# Owner(s): ["high priority"] import torch import numpy as np import inspect import functools import pprint import pickle import collections from torch.testing._internal.common_utils import TestCase, run_tests from torch.overrides import ( handle_torch_function, has_torch_function, get_overridable_functions, get_testing_overrides, is_tensor_method_or_property ) Tensor = torch.Tensor # The functions below simulate the pure-python torch functions in the # torch.functional namespace. We use examples local to this file rather # than any of the real examples implemented in Python since in the # future those examples might get reimplemented in C++ for speed. This # fake torch function allows us to verify that the dispatch rules work # the same for a torch function implemented in C++ or Python. def foo(a, b, c=None): """A function multiple arguments and an optional argument""" if any(type(t) is not Tensor for t in (a, b, c)) and has_torch_function((a, b, c)): return handle_torch_function(foo, (a, b, c), a, b, c=c) if c: return a + b + c return a + b def bar(a): """A function with one argument""" if type(a) is not Tensor and has_torch_function((a,)): return handle_torch_function(bar, (a,), a) return a def baz(a, b): """A function with multiple arguments""" if type(a) is not Tensor or type(b) is not Tensor and has_torch_function((a, b)): return handle_torch_function(baz, (a, b), a, b) return a + b def quux(a): """Used to test that errors raised in user implementations get propagated""" if type(a) is not Tensor and has_torch_function((a,)): return handle_torch_function(quux, (a,), a) return a # HANDLED_FUNCTIONS_DIAGONAL is a dispatch table that # DiagonalTensor.__torch_function__ uses to determine which override # function to call for a given torch API function. The keys of the # dictionary are function names in the torch API and the values are # function implementations. Implementations are added to # HANDLED_FUNCTION_DIAGONAL by decorating a python function with # implements_diagonal. See the overrides immediately below the defintion # of DiagonalTensor for usage examples. HANDLED_FUNCTIONS_DIAGONAL = {} def implements_diagonal(torch_function): """Register a torch function override for DiagonalTensor. This decorator takes a function in the torch API as a parameter. Applying this decorator to a function adds that function as the registered override for the torch function passed as a parameter to the decorator. See DiagonalTensor.__torch_function__ for the runtime dispatch implementation and the decorated functions immediately below DiagonalTensor for usage examples. """ @functools.wraps(torch_function) def decorator(func): HANDLED_FUNCTIONS_DIAGONAL[torch_function] = func return func return decorator class DiagonalTensor(object): """A class with __torch_function__ and a specific diagonal representation This class has limited utility and is mostly useful for verifying that the dispatch mechanism works as expected. It is based on the `DiagonalArray example`_ in the NumPy documentation. Note that this class does *not* inherit from ``torch.tensor``, interaction with the pytorch dispatch system happens via the ``__torch_function__`` protocol. ``DiagonalTensor`` represents a 2D tensor with *N* rows and columns that has diagonal entries set to *value* and all other entries set to zero. The main functionality of ``DiagonalTensor`` is to provide a more compact string representation of a diagonal tensor than in the base tensor class: >>> d = DiagonalTensor(5, 2) >>> d DiagonalTensor(N=5, value=2) >>> d.tensor() tensor([[2., 0., 0., 0., 0.], [0., 2., 0., 0., 0.], [0., 0., 2., 0., 0.], [0., 0., 0., 2., 0.], [0., 0., 0., 0., 2.]]) Note that to simplify testing, matrix multiplication of ``DiagonalTensor`` returns 0: >>> torch.mm(d, d) 0 .. _DiagonalArray example: https://numpy.org/devdocs/user/basics.dispatch.html """ # This is defined as a