/* * Copyright 2011 ArtForz * Copyright 2011-2013 pooler * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. See COPYING for more details. */ #include "algo-gate-api.h" #include #include #if defined(USE_ASM) && defined(__arm__) && defined(__APCS_32__) #define EXTERN_SHA256 #endif static const uint32_t sha256_h[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; static const uint32_t sha256_k[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; void sha256_init(uint32_t *state) { memcpy(state, sha256_h, 32); } /* Elementary functions used by SHA256 */ #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define ROTR(x, n) ((x >> n) | (x << (32 - n))) #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3)) #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10)) /* SHA256 round function */ #define RND(a, b, c, d, e, f, g, h, k) \ do { \ t0 = h + S1(e) + Ch(e, f, g) + k; \ t1 = S0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; \ } while (0) /* Adjusted round function for rotating state */ #define RNDr(S, W, i) \ RND(S[(64 - i) % 8], S[(65 - i) % 8], \ S[(66 - i) % 8], S[(67 - i) % 8], \ S[(68 - i) % 8], S[(69 - i) % 8], \ S[(70 - i) % 8], S[(71 - i) % 8], \ W[i] + sha256_k[i]) #ifndef EXTERN_SHA256 /* * SHA256 block compression function. The 256-bit state is transformed via * the 512-bit input block to produce a new state. */ void sha256_transform(uint32_t *state, const uint32_t *block, int swap) { uint32_t W[64]; uint32_t S[8]; uint32_t t0, t1; int i; /* 1. Prepare message schedule W. */ if (swap) { for (i = 0; i < 16; i++) W[i] = swab32(block[i]); } else memcpy(W, block, 64); for (i = 16; i < 64; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } /* 2. Initialize working variables. */ memcpy(S, state, 32); /* 3. Mix. */ RNDr(S, W, 0); RNDr(S, W, 1); RNDr(S, W, 2); RNDr(S, W, 3); RNDr(S, W, 4); RNDr(S, W, 5); RNDr(S, W, 6); RNDr(S, W, 7); RNDr(S, W, 8); RNDr(S, W, 9); RNDr(S, W, 10); RNDr(S, W, 11); RNDr(S, W, 12); RNDr(S, W, 13); RNDr(S, W, 14); RNDr(S, W, 15); RNDr(S, W, 16); RNDr(S, W, 17); RNDr(S, W, 18); RNDr(S, W, 19); RNDr(S, W, 20); RNDr(S, W, 21); RNDr(S, W, 22); RNDr(S, W, 23); RNDr(S, W, 24); RNDr(S, W, 25); RNDr(S, W, 26); RNDr(S, W, 27); RNDr(S, W, 28); RNDr(S, W, 29); RNDr(S, W, 30); RNDr(S, W, 31); RNDr(S, W, 32); RNDr(S, W, 33); RNDr(S, W, 34); RNDr(S, W, 35); RNDr(S, W, 36); RNDr(S, W, 37); RNDr(S, W, 38); RNDr(S, W, 39); RNDr(S, W, 40); RNDr(S, W, 41); RNDr(S, W, 42); RNDr(S, W, 43); RNDr(S, W, 44); RNDr(S, W, 45); RNDr(S, W, 46); RNDr(S, W, 47); RNDr(S, W, 48); RNDr(S, W, 49); RNDr(S, W, 50); RNDr(S, W, 51); RNDr(S, W, 52); RNDr(S, W, 53); RNDr(S, W, 54); RNDr(S, W, 55); RNDr(S, W, 56); RNDr(S, W, 57); RNDr(S, W, 58); RNDr(S, W, 59); RNDr(S, W, 60); RNDr(S, W, 61); RNDr(S, W, 62); RNDr(S, W, 63); /* 4. Mix local working variables into global state */ for (i = 0; i < 8; i++) state[i] += S[i]; } #endif /* EXTERN_SHA256 */ static const uint32_t