This is ess.info, produced by makeinfo version 6.7 from ess.texi. INFO-DIR-SECTION Emacs START-INFO-DIR-ENTRY * ESS: (ess). Emacs Speaks Statistics (R/S/S+, SAS, BUGS/JAGS and Stata). END-INFO-DIR-ENTRY ESS -- Emacs Speaks Statistics ******************************  File: ess.info, Node: Top, Next: Introduction, Up: (dir) ESS: Emacs Speaks Statistics **************************** ESS version 18.10.2 by A.J. Rossini, R.M. Heiberger, K. Hornik, M. Maechler, R.A. Sparapani, S.J. Eglen, S.P. Luque, H. Redestig, V. Spinu, L. Henry, and J.A. Branham. Emacs Speaks Statistics (ESS) provides an intelligent, consistent interface between the user and the software. ESS interfaces with R, SAS, S-PLUS, BUGS/JAGS and other statistical analysis packages on GNU/Linux, other Unix-like systems such as macOS, and Microsoft Windows. ESS is itself a package within the Emacs text editor and uses Emacs features to streamline the creation and use of statistical software. ESS knows the syntax and grammar of statistical analysis packages and provides consistent display and editing features based on that knowledge. ESS assists in interactive and batch execution of statements written in these statistical analysis languages. The source and documentation of ESS is free software. You can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. ESS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License in the file COPYING in the same directory as this file for more details. * Menu: * Introduction:: Overview of features provided by this package * Installation:: Installing ESS on your system * Interactive ESS:: Interacting with statistical programs * Entering commands:: Interacting with the ESS process * Evaluating code:: Sending code to the ESS process * Transcript Mode:: Manipulating saved transcript files * Editing objects:: How to create/edit objects and functions * Help:: Reading help files * Completion:: Various completion mechanisms * Developing with ESS:: Tools for package development and debugging * Extras:: Other ESS features for the S family * ESS for R:: Overview of ESS features for the S family * ESS for SAS:: * ESS for BUGS:: * ESS for JAGS:: * Mailing lists/bug reports:: How to get assistance with ESS * Customization:: Customizing ESS * Indices::  File: ess.info, Node: Introduction, Next: Installation, Prev: Top, Up: Top 1 Introduction to ESS ********************* ESS provides a generic interface, through Emacs, to statistical packages. It currently supports R (and the rest of the S family), SAS, BUGS/JAGS, Stata, and Julia with the level of support roughly in that order. Throughout this manual, _Emacs_ refers to _GNU Emacs_ by the Free Software Foundation. Although previous versions of ESS supported other Emacsen, current versions only support GNU Emacs. There are two main ways of interacting with ESS: through "regular" modes or "inferior" modes. Regular modes act like normal Emacs major modes. ESS major mods are displayed in the mode-line in the format 'ESS[dialect]', where 'dialect' can take values such as 'R', 'SAS', or 'S'. ESS also provides easy access to an "inferior process," which is an Emacs buffer associated with a running process. This can be an R session, for example. These inferior processes are referred to as inferior ESS ('iESS'), and are shown in the modeline by 'iESS [dialect]'. Currently, the documentation contains many references to ''R'' where actually any supported (statistics) language is meant, i.e., 'R' could also mean 'S' or 'SAS.' For exclusively interactive users of R, ESS provides a number of features to make life easier. There is an easy to use command history mechanism, including a quick prefix-search history. To reduce typing, command-line completion is provided for all R objects and "hot keys" are provided for common R function calls. Help files are easily accessible, and a paging mechanism is provided to view them. Finally, an incidental (but very useful) side-effect of ESS is that a transcript of your session is kept for later saving or editing. No special knowledge of Emacs is necessary when using R interactively under ESS. For those that use R in the typical edit-test-revise cycle when writing R functions, ESS provides for editing of R functions in Emacs buffers. Unlike the typical use of R where the editor is restarted every time an object is edited, ESS uses the current Emacs session for editing. In practical terms, this means that you can edit more than one function at once, and that the ESS process is still available for use while editing. Error checking is performed on functions loaded back into R, and a mechanism to jump directly to the error is provided. ESS also provides for maintaining text versions of your R functions in specified source directories. * Menu: * Features:: Why should I use ESS? * New features:: * Credits:: Authors of and contributors to ESS * Manual:: How to read this manual  File: ess.info, Node: Features, Next: New features, Up: Introduction 1.1 Why should I use ESS? ========================= Statistical packages are powerful software systems for manipulating and analyzing data, but their user interfaces often leave something something to be desired: they offer weak editor functionality and they differ among themselves so markedly that you have to re-learn how to do those things for each package. ESS is a package which is designed to make editing and interacting with statistical packages more uniform, user-friendly and give you the power of Emacs as well. Additionally, both Emacs and ESS (and R) are free software designed to give users full control over their computer. For more on what this means, visit . * Menu: * Current Features::  File: ess.info, Node: Current Features, Up: Features 1.1.1 Features Overview ----------------------- * Languages Supported: * S family (R, S, and S+ AKA S-PLUS) * SAS * BUGS/JAGS * Stata * Julia * Editing source code (S family, SAS, BUGS/JAGS, Stata, Julia) * Syntactic indentation and highlighting of source code * Partial evaluation of code * Loading and error-checking of code * Source code revision maintenance * Batch execution (SAS, BUGS/JAGS) * Use of imenu to provide links to appropriate functions * Interacting with the process (S family, SAS, Stata, Julia) * Command-line editing * Searchable Command history * Command-line completion of S family object names and file names * Quick access to object lists and search lists * Transcript recording * Interface to the help system * Transcript manipulation (S family, Stata) * Recording and saving transcript files * Manipulating and editing saved transcripts * Re-evaluating commands from transcript files * Interaction with Help Pages and other Documentation (R) * Fast Navigation * Sending Examples to running ESS process. * Fast Transfer to Further Help Pages * Help File Editing (R) * Syntactic indentation and highlighting of source code. * Sending Examples to running ESS process. * Previewing For source code buffers, ESS offers several features: * Support for multiple indentation styles R code *Note Indenting::. * Facilities for loading and error-checking source files, including a keystroke to jump straight to the position of an error in a source file. *Note Error Checking::. * Source code revision maintenance, which allows you to keep historic versions of R source files. *Note Source Files::. * Facilities for evaluating R code such as portions of source files, or line-by-line evaluation of files (useful for debugging). *Note Evaluating code::. ESS also provides features that make it easier to interact with inferior ESS (iESS) process (a connection between your buffer and the statistical package which is waiting for you to input commands). These include: * Command-line editing for fixing mistakes in commands before they are entered. *Note Command-line editing::. * Searchable command history for recalling previously-submitted commands. *Note Command History::. * Command-line completion of both object and file names for quick entry. *Note Completion::. * Hot-keys for quick entry of commonly-used commands in 'R' such as 'objects()', and 'search()'. *Note Hot keys::. * Transcript recording for a complete record of all the actions in an R session. *Note Transcript::. * Interface to the help system, with a specialized mode for viewing R help files. *Note Help::. * Object editing. ESS allows you to edit more than one function simultaneously in dedicated Emacs buffers. The ESS process may continue to be used while functions are being edited. *Note Edit buffer::. Finally, ESS provides features for re-submitting commands from saved transcript files, including: * Evaluation of previously entered commands, stripping away unnecessary prompts. *Note Transcript resubmit::.  File: ess.info, Node: New features, Next: Credits, Prev: Features, Up: Introduction 1.2 New features in ESS ======================= Bug Fixes in 18.10.2: * ESS[R] Fix namespace evaluation in non-installed packages. Evaluation is directed into GlobalEnv as originally intended. * 'Makefile' fixes, notably for 'make install' and including full docs in the tarballs. Bug Fixes in 18.10-1: * New functions 'ess-eval-line-visibly-and-step' ('C-c C-n' and 'ess-eval-region-or-line-visibly-and-step' ('C-RET') which behave as the old versions of 'ess-eval-line-and-step' and 'ess-eval-region-or-line-and-step'. Changes and New Features in 18.10: * This is the last release to support Emacs older than 25.1. Going forward, only GNU Emacs 25.1 and newer will be supported. Soon after this release, support for older Emacs versions will be dropped from the git master branch. Note that MELPA uses the git master branch to produce ESS snapshots, so if you are using Emacs < 25.1 from MELPA and are unable to upgrade, you should switch to MELPA-stable. * ESS now displays the language dialect in the mode-line. So, for example, R buffers will now show ESS[R] rather than ESS[S]. * The ESS manual has been updated and revised. * The ESS initialization process has been further streamlined. If you update the autoloads (which installation from 'package-install' does), you should not need to '(require 'ess-site)' at all, as autoloads should automatically load ESS when it is needed (e.g. the first time an R buffer is opened). In order to defer loading your ESS config, you may want to do something like '(with-require-after-load "ess" )' in your Emacs init file. Users of the popular 'use-package' Emacs package can now do '(use-package ess :defer t)' to take advantage of this behavior. *Note (ess)Activating and Loading ESS:: for more information on this feature. * ESS now respects Emacs conventions for keybindings. This means that The 'C-c [letter]' bindings have been removed. This affects 'C-c h', which was bound to 'ess-eval-line-and-step-invisibly' in 'sas-mode-local-map'; 'C-c f', which was bound to 'ess-insert-function-outline' in 'ess-add-MM-keys'; and 'C-c h', which was bound to 'ess-handy-commands' in 'Rd-mode-map', 'ess-noweb-minor-mode-map', and 'ess-help-mode-map' * Functions 'ess-eval-line-and-step' and 'ess-eval-region-or-line-and-step' now behave consistently with other evaluation function inside a package. * ESS[R]: 'ess-r-package-use-dir' now works with any mode. This sets the working directory to the root of the current package including for example C or C++ files within '/src'). * ESS[R]: Long + + prompts in the inferior no longer offset output. * ESS[R]: New option 'strip' for 'inferior-ess-replace-long+'. This strips the entire + + sequence. * ESS modes now inherit from 'prog-mode'. In the next release, ESS modes will use 'define-derived-mode' so that each mode will have (for example) its own hooks and keymaps. * ESS[R]: Supports flymake in R buffers for Emacs 26 and newer. Users need to install the 'lintr' package to use it. Customizable options include 'ess-use-flymake', 'ess-r-flymake-linters', and 'ess-r-flymake-lintr-cache'. * ESS[R]: Gained support for xref in Emacs 25+. *Note (emacs)Xref:: * ESS[R]: The startup screen is cleaner. It also displays the startup directory with an explicit 'setwd()'. * ESS[R]: Changing the working directory is now always reflected in the process buffer. * ESS[R]: 'Makevars' files open with 'makefile-mode'. * New variable 'ess-write-to-dribble'. This allows users to disable the dribble ('*ESS*') buffer if they wish. * All of the '*-program-name' variables have been renamed to '*-program'. Users who previously customized e.g. 'inferior-ess-R-program-name' will need to update their customization to 'inferior-ess-R-program'. These variables are treated as risky variables. * 'ess-smart-S-assign' was renamed to 'ess-insert-assign'. It provides similar functionality but for any keybinding, not just '_'. For instance if you bind it to ';', repeated invokations cycle through between assignment and inserting ';'. * 'C-c C-=' is now bound to 'ess-cycle-assign' by default. See the documentation for details. New user customization option 'ess-assign-list' controls which assignment operators are cycled. * ESS[R] In remote sessions, the ESSR package is now fetched from GitHub. * Commands that send the region to the inferior process now deal with rectangular regions. See the documentation of 'ess-eval-region' for details. This only works on Emacs 25.1 and newer. * ESS[R]: Improvements to interacting with iESS in non-R files. Interaction with inferior process in non-R files within packages (for instance C or C++ files) has been improved. This is a work in progress. * ESS[R]: Changing the working directory is now always reflected in the process buffer. * ESS[JAGS]: *.jog and *.jmd files no longer automatically open in JAGS mode. Many improvements to fontification: * Improved customization for faces. ESS now provides custom faces for (nearly) all faces used and places face customization options into their own group. Users can customize these options using 'M-x customize-group RET ess-faces'. * Many new keywords were added to 'ess-R-keywords' and 'ess-R-modifiers'. See the documentation for details. * ESS[R]: 'in' is now only fontified when inside a 'for' construct. This avoids spurious fontification, especially in the output buffer where 'in' is a commond English word. * ESS: Font-lock keywords are now generated lazily. That means you can now add or remove keywords from variables like 'ess-R-keywords' in your Emacs configuration file after loading ESS (i.e. in the ':config' section for 'use-package' users). * ESS[R]: Fontification of roxygen '@param' keywords now supports comma-separated parameters. * ESS[R]: Certain keywords are only fontified if followed by a parenthesis. Function-like keywords such as 'if ()' or 'stop()' are no longer fontified as keyword if not followed by an opening parenthesis. The same holds for search path modifiers