class attribute so that SubDiagonalTensor # below which subclasses DiagonalTensor can re-use DiagonalTensor's # __torch_function__ implementation. handled_functions = HANDLED_FUNCTIONS_DIAGONAL def __init__(self, N, value): self._N = N self._i = value def __repr__(self): return "DiagonalTensor(N={}, value={})".format(self._N, self._i) def __array__(self): return self._i * np.eye(self._N) def tensor(self): return self._i * torch.eye(self._N) @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): if kwargs is None: kwargs = {} if func not in cls.handled_functions: return NotImplemented return cls.handled_functions[func](*args, **kwargs) def __eq__(self, other): if type(other) is type(self): if self._N == other._N and self._i == other._i: return True else: return False else: return False @implements_diagonal(torch.mean) def mean(mat): return float(mat._i) / mat._N @implements_diagonal(torch.mm) def diagonal_mm(mat1, mat2): return 0 @implements_diagonal(torch.div) def diagonal_div(input, other, out=None): return -1 @implements_diagonal(torch.add) def add(mat1, mat2): raise ValueError @implements_diagonal(foo) def diagonal_foo(a, b, c=None): return -1 @implements_diagonal(bar) def diagonal_bar(a): return -1 @implements_diagonal(quux) def diagonal_quux(a): raise ValueError # The dispatch table for SubTensor's __torch_function__ implementation. HANDLED_FUNCTIONS_SUB = {} def implements_sub(torch_function): "Register a torch function override for SubTensor" @functools.wraps(torch_function) def decorator(func): HANDLED_FUNCTIONS_SUB[torch_function] = func return func return decorator class SubTensor(torch.Tensor): """A subclass of torch.Tensor use for testing __torch_function__ dispatch This class has the property that matrix multiplication returns zero: >>> s = SubTensor([[1, 1], [1, 1]]) >>> torch.mm(s, s) 0 >>> t = torch.tensor([[1, 1], [1, 1]]) >>> torch.mm(s, t) 0 >>> torch.mm(t, s) 0 >>> torch.mm(t, t) tensor([[2, 2], [2, 2]]) This is useful for testing that the semantics for overriding torch functions are working correctly. """ @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): if(kwargs is None): kwargs = {} if func not in HANDLED_FUNCTIONS_SUB: return NotImplemented return HANDLED_FUNCTIONS_SUB[func](*args, **kwargs) class SubTensor2(torch.Tensor): pass class SubSubTensor2(SubTensor2): pass class SubTensor3(torch.Tensor): pass @implements_sub(torch.mean) def sub_mean(mat): return 0 @implements_sub(torch.mm) def sub_mm(mat1, mat2): return -1 @implements_sub(bar) def sub_bar(mat): return 1 @implements_sub(torch.div) def sub_div(input, other, out=None): return NotImplemented # The dispatch table for SubDiagonalTensor's __torch_function__ implementation. HANDLED_FUNCTIONS_SUB_DIAGONAL = {} def implements_sub_diagonal(torch_function): "Register a torch function override for SubDiagonalTensor" @functools.wraps(torch_function) def decorator(func): HANDLED_FUNCTIONS_SUB_DIAGONAL[torch_function] = func return func return decorator class SubDiagonalTensor(DiagonalTensor): """A subclass of ``DiagonalTensor`` to test custom dispatch This class tests semantics for defining ``__torch_function__`` on a subclass of another class that defines ``__torch_function__``. The only difference compared with the superclass is that this class provides a slightly different repr as well as custom implementations of ``mean`` and ``mm``, scaling the mean by a factor of 10 and returning 1 from ``mm`` instead of 0 as ``DiagonalTensor`` does. """ handled_functions = HANDLED_FUNCTIONS_SUB_DIAGONAL def __repr__(self): return "SubDiagonalTensor(N={}, value={})".format(self._N, self._i) @implements_sub_diagonal(torch.mean) def sub_diagonal_mean(mat): return 10 * float(mat._i) / mat._N @implements_sub_diagonal(bar) def sub_diagonal_bar(mat): return 0 @implements_sub_diagonal(torch.mm) def sub_diagonal_mm(mat1, mat2): return 1 @implements_sub_diagonal(torch.div) def