sha256d_hash1[16] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000100 }; // this performs the entire hash all over again, why? static void sha256d_80_swap(uint32_t *hash, const uint32_t *data) { uint32_t S[16]; int i; sha256_init(S); sha256_transform(S, data, 0); sha256_transform(S, data + 16, 0); memcpy(S + 8, sha256d_hash1 + 8, 32); sha256_init(hash); sha256_transform(hash, S, 0); for (i = 0; i < 8; i++) hash[i] = swab32(hash[i]); } /* #if defined (__SHA__) #include "algo/sha/sph_sha2.h" void sha256d(unsigned char *hash, const unsigned char *data, int len) { sph_sha256_context ctx __attribute__ ((aligned (64))); sph_sha256_init( &ctx ); sph_sha256( &ctx, data, len ); sph_sha256_close( &ctx, hash ); sph_sha256_init( &ctx ); sph_sha256( &ctx, hash, 32 ); sph_sha256_close( &ctx, hash ); } #else void sha256d(unsigned char *hash, const unsigned char *data, int len) { uint32_t S[16], T[16]; int i, r; sha256_init(S); for (r = len; r > -9; r -= 64) { if (r < 64) memset(T, 0, 64); memcpy(T, data + len - r, r > 64 ? 64 : (r < 0 ? 0 : r)); if (r >= 0 && r < 64) ((unsigned char *)T)[r] = 0x80; for (i = 0; i < 16; i++) T[i] = be32dec(T + i); if (r < 56) T[15] = 8 * len; sha256_transform(S, T, 0); } memcpy(S + 8, sha256d_hash1 + 8, 32); sha256_init(T); sha256_transform(T, S, 0); for (i = 0; i < 8; i++) be32enc((uint32_t *)hash + i, T[i]); } #endif */ static inline void sha256d_preextend(uint32_t *W) { W[16] = s1(W[14]) + W[ 9] + s0(W[ 1]) + W[ 0]; W[17] = s1(W[15]) + W[10] + s0(W[ 2]) + W[ 1]; W[18] = s1(W[16]) + W[11] + W[ 2]; W[19] = s1(W[17]) + W[12] + s0(W[ 4]); W[20] = W[13] + s0(W[ 5]) + W[ 4]; W[21] = W[14] + s0(W[ 6]) + W[ 5]; W[22] = W[15] + s0(W[ 7]) + W[ 6]; W[23] = W[16] + s0(W[ 8]) + W[ 7]; W[24] = W[17] + s0(W[ 9]) + W[ 8]; W[25] = s0(W[10]) + W[ 9]; W[26] = s0(W[11]) + W[10]; W[27] = s0(W[12]) + W[11]; W[28] = s0(W[13]) + W[12]; W[29] = s0(W[14]) + W[13]; W[30] = s0(W[15]) + W[14]; W[31] = s0(W[16]) + W[15]; } static inline void sha256d_prehash(uint32_t *S, const uint32_t *W) { uint32_t t0, t1; RNDr(S, W, 0); RNDr(S, W, 1); RNDr(S, W, 2); } #ifdef EXTERN_SHA256 void sha256d_ms(uint32_t *hash, uint32_t *W, const uint32_t *midstate, const uint32_t *prehash); #else static inline void sha256d_ms(uint32_t *hash, uint32_t *W, const uint32_t *midstate, const uint32_t *prehash) { uint32_t S[64]; uint32_t t0, t1; int i; S[18] = W[18]; S[19] = W[19]; S[20] = W[20]; S[22] = W[22]; S[23] = W[23]; S[24] = W[24]; S[30] = W[30]; S[31] = W[31]; W[18] += s0(W[3]); W[19] += W[3]; W[20] += s1(W[18]); W[21] = s1(W[19]); W[22] += s1(W[20]); W[23] += s1(W[21]); W[24] += s1(W[22]); W[25] = s1(W[23]) + W[18]; W[26] = s1(W[24]) + W[19]; W[27] = s1(W[25]) + W[20]; W[28] = s1(W[26]) + W[21]; W[29] = s1(W[27]) + W[22]; W[30] += s1(W[28]) + W[23]; W[31] += s1(W[29]) + W[24]; for (i = 32; i < 64; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } memcpy(S, prehash, 32); RNDr(S, W, 3); RNDr(S, W, 4); RNDr(S, W, 5); RNDr(S, W, 6); RNDr(S, W, 7); RNDr(S, W, 