like 'library()' or 'require()'. * ESS[R]: Fixed fontification toggling. Especially certain syntactic elements such as '%op%' operators and backquoted function definitions. * ESS[R]: 'ess-font-lock-toggle-keyword' can be called interactively. This command asks with completion for a font-lock group to toggle. This functionality is equivalent to the font-lock menu. Notable bug fixes: * 'prettify-symbols-mode' no longer breaks indentation. This is accomplished by having the pretty symbols occupy the same number of characters as their non-pretty cousins. You may customize the new variable 'ess-r-prettify-symbols' to control this behavior. * ESS: Inferior process buffers are now always displayed on startup. Additionally, they don't hang Emacs on failures. Obsolete libraries, functions, and variables: * The 'ess-r-args.el' library has been obsoleted and will be removed in the next release. Use 'eldoc-mode' instead, which is on by default. * Functions and options dealing with the smart assign key are obsolete. The following functions have been made obsolete and will be removed in the next release of ESS: 'ess-smart-S-assign', 'ess-toggle-S-assign', 'ess-toggle-S-assign-key', 'ess-disable-smart-S-assign'. The variable 'ess-smart-S-assign-key' is now deprecated and will be removed in the next release. If you would like to continue using '_' for insterting assign in future releases, please bind 'ess-insert-assign' in 'ess-mode-map' the normal way. * ESS[S]: Variable 'ess-s-versions-list' is obsolete and ignored. Use 'ess-s-versions' instead. You may pass arguments by starting the inferior process with the universal argument. Changes and New Features in 17.11: * The ESS initialisation process has been streamlined. You can now load the R and Stata modes independently from the rest of ESS. Just put '(require 'ess-r-mode)' or '(require 'ess-stata-mode)' in your init file. This is for experienced Emacs users as this requires setting up autoloads for '.R' files manually. We will keep maintaining 'ess-site' for easy loading of all ESS features. * Reloading and quitting the process is now more robust. If no process is attached, ESS now switches automatically to one (prompting you for selection if there are several running). Reloading and quitting will now work during a debug session or when R is prompting for input (for instance after a crash). Finally, the window configuration is saved and restored after reloading to prevent the buffer of the new process from capturing the cursor. * ESS[R]: New command 'ess-r-package-use-dir'. It sets the working directory of the current process to the current package directory. * ESS[R] Lookup for references in inferior buffers has been improved. New variable 'ess-r-package-source-roots' contains package sub-directories which are searched recursively during the file lookup point. Directories in 'ess-tracebug-search-path' are now also searched recursively. * ESS[R] Namespaced evaluation is now automatically enabled only in the 'R/' directory. This way ESS will not attempt to update function definitions from a package if you are working from e.g. a test file. Changes and New Features in 16.10: * ESS[R]: Syntax highlighting is now more consistent. Backquoted names are not fontified as strings (since they really are identifiers). Furthermore they are now correctly recognised when they are function definitions or function calls. * ESS[R]: Backquoted names and '%op%' operators are recognised as sexp. This is useful for code navigation, e.g. with 'C-M-f' and 'C-M-b'. * ESS[R]: Integration of outline mode with roxygen examples fields. You can use outline mode's code folding commands to fold the examples field. This is especially nice to use with well documented packages with long examples set. Set 'ess-roxy-fold-examples' to non-nil to automatically fold the examples field when you open a buffer. * ESS[R]: New experimental feature: syntax highlighting in roxygen examples fields. This is turned off by default. Set 'ess-roxy-fontify-examples' to non-nil to try it out. * ESS[R]: New package development command 'ess-r-devtools-ask' bound to 'C-c C-w C-a'. It asks with completion for any devtools command that takes 'pkg' as argument. * ESS[R]: New command 'C-c C-e C-r' to reload the inferior process. Currently only implemented for R. The R method runs 'inferior-ess-r-reload-hook' on reloading. * ESS[R]: 'ess-r-package-mode' is now activated in non-file buffers as well. Bug fixes in 16.10: * ESS[R]: Fix broken (un)flagging for debugging inside packages * ESS[R]: Fixes (and improvements) in Package development * ESS[R]: Completion no longer produces '...=' inside 'list( )'. * ESS[R]: Better debugging and tracing in packages. * ESS[R]: Better detection of symbols at point. * ESS[R]: No more spurious warnings on deletion of temporary files. * ESS[julia]: help and completion work (better) * ESS[julia]: available via 'ess-remote' Changes and New Features in 16.04: * ESS[R]: 'developer' functionality has been refactored. The new user interface consists of a single command 'ess-r-set-evaluation-env' bound by default to 'C-c C-t C-s'. Once an evaluation environment has been set with, all subsequent ESS evaluation will source the code into that environment. By default, for file within R packages the evaluation environment is set to the package environment. Set 'ess-r-package-auto-set-evaluation-env' to 'nil' to disable this. * ESS[R]: New 'ess-r-package-mode' This development mode provides features to make package development easier. Currently, most of the commands are based on the 'devtools' packages and are accessible with 'C-c C-w' prefix. See the documentation of 'ess-r-package-mode' function for all available commands. With 'C-u' prefix each command asks for extra arguments to the underlying devtools function. This mode is automatically enabled in all files within R packages and is indicated with '[pkg:NAME]' in the mode-line. * ESS[R]: Help lookup has been improved. It is now possible to get help for namespaced objects such as pkg::foobar. Furthermore, ESS recognizes more reliably when you change 'options('html_type')'. * ESS[R]: New specialized breakpoints for debugging magrittr pipes * ESS: ESS now implements a simple message passing interface to communicate between ESS and inferior process. Bug fixes in 16.04: * ESS[R]: Roxygen blocks with backtics are now correctly filled * ESS[R]: Don't skip breakpoints in magrittr's 'debug_pipe' * ESS[R]: Error highlighting now understands 'testthat' type errors * ESS[Julia]: Added getwd and setwd generic commands  File: ess.info, Node: Credits, Next: Manual, Prev: New features, Up: Introduction 1.3 Authors of and contributors to ESS ====================================== The ESS environment is built on the open-source projects of many contributors, dating back to 1989 where Doug Bates and Ed Kademan wrote S-mode to edit S and Splus files in GNU Emacs. Frank Ritter and Mike Meyer added features, creating version 2. Meyer and David Smith made further contributions, creating version 3. For version 4, David Smith provided significant enhancements to allow for powerful process interaction. John Sall wrote GNU Emacs macros for SAS source code around 1990. Tom Cook added functions to submit jobs, review listing and log files, and produce basic views of a dataset, thus creating a SAS-mode which was distributed in 1994. In 1994, A.J. Rossini extended S-mode to support XEmacs. Together with extensions written by Martin Maechler, this became version 4.7 and supported S, Splus, and R. In 1995, Rossini extended SAS-mode to work with XEmacs. In 1997, Rossini merged S-mode and SAS-mode into a single Emacs package for statistical programming; the product of this marriage was called ESS version 5. Richard M. Heiberger designed the inferior mode for interactive SAS and SAS-mode was further integrated into ESS. Thomas Lumley's Stata mode, written around 1996, was also folded into ESS. More changes were made to support additional statistical languages, particularly XLispStat. ESS initially worked only with Unix statistics packages that used standard-input and standard-output for both the command-line interface and batch processing. ESS could not communicate with statistical packages that did not use this protocol. This changed in 1998 when Brian Ripley demonstrated use of the Windows Dynamic Data Exchange (DDE) protocol with ESS. Heiberger then used DDE to provide interactive interfaces for Windows versions of Splus. In 1999, Rodney A. Sparapani and Heiberger implemented SAS batch for ESS relying on files, rather than standard-input/standard-output, for Unix, Windows and Mac. In 2001, Sparapani added BUGS batch file processing to ESS for Unix and Windows. * The multiple process code, and the idea for 'ess-eval-line-and-next-line' are by Rod Ball. * Thanks to Doug Bates for many useful suggestions. * Thanks to Martin Maechler for reporting and fixing bugs, providing many useful comments and suggestions, and for maintaining the ESS mailing lists. * Thanks to Frank Ritter for updates, particularly the menu code, and invaluable comments on the manual. * Thanks to Ken'ichi Shibayama for his excellent indenting code, and many comments and suggestions. * Thanks to Aki Vehtari for adding interactive BUGS support. * Thanks to Brendan Halpin for bug-fixes and updates to Stata-mode. * Last, but definitely not least, thanks to the many ESS users and contributors to the ESS mailing lists. _ESS_ is being developed and currently maintained by * A.J. Rossini (mailto:blindglobe@gmail.com) * Richard M. Heiberger (mailto:rmh@temple.edu) * Kurt Hornik (mailto:Kurt.Hornik@R-project.org) * Martin Maechler (mailto:maechler@stat.math.ethz.ch) * Rodney A. Sparapani (mailto:rsparapa@mcw.edu) * Stephen Eglen (mailto:stephen@gnu.org) * Sebastian P. Luque (mailto:spluque@gmail.com) * Henning Redestig (mailto:henning.red@googlemail.com) * Vitalie Spinu (mailto:spinuvit@gmail.com) * Lionel Henry (mailto:lionel.hry@gmail.com) * J. Alexander Branham (mailto:alex.branham@gmail.com)  File: ess.info, Node: Manual, Prev: Credits, Up: Introduction 1.4 How to read this manual =========================== If you need to install ESS, read *note Installation:: for details on what needs to be done before proceeding to the next chapter. This section describes some of the basics of using Emacs. If you are already familiar with basic Emacs functionality, skip this section. You may also want to use the Emacs tutorial, accessible via 'C-h t'. In this manual we use the standard notation used by Emacs for describing the keystrokes used to invoke certain commands. 'C-' means hold the CONTROL key while typing the character . 'M-' means hold the META key (usually ALT) down while typing . If there is no META, EDIT or ALT key, instead press and release the ESC key and then type . All ESS commands can be invoked by typing 'M-x command'. Most of the useful commands are bound to keystrokes for ease of use. Also, the most popular commands are also available through the Emacs menubar, and a small subset are provided on the toolbar. Where possible, keybindings are similar to other modes in Emacs to strive for a consistent user interface within Emacs, regardless of the details of which programming language is being edited, or process being run. Some commands, such as 'M-x R' can accept an optional 'prefix' argument. To specify the prefix argument, you would type 'C-u' before giving the command. For example, if you type 'C-u M-x R', you will be asked for command line options that you wish to invoke the R process with. Emacs is a 'self-documenting' text editor. This applies to ESS in two ways. First, some documentation about each ESS command can be obtained by typing 'C-h f'. For example, if you type 'C-h f ess-eval-region', documentation for that command will appear in a separate *Help* buffer. Second, 'C-h m' pops up a complete list of keybindings available in each ESS mode and brief description of that mode. Emacs is a versatile editor written in both C and a dialect of lisp known as elisp. ESS is written in elisp and benefits from the flexible nature of lisp. In particular, many aspects of ESS behaviour can be changed by suitable customization of lisp variables. This manual mentions some of the most frequent variables. A full list of them however is available by using the Custom facility within Emacs. Type 'M-x customize-group RET ess RET' to get started. *note Customization:: provides details of common user variables you can change to customize ESS to your taste, but it is recommended that you defer this section until you are more familiar with ESS.  File: ess.info, Node: Installation, Next: Interactive ESS, Prev: Introduction, Up: Top 2 Installing ESS on your system ******************************* ESS supports GNU Emacs versions 24.3 and newer. ESS is most likely to work with current/recent versions of the following statistical packages: R/S-PLUS, SAS, Stata, OpenBUGS and JAGS. To build the PDF documentation, you will need a version of TeX Live or texinfo that includes texi2dvi. There are two main methods used for installing ESS. You may install from a third-party repository or from source code. Once you install it, you must also activate or load ESS in each Emacs session, though installation from a third-party repository likely takes care of that for you. See *note Activating and Loading ESS:: for more details. * Menu: * Installing from a third-party repository:: * Installing from source:: * Activating and Loading ESS:: * Check Installation::  File: ess.info, Node: Installing from a third-party repository, Next: Installing from source 2.1 Installing from a third-party repository ============================================ ESS is packaged by many third party repositories. Many GNU/Linux distributions package it, usually with the name "emacs-ess" or similar. ESS is also available through Milkypostman’s Emacs Lisp Package Archive (MELPA), a popular repository for Emacs packages. Instructions on how to do so are found on MELPA's website (https://melpa.org/). MELPA also hosts MELPA-stable with stable ESS builds. You may choose between MELPA with the latest and greatest features (and bugs) or MELPA-stable, which may lag a bit behind but should be more stable. After installing, users should make sure ESS is activated or loaded in each Emacs session. See *note Activating and Loading ESS::. Depending on install method, this may be taken care of automatically.  File: ess.info, Node: Installing from source, Next: Activating and Loading ESS, Prev: Installing from a third-party repository 2.2 Installing from source ========================== Stable versions of ESS are available at the ESS web page (https://ess.r-project.org) as a .tgz file or .zip file. ESS releases are GPG-signed, you should check the signature by downloading the accompanying '.sig' file and doing: gpg --verify ess-18.10.tgz.sig Alternatively, you may download the git repository. ESS is currently hosted on Github: . 