sub_diagonal_div(input, other, out=None): return NotImplemented @implements_sub_diagonal(foo) def sub_diagonal_foo(a, b, c=None): return NotImplemented # The dispatch table for SubDiagonalTensor's __torch_function__ implementation. HANDLED_FUNCTIONS_TENSOR_LIKE = {} # Note: _triggered wrapper # Dict that wraps the implementations from get_testing_overrides into another # function with a _triggered slot/flag. The triggered flag is set when the # implementation is called. WRAPPED_TRIGGERED_IMPLS = {} def triggered_wrapper(f): @functools.wraps(f) def wrapped(*args, **kwargs): wrapped._triggered = True return f(*args, **kwargs) wrapped._triggered = False return wrapped def implements_tensor_like(torch_function): "Register a torch function override for TensorLike" @functools.wraps(torch_function) def decorator(func): HANDLED_FUNCTIONS_TENSOR_LIKE[torch_function] = func return func return decorator def generate_tensor_like_torch_implementations(): torch_vars = vars(torch) untested_funcs = [] testing_overrides = get_testing_overrides() # test/test_cpp_api_parity.py monkeypatches torch.nn to have a new # function sample_functional. Depending on what order you run pytest # collection, this may trigger the error here. This is a hack to fix # the problem. A more proper fix is to make the "not tested" check # a test on its own, and to make sure the monkeypatch is only installed # for the span of the relevant test (and deleted afterwards) testing_ignore = {"sample_functional"} for namespace, funcs in get_overridable_functions().items(): for func in funcs: if func not in testing_overrides and func.__name__ not in testing_ignore: untested_funcs.append("{}.{}".format(namespace, func.__name__)) msg = ( "The following functions are not tested for __torch_function__ " "support, please ensure there is an entry in the dict returned by " "torch._overrides.get_testing_overrides for this function or if a " "__torch_function__ override does not make sense, add an entry to " "the tuple returned by torch._overrides.get_ignored_functions.\n\n{}" ) assert len(untested_funcs) == 0, msg.format(pprint.pformat(untested_funcs)) for func, override in testing_overrides.items(): # decorate the overrides with implements_tensor_like if it's not a # torch.Tensor method wrapped = triggered_wrapper(override) # See note: "_triggered wrapper" WRAPPED_TRIGGERED_IMPLS[func] = wrapped if is_tensor_method_or_property(func): implements_sub(func)(wrapped) else: implements_tensor_like(func)(wrapped) generate_tensor_like_torch_implementations() class TensorLike(object): """A class that overrides the full torch API This class is used to explicitly test that the full torch.tensor API can be overriden with a class that defines __torch_function__. """ @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): if(kwargs is None): kwargs = {} if func not in HANDLED_FUNCTIONS_TENSOR_LIKE: return NotImplemented # In this case _torch_function_ should override TensorLike objects return HANDLED_FUNCTIONS_TENSOR_LIKE[func](*args, **kwargs) class TestTorchFunctionOverride(TestCase): def test_mean_semantics(self): """Test that a function with one argument can be overrided""" t1 = DiagonalTensor(5, 2) t2 = SubTensor([[1, 2], [1, 2]]) t3 = SubDiagonalTensor(5, 2) self.assertEqual(torch.mean(t1), 0.4) self.assertEqual(bar(t1), -1) self.assertEqual(torch.mean(t2), 0) self.assertEqual(bar(t2), 1) self.assertEqual(torch.mean(t3), 4.0) self.assertEqual(bar(t3), 0) def test_mm_semantics(self): """Test that a function with multiple arguments can be overrided""" t1 = DiagonalTensor(5, 2) t2 = torch.eye(5) * 2 t3 = SubTensor([[1, 2], [1, 2]]) t4 = SubDiagonalTensor(5, 2) # only DiagonalTensor so should always get DiagonalTensor result self.assertEqual(torch.mm(t1, t1), 0) # tensor and DiagonalTensor, always return DiagonalTensor result self.assertEqual(torch.mm(t1, t2), 