nonfinite in [False, True]: for norm_type, scalar in product(norms_nonfinite, scalars): run_test_case(norm_type, error_if_nonfinite, scalar, grad_only_one_elem, prefix_finite_grad_param, True) for norm_type, scalar in product(norms_finite, scalars): run_test_case(norm_type, error_if_nonfinite, scalar, grad_only_one_elem, prefix_finite_grad_param, False) @onlyCUDA @deviceCountAtLeast(2) def test_clip_grad_norm_multi_device(self, devices): class TestModel(nn.Module): def __init__(self): super(TestModel, self).__init__() self.layer1 = nn.Linear(10, 10) self.layer2 = nn.Linear(10, 10) test_model = TestModel() test_model.layer1.to(devices[0]) test_model.layer2.to(devices[1]) ref_model = TestModel().to(devices[0]) for norm_type in [2., math.inf]: for p in test_model.parameters(): p.grad = torch.ones_like(p) for p in ref_model.parameters(): p.grad = torch.ones_like(p) norm = clip_grad_norm_(test_model.parameters(), 0.5, norm_type=norm_type) expected = clip_grad_norm_(ref_model.parameters(), 0.5, norm_type=norm_type) self.assertEqual(norm, expected) for p, pe in zip(test_model.parameters(), ref_model.parameters()): self.assertEqual(p.grad.to(devices[0]), pe.grad) def test_elu_inplace_overlap(self, device): x = torch.randn((1, 6), device=device).expand((6, 6)) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): F.elu(x, inplace=True) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): F.elu_(x) # Merge into OpInfo? @onlyNativeDeviceTypes def test_elu_inplace_with_neg_alpha(self, device): a = torch.tensor([-1., 1.], device=device, requires_grad=True) b = torch.nn.functional.elu_(a.clone(), alpha=-2) with self.assertRaisesRegex(RuntimeError, "call out-of-place version"): b.backward(torch.ones(2, device=device)) a = torch.tensor([-1., 1.], device=device, requires_grad=True) b = torch.nn.functional.celu_(a.clone(), alpha=-2) with self.assertRaisesRegex(RuntimeError, "call out-of-place version"): b.backward(torch.ones(2, device=device)) @expectedFailureMeta # https://github.com/pytorch/pytorch/issues/54897 def test_hardswish_inplace_overlap(self, device): x = torch.randn((1, 6), device=device).expand((6, 6)) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): F.hardswish(x, inplace=True) def test_silu_inplace_overlap(self, device): x = torch.randn((1, 6), device=device).expand((6, 6)) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): F.silu(x, inplace=True) @onlyNativeDeviceTypes def test_mish_inplace_overlap(self, device): x = torch.randn((1, 6), device=device).expand((6, 6)) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): F.mish(x, inplace=True) def test_softplus_inplace_overlap(self, device): x = torch.randn((1, 6), device=device).expand((6, 6)) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): F.softplus(x, out=x) def test_softplus_low_threshold(self, device): # Ensure gradients are computed correctly with a low threshold. model = torch.nn.Softplus(threshold=1).double() input = torch.tensor(0.9, device=device, dtype=torch.double, requires_grad=True) output = model(input) torch.autograd.gradcheck(model, input) def test_softshrink_inplace_overlap(self, device): x = torch.randn((1, 6), device=device).expand((6, 6)) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): F.softshrink(x, out=x) def test_leaky_relu_inplace_overlap(self, device): x = torch.randn((1, 6), device=device).expand((6, 6)) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): F.leaky_relu(x, inplace=True) with self.assertRaisesRegex(RuntimeError, 'unsupported operation'): F.leaky_relu_(x) # Merge into OpInfo? def test_leaky_relu_inplace_with_neg_slope(self, device): a = torch.tensor([-1., 1.], device=device, requires_grad=True) b = torch.nn.functional.leaky_relu_(a.clone(), -2) with self.assertRaisesRegex(RuntimeError, "call out-of-place version"): b.backward(torch.ones(2, device=device)) a = torch.tensor([-1., 1.], device=device, requires_grad=True) b = torch.nn.functional.rrelu_(a.clone(), -5.0, 1.0) with self.assertRaisesRegex(RuntimeError, "call out-of-place version"): b.backward(torch.ones(2, device=device)) # Merge into OpInfo? def test_leaky_relu_inplace_with_zero_slope(self, device): a = torch.tensor([-2., 0., 2.], device=device, requires_grad=True) b = torch.nn.functional.leaky_relu_(a.clone(), 0.0) b.backward(torch.ones(3, device=device)) expected = torch.tensor([0., 0., 1.], device=device) self.assertEqual(a.grad, expected) a_bf16 = torch.tensor([-2., 0., 2.], device=device, dtype=torch.bfloat16, requires_grad=True) b_bf16 = torch.nn.functional.leaky_relu_(a_bf16.clone(), 0.0) b_bf16.backward(torch.ones(3, device=device)) expected_bf16 = torch.tensor([0., 0., 1.], device=device, dtype=torch.bfloat16) self.assertEqual(a_bf16.grad, expected_bf16) def test_threshold_inplace_overlap(self, device): # Inplace threshold is okay, because it is idempotent x = torch.randn((1, 6), device=device).expand((6, 6)) F.threshold(x, 0.5, 0.5, inplace=True) F.threshold_(x, 0.5, 0.5) @onlyNativeDeviceTypes def test_triplet_margin_with_distance_loss_default_parity(self, device): # Test for `nn.TripletMarginWithDistanceLoss` and # `F.triplet_margin_with_distance_loss`. Checks # for parity against the respective non-distance-agnostic # implementations of triplet margin loss (``nn.TripletMarginLoss` # and `F.triplet_margin_loss`) under *default args*. for extra_args in \ itertools.product((0.5, 1, 1.5), (True, False), ('none', 'mean', 'sum')): kwargs = {'margin': extra_args[0], 'swap': extra_args[1], 'reduction': extra_args[2]} anchor = torch.randn(5, 