'git clone https://github.com/emacs-ess/ESS.git' will download it to a new directory 'ESS' in the current working directory. We will refer to the location of the ESS source files as '/path/to/ESS/' hereafter. After installing, users should make sure they activate or load ESS in each Emacs session, see *note Activating and Loading ESS:: Optionally, compile elisp files, build the documentation, and the autoloads: cd /path/to/ESS/ make Without this step the documentation, reference card, and autoloads will not be available. Uncompiled ESS will also run slower. Optionally, you may make ESS available to all users of a machine by installing it site-wide. To do so, run 'make install'. You might need administrative privileges: make install The files are installed into '/usr/share/emacs' directory. For this step to run correctly on macOS, you will need to adjust the 'PREFIX' path in 'Makeconf'. The necessary code and instructions are commented in that file.  File: ess.info, Node: Activating and Loading ESS, Next: Check Installation, Prev: Installing from source 2.3 Activating and Loading ESS ============================== After installing ESS, you must activate or load it each Emacs session. ESS can be autoloaded, and if you used a third-party repository (such as your Linux distribution or MELPA) to install, you can likely skip this section and proceed directly to *note Check Installation:: Otherwise, you may need to add the path to ESS to 'load-path' with: (add-to-list 'load-path "/path/to/ESS/lisp") You then need to decide whether to take advantage of deferred loading (which will result in a faster Emacs startup time) or require ESS when Emacs is loaded. To autoload ESS when needed (note that if installed from source, you must have run 'make'): (load "ess-autoloads") To require ESS on startup, you can either put (require 'ess-site) or (require 'ess-r-mode) In your configuration file, depending on whether you want all ESS features or only R related features.  File: ess.info, Node: Check Installation, Prev: Activating and Loading ESS 2.4 Check Installation ====================== Restart Emacs and check that ESS was loaded from a correct location with 'M-x ess-version'.  File: ess.info, Node: Interactive ESS, Next: Entering commands, Prev: Installation, Up: Top 3 Interacting with statistical programs *************************************** As well as using ESS to edit your source files for statistical programs, you can use ESS to run these statistical programs. In this chapter, we mostly will refer by example to running R from within Emacs. The Emacs convention is to name such processes running under its control as 'inferior processes'. Some users find this terminology confusing; you may prefer to think of these as 'interactive processes.' Either way, we use the term 'iESS' to refer to the Emacs mode used to interact with statistical programs. * Menu: * Starting up:: * Multiple ESS processes:: * ESS processes on Remote Computers:: * Customizing startup::  File: ess.info, Node: Starting up, Next: Multiple ESS processes, Up: Interactive ESS 3.1 Starting an ESS process =========================== To start an inferior R session on GNU/Linux, macOS, or Windows using the Cygwin bash shell, simply type 'M-x R RET'. To start an R session on Windows when you use the MSDOS/powershell shell, simply type 'M-x S+6-msdos RET'. R will then (by default) ask the question R starting data directory? Enter the name of the directory you wish to have as the working directory (that is, the directory you wish to have 'getwd()' return if using R). You will then be popped into a buffer named '*R*' which will be used for interacting with the ESS process, and you can start entering commands.  File: ess.info, Node: Multiple ESS processes, Next: ESS processes on Remote Computers, Prev: Starting up, Up: Interactive ESS 3.2 Running more than one ESS process ===================================== ESS allows you to run more than one iESS process simultaneously in the same session. Each process has a name and a number; the initial process (process 1) is simply named 'R'. If you call 'M-x R' again without killing the first R process, ESS will start a second R process with the name 'R:2'. To have the first buffer named 'R:1', customize the option 'ess-plain-first-buffername'. With a prefix argument, 'C-u M-x R' allows for the specification of command line options. -- User Option: ess-plain-first-buffername If non-'nil', name the first iESS process [R]. Otherwise, name it [R:1]. You can switch to any active ESS process with the command 'M-x ess-request-a-process'. Just enter the name of the process you require; completion is provided over the names of all running processes. This is a good command to consider binding to a global key.  File: ess.info, Node: ESS processes on Remote Computers, Next: Customizing startup, Prev: Multiple ESS processes, Up: Interactive ESS 3.3 ESS processes on Remote Computers ===================================== 3.3.1 ESS and TRAMP ------------------- ESS works with processes on remote computers as easily as with processes on the local machine. The recommended way to access a statistical program on remote computer is to start it with *Note (tramp)Top::. Start an ssh session using TRAMP with 'C-x C-f /ssh:user@host: RET'. Tramp should open a dired buffer in your remote home directory. Now call your favorite ESS process ('R', 'Julia', 'stata' etc) as you would usually do on local machine: 'M-x R'. Alternatively you can start your process normally ('M-x R'). When asked for starting directory, simply type '/ssh:user@host: RET'. The R process will be started on the remote machine. To simplify the process even further create a "config" file in your '.ssh/' folder and add an account. For example if you use amazon EC2, it might look like following: Host amazon Hostname ec2-54-215-203-181.us-west-1.compute.amazonaws.com User ubuntu IdentityFile ~/.ssh/my_amazon_key.pem ForwardX11 yes With this configuration '/ssh:amazon:' is enough to start a connection. The ForwardX11 is needed if you want to see the R graphic device showing on the current machine 3.3.2 ESS-remote ---------------- TRAMP is the recommended way of starting a remote session. The other way to start a remote ESS connection is through 'ess-remote'. 1. Start a new shell, telnet or ssh buffer and connect to the remote computer (e.g. use, 'M-x shell', 'M-x telnet' or 'M-x ssh'; ssh.el is available at ). 2. Start the ESS process on the remote machine, for example with one of the commands 'R', 'Splus', or 'sas -stdio'. 3. Start 'M-x ess-remote'. You will be prompted for a program name with completion. Choose one. Your process is now known to ESS. All the usual ESS commands ('C-c C-n' and its relatives) now work with the R language processes. For SAS you need to use a different command 'C-c i' (that is a regular 'i', not a 'C-i') to send lines from your 'myfile.sas' to the remote SAS process. 'C-c i' sends lines over invisibly. With ess-remote you get teletype behavior--the data input, the log, and the listing all appear in the same buffer. To make this work, you need to end every PROC and DATA step with a "RUN;" statement. The "RUN;" statement is what tells SAS that it should process the preceding input statements. 4. Graphics (interactive) on the remote machine. If you run X11 (*Note X11::, X Windows) on both the local and remote machines then you should be able to display the graphs locally by setting the 'DISPLAY' environment variable appropriately. Windows users can download 'xfree86' from cygwin. 5. Graphics (static) on the remote machine. If you don't run the X window system on the local machine, then you can write graphics to a file on the remote machine, and display the file in a graphics viewer on the local machine. Most statistical software can write one or more of postscript, GIF, or JPEG files. Depending on the versions of Emacs and the operating system that you are running, Emacs itself may display '.gif' and '.jpg' files. Otherwise, a graphics file viewer will be needed. Ghostscript/ghostview may be downloaded to display '.ps' and '.eps' files. Viewers for GIF and JPEG are usually included with operating systems. *Note ESS(SAS)--Function keys for batch processing::, for more information on using the F12 key for displaying graphics files with SAS. Should you or a colleague inadvertently start a statistical process in an ordinary '*shell*' buffer, the 'ess-remote' command can be used to convert it to an ESS buffer and allow you to use the ESS commands with it.  File: ess.info, Node: Customizing startup, Prev: ESS processes on Remote Computers, Up: Interactive ESS 3.4 Changing the startup actions ================================ If you do not wish ESS to prompt for a starting directory when starting a new process, set the variable 'ess-ask-for-ess-directory' to 'nil'. In this case, the starting directory will be set using one of the following methods: 1. If the variable 'ess-directory-function' stores the name of a function, the value returned by this function is used. The default for this variable is nil. 2. Otherwise, if the variable 'ess-directory' stores the name of a directory (ending in a slash), this value is used. The default for this variable is nil. 3. Otherwise, the working directory of the current buffer is used. If 'ess-ask-for-ess-directory' has a non-'nil' value (as it does by default) then the value determined by the above rules provides the default when prompting for the starting directory. Incidentally, 'ess-directory' is an ideal variable to set in 'ess-pre-run-hook'. If you like to keep a record of your R actions, set the variable 'ess-ask-about-transfile' to 't', and you will be asked for a filename for the transcript before the ESS process starts. -- User Option: ess-ask-about-transfile If non-'nil', ask for a file name in which to save the session transcript. Enter the name of a file in which to save the transcript at the prompt. If the file doesn't exist it will be created (for R, you likely want it to end in '.Rout'). If the file already exists the transcript will be appended to the file. (Note: if you don't set this variable but you still want to save the transcript, you can still do it later -- *note Saving transcripts::.) Once these questions are answered (if they are asked at all) the inferior process itself is started. If you need to pass any arguments to this program, they may be specified in the variable 'inferior-S_PROGRAM_NAME-args'. For example, if 'inferior-ess-program' is '"R"' then the variable to set is 'inferior-R-args'. It is not normally necessary to pass arguments to the iESS program; in particular do not pass the '-e' option to 'Splus', since ESS provides its own command history mechanism. By default, the new process will be displayed in the same window in the current frame. If you wish your iESS process to appear in a separate frame, customize the variable 'inferior-ess-own-frame'. Alternatively, change 'inferior-ess-same-window' if you wish the process to appear within another window of the current frame.  File: ess.info, Node: Entering commands, Next: Evaluating code, Prev: Interactive ESS, Up: Top 4 Interacting with the ESS process ********************************** The primary function of the ESS package is to provide an easy-to-use front end to the R interpreter. This is achieved by running the R process from within an Emacs buffer, called hereafter _inferior_ buffer, which has an active 'inferior-ess-mode'. The features of inferior R mode are similar to those provided by the standard Emacs shell mode (*note (emacs)Shell Mode::). Command-line completion of R objects and a number of 'hot keys' for commonly-used R commands are also provided for ease of typing. * Menu: * Command-line editing:: Entering commands and fixing mistakes * Transcript:: Manipulating the transcript * Command History:: Command History * History expansion:: References to historical commands * Hot keys:: Hot keys for common commands * Statistical Process running in ESS?:: * Emacsclient:: Using emacsclient * Other:: Other commands provided by inferior-ESS  File: ess.info, Node: Command-line editing, Next: Transcript, Up: Entering commands 4.1 Entering commands and fixing mistakes ========================================= Sending a command to the ESS process is as simple as typing it in and pressing the key: -- Command: inferior-ess-send-input 'RET' Send the command on the current line to the ESS process. If you make a typing error before pressing 'RET' all the usual Emacs editing commands are available to correct it (*note Basic: (emacs)Basic.). Once the command has been corrected you can press (even if the cursor is not at the end of the line) to send the corrected command to the ESS process. Emacs provides some other commands which are useful for fixing mistakes: 'C-c C-w' 'backward-kill-word' Deletes the previous word (such as an object name) on the command line. 'C-c C-u' 'comint-kill-input' Deletes everything from the prompt to point. Use this to abandon a command you have not yet sent to the ESS process. 'C-a' 'comint-bol' Move to the beginning of the line, and then skip forwards past the prompt, if any. *Note (emacs)Shell Mode::, for other commands relevant to entering input.  