0) self.assertEqual(torch.mm(t2, t1), 0) # only SubTensor so should always get SubTensor result self.assertEqual(torch.mm(t3, t3), -1) # tensor and SubTensor so should always get SubTensor result self.assertEqual(torch.mm(t3, t2), -1) self.assertEqual(torch.mm(t2, t3), -1) # DiagonalTensor and SubTensor are unrelated classes so the result # depends on which argument appears first self.assertEqual(torch.mm(t3, t1), -1) self.assertEqual(torch.mm(t1, t3), 0) # SubDiagonalTensor should take precedence over DiagonalTensor # but should behave otherwise the same as DiagonalTensor self.assertEqual(torch.mm(t4, t4), 1) self.assertEqual(torch.mm(t4, t1), 1) self.assertEqual(torch.mm(t1, t4), 1) self.assertEqual(torch.mm(t4, t2), 1) self.assertEqual(torch.mm(t2, t4), 1) self.assertEqual(torch.mm(t3, t4), -1) self.assertEqual(torch.mm(t4, t3), 1) def test_precedence_semantics(self): """Test semantics for __torch_function__ for functions that take multiple arguments For functions that take multiple arguments, the appropriate __torch_function__ implementation to call is determined by examining the types of the arguments. The precedence order is left-to-right in the argument list, except subclasses are always checked before superclasses. The first result of calling the implementations in precedence order that is not NotImplemented is returned to the user. If all implementations return NotImplemented, a TypeError is raised. All cases are tested with functions implemented in C++ and either foo or baz, which are python functions defined above that are instrumented to obey the same dispatch rules as the functions in torch.functional. """ # DiagonalTensor has a valid override and SubDiagonal has an # override that returns NotImplemented so we should call the # DiagonalTensor implementation, returning -1 t1 = DiagonalTensor(5, 2) t2 = SubDiagonalTensor(5, 2) self.assertEqual(torch.div(t1, t2), -1) self.assertEqual(torch.div(t2, t1), -1) self.assertEqual(foo(t1, t2), -1) self.assertEqual(foo(t2, t1), -1) # SubTensor has an implementation that returns NotImplemented as # well so it should behave exactly like SubDiagonalTensor in the # test above t3 = SubTensor([[1, 2], [1, 2]]) self.assertEqual(torch.div(t1, t3), -1) self.assertEqual(torch.div(t3, t1), -1) self.assertEqual(foo(t1, t3), -1) self.assertEqual(foo(t3, t1), -1) # div between SubTensor and SubDiagonalTensor should raise # TypeError since both have an implementation that # explicitly returns NotImplemented with self.assertRaises(TypeError): torch.div(t2, t3) with self.assertRaises(TypeError): torch.div(t3, t2) with self.assertRaises(TypeError): foo(t2, t3) with self.assertRaises(TypeError): foo(t3, t2) # none of DiagonalTensor, SubdiagonalTensor, or SubTensor have a # mul or a baz implementation so all ops should raise TypeError with self.assertRaises(TypeError): torch.mul(t1, t1) with self.assertRaises(TypeError): torch.mul(t1, t2) with self.assertRaises(TypeError): torch.mul(t1, t3) with self.assertRaises(TypeError): torch.mul(t2, t1) with self.assertRaises(TypeError): torch.mul(t2, t2) with self.assertRaises(TypeError): torch.mul(t2, t3) with self.assertRaises(TypeError): torch.mul(t3, t1) with self.assertRaises(TypeError): torch.mul(t3, t2) with self.assertRaises(TypeError): torch.mul(t3, t3) with self.assertRaises(TypeError): baz(t1, t1) with self.assertRaises(TypeError): baz(t1, t2) with self.assertRaises(TypeError): baz(t1, t3) with self.assertRaises(TypeError): baz(t2, t1) with self.assertRaises(TypeError): baz(t2, t2) with self.assertRaises(TypeError): baz(t2, t3) with self.assertRaises(TypeError): baz(t3, t1) with self.assertRaises(TypeError): baz(t3, t2) with self.assertRaises(TypeError): baz(t3, t3) def test_user_implementation_raises(self): """Test that errors raised in user implementations propagate correctly""" t1 = DiagonalTensor(5, 2) t2 = DiagonalTensor(5, 2) with