10, device=device, requires_grad=True) positive = torch.randn(5, 10, device=device, requires_grad=True) negative = torch.randn(5, 10, device=device, requires_grad=True) # Test forward, functional expected = F.triplet_margin_loss(anchor, positive, negative, **kwargs) actual = F.triplet_margin_with_distance_loss(anchor, positive, negative, **kwargs) self.assertEqual(actual, expected, rtol=1e-6, atol=1e-6) # Test forward, module loss_ref = nn.TripletMarginLoss(**kwargs) loss_op = nn.TripletMarginWithDistanceLoss(**kwargs) self.assertEqual(loss_op(anchor, positive, negative), loss_ref(anchor, positive, negative), rtol=1e-6, atol=1e-6) # Test backward self.assertTrue(gradcheck(lambda a, p, n: F.triplet_margin_with_distance_loss( a, p, n, **kwargs), (anchor, positive, negative))) self.assertTrue(gradcheck(lambda a, p, n: loss_op(a, p, n), (anchor, positive, negative))) @onlyNativeDeviceTypes def test_triplet_margin_with_distance_loss(self, device): # Test for parity between `nn.TripletMarginWithDistanceLoss` and # `F.triplet_margin_with_distance_loss`. pairwise_distance = nn.PairwiseDistance() def cosine_distance(x, y): return 1.0 - F.cosine_similarity(x, y) distance_functions = (pairwise_distance, cosine_distance, lambda x, y: 1.0 - F.cosine_similarity(x, y)) reductions = ('mean', 'none', 'sum') margins = (1.0, 1.5, 0.5) swaps = (True, False) for distance_fn, reduction, margin, swap \ in itertools.product(distance_functions, reductions, margins, swaps): anchor = torch.randn(5, 10, device=device, requires_grad=True) positive = torch.randn(5, 10, device=device, requires_grad=True) negative = torch.randn(5, 10, device=device, requires_grad=True) # Test backward self.assertTrue(gradcheck(lambda a, p, n: F.triplet_margin_with_distance_loss( a, p, n, distance_function=distance_fn, reduction=reduction, margin=margin, swap=swap), (anchor, positive, negative))) loss_op = nn.TripletMarginWithDistanceLoss(distance_function=distance_fn, reduction=reduction, margin=margin, swap=swap) self.assertTrue(gradcheck(lambda a, p, n: loss_op( a, p, n), (anchor, positive, negative))) traced_loss_op = torch.jit.trace(loss_op, (anchor, positive, negative)) self.assertTrue(gradcheck(lambda a, p, n: traced_loss_op( a, p, n), (anchor, positive, negative))) # Test forward parity functional = F.triplet_margin_with_distance_loss(anchor, positive, negative, distance_function=distance_fn, reduction=reduction, margin=margin, swap=swap) modular = loss_op(anchor, positive, negative) traced = traced_loss_op(anchor, positive, negative) self.assertEqual(functional, modular, atol=1e-6, rtol=1e-6) self.assertEqual(traced, modular, atol=1e-6, rtol=1e-6) def test_to_complex(self, device): m = nn.Linear(3, 5).to(device) self.assertIs(m, m.to(device)) m.to(torch.cfloat) self.assertIs(m.weight.dtype, torch.cfloat) m.to(torch.cdouble) self.assertIs(m.weight.dtype, torch.cdouble) m.to(torch.float) self.assertIs(m.weight.dtype, torch.float) with warnings.catch_warnings(record=True) as w: # Trigger warning m.to(torch.cfloat) # Check warning occurs self.assertEqual(len(w), 1) self.assertTrue("Complex modules are a new feature" in str(w[-1].message)) @skipMeta @dtypes(torch.float32, torch.float64) def test_module_to_empty(self, device, dtype): class MyModule(nn.Module): def __init__(self, in_features, out_features, device=None, dtype=None): super().__init__() factory_kwargs = {"device": device, "dtype": dtype} self.weight = nn.Parameter(torch.randn(in_features, out_features, **factory_kwargs)) def forward(self, x): return x @ self.weight # Test meta module instantiation. input = torch.randn(5, 10, device=device, dtype=dtype) m = MyModule(10, 1, device='meta', dtype=dtype) m(input) # Test materializing meta module on a real device. m.to_empty(device=device) m(input) with torch.no_grad(): torch.nn.init.kaiming_uniform_(m.weight) m(input) # Test creating meta module from materialized module. m.to_empty(device='meta') m(input) @skipMeta def test_skip_init(self, device): torch.manual_seed(1) m_initialized = torch.nn.Linear(5, 1) m_initialized.to(device) torch.manual_seed(1) m_uninitialized = torch.nn.utils.skip_init(torch.nn.Linear, 5, 1, device=device) self.assertEqual(m_initialized.weight.device, m_uninitialized.weight.device) self.assertFalse(torch.allclose(m_initialized.weight, m_uninitialized.weight)) def test_adaptive_pool_invalid(self, device): inp_1d = (torch.randn(1, 1, 1, device=device), (-1,)) inp_2d = (torch.randn(1, 1, 1, 1, device=device), (-1, 0)) inp_3d = (torch.randn(1, 1, 1, 1, 1, device=device), (-1, 0, 2)) module_input_dict = {torch.nn.AdaptiveAvgPool1d : inp_1d, torch.nn.AdaptiveAvgPool2d : inp_2d, torch.nn.AdaptiveAvgPool3d : inp_3d} for m, inp in module_input_dict.items(): with self.assertRaisesRegex(RuntimeError, r"elements of output_size must be greater than or equal to 0"): t, output_size = inp m(output_size)(t) class TestModuleGlobalHooks(TestCase): def tearDown(self): nn.modules.module._global_backward_hooks = OrderedDict() nn.modules.module._global_forward_hooks = OrderedDict() nn.modules.module._global_forward_pre_hooks = OrderedDict() def test_module_global_hooks(self): module = nn.Sigmoid module_1 = module() module_2 = module() module_3 = module() input = torch.ones(5, 5, requires_grad=True) counter = { 'forwards': 0, 'backwards': 0 } def fw_hook(inc, h_module, input, output): self.assertIsInstance(input, tuple) self.assertTrue(isinstance(output, torch.Tensor)) self.assertTrue(isinstance(h_module, module)) self.assertEqual(input[0], torch.ones(5, 5)) self.assertEqual(output, torch.empty(5, 