File: ess.info, Node: Transcript, Next: Command History, Prev: Command-line editing, Up: Entering commands 4.2 Manipulating the transcript =============================== Most of the time, the cursor spends its time at the bottom of the ESS process buffer, entering commands. However all the input and output from the current (and previous) ESS sessions is stored in the process buffer (we call this the transcript) and often we want to move back up through the buffer, to look at the output from previous commands for example. Within the process buffer, a paragraph is defined as the prompt, the command after the prompt, and the output from the command. Thus 'M-{' and 'M-}' move you backwards and forwards, respectively, through commands in the transcript. A particularly useful command is 'M-h' ('mark-paragraph') which will allow you to mark a command and its entire output (for deletion, perhaps). For more information about paragraph commands, *note Paragraphs: (emacs)Paragraphs. If an ESS process finishes and you restart it in the same process buffer, the output from the new ESS process appears after the output from the first ESS process separated by a form-feed ('^L') character. Thus pages in the ESS process buffer correspond to ESS sessions. Thus, for example, you may use 'C-x [' and 'C-x ]' to move backward and forwards through ESS sessions in a single ESS process buffer. For more information about page commands, *note Pages: (emacs)Pages. * Menu: * Last command:: Manipulating the output from the last command * Process buffer motion:: Viewing older commands * Transcript resubmit:: Re-submitting commands from the transcript * Saving transcripts:: Keeping a record of your R session  File: ess.info, Node: Last command, Next: Process buffer motion, Up: Transcript 4.2.1 Manipulating the output from the last command --------------------------------------------------- Viewing the output of the command you have just entered is a common occurrence and ESS provides a number of facilities for doing this. Whenever a command produces output, it is possible that the window will scroll, leaving the next prompt near the middle of the window. The first part of the command output may have scrolled off the top of the window, even though the entire output would fit in the window if the prompt were near the bottom of the window. If this happens, you can use the following comint commands: 'comint-show-maximum-output' to move to the end of the buffer, and place cursor on bottom line of window to make more of the last output visible. To make this happen automatically for all inputs, set the variable 'comint-scroll-to-bottom-on-input' to 't' or ''this'. If the first part of the output is still not visible, use 'C-c C-r' ('comint-show-output'), which moves cursor to the previous command line and places it at the top of the window. Finally, if you want to discard the last command output altogether, use 'C-c C-o' ('comint-delete-output'), which deletes everything from the last command to the current prompt. Use this command judiciously to keep your transcript to a more manageable size.  File: ess.info, Node: Process buffer motion, Next: Transcript resubmit, Prev: Last command, Up: Transcript 4.2.2 Viewing older commands ---------------------------- If you want to view the output from more historic commands than the previous command, commands are also provided to move backwards and forwards through previously entered commands in the process buffer: 'C-c C-p' 'comint-previous-prompt' Moves point to the preceding prompt in the process buffer. 'C-c C-n' 'comint-next-prompt' Moves point to the next prompt in the process buffer. Note that these two commands are analogous to 'C-p' and 'C-n' but apply to command lines rather than text lines. And just like 'C-p' and 'C-n', passing a prefix argument to these commands means to move to the ARG'th next (or previous) command. (These commands are also discussed in *note Shell History Copying: (emacs)Shell History Copying.) There are also two similar commands (not bound to any keys by default) which move to preceding or succeeding commands, but which first prompt for a regular expression (*note Syntax of Regular Expression: (emacs)Regexps.), and then moves to the next (previous) command matching the pattern. 'comint-backward-matching-input regexp arg' 'comint-forward-matching-input regexp arg' Search backward (forward) through the transcript buffer for the ARG'th previous (next) command matching REGEXP. ARG is the prefix argument; REGEXP is prompted for in the minibuffer.  File: ess.info, Node: Transcript resubmit, Next: Saving transcripts, Prev: Process buffer motion, Up: Transcript 4.2.3 Re-submitting commands from the transcript ------------------------------------------------ When moving through the transcript, you may wish to re-execute some of the commands you find there. ESS provides commands to do this; these commands may be used whenever the cursor is within a command line in the transcript (if the cursor is within some command _output_, an error is signaled). Note all commands involve the key. 'RET' 'inferior-ess-send-input' *Note Command-line editing::. 'C-c RET' 'comint-copy-old-input' Copy the command under the cursor to the current command line, but don't execute it. Leaves the cursor on the command line so that the copied command may be edited. When the cursor is not after the current prompt, the key has a slightly different behavior than usual. Pressing 'RET' on any line containing a command that you entered (i.e. a line beginning with a prompt) sends that command to the ESS process once again. If you wish to edit the command before executing it, use 'C-c RET' instead; it copies the command to the current prompt but does not execute it, allowing you to edit it before (re)submitting it. These commands work even if the current line is a continuation line (i.e. the prompt is '+' instead of '>') -- in this case all the lines that form the multi-line command are concatenated together and the resulting command is sent to the ESS process (currently this is the only way to resubmit a multi-line command to the ESS process in one go). If the current line does not begin with a prompt, an error is signalled. This feature, coupled with the command-based motion commands described above, could be used as a primitive history mechanism. ESS provides a more sophisticated mechanism, however, which is described in *note Command History::.  File: ess.info, Node: Saving transcripts, Prev: Transcript resubmit, Up: Transcript 4.2.4 Keeping a record of your R session ---------------------------------------- To keep a record of your R session in a disk file, use the Emacs command 'C-x C-w' ('write-file') to attach a file to the ESS process buffer. The name of the process buffer will (probably) change to the name of the file, but this is not a problem. You can still use R as usual; just remember to save the file before you quit Emacs with 'C-x C-s'. You can make ESS prompt you for a filename in which to save the transcript every time you start R by setting the variable 'ess-ask-about-transfile' to 't'; *Note Customizing startup::. For R files, naming transcript files '*.Rout' puts them in a special mode (ESS transcript mode -- *note Transcript Mode::) for editing transcript files which is automatically selected for files with this suffix. R transcripts can get very large, so some judicious editing is appropriate if you are saving it in a file. Use 'C-c C-o' whenever a command produces excessively long output (printing large arrays, for example). Delete erroneous commands (and the resulting error messages or other output) by moving to the command (or its output) and typing 'M-h C-w'. Also, remember that 'C-c C-x' (and other hot keys) may be used for commands whose output you do not wish to appear in the transcript. These suggestions are appropriate even if you are not saving your transcript to disk, since the larger the transcript, the more memory your Emacs process will use on the host machine. You can use 'ess-transcript-clean-region' to strip output from a transcript, leaving only source code suitable for inclusion in files 'source()'-able from R. *note Transcript Mode: Clean.  File: ess.info, Node: Command History, Next: History expansion, Prev: Transcript, Up: Entering commands 4.3 Command History =================== ESS provides easy-to-use facilities for re-executing or editing previous commands. An input history of the last few commands is maintained (by default the last 500 commands are stored, although this can be changed by setting the variable 'comint-input-ring-size' in 'inferior-ess-mode-hook'.) The simplest history commands simply select the next and previous commands in the input history: 'M-p' 'comint-previous-input' Select the previous command in the input history. 'M-n' 'comint-next-input' Select the next command in the input history. For example, pressing 'M-p' once will re-enter the last command into the process buffer after the prompt but does not send it to the ESS process, thus allowing editing or correction of the command before the ESS process sees it. Once corrections have been made, press 'RET' to send the edited command to the ESS process. If you want to select a particular command from the history by matching it against a regular expression (*note Syntax of Regular Expression: (emacs)Regexps.), to search for a particular variable name for example, these commands are also available: 'M-r' 'comint-history-isearch-backward-regexp' Prompt for a regular expression, and search backwards through the input history for a command matching the expression. A common type of search is to find the last command that began with a particular sequence of characters; the following two commands provide an easy way to do this: 'C-c M-r' 'comint-previous-matching-input-from-input' Select the previous command in the history which matches the string typed so far. 'C-c M-s' 'comint-next-matching-input-from-input' Select the next command in the history which matches the string typed so far. Instead of prompting for a regular expression to match against, as they instead select commands starting with those characters already entered. For instance, if you wanted to re-execute the last 'attach()' command, you may only need to type 'att' and then 'C-c M-r' and 'RET'. *Note Shell History Ring: (emacs)Shell Ring, for a more detailed discussion of the history mechanism, and do experiment with the 'In/Out' menu to explore the possibilities. Many ESS users like to have even easier access to these, and recommend to add something like (eval-after-load "comint" '(progn (define-key comint-mode-map [up] 'comint-previous-matching-input-from-input) (define-key comint-mode-map [down] 'comint-next-matching-input-from-input) ;; also recommended for ESS use -- (setq comint-move-point-for-output 'others) ;; somewhat extreme, almost disabling writing in *R*, *shell* buffers above prompt: (setq comint-scroll-to-bottom-on-input 'this) )) to your Emacs configuration file, where the last two settings are typically desirable for the situation where you work with a script (for example, 'code.R') and send code chunks to the process buffer (e.g. '*R*'). Note however that these settings influence all 'comint'-using Emacs modes, not just the ESS ones, and for that reason, these customization cannot be part of 'ESS' itself. * Menu: * Saving History::  File: ess.info, Node: Saving History, Up: Command History 4.3.1 Saving the command history -------------------------------- The 'ess-history-file' variable, which is 't' by default, together with 'ess-history-directory', governs if and where the command history is saved and restored between sessions. By default, 'ess-history-directory' is 'nil', and the command history will be stored (as a file) in the same directory as the iESS process. ESS users may work exclusively with script files rather than in a iESS session, and may not want to save any history files. To do so: (setq ess-history-file nil) or if you prefer only one global command history file: (setq ess-history-directory "~/.R/") in your Emacs configuration file.  File: ess.info, Node: History expansion, Next: Hot keys, Prev: Command History, Up: Entering commands 4.4 References to historical commands ===================================== Instead of searching through the command history using the command described in the previous section, you can alternatively refer to a historical command directly using a notation very similar to that used in 'csh'. History references are introduced by a '!' or '^' character and have meanings as follows: '!!' The immediately previous command '!-N' The Nth previous command '!text' The last command beginning with the string 'text' '!?text' The last command containing the string 'text' In addition, you may follow the reference with a "word designator" to select particular "words" of the input. A word is defined as a sequence of characters separated by whitespace. (You can modify this definition by setting the value of 'comint-delimiter-argument-list' to a list of characters that are allowed to separate words and themselves form words.) Words are numbered beginning with zero. The word designator usually begins with a ':' (colon) character; however it may be omitted if the word reference begins with a '^', '$', '*' or '-'. If the word is to be selected from the previous command, the second '!' character can be omitted from the event specification. For instance, '!!:1' and '!:1' both refer to the first word of the previous command, while '!!$' and '!$' both refer to the last word in the previous command. The format of word designators is as follows: '0' The zeroth word (i.e. the first one on the command line) 'N' The Nth word, where N is a number '^' The first word (i.e. the second one on the command line) '$' The last word 'X-Y' A range of words; '-Y' abbreviates '0-Y' '*' All the words except the zeroth word, or nothing if the command had just one word (the zeroth) 'X*' Abbreviates X-$ 'X-' Like 'X*', but omitting the last word In addition, you may surround the entire reference except for the first '!' by braces to allow it to be followed by other (non-whitespace) characters (which will be appended to the expanded reference). Finally, ESS also provides quick substitution; a reference like '^old^new^' means "the last command, but with the first occurrence of the string 'old' replaced with the string 'new'" (the last '^' is optional). Similarly, '^old^' means "the last command, with the first occurrence of the string 'old' deleted" (again, the last '^' is optional). To convert a history reference as described above to an input suitable for R, you need to "expand" the history reference, using the key. For this to work, the cursor must be preceded by a space (otherwise it would try to complete an object name) and not be within a string (otherwise it would try to complete a filename). So to expand the history reference, type 'SPC TAB'. This will convert the history reference into an R command from the history, which you can then edit or press to execute. For example, to execute the last command that referenced the variable 'data', type '!?data SPC TAB RET'.  