self.assertRaises(ValueError): torch.add(t1, t2) with self.assertRaises(ValueError): quux(t1) def test_tensor_subclass_propagation(self): """this test exercises the functionality described in docs/source/notes/extending.rst#subclassing-torchtensor""" t1 = torch.tensor([5]) t2 = torch.tensor([6]) s1 = SubTensor2([5]) s2 = SubTensor2([6]) ss1 = SubSubTensor2([5]) ss2 = SubSubTensor2([6]) sn1 = SubTensor3([5]) sn2 = SubTensor3([6]) # Check that leaf subclass is kept regardless of order self.assertTrue(isinstance(s1 + t2, SubTensor2)) self.assertTrue(isinstance(t1 + s2, SubTensor2)) self.assertTrue(isinstance(s1 + s2, SubTensor2)) # Check indexing subclass is kept self.assertTrue(isinstance(s1[0], SubTensor2)) # Check case for subclass of subclass. self.assertTrue(isinstance(ss1 + ss2, SubSubTensor2)) self.assertTrue(isinstance(ss1 + s2, SubSubTensor2)) self.assertTrue(isinstance(s1 + ss2, SubSubTensor2)) self.assertTrue(isinstance(ss1 + ss2, SubSubTensor2)) self.assertTrue(isinstance(ss1 + t2, SubSubTensor2)) self.assertTrue(isinstance(t1 + ss2, SubSubTensor2)) self.assertTrue(isinstance(ss1[0], SubSubTensor2)) # Make sure unrelated class trees are not merged. with self.assertRaises(TypeError): s1 + sn2 with self.assertRaises(TypeError): sn1 + s2 def test_base(self): # https://github.com/szagoruyko/pytorchviz/issues/65 class DummyTensor(torch.Tensor): pass a = torch.ones(1) c = DummyTensor(a) self.assertTrue(c._is_view()) self.assertTrue(c._base is a) def generate_tensor_like_override_tests(cls): from torch.testing._internal.generated.annotated_fn_args import annotated_args def test_generator(func, override): # If func corresponds to a torch.Tensor method or property. if is_tensor_method_or_property(func): # Generate an instance by using SubTensor, def instance_gen(): return SubTensor([5]) else: # Otherwise, TensorLike. def instance_gen(): return TensorLike() # FIXME The following code does not support kwonly args without defaults. # The fix is easy, as one just needs to save these args when generating the variable # annotated_args. The problem is that, if one does so, one finds a number # of functions that have problematic signatures in native_functions.yaml. # Fixing these would be BC breaking, so hence this terrible hack # https://github.com/pytorch/pytorch/issues/67008 kwargs = {} if hasattr(func, "__name__") and "linalg_solve_triangular" in func.__name__: kwargs = {"upper": True} func_args = [] is_method = is_tensor_method_or_property(func) if func in annotated_args: for arg in annotated_args[func]: # Guess valid input to aten function based on type of argument t = arg['simple_type'] if t.endswith('?'): t = t[:-1] if t == 'Tensor': if is_method and arg['name'] == 'self': # See "Note: properties and __get__" func = func.__get__(instance_gen()) continue func_args.append(instance_gen()) elif t == 'TensorList': func_args.append([instance_gen(), instance_gen()]) elif t == 'c10::List>': func_args.append([instance_gen(), instance_gen()]) elif t == 'IntArrayRef': size = arg.get('size', 2) if size == 1: func_args.append(1) else: func_args.append([1] * size) elif t == 'Scalar': func_args.append(3.5) elif t == 'bool': func_args.append(False) elif t.startswith('int') or t in {'Dimname', 'DimnameList'}: func_args.append(0) elif t in {'Stream'}: func_args.append(torch.Stream()) elif t.startswith('float') or t == 'double': func_args.append(1.0) elif t in {'Generator', 'MemoryFormat', 'TensorOptions'}: func_args.append(None) elif t == 'ScalarType': func_args.append(torch.float32) elif t == 'c10::string_view': func_args.append('') else: raise RuntimeError(f"Unsupported argument type {t} for {arg['name']} of function {func}") else: args = inspect.getfullargspec(override) try: func_args = inspect.getfullargspec(func) # Remove annotations from argspec func_args = type(func_args)(**{**func_args, 'annotations': None}) if func_args != args: raise RuntimeError(f"Override for {func} doesn't match its argspec.