5).fill_(1 / (1 + 1 / math.e))) counter['forwards'] += inc def bw_hook(inc, h_module, grad_input, grad_output): self.assertIsInstance(grad_input, tuple) self.assertIsInstance(grad_output, tuple) self.assertTrue(isinstance(h_module, module)) self.assertEqual(grad_output[0], torch.ones(5, 5) * 2) counter['backwards'] += inc test_fwd = nn.modules.module.register_module_forward_hook(lambda *args: fw_hook(1, *args)) module_1(input) module_2(input) module_3(input) self.assertEqual(counter['forwards'], 3) self.assertEqual(counter['backwards'], 0) test_bwd = nn.modules.module.register_module_backward_hook( lambda *args: bw_hook(1, *args)) output_1 = module_1(input) output_2 = module_2(input) output_3 = module_3(input) self.assertEqual(counter['forwards'], 6) self.assertEqual(counter['backwards'], 0) output_1.backward(torch.ones(5, 5) * 2, retain_graph=True) output_2.backward(torch.ones(5, 5) * 2, retain_graph=False) output_3.backward(torch.ones(5, 5) * 2, retain_graph=False) self.assertEqual(counter['forwards'], 6) self.assertEqual(counter['backwards'], 3) output_1.backward(torch.ones(5, 5) * 2, retain_graph=True) self.assertEqual(counter['forwards'], 6) self.assertEqual(counter['backwards'], 4) test2_fwd = nn.modules.module.register_module_forward_hook(lambda *args: fw_hook(2, *args)) output = module_1(input) output = module_2(input) output = module_3(input) self.assertEqual(counter['forwards'], 15) self.assertEqual(counter['backwards'], 4) test2_bwd = nn.modules.module.register_module_backward_hook(lambda *args: bw_hook(2, *args)) module_1(input).backward(torch.ones(5, 5) * 2) self.assertEqual(counter['forwards'], 18) self.assertEqual(counter['backwards'], 7) test2_bwd.remove() module_2(input).backward(torch.ones(5, 5) * 2) self.assertEqual(counter['forwards'], 21) self.assertEqual(counter['backwards'], 8) test2_fwd.remove() module_3(input).backward(torch.ones(5, 5) * 2) self.assertEqual(counter['forwards'], 22) self.assertEqual(counter['backwards'], 9) test_fwd.remove() test_bwd.remove() def test_module_global_hook_invalid_outputs(self): module = nn.Sigmoid() input = torch.randn(5, 5, requires_grad=True) def bw_fail1(self, grad_input, grad_output): return grad_input[:-1] def bw_fail2(self, grad_input, grad_output): return grad_input + (torch.randn(2, 2),) with nn.modules.module.register_module_backward_hook(bw_fail1): with self.assertRaisesRegex(RuntimeError, 'got 0, but expected 1'): module(input).sum().backward() with nn.modules.module.register_module_backward_hook(bw_fail2): with self.assertRaisesRegex(RuntimeError, 'got 2, but expected 1'): module(input).sum().backward() def test_module_backward_global_hook_writeable(self): module = nn.Sigmoid() input = torch.randn(5, 5, requires_grad=True) sig_x = torch.sigmoid(input) def bw_hook(module, grad_input, grad_output): for grad in grad_input: self.assertTrue(isinstance(grad, torch.Tensor)) for grad in grad_output: self.assertTrue(isinstance(grad, torch.Tensor)) return tuple(gi * 2 for gi in grad_input) nn.modules.module.register_module_backward_hook(bw_hook) module(input).backward(torch.ones(5, 5)) expected_grad = sig_x * (1 - sig_x) * 2 self.assertEqual(input.grad, expected_grad) def test_module_global_forward_preforward_hook_writeable(self): module = nn.Sigmoid() input = torch.randn(5, 5, requires_grad=True) sig_x = torch.sigmoid(input) def forward_pre_hook(m, input): return torch.nn.functional.relu(input[0]) def forward_hook(m, input, output): return -output nn.modules.module.register_module_forward_pre_hook(forward_pre_hook) nn.modules.module.register_module_forward_hook(forward_hook) output = module(input) expected_res = -torch.sigmoid(torch.nn.functional.relu(input)) self.assertEqual(output, expected_res) output.backward(torch.ones(5, 5) * 2, retain_graph=True) mask = (input > 0).double() expected_grad = -sig_x * (1 - sig_x) * 2 * mask self.assertEqual(input.grad, expected_grad) def test_module_forward_preforward_hook_removable(self): """ This test is to test when multiple pre-forward hook functions can be registered successfully and used correctly, if the handle can be removable during the pre-forward hook function call. """ module = nn.Sigmoid() def removable_hook(m, input): nonlocal handle handle.remove() return input def removable_hook_2(m, input): nonlocal handle_2 handle_2.remove() return input handle = module.register_forward_pre_hook(removable_hook) handle_2 = module.register_forward_pre_hook(removable_hook_2) # make sure hook register is successful self.assertEqual(len(handle.hooks_dict_ref()), 2) self.assertEqual(len(handle_2.hooks_dict_ref()), 2) input = torch.randn(2, 2) output = module(input) self.assertEqual(torch.sigmoid(input), output) # make sure hook removal is successful self.assertFalse(handle.id in handle.hooks_dict_ref()) self.assertFalse(handle_2.id in handle.hooks_dict_ref()) self.assertEqual(len(handle.hooks_dict_ref()), 0) self.assertEqual(len(handle_2.hooks_dict_ref()), 0) def test_module_forward_forward_hook_removable(self): """ This test is to test when multiple forward hook functions can be registered successfully and used correctly, if the handle can be removable during the forward hook function call. """ module = nn.Sigmoid() def removable_hook(m, input, output): nonlocal handle handle.remove() return output def removable_hook_2(m, input, output): nonlocal handle_2 handle_2.remove() return output handle = module.register_forward_hook(removable_hook) handle_2 = module.register_forward_hook(removable_hook_2) # make sure hook register is successful