File: ess.info, Node: Hot keys, Next: Statistical Process running in ESS?, Prev: History expansion, Up: Entering commands 4.5 Hot keys for common commands ================================ ESS provides a number of commands for executing the commonly used functions. These commands below are basically information-gaining commands (such as 'objects()' or 'search()') which tend to clutter up your transcript and for this reason some of the hot keys display their output in a temporary buffer instead of the process buffer by default. This behavior is controlled by the following option: -- User Option: ess-execute-in-process-buffer If non-'nil', means that these commands will produce their output in the process buffer instead. In any case, passing a prefix argument to the commands (with 'C-u') will reverse the meaning of 'ess-execute-in-process-buffer' for that command. In other words, the output will be displayed in the process buffer if it usually goes to a temporary buffer, and vice-versa. These are the hot keys that behave in this way: -- Command: ess-execute-objects POSN 'C-c C-x' Sends the 'objects()' command to the ESS process. A prefix argument specifies the position on the search list (use a negative argument to toggle 'ess-execute-in-process-buffer' as well). This is a quick way to see what objects are in your working directory. A prefix argument of 2 or more means get objects for that position. A negative prefix argument POSN gets the objects for that position, as well as toggling 'ess-execute-in-process-buffer'. -- Command: ess-execute-search INVERT 'C-c C-s' Sends the 'inferior-ess-search-list-command' command to the 'ess-language' process; 'search()' in R. Prefix INVERT toggles 'ess-execute-in-process-buffer'. 'ess-execute' may seem pointless when you could just type the command in anyway, but it proves useful for 'spot' calculations which would otherwise clutter your transcript, or for evaluating an expression while partway through entering a command. You can also use this command to generate new hot keys using the Emacs keyboard macro facilities; *note Keyboard Macros: (emacs)Keyboard Macros. The following hot keys do not use 'ess-execute-in-process-buffer' to decide where to display the output -- they either always display in the process buffer or in a separate buffer, as indicated: -- Command: ess-load-file FILENAME 'C-c M-l' Prompts for a file (FILENAME) to load into the ESS process using 'source()'. If there is an error during loading, you can jump to the error in the file with the following function. -- Command: ess-parse-errors ARG RESET Visits next 'next-error' message and corresponding source code. If all the error messages parsed so far have been processed already, the message buffer is checked for new ones. A prefix ARG specifies how many error messages to move; negative means move back to previous error messages. Just 'C-u' as a prefix means reparse the error message buffer and start at the first error. The RESET argument specifies restarting from the beginning. *Note Error Checking::, for more details. -- Command: ess-display-help-on-object OBJECT COMMAND 'C-c C-v' Pops up a help buffer for an R object or function. If COMMAND is supplied, it is used instead of 'inferior-ess-help-command'. See *note Help:: for more details. -- Command: ess-quit 'C-c C-q' Issue an exiting command to the inferior process, additionally also running 'ess-cleanup' for disposing of any temporary buffers (such as help buffers and edit buffers) that may have been created. Use this command when you have finished your R session instead of simply quitting at the inferior process prompt, otherwise you will need to issue the command 'ess-cleanup' explicitly to make sure that all the files that need to be saved have been saved, and that all the temporary buffers have been killed.  File: ess.info, Node: Statistical Process running in ESS?, Next: Emacsclient, Prev: Hot keys, Up: Entering commands 4.6 Is the Statistical Process running under ESS? ================================================= For the R languages (R, S, S-Plus) ESS sets an option in the current process that programs in the language can check to determine the environment in which they are currently running. ESS sets 'options(STERM="iESS")' for R language processes running in an inferior 'iESS[S]' or 'iESS[R]' buffer. ESS sets 'options(STERM="ddeESS")' for independent S-Plus for Windows processes running in the GUI and communicating with ESS via the DDE (Microsoft Dynamic Data Exchange) protocol through a 'ddeESS[S]' buffer. Other values of 'options()$STERM' that we recommend are: * 'length': Fixed length xterm or telnet window. * 'scrollable': Unlimited length xterm or telnet window. * 'server': S-Plus Stat Server. * 'BATCH': BATCH. * 'Rgui': R GUI. * 'Commands': S-Plus GUI without DDE interface to ESS. Additional values may be recommended in the future as new interaction protocols are created. Unlike the values 'iESS' and 'ddeESS', ESS can't set these other values since the R language program is not under the control of ESS.  File: ess.info, Node: Emacsclient, Next: Other, Prev: Statistical Process running in ESS?, Up: Entering commands 4.7 Using emacsclient ===================== When starting R or S under Unix, ESS sets 'options(editor="emacsclient")'. Under Microsoft Windows, it will use gnuclient.exe rather than emacsclient, but the same principal applies. Within your R session, if you have a function called 'iterator', typing 'fix(iterator)', will show that function in a temporary Emacs buffer. You can then correct the function. When you kill the buffer, the definition of the function is updated. Using 'edit()' rather than 'fix()' means that the function is not updated. Finally, the R function 'page(x)' will also show a text representation of the object 'x' in a temporary Emacs buffer.  File: ess.info, Node: Other, Prev: Emacsclient, Up: Entering commands 4.8 Other commands provided by inferior-ESS =========================================== The following commands are also available in the process buffer: -- Command: comint-interrupt-subjob 'C-c C-c' Sends a Control-C signal to the iESS process. This has the effect of aborting the current command. -- Command: ess-switch-to-inferior-or-script-buffer TOGGLE-EOB 'C-c C-z' When in process buffer, return to the most recent script buffer. When in a script buffer pop to the associated process buffer. Consecutive presses of 'C-z' switch between the script and process buffers. If TOGGLE-EOB is given, the value of 'ess-switch-to-end-of-proc-buffer' is toggled. -- User Option: ess-switch-to-end-of-proc-buffer If non-'nil', 'ess-switch-to-inferior-or-script-buffer' goes to end of process buffer. Other commands available in iESS modes are discussed in *note (emacs)Shell Mode::.  File: ess.info, Node: Evaluating code, Next: Transcript Mode, Prev: Entering commands, Up: Top 5 Sending code to the ESS process ********************************* Other commands are also available for evaluating portions of code in the R process. These commands cause the selected code to be evaluated directly by the ESS process as if you had typed them in at the command line; the 'source()' function is not used. You may choose whether both the commands and their output appear in the process buffer (as if you had typed in the commands yourself) or if the output alone is echoed. The behavior is controlled by the variable: -- User Option: ess-eval-visibly Non-'nil' means 'ess-eval-*' commands display commands and output in the process buffer. Default is 't'. Passing a prefix ('C-u') (in elisp terms, the argument VIS) to any of the following commands, however, reverses the meaning of 'ess-eval-visibly' for that command only -- for example 'C-u C-c C-j' evaluates the current line without showing the input in the iESS buffer. The default value of 'ess-eval-visibly' ('t') means that ESS calls block Emacs until they finish. This may be undesirable, especially if commands take long to finish. Users who want input to be displayed and Emacs not to be blocked can set 'ess-eval-visibly' to ''nowait'. This sends the input to the iESS buffer but does not wait for the process to finish, ensuring Emacs is not blocked. Primary commands for evaluating code are: -- Command: ess-eval-region-or-line-and-step VIS 'C-' Sends the highlighted region or current line and step to next line of code. -- Command: ess-eval-region-or-function-or-paragraph VIS 'C-M-x' Sends the current selected region or function or paragraph. -- Command: ess-eval-region-or-function-or-paragraph-and-step VIS 'C-c C-c' Like 'ess-eval-region-or-function-or-paragraph' but steps to next line of code. Other, not so often used, evaluation commands are: -- Command: ess-eval-line VIS 'C-c C-j' Sends the current line to the ESS process. -- Command: ess-eval-line-and-go VIS 'C-c M-j' Like 'ess-eval-line' but additionally switches point to the ESS process. -- Command: ess-eval-function VIS NO-ERROR 'C-c C-f' Sends the function containing point to the ESS process. -- Command: ess-eval-function-and-go VIS 'C-c M-f' Like 'ess-eval-function' but additionally switches point to the ESS process. -- Command: ess-eval-region START END TOGGLE MESSAGE 'C-c C-r' Sends the current region to the ESS process. -- Command: ess-eval-region-and-go START END VIS 'C-c M-r' Like 'ess-eval-region' but additionally switches point to the ESS process. -- Command: ess-eval-buffer VIS 'C-c C-b' Sends the current buffer to the ESS process. -- Command: ess-eval-buffer-and-go VIS 'C-c M-b' Like 'ess-eval-buffer' but additionally switches point to the ESS process. All the above 'ess-eval-*' commands are useful for evaluating small amounts of code and observing the results in the process buffer for debugging purposes, or for generating transcripts from source files. When editing R functions, it is generally preferable to use 'C-c C-l' to update the function's value. In particular, 'ess-eval-buffer' is now largely obsolete. A useful way to work is to divide the frame into two windows; one containing the source code and the other containing the process buffer. If you wish to make the process buffer scroll automatically when the output reaches the bottom of the window, you will need to set the variable 'comint-move-point-for-output' to ''others' or 't'.  File: ess.info, Node: Transcript Mode, Next: Editing objects, Prev: Evaluating code, Up: Top 6 Manipulating saved transcript files ************************************* Inferior R mode records the transcript (the list of all commands executed, and their output) in the process buffer, which can be saved as a "transcript file", which should normally have the suffix '.Rout'. The most obvious use for a transcript file is as a static record of the actions you have performed in a particular R session. Sometimes, however, you may wish to re-execute commands recorded in the transcript file by submitting them to a running ESS process. This is what Transcript Mode is for. If you load file a with the suffix '.Rout' into Emacs, it is placed in R Transcript Mode. Transcript Mode is similar to inferior R mode (*note Entering commands::): paragraphs are defined as a command and its output, and you can move though commands either with the paragraph commands or with 'C-c C-p' and 'C-c C-n'. * Menu: * Resubmit:: Resubmitting commands from the transcript file * Clean:: Cleaning transcript files  File: ess.info, Node: Resubmit, Next: Clean, Up: Transcript Mode 6.1 Resubmitting commands from the transcript file ================================================== Three commands are provided to re-submit command lines from the transcript file to a running ESS process. They are: -- Command: ess-transcript-send-command 'M-RET' Sends the current command line to the ESS process, and execute it. -- Command: ess-transcript-copy-command 'C-c RET' Copy the current command to the ESS process, and switch to it (ready to edit the copied command). -- Command: ess-transcript-send-command-and-move 'RET' Sends the current command to the ESS process, and move to the next command line. This command is useful for submitting a series of commands. Note that the first two commands are similar to those on the same keys in inferior R Mode. In all three cases, the commands should be executed when the cursor is on a command line in the transcript; the prompt is automatically removed before the command is submitted.  File: ess.info, Node: Clean, Prev: Resubmit, Up: Transcript Mode 6.2 Cleaning transcript files ============================= Yet another use for transcript files is to extract the command lines for inclusion in an R source file or function. Transcript mode provides one command which does just this: -- Command: ess-transcript-clean-region BEG END EVEN-IF-READ-ONLY 'C-c C-w' Strip the transcript in the region (given by BEG and END), leaving only commands. Deletes any lines not beginning with a prompt, and then removes the prompt from those lines that remain. Prefix argument EVEN-IF-READ-ONLY means to clean even if the buffer is read-only. Don't forget to remove any erroneous commands first! The remaining command lines may then be copied to a source file or edit buffer for inclusion in a function definition, or may be evaluated directly (*note Evaluating code::) using the code evaluation commands from R mode, also available in R Transcript Mode.  File: ess.info, Node: Editing objects, Next: Help, Prev: Transcript Mode, Up: Top 7 Editing objects and functions ******************************* ESS provides facilities for editing R objects within your Emacs session. Most editing is performed on R functions, although in theory you may edit datasets as well. Edit buffers are always associated with files, although you may choose to make these files temporary if you wish. Alternatively, you may make use of a simple yet powerful mechanism for maintaining backups of text representations of R functions. Error-checking is performed when R code is loaded into the ESS process. * Menu: * Edit buffer:: Edit objects in a specialized buffer * Loading:: Loading source files into the ESS process * Error Checking:: Detecting errors in source files * Indenting:: Indenting and formatting S code * Other edit buffer commands:: Commands for motion, completion and more * Source Files:: Maintaining R source files * Source Directories:: Names and locations of dump files  File: ess.info, Node: Edit buffer, Next: Loading, Up: Editing objects 7.1 Creating or modifying R objects =================================== To edit an object, type -- Command: ess-dump-object-into-edit-buffer OBJECT 'C-c C-e C-d' Edit an object in its own edit buffer. from within the iESS process buffer ('*R*'). You will then be prompted for an object to edit: you may either type in the name of an existing object (for which completion is available using the 'TAB' key), or you may enter the name of a new object. A buffer will be created containing the text representation of the requested object or, if you entered the name of a non-existent object at the prompt and the variable 'ess-function-template' is non-'nil', you will be presented with a template defined by that variable, which defaults to a skeleton function construct. You may then edit the function as required. The edit buffer generated by 'ess-dump-object-into-edit-buffer' is placed in the 'ESS' major mode which provides a number of commands to facilitate editing R source code. Commands are provided to intelligently indent R code, evaluate portions of R code and to move around R code constructs. Note: when you dump a file with 'C-c C-e C-d', ESS first checks to see whether there already exists an edit buffer containing that object and, if so, pops you directly to that buffer. If not, ESS next checks whether there is a file in the appropriate place with the appropriate name (*note Source Files::) and if so, reads in that file. You can use this facility to return to an object you were editing in a previous session (and which possibly was never loaded to the R session). Finally, if both these tests fail, the ESS process is consulted and a 'dump()' command issued. If you want to force ESS to ask the ESS process for the object's definition (say, to reformat an unmodified buffer or to revert back to R's idea of the object's definition) pass a prefix argument to 'ess-dump-object-into-edit-buffer' by typing 'C-u C-c C-e C-d'.  