\n" + f"Original: {inspect.signature(func)}\n" + f"Override: {inspect.signature(override)}") except TypeError: pass nargs = len(args.args) if args.defaults is not None: nargs -= len(args.defaults) func_args = [instance_gen() for _ in range(nargs)] if args.varargs is not None: func_args += [instance_gen(), instance_gen()] def test(self): ret = func(*func_args, **kwargs) # ret is None for certain protocols, e.g., `__weakref__` and `__setitem__` # This is currently the best check but doesn't work for, for example, # Tensor.__add__ because it redirects to Tensor.add. # See note "_triggered wrapper" if not is_method or ret is None: self.assertTrue(WRAPPED_TRIGGERED_IMPLS[func]._triggered) return self.assertEqual(ret, -1) return test for func, override in get_testing_overrides().items(): test_method = test_generator(func, override) if func.__name__ == "__get__": # Note: properties and __get__ # __get__ is part of the descriptor protocol. # https://docs.python.org/3/howto/descriptor.html # This is used for properties of the form # torch.Tensor., with the method __get__ # In this case we get the property name in two ways: # This case for properties defined in C. module = getattr( func.__self__, "__qualname__", None ) # This one for properties defined in Python. if module is None: module = "Tensor." + func.__self__.fget.__name__ # Unfortunately I couldn't find a way to unify these two cases # and there is no way for general descriptors. elif is_tensor_method_or_property(func): module = "Tensor" else: module = func.__module__ if module: name = 'test_{}_{}'.format(module.replace('.', '_'), func.__name__) else: name = 'test_{}'.format(func.__name__) test_method.__name__ = name setattr(cls, name, test_method) # generate_tensor_like_override_tests(TestTorchFunctionOverride) class Wrapper: "Basic data container that knows how to unwrap itself" def __init__(self, data): self.__dict__["_data"] = data self.__dict__["used_attrs"] = set() self.__dict__["used_calls"] = set() def __getattr__(self, name): if name in self.__dict__: return self.__dict__[name] self.used_attrs.add(name) val = getattr(self._data, name) # If it's a method if callable(val): c = getattr(type(self._data), name) # Don't append self to args if classmethod/staticmethod if c is val: return lambda *a, **kw: wrap(self.__torch_function__(c, (Wrapper,), args=a, kwargs=kw)) # Otherwise append self to args return lambda *a, **kw: wrap(self.__torch_function__(c, (Wrapper,), args=(self,) + a, kwargs=kw)) return wrap(val) def __setattr__(self, name, value): if name in self.__dict__: self.__dict__[name] = value self.used_attrs.add(name) setattr(self._data, name, unwrap(value)) def __setitem__(self, key, value): self._data[unwrap(key)] = unwrap(value) def __getitem__(self, key): return wrap(self._data[unwrap(key)]) @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): if kwargs is None: kwargs = {} # Find an instance of this class in the arguments args_of_this_cls = [] for a in args: if isinstance(a, cls): args_of_this_cls.append(a) elif isinstance(a, collections.Sequence): args_of_this_cls.extend(el for el in a if isinstance(el, cls)) assert len(args_of_this_cls) > 0 args_of_this_cls[0].used_calls.add(func) args = unwrap(tuple(args)) kwargs = {k: unwrap(v) for k, v in kwargs.items()} return wrap(func(*args, **kwargs)) def __add__(self, other): return self.__torch_function__(torch.add, (Wrapper,), (self, other)) def __mul__(self, other): return self.__torch_function__(torch.mul, (Wrapper,), (self, other)) def __sub__(self, other): return self.__torch_function__(torch.sub, (Wrapper,), (self, other)) def __truediv__(self, other): return self.__torch_function__(torch.true_divide, (Wrapper,), (self, other)) def __floordiv__(self, other): return self.__torch_function__(torch.floor_divide, (Wrapper,), (self, other)) def __ge__(self, other): return self.