8); RNDr(S, W, 9); RNDr(S, W, 10); RNDr(S, W, 11); RNDr(S, W, 12); RNDr(S, W, 13); RNDr(S, W, 14); RNDr(S, W, 15); RNDr(S, W, 16); RNDr(S, W, 17); RNDr(S, W, 18); RNDr(S, W, 19); RNDr(S, W, 20); RNDr(S, W, 21); RNDr(S, W, 22); RNDr(S, W, 23); RNDr(S, W, 24); RNDr(S, W, 25); RNDr(S, W, 26); RNDr(S, W, 27); RNDr(S, W, 28); RNDr(S, W, 29); RNDr(S, W, 30); RNDr(S, W, 31); RNDr(S, W, 32); RNDr(S, W, 33); RNDr(S, W, 34); RNDr(S, W, 35); RNDr(S, W, 36); RNDr(S, W, 37); RNDr(S, W, 38); RNDr(S, W, 39); RNDr(S, W, 40); RNDr(S, W, 41); RNDr(S, W, 42); RNDr(S, W, 43); RNDr(S, W, 44); RNDr(S, W, 45); RNDr(S, W, 46); RNDr(S, W, 47); RNDr(S, W, 48); RNDr(S, W, 49); RNDr(S, W, 50); RNDr(S, W, 51); RNDr(S, W, 52); RNDr(S, W, 53); RNDr(S, W, 54); RNDr(S, W, 55); RNDr(S, W, 56); RNDr(S, W, 57); RNDr(S, W, 58); RNDr(S, W, 59); RNDr(S, W, 60); RNDr(S, W, 61); RNDr(S, W, 62); RNDr(S, W, 63); for (i = 0; i < 8; i++) S[i] += midstate[i]; W[18] = S[18]; W[19] = S[19]; W[20] = S[20]; W[22] = S[22]; W[23] = S[23]; W[24] = S[24]; W[30] = S[30]; W[31] = S[31]; memcpy(S + 8, sha256d_hash1 + 8, 32); S[16] = s1(sha256d_hash1[14]) + sha256d_hash1[ 9] + s0(S[ 1]) + S[ 0]; S[17] = s1(sha256d_hash1[15]) + sha256d_hash1[10] + s0(S[ 2]) + S[ 1]; S[18] = s1(S[16]) + sha256d_hash1[11] + s0(S[ 3]) + S[ 2]; S[19] = s1(S[17]) + sha256d_hash1[12] + s0(S[ 4]) + S[ 3]; S[20] = s1(S[18]) + sha256d_hash1[13] + s0(S[ 5]) + S[ 4]; S[21] = s1(S[19]) + sha256d_hash1[14] + s0(S[ 6]) + S[ 5]; S[22] = s1(S[20]) + sha256d_hash1[15] + s0(S[ 7]) + S[ 6]; S[23] = s1(S[21]) + S[16] + s0(sha256d_hash1[ 8]) + S[ 7]; S[24] = s1(S[22]) + S[17] + s0(sha256d_hash1[ 9]) + sha256d_hash1[ 8]; S[25] = s1(S[23]) + S[18] + s0(sha256d_hash1[10]) + sha256d_hash1[ 9]; S[26] = s1(S[24]) + S[19] + s0(sha256d_hash1[11]) + sha256d_hash1[10]; S[27] = s1(S[25]) + S[20] + s0(sha256d_hash1[12]) + sha256d_hash1[11]; S[28] = s1(S[26]) + S[21] + s0(sha256d_hash1[13]) + sha256d_hash1[12]; S[29] = s1(S[27]) + S[22] + s0(sha256d_hash1[14]) + sha256d_hash1[13]; S[30] = s1(S[28]) + S[23] + s0(sha256d_hash1[15]) + sha256d_hash1[14]; S[31] = s1(S[29]) + S[24] + s0(S[16]) + sha256d_hash1[15]; for (i = 32; i < 60; i += 2) { S[i] = s1(S[i - 2]) + S[i - 7] + s0(S[i - 15]) + S[i - 16]; S[i+1] = s1(S[i - 1]) + S[i - 6] + s0(S[i - 14]) + S[i - 15]; } S[60] = s1(S[58]) + S[53] + s0(S[45]) + S[44]; sha256_init(hash); RNDr(hash, S, 0); RNDr(hash, S, 1); RNDr(hash, S, 2); RNDr(hash, S, 3); RNDr(hash, S, 4); RNDr(hash, S, 5); RNDr(hash, S, 6); RNDr(hash, S, 7); RNDr(hash, S, 8); RNDr(hash, S, 9); RNDr(hash, S, 10); RNDr(hash, S, 11); RNDr(hash, S, 12); RNDr(hash, S, 13); RNDr(hash, S, 14); RNDr(hash, S, 15); RNDr(hash, S, 16); RNDr(hash, S, 17); RNDr(hash, S, 18); RNDr(hash, S, 19); RNDr(hash, S, 20); RNDr(hash, S, 21); RNDr(hash, S, 22); RNDr(hash, S, 23); RNDr(hash, S, 24); RNDr(hash, S, 25); RNDr(hash, S, 26); RNDr(hash, S, 27); RNDr(hash, S, 28); RNDr(hash, S, 29); RNDr(hash, S, 30); RNDr(hash, S, 31); RNDr(hash, S, 