#ifndef _LINUX_LIST_H #define _LINUX_LIST_H /* * Simple doubly linked list implementation. * * Some of the internal functions ("__xxx") are useful when * manipulating whole lists rather than single entries, as * sometimes we already know the next/prev entries and we can * generate better code by using them directly rather than * using the generic single-entry routines. */ struct list_head { struct list_head *next, *prev; }; #define LIST_HEAD_INIT(name) { &(name), &(name) } #define LIST_HEAD(name) \ struct list_head name = LIST_HEAD_INIT(name) #define INIT_LIST_HEAD(ptr) do { \ (ptr)->next = (ptr); (ptr)->prev = (ptr); \ } while (0) /* * Insert a new entry between two known consecutive entries. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_add(struct list_head *nlh, struct list_head *prev, struct list_head *next) { next->prev = nlh; nlh->next = next; nlh->prev = prev; prev->next = nlh; } /** * list_add - add a new entry * @new: new entry to be added * @head: list head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */ static inline void list_add(struct list_head *nlh, struct list_head *head) { __list_add(nlh, head, head->next); } /** * list_add_tail - add a new entry * @new: new entry to be added * @head: list head to add it before * * Insert a new entry before the specified head. * This is useful for implementing queues. */ static inline void list_add_tail(struct list_head *nlh, struct list_head *head) { __list_add(nlh, head->prev, head); } /* * Delete a list entry by making the prev/next entries * point to each other. * * This is only for internal list manipulation where we know * the prev/next entries already! */ static inline void __list_del(struct list_head *prev, struct list_head *next) { next->prev = prev; prev->next = next; } /** * list_del - deletes entry from list. * @entry: the element to delete from the list. * Note: list_empty on entry does not return true after this, the entry is in an undefined state. */ static inline void list_del(struct list_head *entry) { __list_del(entry->prev, entry->next); entry->next = NULL; entry->prev = NULL; } /** * list_del_init - deletes entry from list and reinitialize it. * @entry: the element to delete from the list. */ static inline void list_del_init(struct list_head *entry) { __list_del(entry->prev, entry->next); INIT_LIST_HEAD(entry); } /** * list_move - delete from one list and add as another's head * @list: the entry to move * @head: the head that will precede our entry */ static inline void list_move(struct list_head *list, struct list_head *head) { __list_del(list->prev, list->next); list_add(list, head); } /** * list_move_tail - delete from one list and add as another's tail * @list: the entry to move * @head: the head that will follow our entry */ static inline void list_move_tail(struct list_head *list, struct list_head *head) { __list_del(list->prev, list->next); list_add_tail(list, head); } /** * list_empty - tests whether a list is empty * @head: the list to test. */ static inline int list_empty(struct list_head *head) { return head->next == head; } static inline void __list_splice(struct list_head *list, struct list_head *head) { struct list_head *first = list->next; struct list_head *last = list->prev; struct list_head *at = head->next; first->prev = head; head->next = first; last->next = at; at->prev = last; } /** * list_splice - join two lists * @list: the new list to add. * @head: the place to add it in the first list. */ static inline void list_splice(struct list_head *list, struct list_head *head) { if (!list_empty(list)) __list_splice(list, head); } /** * list_splice_init - join two lists and reinitialise the emptied list. * @list: the new list to add. * @head: the place to add it in the first list. * * The list at @list is reinitialised */ static inline void list_splice_init(struct list_head *list, struct list_head *head) { if (!list_empty(list)) { __list_splice(list, head); INIT_LIST_HEAD(list); } } /** * list_entry - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_struct within the struct. */ #define list_entry(ptr, type, member) \ ((type *)((char *)(ptr)-(unsigned long)(&((type *)0)->member))) /** * list_for_each - iterate over a list * @pos: the &struct list_head to use as a loop counter. * @head: the head for your list. */ #define list_for_each(pos, head) \ for (pos = (head)->next; pos != (head); \ pos = pos->next) /** * list_for_each_prev - iterate over a list backwards * @pos: the &struct list_head to use as a loop counter. * @head: the head for your list. */ #define list_for_each_prev(pos, head) \ for (pos = (head)->prev; pos != (head); \ pos = pos->prev) /** * list_for_each_safe - iterate over a list safe against removal of list entry * @pos: the &struct list_head to use as a loop counter. * @n: another &struct list_head to use as temporary storage * @head: the head for your list. */ #define list_for_each_safe(pos, n, head) \ for (pos = (head)->next, n = pos->next; pos != (head); \ pos = n, n = pos->next) /** * list_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop counter. * @head: the head for your list. * @member: the name of the list_struct within the struct. * @type: the type of the struct. */ #define list_for_each_entry(pos, head, member, type) \ for (pos = list_entry((head)->next, type, member); \ &pos->member != (head); \ pos = list_entry(pos->member.next, type, member)) /** * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @pos: the type * to use as a loop counter. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_struct within the struct. * @type: the type of the struct. */ #define list_for_each_entry_safe(pos, n, head, member, type) \ for (pos = list_entry((head)->next, type, member), \ n = list_entry(pos->member.next, type, member); \ &pos->member != (head); \ pos = n, n = list_entry(n->member.next, type, member)) /** * list_for_each_entry_continue - iterate over list of given type * continuing after existing point * @pos: the type * to use as a loop counter. * @head: the head for your list. * @member: the name of the list_struct within the struct. * @type: the type of the struct. */ #define list_for_each_entry_continue(pos, head, member, type) \ for (pos = list_entry(pos->member.next, type, member), \ prefetch(pos->member.next); \ &pos->member != (head); \ pos = list_entry(pos->member.next, type, member), \ prefetch(pos->member.next)) #endif