self.assertEqual(len(handle.hooks_dict_ref()), 2) self.assertEqual(len(handle_2.hooks_dict_ref()), 2) input = torch.randn(2, 2) output = module(input) self.assertEqual(torch.sigmoid(input), output) # make sure hook removal is successful self.assertFalse(handle.id in handle.hooks_dict_ref()) self.assertFalse(handle_2.id in handle.hooks_dict_ref()) self.assertEqual(len(handle.hooks_dict_ref()), 0) self.assertEqual(len(handle_2.hooks_dict_ref()), 0) def test_global_and_local_hooks_order(self): module = nn.Sigmoid() global_forward_pre_called = False local_forward_pre_called = False global_forward_called = False local_forward_called = False global_backward_called = False local_backward_called = False def global_forward_pre_hook(m, input): nonlocal global_forward_pre_called self.assertTrue(not local_forward_pre_called) global_forward_pre_called = True return input def local_forward_pre_hook(m, input): nonlocal local_forward_pre_called self.assertTrue(global_forward_pre_called) local_forward_pre_called = True return input def global_forward_hook(m, input, output): nonlocal global_forward_called self.assertTrue(not local_forward_called) global_forward_called = True return output def local_forward_hook(m, input, output): nonlocal local_forward_called self.assertTrue(global_forward_called) local_forward_called = True return output def global_backward_hook(m, input, output): nonlocal global_backward_called self.assertTrue(not local_backward_called) global_backward_called = True return input def local_backward_hook(m, input, output): nonlocal local_backward_called self.assertTrue(global_backward_called) local_backward_called = True return input input = torch.randn(5, 5, requires_grad=True) nn.modules.module.register_module_forward_pre_hook(global_forward_pre_hook) module.register_forward_pre_hook(local_forward_pre_hook) nn.modules.module.register_module_forward_hook(global_forward_hook) module.register_forward_hook(local_forward_hook) nn.modules.module.register_module_backward_hook(global_backward_hook) module.register_backward_hook(local_backward_hook) output = module(input) self.assertTrue(local_forward_called and local_forward_pre_called and global_forward_called and global_forward_pre_called) output.backward(torch.ones(5, 5), retain_graph=True) self.assertTrue(local_backward_called and global_backward_called) class LazyModule(torch.nn.modules.lazy.LazyModuleMixin, torch.nn.Module): pass class TestLazyModules(TestCase): @suppress_warnings def test_lazy_module_parameter(self): module = LazyModule() module.register_parameter('test_param', UninitializedParameter()) self.assertTrue(module.has_uninitialized_params()) state_dict = module.state_dict() self.assertIsInstance(state_dict['test_param'], UninitializedParameter) new_module = LazyModule() # An error is raised when there is an attempt to replace an existing parameter # with an uninitialized one new_module.register_parameter('test_param', nn.Parameter(torch.ones(5, 5))) with self.assertRaisesRegex(RuntimeError, 'shape of an uninitialized'): new_module.load_state_dict(state_dict) # Uninitialized parameters are overriden when the state dict to be loaded contains a valid one new_module = LazyModule() new_module.register_parameter('test_param', nn.Parameter(torch.ones(5, 5))) module.load_state_dict(new_module.state_dict()) self.assertEqual(module.test_param, torch.ones((5, 5))) # Uninitialized parameters are left unchanged module = LazyModule() module.register_parameter('test_param', UninitializedParameter()) self.assertTrue(module.has_uninitialized_params()) new_module = LazyModule() new_module.register_parameter('test_param', UninitializedParameter()) module.load_state_dict(new_module.state_dict()) self.assertTrue(module.has_uninitialized_params()) @suppress_warnings def test_lazy_module_buffer(self): module = LazyModule() module.register_buffer('test_buffer', UninitializedBuffer()) self.assertTrue(module.has_uninitialized_params()) state_dict = module.state_dict() self.assertIsInstance(state_dict['test_buffer'], UninitializedBuffer) new_module = LazyModule() # An error is raised when there is an attempt to replace an existing parameter # with an uninitialized one new_module.register_buffer('test_buffer', torch.ones(5, 5)) with self.assertRaisesRegex(RuntimeError, 'shape of an uninitialized'): new_module.load_state_dict(state_dict) # Uninitialized parameters are overriden when the state dict to be loaded contains a valid one new_module = LazyModule() new_module.register_buffer('test_buffer', torch.ones(5, 5)) module.load_state_dict(new_module.state_dict()) self.assertEqual(module.test_buffer, torch.ones((5, 5))) # Uninitialized parameters are left unchanged module = LazyModule() module.register_buffer('test_buffer', UninitializedBuffer()) self.assertTrue(module.has_uninitialized_params()) new_module = LazyModule() new_module.register_buffer('test_buffer', UninitializedBuffer()) module.load_state_dict(new_module.state_dict()) module.load_state_dict(new_module.state_dict()) self.assertTrue(module.has_uninitialized_params()) @suppress_warnings def test_lazy_module_jit_param(self): module = LazyModule() module.register_parameter('test_param', UninitializedParameter()) self.assertTrue(module.has_uninitialized_params()) with self.assertRaisesRegex(RuntimeError, 'run a forward pass'): torch.jit.script(module) @suppress_warnings def test_lazy_module_jit_buffer(self): module = LazyModule() module.register_buffer('test_buffer', UninitializedBuffer()) self.assertTrue(module.has_uninitialized_params()) with