32); RNDr(hash, S, 33); RNDr(hash, S, 34); RNDr(hash, S, 35); RNDr(hash, S, 36); RNDr(hash, S, 37); RNDr(hash, S, 38); RNDr(hash, S, 39); RNDr(hash, S, 40); RNDr(hash, S, 41); RNDr(hash, S, 42); RNDr(hash, S, 43); RNDr(hash, S, 44); RNDr(hash, S, 45); RNDr(hash, S, 46); RNDr(hash, S, 47); RNDr(hash, S, 48); RNDr(hash, S, 49); RNDr(hash, S, 50); RNDr(hash, S, 51); RNDr(hash, S, 52); RNDr(hash, S, 53); RNDr(hash, S, 54); RNDr(hash, S, 55); RNDr(hash, S, 56); hash[2] += hash[6] + S1(hash[3]) + Ch(hash[3], hash[4], hash[5]) + S[57] + sha256_k[57]; hash[1] += hash[5] + S1(hash[2]) + Ch(hash[2], hash[3], hash[4]) + S[58] + sha256_k[58]; hash[0] += hash[4] + S1(hash[1]) + Ch(hash[1], hash[2], hash[3]) + S[59] + sha256_k[59]; hash[7] += hash[3] + S1(hash[0]) + Ch(hash[0], hash[1], hash[2]) + S[60] + sha256_k[60] + sha256_h[7]; } #endif /* EXTERN_SHA256 */ #ifdef HAVE_SHA256_4WAY void sha256d_ms_4way(uint32_t *hash, uint32_t *data, const uint32_t *midstate, const uint32_t *prehash); static inline int scanhash_sha256d_4way( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t *pdata = work->data; uint32_t *ptarget = work->target; uint32_t _ALIGN(128) data[4 * 64]; uint32_t _ALIGN(32) hash[4 * 8]; uint32_t _ALIGN(32) midstate[4 * 8]; uint32_t _ALIGN(32) prehash[4 * 8]; uint32_t n = pdata[19] - 1; const uint32_t first_nonce = pdata[19]; const uint32_t Htarg = ptarget[7]; int thr_id = mythr->id; int i, j; memcpy(data, pdata + 16, 64); sha256d_preextend(data); for (i = 31; i >= 0; i--) for (j = 0; j < 4; j++) data[i * 4 + j] = data[i]; sha256_init(midstate); sha256_transform(midstate, pdata, 0); memcpy(prehash, midstate, 32); sha256d_prehash(prehash, pdata + 16); for (i = 7; i >= 0; i--) { for (j = 0; j < 4; j++) { midstate[i * 4 + j] = midstate[i]; prehash[i * 4 + j] = prehash[i]; } } do { for (i = 0; i < 4; i++) data[4 * 3 + i] = ++n; sha256d_ms_4way(hash, data, midstate, prehash); for (i = 0; i < 4; i++) { if (swab32(hash[4 * 7 + i]) <= Htarg) { pdata[19] = data[4 * 3 + i]; sha256d_80_swap(hash, pdata); if ( fulltest( hash, ptarget ) && !opt_benchmark ) submit_solution( work, hash, mythr ); } } } while (n < max_nonce && !work_restart[thr_id].restart); *hashes_done = n - first_nonce + 1; pdata[19] = n; return 0; } #endif /* HAVE_SHA256_4WAY */ #ifdef HAVE_SHA256_8WAY void sha256d_ms_8way(uint32_t *hash, uint32_t *data, const uint32_t *midstate, const uint32_t *prehash); static inline int scanhash_sha256d_8way( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t *pdata = work->data; uint32_t *ptarget = work->target; uint32_t _ALIGN(128) data[8 * 64]; uint32_t _ALIGN(32) hash[8 * 8]; uint32_t _ALIGN(32) midstate[8 * 8]; uint32_t _ALIGN(32) prehash[8 * 8]; uint32_t n = pdata[19] - 1; const uint32_t first_nonce = pdata[19]; const uint32_t Htarg = ptarget[7]; int thr_id = mythr->id; int i, j; memcpy(data, pdata + 16, 64); sha256d_preextend(data); for (i = 31; i >= 0; i--) for (j = 0; j < 8; j++) data[i * 8 + j] = data[i]; sha256_init(midstate); sha256_transform(midstate, pdata, 0); memcpy(prehash, midstate, 32); sha256d_prehash(prehash, pdata + 16); for (i = 7; i >= 0; i--) { for (j = 0; j < 8; j++) { midstate[i * 8 + j] = midstate[i]; prehash[i * 8 + j] = prehash[i]; } } do { for (i = 0; i < 8; i++) data[8 * 3 + i] = ++n; sha256d_ms_8way(hash, data, midstate, prehash); for (i = 0; i < 8; i++) { if (swab32(hash[8 * 7 + i]) <= Htarg) { pdata[19] = data[8 * 3 + i]; sha256d_80_swap(hash, pdata); if ( fulltest( hash, ptarget ) && !opt_benchmark ) submit_solution( work, hash, mythr ); } } } while (n < max_nonce && !work_restart[thr_id].restart); *hashes_done = n - first_nonce + 1; pdata[19] = n; return 0; } #endif /* HAVE_SHA256_8WAY */ int scanhash_sha256d( struct work *work, uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t *pdata = work->data; uint32_t *ptarget = work->target; uint32_t _ALIGN(128) data[64]; uint32_t _ALIGN(32) hash[8]; uint32_t _ALIGN(32) midstate[8]; uint32_t _ALIGN(32) prehash[8]; uint32_t n = pdata[19] - 1; const uint32_t first_nonce = pdata[19]; const uint32_t Htarg = ptarget[7]; int thr_id = mythr->id; // thr_id arg is deprecated #ifdef HAVE_SHA256_8WAY if (sha256_use_8way()) return scanhash_sha256d_8way( work, max_nonce, hashes_done, mythr ); #endif #ifdef HAVE_SHA256_4WAY if (sha256_use_4way()) return scanhash_sha256d_4way( work, max_nonce, hashes_done, mythr ); #endif memcpy(data, pdata + 16, 64); sha256d_preextend(data); sha256_init(midstate); sha256_transform(midstate, pdata, 0); memcpy(prehash, midstate, 32); sha256d_prehash(prehash, pdata + 16); do { data[3] = ++n; sha256d_ms(hash, data, midstate, prehash); if (unlikely(swab32(hash[7]) <= Htarg)) { pdata[19] = data[3]; sha256d_80_swap(hash, pdata); if ( fulltest(hash, ptarget) && !opt_benchmark ) submit_solution( work, hash, mythr ); } } while (likely(n < max_nonce && !work_restart[thr_id].restart)); *hashes_done = n - first_nonce + 1; pdata[19] = n; return 0; } /* int scanhash_SHA256d( struct work *work, const uint32_t max_nonce, uint64_t *hashes_done, struct thr_info *mythr ) { uint32_t _ALIGN(128) hash[8]; uint32_t _ALIGN(64) data[20]; uint32_t *pdata = work->data; const uint32_t *ptarget = work->target; uint32_t n = pdata[19] - 1; const uint32_t first_nonce = pdata[19]; const uint32_t Htarg = ptarget[7]; int thr_id = mythr->id; memcpy( data, pdata, 80 ); do { data[19] = ++n; sha256d( (unsigned char*)hash, (const unsigned char*)data, 80 ); if ( unlikely( swab32( hash[7] ) <= Htarg ) ) { pdata[19] = n; sha256d_80_swap(hash, pdata); if ( fulltest( hash, ptarget ) && !opt_benchmark ) submit_solution( work, hash, mythr ); } } while ( likely( n < max_nonce && !work_restart[thr_id].restart ) ); *hashes_done = n - first_nonce + 1; pdata[19] = n; return 0; } */ bool register_sha256d_algo( algo_gate_t* gate ) { gate->optimizations = SSE2_OPT | AVX2_OPT; gate->scanhash = (void*)&scanhash_sha256d; // gate->hash = (void*)&sha256d; return true; };