File: ess.info, Node: Loading, Next: Error Checking, Prev: Edit buffer, Up: Editing objects 7.2 Loading source files into the ESS process ============================================= The best way to get information -- particularly function definitions -- into R is to load them in as source file, using R's 'source' function. You have already seen how to create source files using 'C-c C-e C-d'; ESS provides a complementary command for loading source files (even files not created with ESS!) into the ESS process, namely 'ess-load-file' ('C-c M-l'). *note Hot keys::. After typing 'C-c M-l' you will prompt for the name of the file to load into R; usually this is the current buffer's file which is the default value (selected by simply pressing 'RET' at the prompt). You will be asked to save the buffer first if it has been modified (this happens automatically if the buffer was generated with 'C-c C-e C-d'). The file will then be loaded, and if it loads successfully you will be returned to the ESS process.  File: ess.info, Node: Error Checking, Next: Indenting, Prev: Loading, Up: Editing objects 7.3 Detecting errors in source files ==================================== If any errors occur when loading a file with 'C-c C-l', ESS will inform you of this fact. In this case, you can jump directly to the line in the source file which caused the error by typing 'C-c `' ('ess-parse-errors'). You will be returned to the offending file (loading it into a buffer if necessary) with point at the line S reported as containing the error. You may then correct the error, and reload the file. Note that none of the commands in an R source file will take effect if any part of the file contains errors. Sometimes the error is not caused by a syntax error (loading a non-existent file for example). In this case typing 'C-c `' will simply display a buffer containing S's error message. You can force this behavior (and avoid jumping to the file when there _is_ a syntax error) by passing a prefix argument to 'ess-parse-errors' with 'C-u C-c `'.  File: ess.info, Node: Indenting, Next: Other edit buffer commands, Prev: Error Checking, Up: Editing objects 7.4 Indenting and formatting R code =================================== ESS provides a sophisticated mechanism for indenting R source code. Compound statements (delimited by '{' and '}') are indented relative to their enclosing block. In addition, the braces have been electrified to automatically indent to the correct position when inserted, and optionally insert a newline at the appropriate place as well. Lines which continue an incomplete expression are indented relative to the first line of the expression. Function definitions, 'if' statements, calls to 'expression()' and loop constructs are all recognized and indented appropriately. User variables are provided to control the amount of indentation in each case, and there are also a number of predefined indentation styles to choose from. Comments are also handled specially by ESS, using an idea borrowed from the Emacs-Lisp indentation style. By default, comments beginning with '###' are aligned to the beginning of the line. Comments beginning with '##' are aligned to the current level of indentation for the block containing the comment. Finally, comments beginning with '#' are aligned to a column on the right (the 40th column by default, but this value is controlled by the variable 'comment-column',) or just after the expression on the line containing the comment if it extends beyond the indentation column. You turn off the default behavior by adding the line '(setq ess-indent-with-fancy-comments nil)' to your '.emacs' file. ESS also supports Roxygen entries which is R documentation maintained in the source code as comments *Note Roxygen::. The indentation commands provided by ESS are: -- Command: ess-indent-or-complete 'TAB' Indents the current line as R code. Try to indent first, and if code is already properly indented, complete instead. In ess-mode, only tries completion if 'ess-tab-complete-in-script' is non-nil. See also 'ess-first-tab-never-complete'. -- User Option: ess-tab-complete-in-script If non-'nil', 'TAB' in script buffers tries to complete if there is nothing to indent. -- User Option: ess-first-tab-never-complete If non-'nil', 'TAB' never tries to complete in ess-mode. The default ''symbol' does not try to complete if the next char is a valid symbol constituent. There are more options, see the help ('C-h v'). -- Command: ess-indent-exp 'TAB' Indents each line in the R (compound) expression which follows point. Very useful for beautifying your R code. -- Command: ess-electric-brace '{' '}' The braces automatically indent to the correct position when typed. The following Emacs command are also helpful: 'RET' 'LFD' 'newline-and-indent' Insert a newline, and indent the next line. (Note that most keyboards nowadays do not have a key, but and 'C-j' are equivalent.) 'M-;' 'indent-dwim' Call the comment command you want (Do What I Mean). * Menu: * Styles:: Changing styles for indentation and alignment  File: ess.info, Node: Styles, Up: Indenting 7.4.1 Changing styles for code indentation and alignment -------------------------------------------------------- The combined value of twelve variables (4 of three groups 'ess-indent-*', 'ess-offset-*' and 'ess-align-*') that control indentation are collectively termed a style. ESS provides several styles covering the common styles of indentation: 'DEFAULT', 'OWN', 'GNU', 'BSD', 'K&R', 'C++', 'RRR', 'RRR+', 'Rstudio', 'Rstudio-', and 'CLB'. The variable 'ess-style-alist' lists the value of each indentation variable per style (and its documentation contains more). -- Command: ess-set-style 'C-c C-e C-s' (or 'C-c C-e s') sets the formatting style in this buffer to be one of the predefined styles, see above. The 'DEFAULT' style uses the default values for the indenting variables; The 'OWN' style allows you to use your own private values of the indentation variable, see below. -- User Option: ess-default-style The default value of 'ess-style'. See the variable 'ess-style-alist' for how these groups (DEFAULT, OWN, GNU, RRR, ...) map onto different settings for variables. You can set this in your Emacs configuration file: (setq ess-default-style 'C++) -- User Option: ess-style-alist Predefined formatting styles for ESS code. Values for all groups, except OWN, are fixed. To change the value of variables in the OWN group, customize the variable 'ess-own-style-list'. The default style in use is controlled by 'ess-default-style'. The styles 'DEFAULT' and 'OWN' are initially identical. If you wish to edit some of the default values, set 'ess-default-style' to ''OWN' and change 'ess-own-style-list'. *Note Customization::, for convenient ways to set both these variables. If you prefer not to use the customization facility, you can change individual indentation variables within a hook, for example: (defun myindent-ess-hook () (setq ess-indent-level 4)) (add-hook 'ess-mode-hook 'myindent-ess-hook) In the rare case that you'd like to add an entire new indentation style of your own, copy the definition of 'ess-own-style-list' to a new variable and ensure that the last line of the ':set' declaration calls 'ess-add-style' with a unique name for your style (e.g. ''MINE'). Finally, add '(setq ess-default-style 'MINE)' to use your new style.  File: ess.info, Node: Other edit buffer commands, Next: Source Files, Prev: Indenting, Up: Editing objects 7.5 Commands for motion, completion and more ============================================ A number of commands are provided to move across function definitions in the edit buffer: -- Command: ess-goto-beginning-of-function-or-para 'ESC C-a' aka 'C-M-a' If inside a function go to the beginning of it, otherwise go to the beginning of paragraph. -- Command: ess-goto-end-of-function-or-para 'ESC C-e' aka 'C-M-e' Move point to the end of the function containing point. -- Command: ess-mark-function 'ESC C-h' aka 'C-M-h' Place point at the beginning of the R function containing point, and mark at the end. Don't forget the usual Emacs commands for moving over balanced expressions and parentheses: *Note Lists and Sexps: (Emacs)Lists. Completion is provided in the edit buffer in a similar fashion to the process buffer: first indents, and if there is nothing to indent, completes the object or file name; 'M-?' lists file completions. See *Note Completion::, for more. Finally, 'C-c C-z' ('ess-switch-to-inferior-or-script-buffer') returns you to the 'iESS' process buffer, if done from a script buffer, placing point at the end of the buffer. If this is done from the 'iESS' process buffer, point is taken to the script buffer. In addition many commands available in the process buffer are also available in the script buffer. You can still read help files with 'C-c C-v', edit another function with 'C-c C-e C-d' and of course 'C-c C-l' can be used to load a source file into R.  File: ess.info, Node: Source Files, Next: Source Directories, Prev: Other edit buffer commands, Up: Editing objects 7.6 Maintaining R source files ============================== Every edit buffer in ESS is associated with a "dump file" on disk. Dump files are created whenever you type 'C-c C-e C-d' ('ess-dump-object-into-edit-buffer'), and may either be deleted after use, or kept as a backup file or as a means of keeping several versions of an R function. -- User Option: ess-delete-dump-files If non-'nil', dump files created with C-c C-e C-d are deleted immediately after they are created by the ess-process. Since immediately after R dumps an object's definition to a disk file the source code on disk corresponds exactly to R's idea of the object's definition, the disk file isn't needed; deleting it now has the advantage that if you _don't_ modify the file (say, because you just wanted to look at the definition of one of the standard R functions) the source dump file won't be left around when you kill the buffer. Note that this variable only applies to files generated with R's 'dump' function; it doesn't apply to source files which already exist. The default value is 't'. -- User Option: ess-keep-dump-files Variable controlling whether to delete dump files after a successful load. If 'nil': always delete. If 'ask', confirm to delete. If 'check', confirm to delete, except for files created with 'ess-dump-object-into-edit-buffer'. Anything else, never delete. This variable only affects the behaviour of 'ess-load-file'. Dump files are never deleted if an error occurs during the load. After an object has been successfully (without error) loaded back into R with 'C-c C-l', the disk file again corresponds exactly (well, almost -- see below) to R's record of the object's definition, and so some people prefer to delete the disk file rather than unnecessarily use up space. This option allows you to do just that. If the value of 'ess-keep-dump-files' is 't', dump files are never deleted after they are loaded. Thus you can maintain a complete text record of the functions you have edited within ESS. Backup files are kept as usual, and so by using the Emacs numbered backup facility -- *note Single or Numbered Backups: (emacs)Backup Names, you can keep a historic record of function definitions. Another possibility is to maintain the files with a version-control system such as git *Note Version Control: (emacs)Version Control. As long as a dump file exists in the appropriate place for a particular object, editing that object with 'C-c C-e C-d' finds that file for editing (unless a prefix argument is given) -- the ESS process is not consulted. Thus you can keep comments _outside_ the function definition as a means of documentation that does not clutter the R object itself. Another useful feature is that you may format the code in any fashion you please without R re-indenting the code every time you edit it. These features are particularly useful for project-based work. If the value of 'ess-keep-dump-files' is nil, the dump file is always silently deleted after a successful load with 'C-c C-l'. While this is useful for files that were created with 'C-c C-e C-d' it also applies to any other file you load (say, a source file of function definitions), and so can be dangerous to use unless you are careful. Note that since 'ess-keep-dump-files' is buffer-local, you can make sure particular files are not deleted by setting it to 't' in the Local Variables section of the file *Note Local Variables in Files: (emacs)File Variables. A safer option is to set 'ess-keep-dump-files' to 'ask'; this means that ESS will always ask for confirmation before deleting the file. Since this can get annoying if you always want to delete dump files created with 'C-c C-e C-d', but not any other files, setting 'ess-keep-dump-files' to 'check' (the default value) will silently delete dump files created with 'C-c C-e C-d' in the current Emacs session, but query for any other file. Note that in any case you will only be asked for confirmation once per file, and your answer is remembered for the rest of the Emacs session. Note that in all cases, if an error (such as a syntax error) is detected while loading the file with 'C-c C-l', the dump file is _never_ deleted. This is so that you can edit the file in a new Emacs session if you happen to quit Emacs before correcting the error. Dump buffers are always autosaved, regardless of the value of 'ess-keep-dump-files'.  