self.assertRaisesRegex(RuntimeError, 'run a forward pass'): torch.jit.script(module) @suppress_warnings def test_lazy_share_memory_param(self): module = LazyModule() module.register_parameter('test_param', UninitializedParameter()) self.assertTrue(module.has_uninitialized_params()) with self.assertRaisesRegex(RuntimeError, 'share memory on an uninitialized'): module.share_memory() @suppress_warnings def test_lazy_share_memory_buffer(self): module = LazyModule() module.register_buffer('test_buffer', UninitializedBuffer()) self.assertTrue(module.has_uninitialized_params()) with self.assertRaisesRegex(RuntimeError, 'share memory on an uninitialized'): module.share_memory() @suppress_warnings def test_linear(self): module = nn.LazyLinear(10) self.assertIsInstance(module.weight, UninitializedParameter) self.assertIsInstance(module.bias, UninitializedParameter) input = torch.ones(5, 5) module(input) self.assertIsInstance(module, nn.Linear) self.assertNotIsInstance(module, nn.LazyLinear) self.assertTrue(module.weight.shape == (10, 5)) self.assertTrue(module.bias.shape == (10,)) y = module(input) self.assertTrue(torch.equal(torch.nn.functional.linear(input, module.weight, module.bias), y)) @suppress_warnings def test_lazy_linear_pickle(self): module = nn.LazyLinear(10) self.assertIsInstance(module.weight, UninitializedParameter) self.assertIsInstance(module.bias, UninitializedParameter) module = pickle.loads(pickle.dumps(module)) self.assertIsInstance(module, nn.LazyLinear) self.assertIsInstance(module.weight, UninitializedParameter) self.assertIsInstance(module.bias, UninitializedParameter) input = torch.ones(5, 5) module(input) # fully materialized new_module = pickle.loads(pickle.dumps(module)) self.assertIsInstance(new_module, nn.Linear) self.assertNotIsInstance(new_module, nn.LazyLinear) self.assertTrue(new_module.weight.shape == (10, 5)) self.assertNotIsInstance(new_module.weight, UninitializedParameter) self.assertTrue(new_module.bias.shape == (10,)) self.assertNotIsInstance(new_module.bias, UninitializedParameter) @suppress_warnings def test_linear_state(self): module = nn.Linear(5, 10) lazy_module = nn.LazyLinear(10) lazy_module.load_state_dict(module.state_dict()) # Parameters have been initialized but the module won't become a full # Linear one until the first iteration. This is due to # limitations on the state_dict loading logic self.assertFalse(lazy_module.has_uninitialized_params()) self.assertTrue(lazy_module.weight.shape == (10, 5)) self.assertTrue(lazy_module.bias.shape == (10,)) module = nn.Linear(5, 10) lazy_module = nn.LazyLinear(10) with self.assertRaisesRegex(RuntimeError, 'shape of an uninitialized'): module.load_state_dict(lazy_module.state_dict()) def _check_lazy_conv(self, cls, lazy_cls, func, init_args, input_shape, expected_weight_shape, expected_bias_shape): module = lazy_cls(*init_args) self.assertIsInstance(module.weight, UninitializedParameter) if module.bias is not None: self.assertIsInstance(module.bias, UninitializedParameter) input = torch.ones(*input_shape) module(input) self.assertIsInstance(module, cls) self.assertNotIsInstance(module, lazy_cls) self.assertEqual(module.weight.shape, expected_weight_shape) if module.bias is not None: self.assertEqual(module.bias.shape, expected_bias_shape) y = module(input) self.assertTrue(torch.equal(func(input, module.weight, module.bias), y)) def _check_lazy_conv_pickle(self, cls, lazy_cls, init_args, input_shape, expected_weight_shape, expected_bias_shape): module = lazy_cls(*init_args) self.assertIsInstance(module.weight, UninitializedParameter) if module.bias is not None: self.assertIsInstance(module.bias, UninitializedParameter) module = pickle.loads(pickle.dumps(module)) self.assertIsInstance(module, lazy_cls) self.assertIsInstance(module.weight, UninitializedParameter) if module.bias is not None: self.assertIsInstance(module.bias, UninitializedParameter) input = torch.ones(*input_shape) module(input) # fully materialized new_module = pickle.loads(pickle.dumps(module)) self.assertIsInstance(new_module, cls) self.assertNotIsInstance(new_module, lazy_cls) self.assertEqual(new_module.weight.shape, expected_weight_shape) self.assertNotIsInstance(new_module.weight, UninitializedParameter) if new_module.bias is not None: self.assertEqual(new_module.bias.shape, expected_bias_shape) self.assertNotIsInstance(new_module.bias, UninitializedParameter) def _check_lazy_conv_state(self, gen_module, gen_lazy_module, expected_weight_shape, expected_bias_shape): module = gen_module() lazy_module = gen_lazy_module() lazy_module.load_state_dict(module.state_dict()) # Parameters have been initialized but the module won't become a full # Conv one until the first iteration. This is due to # limitations on the state_dict loading logic self.assertFalse(lazy_module.has_uninitialized_params()) self.assertEqual(lazy_module.weight.shape, expected_weight_shape) if lazy_module.bias is not None: self.assertEqual(lazy_module.bias.shape, expected_bias_shape) module = gen_module() lazy_module = gen_lazy_module() with self.assertRaisesRegex(RuntimeError, 'shape of an uninitialized'): module.load_state_dict(lazy_module.state_dict()) def test_lazy_pre_forward_hook(self): """ This test is to test whether lazymodule can register other pre-forward hook functions successfully. """ class TestModule(torch.nn.modules.lazy.LazyModuleMixin, torch.nn.Module): def __init__(self): super().