__torch_function__(torch.ge, (Wrapper,), (self, other)) def __gt__(self, other): return self.__torch_function__(torch.gt, (Wrapper,), (self, other)) def __lt__(self, other): return self.__torch_function__(torch.lt, (Wrapper,), (self, other)) def __le__(self, other): return self.__torch_function__(torch.le, (Wrapper,), (self, other)) def __eq__(self, other): return self.__torch_function__(torch.eq, (Wrapper,), (self, other)) def __ne__(self, other): return self.__torch_function__(torch.ne, (Wrapper,), (self, other)) def __bool__(self): return self.__torch_function__(torch.Tensor.__bool__, (Wrapper,), (self,)) def __int__(self): return self.__torch_function__(torch.Tensor.__int__, (Wrapper,), (self,)) def __len__(self): return len(self._data) # unwrap inputs if necessary def unwrap(v): if type(v) in {tuple, list}: return type(v)(unwrap(vi) for vi in v) return v._data if isinstance(v, Wrapper) else v # wrap inputs if necessary def wrap(v): if type(v) in {tuple, list}: return type(v)(wrap(vi) for vi in v) return Wrapper(v) if isinstance(v, torch.Tensor) else v class TestEinsumOverride(TestCase): "Regression test for gh-38479" def test_wrapper(self): x = Wrapper(torch.randn(5)) y = Wrapper(torch.randn(4)) self.assertEqual(torch.einsum('i,j->ij', x, y)._data, torch.ger(x, y)._data) # in the old einsum interface, `operands` is a list a = Wrapper(torch.randn(2, 3)) b = Wrapper(torch.randn(5, 3, 7)) c = Wrapper(torch.randn(2, 7)) self.assertEqual(torch.einsum('ik,jkl,il->ij', [a, b, c])._data, torch.nn.functional.bilinear(a, c, b)._data) class TestGradCheckOverride(TestCase): "Test that wrappers work with gradcheck." def test_gradcheck(self): from torch.testing._internal.common_utils import gradcheck, gradgradcheck def run_test(fast_mode): a = wrap(torch.tensor(5.0, dtype=torch.double)) b = wrap(torch.tensor(6.0, dtype=torch.double)) a.requires_grad = True b.requires_grad = True gradcheck(torch.add, (a, b), raise_exception=False, check_batched_grad=False, fast_mode=fast_mode) gradgradcheck(torch.add, (a, b), raise_exception=False, check_batched_grad=False, fast_mode=fast_mode) total_used_attrs = a.used_attrs.union(b.used_attrs) total_used_calls = a.used_calls.union(b.used_calls) # These attributes (and the functions below) may change # if the gradcheck implementation changes. It's best to # aim for attributes that may be commonly present on other # Tensor-likes. expected_used_attrs = { 'data', 'dtype', 'is_floating_point', 'is_sparse', 'is_sparse_csr', 'layout', 'new_zeros', 'numel', 'requires_grad', 'requires_grad_', 'retain_grad', 'size', 'stride', } if fast_mode: expected_used_attrs.add('is_complex') expected_used_attrs.add('device') self.assertEqual(expected_used_attrs, total_used_attrs) expected_used_calls = { torch.Tensor.new_zeros, torch.Tensor.size, torch.Tensor.is_floating_point, torch.Tensor.numel, torch.Tensor.retain_grad, torch.Tensor.stride, torch.Tensor.requires_grad_, torch.autograd.grad, torch.add, } if fast_mode: expected_used_calls.add(torch.Tensor.is_complex) self.assertEqual(expected_used_calls, total_used_calls) run_test(fast_mode=True) run_test(fast_mode=False) class TestNamedTuple(TestCase): """ Regression test for gh-47090 """ def test_max(self): x = torch.tensor([1, 2]) xs = x.as_subclass(SubTensor2) r = torch.max(x, dim=0) rs = torch.max(xs, dim=0) self.assertEqual(type(r), type(rs)) self.assertEqual(r, rs) class TestGradNewOnesOverride(TestCase): """ Regression test for gh-47069 """ def test_newones(self): t = torch.tensor([1, 2]).as_subclass(SubTensor2) n = t.new_ones((1, 2)) self.assertEqual(type(n), SubTensor2) class TestPickle(TestCase): "Regression test for gh-47051" def test_pickle(self): t = torch.tensor([1]).as_subclass(SubTensor2) t.abcd = "e" t2 = pickle.loads(pickle.dumps(t)) self.assertIs(type(t2), SubTensor2) self.assertEqual(t2.abcd, "e") class