File: ess.info, Node: Source Directories, Prev: Source Files, Up: Editing objects 7.7 Names and locations of dump files ===================================== Every dump file should be given a unique file name, usually the dumped object name with some additions. -- User Option: ess-dump-filename-template Template for filenames of dumped objects. '%s' is replaced by the object name. By default, dump file names are the user name, followed by '.' and the object and ending with '.R'. Thus if user 'joe' dumps the object 'myfun' the dump file will have name 'joe.myfun.R'. The username part is included to avoid clashes when dumping into a publicly-writable directory, such as '/tmp'; you may wish to remove this part if you are dumping into a directory owned by you. You may also specify the directory in which dump files are written: -- User Option: ess-source-directory Directory name (ending in a slash) where R dump files are to be written. By default, dump files are always written to '/tmp', which is fine when 'ess-keep-dump-files' is 'nil'. If you are keeping dump files, then you will probably want to keep them somewhere in your home directory, say '~/R-source'. This could be achieved by including the following line in your Emacs configuration file: (setq ess-source-directory (expand-file-name "~/R-source/")) If you would prefer to keep your dump files in separate directories depending on the value of some variable, ESS provides a facility for this also. By setting 'ess-source-directory' to a lambda expression which evaluates to a directory name, you have a great deal of flexibility in selecting the directory for a particular source file to appear in. The lambda expression is evaluated with the process buffer as the current buffer and so you can use the variables local to that buffer to make your choice. For example, the following expression causes source files to be saved in the subdirectory 'Src' of the directory the ESS process was run in. (setq ess-source-directory (lambda () (concat ess-directory "Src/"))) ('ess-directory' is a buffer-local variable in process buffers which records the directory the ESS process was run from.) This is useful if you keep your dump files and you often edit objects with the same name in different ESS processes. Alternatively, if you often change your R working directory during an R session, you may like to keep dump files in some subdirectory of the directory pointed to by the first element of the current search list. This way you can edit objects of the same name in different directories during the one R session: (setq ess-source-directory (lambda () (file-name-as-directory (expand-file-name (concat (car ess-search-list) "/.Src"))))) If the directory generated by the lambda function does not exist but can be created, you will be asked whether you wish to create the directory. If you choose not to, or the directory cannot be created, you will not be able to edit functions.  File: ess.info, Node: Help, Next: Completion, Prev: Editing objects, Up: Top 8 Reading help files ******************** ESS provides an easy-to-use facility for reading R help files from within Emacs. From within the ESS process buffer or any ESS edit buffer, typing 'C-c C-v' ('ess-display-help-on-object') will prompt you for the name of an object for which you would like documentation. Completion is provided over all objects which have help files. If the requested object has documentation, you will be popped into a buffer (named '*help(OBJ-NAME)*') containing the help file. This buffer is placed in a special ESS help mode which disables the usual editing commands but which provides a number of keys for paging through the help file. Help commands: '?' 'ess-describe-help-mode' Pops up a help buffer with a list of the commands available in R help mode. 'h' 'ess-display-help-on-object' Pop up a help buffer for a different object. Paging commands: 'DEL' 'scroll-down-command' Move one screen backwards through the help file. 'SPC' 'scroll-up-command' Move one screen forwards through the help file. '>' '<' 'end/beginning-of-buffer' Move to the end or beginning of the help file, respectively. Section-based motion commands: 'n' 'p' 'ess-skip-to-previous-section' and 'ess-skip-to-next-section' Move to the next and previous section header in the help file, respectively. A section header consists of a number of capitalized words, followed by a colon. In addition, the 's' key followed by one of the following letters will jump to a particular section in the help file. Note that the exact headings available and capitalization scheme may vary across languages. You may use 's ?' to get the current list of active key bindings. 'a' Arguments: 'b' Background: 'B' Bugs: 'd' Description: 'D' Details: 'e' Examples: 'n' Note: 'O' Optional Arguments: 'R' Required Arguments: 'r' References: 's' See Also: 'S' Side Effects: 'u' Usage: 'v' Value: '?' Pops up a help buffer with a list of the defined section motion keys. Evaluation: 'l' 'ess-eval-line-and-step' Evaluates the current line in the ESS process, and moves to the next line. Useful for running examples in help files. 'r' 'ess-eval-region' Send the contents of the current region to the ESS process. Useful for running examples in help files. Quit commands: 'q' 'ess-help-quit' Return to previously selected buffer, and bury the help buffer. 'k' 'kill-buffer' Return to previously selected buffer, and kills the help buffer. 'x' 'ess-kill-buffer-and-go' Return to the ESS process, killing this help buffer. Miscellaneous: 'i' 'ess-display-index' Prompt for a package and display it's help index. 'v' 'ess-display-vignettes' Display all available vignettes. 'w' 'ess-display-help-in-browser' Display current help page with the web browser. '/' 'isearch-forward' Same as 'C-s'. In addition, all of the ESS commands available in the edit buffers are also available in R help mode (*note Edit buffer::). Of course, the usual (non-editing) Emacs commands are available, and for convenience the digits and <-> act as prefix arguments. If a help buffer already exists for an object for which help is requested, that buffer is popped to immediately; the ESS process is not consulted at all. If the contents of the help file have changed, you either need to kill the help buffer first, or pass a prefix argument (with 'C-u') to 'ess-display-help-on-object'. Help buffers are marked as temporary buffers in ESS, and are deleted when 'ess-quit' or 'ess-cleanup' are called. Help buffers normally appear in another window within the current frame. If you wish help buffers to appear in their own frame (either one per help buffer, or one for all help buffers), you can customize the variable 'ess-help-own-frame'.  File: ess.info, Node: Completion, Next: Developing with ESS, Prev: Help, Up: Top 9 Completion ************ * Menu: * Object names:: * Function arguments:: * Minibuffer completion:: * Auto-complete:: * Company:: * Icicles::  File: ess.info, Node: Object names, Next: Function arguments, Up: Completion 9.1 Completion of object names ============================== The key is for completion. The value of the variable 'ess-first-tab-never-complete' controls when completion is allowed controls when completion is allowed to occur. In 'ess-mode' first tries to indent, and if there is nothing to indent, complete the object name instead. 'TAB' 'comint-dynamic-complete' Complete the R object name or filename before point. When the cursor is just after a partially-completed object name, pressing provides completion in a similar fashion to the rest of Emacs. ESS maintains a list of all objects known to R at any given time, which basically consists of all objects (functions and datasets) in every attached directory listed by the 'search()' command along with the component objects of attached data frames For example, consider three functions 'binomplot()', 'binom.test()' and 'binomial()'. Typing 'bin TAB' will insert the characters 'om', completing the longest prefix ('binom') which distinguishes these three commands. Pressing 'TAB' once more provides a list of the three commands which have this prefix, allowing you to add more characters (say, '.') which specify the function you desire. After entering more characters pressing 'TAB' yet again will complete the object name up to uniqueness, etc. If you just wish to see what completions exist without adding any extra characters, type 'M-?'. -- Command: ess-list-object-completions 'M-?' List all possible completions of the object name at point. ESS also provides completion over the components of named lists and environments (after '$'), S4 classes slots (after @), package and namespace objects (after :: and :::). Completion is also provided over file names, which is particularly useful when using R functions such as 'get()' or 'scan()' which require fully expanded file names. In the iESS buffer, if the cursor is not in a string and does not follow a (partial) object name, the key has a third use: it expands history references. *Note History expansion::. Efficiency in completion is gained by maintaining a cache of objects currently known to R; when a new object becomes available or is deleted, only one component of the cache corresponding to the associated directory needs to be refreshed. If ESS ever becomes confused about what objects are available for completion (such as when if refuses to complete an object you *know* is there), the command 'M-x ess-resynch' forces the _entire_ cache to be refreshed, which should fix the problem.  File: ess.info, Node: Function arguments, Next: Minibuffer completion, Prev: Object names, Up: Completion 9.2 Completion of function arguments ==================================== When inside a function call (i.e. following ''(''), 'TAB' completion also provides function arguments. If function is a generic, completion will provide all the arguments of 'S3' methods known to 'R'. A related functionality is *Note ESS ElDoc::, which displays function arguments in the echo area whenever the point is inside a function call.  File: ess.info, Node: Minibuffer completion, Next: Auto-complete, Prev: Function arguments, Up: Completion 9.3 Minibuffer completion ========================= ESS uses 'IDO' mechanism (part of default Emacs) for minibuffer completion if the 'ido' package is available and the value of 'ess-use-ido' it 't' (the default). The completion command 'ess-completing-read' falls back on classic 'completion-read' interface if this feature is not available for whatever reason.  File: ess.info, Node: Auto-complete, Next: Company, Prev: Minibuffer completion, Up: Completion 9.4 Integration with auto-complete package ========================================== ESS provides three sources for 'Auto Completion' mode: 'ac-source-R-args', 'ac-source-R-objects' and 'ac-source-R'. The last one combines the previous two and makes them play nicely together. See auto-complete package documentation () for how to modify and install your own completion sources. For the default auto-complete ESS configuration, install the latest version of 'auto-complete' package. ESS automatically detect the package and activates auto-complete in ESS buffers. To deactivate AC, place the following into your init file: (setq ess-use-auto-complete nil) Or, to activate auto-completion only in the 'ess-mode' buffers: (setq ess-use-auto-complete 'script-only) ESS provides AC help both for arguments and objects (default keys 'C-?' or ''). You can bind 'M-h' to display quick help pop-ups: (define-key ac-completing-map (kbd "M-h") 'ac-quick-help) 'AC' binds 'M-n', and 'M-p' for the navigation in the completion menu, which might be inconvenient if you want it to use in the inferior R. Bind it to something else: (define-key ac-completing-map "\M-n" nil) ;; was ac-next (define-key ac-completing-map "\M-p" nil) ;; was ac-previous (define-key ac-completing-map "\M-," 'ac-next) (define-key ac-completing-map "\M-k" 'ac-previous)  File: ess.info, Node: Company, Next: Icicles, Prev: Auto-complete, Up: Completion 9.5 Company =========== Another popular package for completion is company, short for complete anything. ESS provides support for company out-of-the-box. To disable company support, set 'ess-use-company' to 'nil'. You can set it to ''script-only' to only activate company in R scripts.  File: ess.info, Node: Icicles, Prev: Company, Up: Completion 9.6 Icicles =========== Another option for comprehensively handling completion in Emacs is via Icicles (). It allows users to have completions shown temporarily in the standard '*Completions*' buffer, and interactively select completion candidates using several methods. As of version 2013.04.04, Icicles provides support for completion in ESS. Please consult Icicles documentation, which is easily accessible via 'customize-group Icicles', for more details on installation and customization options. Once installed, Icicles can be activated by evaluating): (require 'icicles) (icy-mode 1) Icicles can be toggled by typing 'M-x icy'. When Icicles is on, 'TAB' offers completion, provided the conditions determined by 'ess-first-tab-never-complete' allow it. Typing 'M-TAB' will attempt completion regardless. Typing 'M-?' in 'ESS' or 'iESS' modes brings up the relevant completion candidates from which to choose. Minibuffer input filters the available candidates. Use 'TAB' for prefix completion or 'S-TAB' for substring or regexp completion. Use 'S-SPC' to match an additional pattern (repeatable). You can cycle among the matching candidates, choosing with 'RET' or 'mouse-2'.  File: ess.info, Node: Developing with ESS, Next: Extras, Prev: Completion, Up: Top 10 Developing with ESS ********************** ESS provides several tools to help you with the development of your R packages: * Menu: * ESS tracebug:: Visual debugging, breakpoints, tracing, watch etc. * Editing documentation:: Tools to edit R documentation * Namespaced Evaluation:: Develop your packages on the fly  File: ess.info, Node: ESS tracebug, Next: Editing documentation, Up: Developing with ESS 10.1 ESS tracebug ================= * Menu: * Getting started with tracebug:: Quick tutorial ESS 'tracebug' offers visual debugging, interactive error navigation, interactive backtrace, breakpoint manipulation, control over R error actions, watch window and interactive flagging/unflagging of functions for debugging. 