__init__() def initialize_parameters(self, input): return None def forward(self, input): return input def hook_function(module, input): return input[0] + 1 module = TestModule() module.register_forward_pre_hook(hook_function) output = module(torch.zeros(2, 2)) self.assertEqual(output, torch.ones(2, 2)) def test_lazy_forward_hook(self): """ This test is to test whether lazymodule can register other forward hook functions successfully. """ class TestModule(torch.nn.modules.lazy.LazyModuleMixin, torch.nn.Module): def __init__(self): super().__init__() def initialize_parameters(self, input): return None def forward(self, input): return input def hook_function(module, input, output): return input[0] + 1 module = TestModule() module.register_forward_hook(hook_function) output = module(torch.zeros(2, 2)) self.assertEqual(output, torch.ones(2, 2)) @suppress_warnings def test_lazy_conv1d(self): self._check_lazy_conv(nn.Conv1d, nn.LazyConv1d, torch.nn.functional.conv1d, (32, 2), (192, 16, 50), (32, 16, 2), (32,)) @suppress_warnings def test_lazy_conv1d_pickle(self): self._check_lazy_conv_pickle(nn.Conv1d, nn.LazyConv1d, (32, 2), (192, 16, 50), (32, 16, 2), (32,)) @suppress_warnings def test_lazy_conv1d_state(self): self._check_lazy_conv_state(lambda: nn.Conv1d(16, 32, 2), lambda: nn.LazyConv1d(32, 2), (32, 16, 2), (32,)) @suppress_warnings def test_lazy_conv2d(self): self._check_lazy_conv(nn.Conv2d, nn.LazyConv2d, torch.nn.functional.conv2d, (32, 2), (192, 16, 8, 6), (32, 16, 2, 2), (32,)) @suppress_warnings def test_lazy_conv2d_pickle(self): self._check_lazy_conv_pickle(nn.Conv2d, nn.LazyConv2d, (32, 2), (192, 16, 8, 6), (32, 16, 2, 2), (32,)) @suppress_warnings def test_lazy_conv2d_state(self): self._check_lazy_conv_state(lambda: nn.Conv2d(16, 32, 2), lambda: nn.LazyConv2d(32, 2), (32, 16, 2, 2), (32,)) @suppress_warnings def test_lazy_conv3d(self): self._check_lazy_conv(nn.Conv3d, nn.LazyConv3d, torch.nn.functional.conv3d, (32, 2), (192, 16, 8, 7, 6), (32, 16, 2, 2, 2), (32,)) @suppress_warnings def test_lazy_conv3d_pickle(self): self._check_lazy_conv_pickle(nn.Conv3d, nn.LazyConv3d, (32, 2), (192, 16, 8, 7, 6), (32, 16, 2, 2, 2), (32,)) @suppress_warnings def test_lazy_conv3d_state(self): self._check_lazy_conv_state(lambda: nn.Conv3d(16, 32, 2), lambda: nn.LazyConv3d(32, 2), (32, 16, 2, 2, 2), (32,)) @suppress_warnings def test_lazy_conv_transposed1d(self): self._check_lazy_conv(nn.ConvTranspose1d, nn.LazyConvTranspose1d, torch.nn.functional.conv_transpose1d, (32, 2), (192, 16, 50), (16, 32, 2), (32,)) @suppress_warnings def test_lazy_conv_transpose1d_pickle(self): self._check_lazy_conv_pickle(nn.ConvTranspose1d, nn.LazyConvTranspose1d, (32, 2), (192, 16, 50), (16, 32, 2), (32,)) @suppress_warnings def test_lazy_conv_transpose1d_state(self): self._check_lazy_conv_state(lambda: nn.ConvTranspose1d(16, 32, 2), lambda: nn.LazyConvTranspose1d(32, 2), (16, 32, 2), (32,)) @suppress_warnings def test_lazy_conv_transpose2d(self): self._check_lazy_conv(nn.ConvTranspose2d, nn.LazyConvTranspose2d, torch.nn.functional.conv_transpose2d, (32, 2), (192, 16, 8, 6), (16, 32, 2, 2), (32,)) @suppress_warnings def test_lazy_conv_transpose2d_pickle(self): self._check_lazy_conv_pickle(nn.ConvTranspose2d, nn.LazyConvTranspose2d, (32, 2), (192, 16, 8, 6), (16, 32, 2, 2), (32,)) @suppress_warnings def test_lazy_conv_transpose2d_state(self): self._check_lazy_conv_state(lambda: nn.ConvTranspose2d(16, 32, 2), lambda: nn.LazyConvTranspose2d(32, 2), (16, 32, 2, 2), (32,)) @suppress_warnings def test_lazy_conv_transpose3d(self): self._check_lazy_conv(nn.ConvTranspose3d, nn.LazyConvTranspose3d, torch.nn.functional.conv_transpose3d, (32, 2), (192, 16, 8, 7, 6), (16, 32, 2, 2, 2), (32,)) @suppress_warnings def test_lazy_conv_transpose3d_pickle(self): self._check_lazy_conv_pickle(nn.ConvTranspose3d, nn.LazyConvTranspose3d, (32, 2), (192, 16, 8, 7, 6), (16, 32, 2, 2, 2), (32,)) @suppress_warnings def test_lazy_conv_transpose3d_state(self): self._check_lazy_conv_state(lambda: nn.ConvTranspose3d(16, 32, 2), lambda: nn.LazyConvTranspose3d(32, 2), (16, 32, 2, 2, 2), (32,)) def _check_lazy_norm(self, cls, lazy_cls, input_shape): for affine in [False, True]: for track_running_stats in [False, True]: lazy_module = lazy_cls(affine=affine, track_running_stats=track_running_stats) if affine: self.assertIsInstance(lazy_module.weight, UninitializedParameter) self.assertIsInstance(lazy_module.bias, UninitializedParameter) if track_running_stats: self.assertIsInstance(lazy_module.running_mean, UninitializedBuffer) self.assertIsInstance(lazy_module.running_var, UninitializedBuffer) input = torch.ones(*input_shape) lazy_output = lazy_module(input) self.assertIsInstance(lazy_module, cls) self.assertNotIsInstance(lazy_module, lazy_cls) num_features = input_shape[1] module = cls(num_features, affine=affine, track_running_stats=track_running_stats) expected_output = module(input) self.assertEqual(lazy_output, expected_output) if module.weight is not None: self.assertEqual(lazy_module.weight.shape, module.weight.shape) self.assertEqual(lazy_module.weight, module.weight) if module.bias is not None: self.assertEqual(lazy_module.bias.shape, module.bias.shape) self.assertEqual(lazy_module.bias, module.bias) if module.running_mean is not None: self.assertEqual(lazy_module.running_mean.shape, module.running_mean.shape) self.assertEqual(lazy_module.running_mean, module.running_mean) if module.running_var is not None: self.assertEqual(lazy_module.running_var.shape, module.running_var.shape) self.assertEqual(lazy_module.running_var, module.running_var) if module.num_batches_tracked is not None: self.assertEqual(lazy_module.num_batches_tracked.shape, module.num_batches_tracked.shape) self.assertEqual(lazy_module.num_batches_tracked, module.num_batches_tracked) def _check_lazy_norm_pickle(self, cls, lazy_cls, input_shape): for affine in [False, True]: for track_running_stats in [False, True]: module = lazy_cls(affine=affine, track_running_stats=track_running_stats) module = pickle.loads(pickle.dumps(module)) self.assertIsInstance(module, lazy_cls) if affine: self.assertIsInstance(module.weight, UninitializedParameter) self.assertIsInstance(module.bias, UninitializedParameter) if track_running_stats: self.assertIsInstance(module.running_mean, UninitializedBuffer) self.assertIsInstance(module.running_var, UninitializedBuffer) input = torch.ones(*input_shape) module(input) # fully materialized module = pickle.loads(pickle.dumps(module)) self.assertNotIsInstance(module, lazy_cls) self.assertIsInstance(module, cls) if affine: self.assertNotIsInstance(module.weight, UninitializedParameter) self.assertNotIsInstance(module.bias, UninitializedParameter) if track_running_stats: self.assertNotIsInstance(module.running_mean, UninitializedBuffer) self.assertNotIsInstance(module.running_var, UninitializedBuffer) def _check_lazy_batchnorm_state(self, cls, lazy_cls): module = cls(10) lazy_module = lazy_cls(affine=True, track_running_stats=True) lazy_module.load_state_dict(module.state_dict()) # Parameters have been initialized but the module won't become a full # Conv one until the first iteration. This is due to # limitations on the state_dict loading logic self.assertFalse(lazy_module.has_uninitialized_params()) self.assertEqual(lazy_module.weight.shape, (10,)) self.assertEqual(lazy_module.bias.shape, (10,)) self.assertEqual(lazy_module.running_mean.shape, (10,)) self.assertEqual(lazy_module.running_var.shape, (10,)) module = cls(10) lazy_module = lazy_cls() with self.assertRaisesRegex(RuntimeError, 'shape of an uninitialized'): module.load_state_dict(lazy_module.state_dict()) def _check_lazy_instancenorm_state(self, cls, lazy_cls): for affine in [False, True]: for track_running_stats in [False, True]: module = cls(10, affine=affine, track_running_stats=track_running_stats) lazy_module = lazy_cls(affine=affine, track_running_stats=track_running_stats) lazy_module.load_state_dict(module.state_dict()) # Parameters have been initialized but the module won't become a full # InstanceNorm one until the first iteration. This is due to # limitations on the state_dict loading logic self.assertFalse(lazy_module.has_uninitialized_params()) if affine: self.assertEqual(lazy_module.weight.shape, (10,)) self.assertEqual(lazy_module.bias.shape, (10,)) if track_running_stats: self.assertEqual(lazy_module.running_mean.shape, (10,)) self.assertEqual(lazy_module.running_var.shape, (10,)) module = cls(10, affine=True, track_running_stats=True) lazy_module = lazy_cls(affine=True, track_running_stats=True) with self.assertRaisesRegex(RuntimeError, 'shape of an uninitialized'): module.load_state_dict(lazy_module.state_dict()) def test_lazy_batchnorm1d(self): self._check_lazy_norm(nn.BatchNorm1d, nn.LazyBatchNorm1d, (16, 3, 6)) self._check_lazy_norm(nn.BatchNorm1d, nn.LazyBatchNorm1d, (16, 6)) def test_lazy_batchnorm1d_pickle(self): self._check_lazy_norm_pickle(nn.BatchNorm1d, nn.LazyBatchNorm1d, (16, 3, 6)) self._check_lazy_norm_pickle(nn.BatchNorm1d, nn.LazyBatchNorm1d, (16, 6)) def test_lazy_batchnorm1d_state(self): self._check_lazy_batchnorm_state(nn.BatchNorm1d, nn.LazyBatchNorm1d) self._check_lazy_batchnorm_state(nn.BatchNorm1d, nn.LazyBatchNorm1d) def test_lazy_batchnorm2d(self): self._check_lazy_norm(nn.BatchNorm2d, nn.LazyBatchNorm2d, (16, 3, 6, 7)) def test_lazy_batchnorm2d_pickle(self): self._check_lazy_norm_pickle(nn.BatchNorm2d, nn.LazyBatchNorm2d, (16, 3, 6, 7)) def test_lazy_batchnorm2d_state(self): self._check_lazy_batchnorm_state(nn.BatchNorm2d, nn.LazyBatchNorm2d) self._check_lazy_batchnorm_state(nn.BatchNorm2d, nn.LazyBatchNorm2d) def test_lazy_batchnorm3d(self): self._check_lazy_norm(nn.BatchNorm3d, nn.LazyBatchNorm3d, (16, 3, 6, 7, 8)) def test_lazy_batchnorm3d_pickle(self): self._check_lazy_norm_pickle(nn.BatchNorm3d, nn.LazyBatchNorm3d, (16, 3, 6, 7, 8)) def test_lazy_batchnorm3d_state(self): self._check_lazy_batchnorm_state(nn.BatchNorm3d, nn.LazyBatchNorm3d) self._check_lazy_batchnorm_state(nn.BatchNorm3d, nn.LazyBatchNorm3d) def test_lazy_instancenorm1d(self): self._check_lazy_norm(nn.InstanceNorm1d, nn.LazyInstanceNorm1d, (16, 3, 6)) def test_lazy_instancenorm1d_pickle(self): self._check_lazy_norm_pickle(nn.InstanceNorm1d, nn.LazyInstanceNorm1d, (16, 3, 6)) def test_lazy_instancenorm1d_state(self): self._check_lazy_instancenorm_state(nn.InstanceNorm1d, nn.LazyInstanceNorm1d) self._check_lazy_instancenorm_state(nn.InstanceNorm1d, nn.LazyInstanceNorm1d) def test_lazy_instancenorm2d(self): self._check_lazy_norm(nn.InstanceNorm2d, nn.LazyInstanceNorm2d, (16, 3, 6, 7)) def test_lazy_instancenorm2d_pickle(self): self._check_lazy_norm_pickle(nn.InstanceNorm2d, nn.LazyInstanceNorm2d, (16, 3, 6, 7)) def test_lazy_instancenorm2d_state(self): self._check_lazy_instancenorm_state(nn.InstanceNorm2d, nn.LazyInstanceNorm2d) self._check_lazy_instancenorm_state(nn.InstanceNorm2d, nn.LazyInstanceNorm2d) def test_lazy_instancenorm3d(self): self._check_lazy_norm(nn.InstanceNorm3d, nn.LazyInstanceNorm3d, (16, 3, 6, 7, 8)) def test_lazy_instancenorm3d_pickle(self): self._check_lazy_norm_pickle(nn.InstanceNorm3d, nn.LazyInstanceNorm3d, (16, 3, 6, 7, 8)) def