TestBroadcastAllOverride(TestCase): """ test for gh-37141 """ def test_broadcast_all(self): from torch.distributions.utils import broadcast_all a = torch.tensor([1.2, 3.4, 5.6]) a_w = Wrapper(a) b = torch.tensor(5.0) b_w = Wrapper(b) c = torch.tensor([5.0, 5.0, 5.0]) o_1 = broadcast_all(a_w, b_w) self.assertTrue(isinstance(o_1[0], Wrapper)) self.assertTrue(isinstance(o_1[1], Wrapper)) self.assertEqual(o_1[0]._data, a) self.assertEqual(o_1[1]._data, c) o_2 = broadcast_all(a_w, b) self.assertTrue(isinstance(o_2[0], Wrapper)) self.assertTrue(isinstance(o_2[1], Wrapper)) self.assertEqual(o_2[0]._data, a) self.assertEqual(o_2[1]._data, c) class TestWrapTorchFunction(TestCase): def test_wrap_torch_function(self): class A: @classmethod def __torch_function__(cls, func, types, args, kwargs): return -1 def dispatcher(a): return (a,) @torch.overrides.wrap_torch_function(dispatcher) def f(a): return a self.assertEqual(f(A()), -1) class TestIndexing(TestCase): """ Regression tests for gh-46277 """ def test_getitem(self): class A: @classmethod def __torch_function__(cls, func, types, args, kwargs=None): return -1 t = torch.tensor([5]) self.assertEqual(t[A()], -1) self.assertEqual(t, torch.tensor([5])) def test_getitem_subclass(self): class A(torch.Tensor): @classmethod def __torch_function__(cls, func, types, args, kwargs=None): return -1 t = torch.tensor([5]) self.assertEqual(t[A()], -1) self.assertEqual(t[5, A()], -1) self.assertEqual(t, torch.tensor([5])) def test_setitem(self): triggered = set() class A: @classmethod def __torch_function__(cls, func, types, args, kwargs=None): triggered.add(func) return -1 t = torch.tensor([5]) t[A()] = 1 t[5, A()] = 1 self.assertIn(Tensor.__setitem__, triggered) self.assertEqual(t, torch.tensor([5])) def test_setitem_val(self): triggered = set() class A: @classmethod def __torch_function__(cls, func, types, args, kwargs=None): triggered.add(func) return -1 t = torch.tensor([5]) t[0] = A() self.assertIn(Tensor.__setitem__, triggered) self.assertEqual(t, torch.tensor([5])) def test_setitem_subclass(self): triggered = set() class A(torch.Tensor): @classmethod def __torch_function__(cls, func, types, args, kwargs=None): triggered.add(func) return -1 t = torch.tensor([5]) t[A()] = 1 t[5, A()] = 1 self.assertIn(Tensor.__setitem__, triggered) self.assertEqual(t, torch.tensor([5])) class TestIterator(TestCase): # Regression test for gh-54457 def test_iterator(self): t = torch.tensor([5, 6, 7]).as_subclass(SubTensor2) it = iter(t) self.assertIs(type(next(it)), SubTensor2) self.assertIs(type(next(it)), SubTensor2) self.assertIs(type(next(it)), SubTensor2) class TestRNN(TestCase): # Regression test for gh-55868 def test_rnn(self): model = torch.nn.RNN(10, 20, 2) input = Wrapper(torch.randn(1, 5, 10)) model(input) class TestDisabledTorchFunction(TestCase): # Regression test for gh-64687 def test_parameter_does_not_prevent_dispatch(self): class MyTensor(): @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): return "called" t1 = MyTensor() t2 = torch.nn.Parameter(torch.rand(2, 2)) self.assertEqual(torch.add(t2, t1), "called") inp = torch.rand(10, 10) self.assertEqual(torch.nn.functional.linear(inp, t1, t2), "called") self.assertEqual(torch.nn.functional.linear(inp, t2, t1), "called") class TestTorchFunctionWarning(TestCase): def test_warn_on_invalid_torch_function(self): class Bad1(): def __torch_function__(self, *args, **kwargs): pass class Bad2(torch.Tensor): def __torch_function__(self, *args, **kwargs): pass a = Bad1() with self.assertWarnsRegex(DeprecationWarning, "as a plain method is deprecated"): # This needs to be a function that handle torch_function on the python side torch.split(a, (2)) a = Bad2() with self.assertWarnsRegex(DeprecationWarning, "as a plain method is deprecated"): # This needs to be a function that handle torch_function on the python side torch.split(a, (2)) if __name__ == '__main__': run_tests()