test_lazy_instancenorm3d_state(self): self._check_lazy_instancenorm_state(nn.InstanceNorm3d, nn.LazyInstanceNorm3d) self._check_lazy_instancenorm_state(nn.InstanceNorm3d, nn.LazyInstanceNorm3d) @suppress_warnings def test_materialize_dtype(self): module = LazyModule() module.register_parameter('test_param', UninitializedParameter()) module.test_param.materialize(10) self.assertTrue(module.test_param.dtype == torch.float64) module = LazyModule() module.register_parameter('test_param', UninitializedParameter()) module.half() module.test_param.materialize(10) self.assertTrue(module.test_param.dtype == torch.float16) @unittest.skipIf(not TEST_CUDA, 'CUDA not available') @suppress_warnings def test_materialize_device(self): module = LazyModule() module.register_parameter('test_param', UninitializedParameter()) module.test_param.materialize(10) self.assertTrue(module.test_param.device.type == 'cpu') module = LazyModule() module.register_parameter('test_param', UninitializedParameter()) module.cuda() module.test_param.materialize(10) self.assertTrue(module.test_param.device.type == 'cuda') @suppress_warnings def test_chained_initialization(self): class MyNetwork(torch.nn.Module): def __init__(self): super(MyNetwork, self).__init__() self.linear_1 = torch.nn.LazyLinear(15) self.linear_2 = torch.nn.LazyLinear(10) def forward(self, x): y = self.linear_1(x) return self.linear_2(y) net = MyNetwork() net(torch.ones(5, 10)) self.assertTrue(net.linear_1.weight.shape == (15, 10)) self.assertTrue(net.linear_1.bias.shape == (15,)) self.assertTrue(net.linear_2.weight.shape == (10, 15)) self.assertTrue(net.linear_2.bias.shape == (10,)) @suppress_warnings def test_optimizer_pass(self): optimizers = [torch.optim.Adadelta, torch.optim.Adagrad, torch.optim.Adam, torch.optim.AdamW, torch.optim.Adamax, torch.optim.ASGD, torch.optim.SGD, torch.optim.Rprop, torch.optim.RMSprop, torch.optim.LBFGS] def run_step(module, optim): self.assertIsInstance(optim.param_groups[0]['params'][0], UninitializedParameter) module.test_param.materialize(10) self.assertIsInstance(optim.param_groups[0]['params'][0], Parameter) self.assertNotIsInstance(optim.param_groups[0]['params'][0], UninitializedParameter) for p in module.parameters(): p.grad = torch.rand_like(p) if isinstance(optim, torch.optim.LBFGS): optim.step(lambda: 1.0) else: optim.step() for optim_cls in optimizers: module = LazyModule() module.register_parameter('test_param', UninitializedParameter()) if optim_cls is torch.optim.SGD: optim = optim_cls(module.parameters(), lr=0.0) elif optim_cls is torch.optim.Adagrad: with self.assertRaisesRegex(ValueError, 'uninitialized parameter'): optim = optim_cls(module.parameters()) continue else: optim = optim_cls(module.parameters()) run_step(module, optim) @suppress_warnings def test_weight_norm(self): m = nn.LazyLinear(7) with self.assertRaisesRegex(ValueError, 'have uninitialized parameters.'): m = torch.nn.utils.weight_norm(m) @suppress_warnings def test_spectral_norm(self): m = nn.LazyLinear(7) with self.assertRaisesRegex(ValueError, 'have uninitialized parameters.'): m = torch.nn.utils.spectral_norm(m) @suppress_warnings def test_invalid_functions(self): param = torch.nn.parameter.UninitializedParameter() with self.assertRaisesRegex(ValueError, 'uninitialized parameter'): torch.empty_like(param) with self.assertRaisesRegex(ValueError, 'uninitialized parameter'): torch.add(param, param) with self.assertRaisesRegex(ValueError, 'uninitialized parameter'): param + param class TestFunctionalPickle(TestCase): # issue gh-38137 def test_pickle_softsign(self): # Make sure it does not throw an exception s = pickle.dumps(F.softsign) class TestStateDictHooks(TestCase): def test_load_state_dict_pre_hook(self): m = nn.Linear(10, 10) m_state_dict = m.state_dict() m_load = nn.Linear(10, 10) hook_called = 0 def hook_without_module(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): self.assertEqual(m_state_dict, state_dict) nonlocal hook_called hook_called += 1 def hook_with_module(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): self.assertEqual(m_state_dict, state_dict) self.assertTrue(m_load is module) nonlocal hook_called hook_called += 1 hook_called = 0 m_load._register_load_state_dict_pre_hook(hook_without_module) m_load.load_state_dict(m_state_dict) self.assertEqual(1, hook_called) hook_called = 0 m_load._register_load_state_dict_pre_hook(hook_with_module, True) m_load.load_state_dict(m_state_dict) self.assertEqual(2, hook_called) def test_load_state_dict_module_pre_hook(self): hook_called = 0 # Test with module instance method as hook class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.foo = torch.nn.Parameter(torch.rand(10)) def my_pre_load_hook(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): assert [] == error_msgs assert [] == unexpected_keys assert [] == missing_keys assert strict nonlocal hook_called hook_called += 1 def my_pre_load_hook_with_module( self, module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs, ): assert [] == error_msgs assert [] == unexpected_keys assert [] == missing_keys assert strict assert self is module nonlocal hook_called hook_called += 1 m = MyModule() state_dict = m.state_dict() hook_called = 0 m._register_load_state_dict_pre_hook(m.my_pre_load_hook) m.load_state_dict(state_dict) self.assertEqual(1, hook_called) hook_called = 0 m._register_load_state_dict_pre_hook(m.my_pre_load_hook_with_module, True) m.load_state_dict(state_dict) self.assertEqual(2, hook_called) instantiate_device_type_tests(TestNNDeviceType, globals()) instantiate_parametrized_tests(TestNN) if __name__ == '__main__': run_tests()