'ess-tracebug' is on by default. You can toggle it on and off with 'M-x' 'ess-tracebug'. To disable startup activation of 'ess-tracebug' set 'ess-use-tracebug' to nil. Tracebug functionality can be found on 'ess-dev-map', bound to 'C-c C-t'. Additionally, when subprocess is in a debugging state 'ess-debug-minor-mode' is active and the following additional shortcuts are available: * Interactive Debugging (`ess-debug-minor-mode-map'): M-C . Continue . `ess-debug-command-continue' M-C-C . Continue multi . `ess-debug-command-continue-multi' M-N . Next step . `ess-debug-command-next' M-C-N . Next step multi . `ess-debug-command-next-multi' M-U . Up frame . `ess-debug-command-up' M-Q . Quit debugging . `ess-debug-command-quit' These are all the tracebug commands defined in 'ess-dev-map' ('C-c C-t ?' to show this table): * Breakpoints (`ess-dev-map'): b . Set BP (repeat to cycle BP type) . `ess-bp-set' B . Set conditional BP . `ess-bp-set-conditional' k . Kill BP . `ess-bp-kil' K . Kill all BPs . `ess-bp-kill-all' o . Toggle BP state . `ess-bp-toggle-state' l . Set logger BP . `ess-bp-set-logger' n . Goto next BP . `ess-bp-next' p . Goto previous BP . `ess-bp-previous' (C- prefixed equivalents are also defined) * Debugging (`ess-dev-map'): ` . Show traceback . `ess-show-traceback' (also on C-c `) ~ . Show callstack . `ess-show-call-stack' (also on C-c ~) e . Toggle error action (repeat to cycle). `ess-debug-toggle-error-action' d . Flag for debugging . `ess-debug-flag-for-debugging' u . Unflag for debugging . `ess-debug-unflag-for-debugging' w . Watch window . `ess-watch' (C- prefixed equivalents are also defined) * Navigation to errors (general Emacs functionality): C-x `, M-g n . `next-error' M-g p . `previous-error' * Misc: ? . Show this help . `ess-tracebug-show-help' To configure how electric watch window splits the display see 'ess-watch-width-threshold' and 'ess-watch-height-threshold' variables. _Note:_ Currently, ess-tracebug does not detect some of R's debug related messages in non-English locales. To set your R messages to English add the following line to your .Rprofile init file: Sys.setlocale("LC_MESSAGES", "C")  File: ess.info, Node: Getting started with tracebug, Up: ESS tracebug 10.1.1 Getting started with tracebug ------------------------------------ Consider a buffer with the following function: test <- function(x){ mean(x), } Evaluating the function (e.g. 'C-c C-c') results in an error about an unexpected comma. You can use 'next-error' (bound by default to 'C-x `', 'M-g n', and 'M-g M-n') to jump to the place where the error occurred. Alternatively, use the mouse to click on the error to jump to where it occurred. Correct the error by deleting the comma. Now put point on 'mean' and set the breakpoint using 'C-c C-t b' ('ess-bp-set') and reevaluate the function. Jump to the inferior buffer (possibly using 'C-c C-z') and evaluate 'test(1:10)'. An interactive debug process starts, stopping at the breakpoint we just specified. Here you can debug your function (what is 'x' at this point?). Use 'M-N' to continue. Let's replace our test function with one slightly more complicated: test <- function(x){ x <- x + 1 y <- mean(x) x <- ifelse(x > 5, x, x - 100) list(x, y) } Try setting multiple breakpoints. You can unset a breakpoint by killing it with 'C-c C-t k'. You can set conditional breakpoints too. Try setting one by placing point on the line 'x <- x + 1' and doing 'C-c C-t B'. ESS will ask for the condition. Let's set it to '!is.numeric(x)'. After re-evaluating 'test', try calling 'test(1:100)' and 'test('foo')'. You can remove all breakpoints with 'C-c C-t K'. You can flag a function for debugging (similar to calling 'debug(test)' at R's prompt) by doing 'C-c C-t d'. Try this yourself by putting point over 'test' and doing 'C-c C-t d'. If an error occurs, you can get the complete call stack by doing 'C-c `' or 'C-c C-t `' ('ess-show-traceback'). Tracebug also offers a watch window where you can watch values of objects. Open it with 'C-c C-t w' ('ess-watch'). Initially you aren't watching anything. Add something with 'a' (e.g. 'a test'). The watch window displays what the object is at any given time and automatically updates. Quit the watch window with 'q'.  File: ess.info, Node: Editing documentation, Next: Namespaced Evaluation, Prev: ESS tracebug, Up: Developing with ESS 10.2 Editing documentation ========================== ESS provides two ways of writing documentation for R objects. Either using the standard R documentation system or using in-source documentation written as structured comment fields for use with the Roxygen package. * Menu: * R documentation files:: Edit objects in a specialized buffer * Roxygen:: Loading source files into the ESS process  File: ess.info, Node: R documentation files, Next: Roxygen, Up: Editing documentation 10.2.1 Editing R documentation (Rd) files ----------------------------------------- R objects are documented in files written in the "R documentation" ("Rd"), a simple markup language closely resembling (La)TeX, which can be processed into a variety of formats, including LaTeX, HTML, and plain text. Rd format is described in section "Rd format" of the "Writing R Extensions" manual in the R distribution. ESS has several features that facilitate editing Rd files. Visiting an Rd file as characterized by its extension 'Rd' will activate Rd Mode, which provides several facilities for making editing R documentation files more convenient, by helping with indentation, insertions, even doing some of the typing for you (with Abbrev Mode), and by showing Rd keywords, strings, etc. in different faces (with Font Lock Mode). Note that R also accepts Rd files with extension 'rd'; to activate ESS[Rd] support for this extension, you may need to add (add-to-list 'auto-mode-alist '("\\.rd\\'" . Rd-mode)) to one of your Emacs startup files. In Rd mode, the following special Emacs commands can be used in addition to the standard Emacs commands. 'C-h m' Describe the features of Rd mode. 'LFD' 'RET' Reindent the current line, insert a newline and indent the new line ('reindent-then-newline-and-indent'). An abbrev before point is expanded if 'abbrev-mode' is non-'nil'. 'TAB' Indent current line based on its contents and on previous lines. ('indent-according-to-mode'). 'C-c C-e' Insert a "skeleton" with Rd markup for at least all mandatory entries in Rd files ('Rd-mode-insert-skeleton'). Note that many users might prefer to use the R function 'prompt' on an existing R object to generate a non-empty Rd "shell" documenting the object (which already has all information filled in which can be obtained from the object). 'C-c C-f' Insert "font" specifiers for some of the Rd markup commands markup available for emphasizing or quoting text, including markup for URLs and email addresses ('Rd-font'). 'C-c C-f' is only a prefix; see e.g. 'C-c C-f TAB' for the available bindings. Note that currently, not all of the Rd text markup as described in section "Marking text" of "Writing R Extensions" can be accessed via 'C-c C-f'. 'C-c C-j' Insert a suitably indented '\item{' on the next line ('Rd-mode-insert-item'). 'C-c C-p' Preview a plain text version ("help file", *note Help::) generated from the Rd file ('Rd-preview-help'). In addition, when editing Rd files one can interact with a running R process in a similar way as when editing R language files. For example, 'C-c C-v' provides access to on-line help, and 'C-c C-n' sends the current line to the R process for evaluation. This interaction is particularly useful when editing the examples in the Rd file. See 'C-h m' for all available commands. Rd mode also provides access to abbreviations for most of the Rd markup commands. Type 'M-x list-abbrevs' with Abbrev mode turned on to list all available abbrevs. Note that all Rd abbrevs start with a grave accent. Rd mode can be customized via the following variables. -- User Option: Rd-mode-hook Hook to be run when Rd mode is entered. -- User Option: Rd-indent-level The indentation of Rd code with respect to containing blocks. Default is 2. -- User Option: Rd-to-help-command The shell command used for converting Rd source to help text. Default is 'R CMD Rd2txt'. To automatically turn on the abbrev and font-lock features of Rd mode, add the following lines to one of your Emacs startup files: (add-hook 'Rd-mode-hook (lambda () (abbrev-mode 1) (font-lock-mode 1)))  File: ess.info, Node: Roxygen, Prev: R documentation files, Up: Editing documentation 10.2.2 Editing Roxygen documentation ------------------------------------ The Roxygen R package makes it possible to keep the intended contents for Rd files as structured comments in the R source files. Roxygen can then parse R files and generate appropriate Rd files from these comments, fill the usage fields as well as updating 'NAMESPACE' files. See the Roxygen documentation found via for more information on its usage. An example of an Roxygen entry for a simple R function can look like this: ##' Description of the function ##' ##' Further details about this function ##' @title A title ##' @param me all parameters must be listed and documented ##' @return Description of the return value ##' @author The author myfun <- function(me) cat("Hello", me, "\n") The entry is immediately preceding the object to document and all lines start with the Roxygen prefix string, in this case '##''. ESS provides support to edit these documentation entries by providing line filling, navigation, template generation etc. Syntax highlighting is provided for Emacs but not for XEmacs. Roxygen is customized by the variables in the customization group "Ess Roxy". Customizables include the Roxygen prefix, use of folding to toggle visibility of Roxygen entries and the Roxygen template. All ESS Roxygen support is defined in 'ess-roxy.el' which is loaded by default in ESS. The following special Emacs commands are provided. -- Command: ess-roxy-update-entry 'C-c C-o C-o' Generate a Roxygen template or update the parameter list in Roxygen entry at point (or above the function at the point). Documented parameters that are not in the function are placed last in the list, parameters that are not documented and not in the definition are dropped. Parameter descriptions are filled if 'ess-roxy-fill-param-p' is non-nil. -- Command: ess-roxy-toggle-roxy-region BEG END 'C-c C-o C-c' Toggle the presence of the leading Roxygen string on all lines in the marked region (between BEG and END. Convenient for transferring text to Roxygen entries and to evaluate example fields. -- Command: ess-roxy-preview-Rd NAME-FILE 'C-c C-o C-r' Use the attached R process to parse the entry at point to obtain the Rd code. Convenient for previewing and checking syntax. When used with the prefix argument NAME-FILE, i.e. 'C-u C-c C-e C-r', place the content in a buffer associated with a Rd file with the same name as the documentation. Requires the Roxygen package to be installed. -- Command: ess-roxy-preview-HTML VISIT-INSTEAD-OF-OPEN 'C-c C-o C-t' Use the attached R process to parse the entry at to generate HTML for the entry and open it in a browser. When used with the prefix argument VISIT-INSTEAD-OF-OPEN, i.e. 'C-u C-c C-e C-t', visit the generated HTML file instead. Requires the Roxygen and tools packages to be installed. -- Command: ess-roxy-previous-entry 'C-c C-o p' Go to start of the Roxygen entry above point. -- Command: ess-roxy-next-entry 'C-c C-o n' Go to end of the Roxygen entry above point. -- Command: ess-roxy-hide-all 'C-c C-o C-h' Use the hideshow mode to fold away the visibility of all Roxygen entries. Hide-show support must be enabled for this binding to get defined. ESS also advises the following standard editing functions in order to make Roxygen editing more intuitive: 'TAB' 'ess-R-complete-object-name' Complete Roxygen tag at point. E.g. doing 'TAB' when the point is at the end of '@par' completes to '@param'. 'M-h' 'mark-paragraph' If the transient mark mode is active, place mark and point at start end end of the field at point and activate the mark. 'TAB' 'ess-indent-command' If hide-show support is enabled, fold away the visibility of the Roxygen entry at point. 'M-q' 'fill-paragraph' Fill the Roxygen field at point. 'C-a' 'move-beginning-of-line' Move to the point directly to the right of the Roxygen start string. 'RET' 'newline-and-indent' Insert a new line and the Roxygen prefix string.  File: ess.info, Node: Namespaced Evaluation, Prev: Editing documentation, Up: Developing with ESS 10.3 Namespaced Evaluation ========================== In non package files evaluation commands, *Note Evaluating code::, send portions of the current buffer environment ('R_GlobalEnv'. When developing packages, ESS sends code to the corresponding package namespace and (for visible objects) into package environment (visible on search path). All objects that are assigned are displayed in the minibuffer alongside the environment in which they are assigned. Here is a short overview of how namespace and package environments work in R. All objects defined in a package 'foo' are stored in an environment called 'namespace:foo'. Parent environment of 'namespace:foo' is an environment 'imports:foo' which contains copies of all objects from other packages which 'foo' imports. Parent environment of 'imports:foo' is the 'namespace:base'. Parent environment of 'namespace:base' is .GlobalEnv. Thus functions and methods stored in 'namespace:foo' see all the objects in .GlobalEnv unless shadowed by objects in 'imports:foo', 'namespace:base', or 'namespace:foo' itself. There is another environment associated with 'foo' - 'package:foo'. This environment stores *copies* of exported objects from 'namespace:foo' and is placed on the search() path, i.e. if 'foo' is loaded and if you start with .GlobalEnv and iteratively call parent.env() you will get eventually to 'package:foo'. Thus all methods and functions defined in .GlobalEnv can "see" objects in 'package:foo' environment. See also . Occasionally you want to evaluate into a package from a non-package file, or the other way around, evaluate into 'GlobalEnv' from inside a package. In such cases 'C-c C-t C-s' is your friend. -- Command: ess-r-set-evaluation-env ARG 'C-c C-t C-s' Set or unset the current evaluation environment (a package).  File: ess.info, Node: Extras, Next: ESS for R, Prev: Developing with ESS, Up: Top 11 Other ESS features and tools ******************************* ESS has a few extra features, which didn't fit anywhere else. * Menu: * ESS ElDoc:: Display function arguments in minibuffer * ESS Flymake:: On-the-fly syntax checking * Handy commands:: Usefully commands at your fingertips * Highlighting:: Syntactic highlighting of buffers * Parens:: Parenthesis matching * Graphics:: Using graphics with ESS * Imenu:: Support for Imenu in ESS * Toolbar:: Support for toolbar in ESS * Xref:: Xref * Rdired:: Directory editor for R objects * Rutils:: R object/package management and help utilities * Org:: Interaction with Org mode * Sweave and AUCTeX:: Support for Sweave in ESS and AUCTeX  File: ess.info, Node: ESS ElDoc, Next: ESS Flymake, Up: Extras 11.1 ElDoc ========== In 'ElDoc' mode, the echo area displays function's arguments at point. ElDoc is active by default in 'ess-mode' and 'inferior-ess-mode' buffers. To activate it only in 'ess-mode' buffers, place the following into your init file: (setq ess-use-eldoc 'script-only) -- User Option: ess-use-eldoc If 't', activate eldoc in ess-mode and inferior-ess-mode buffers. If ''script-only' activate in ess-mode buffers only. Set 'ess-use-eldoc' to 'nil' to stop using 'ElDoc' altogether. -- User Option: ess-eldoc-show-on-symbol This variable controls whether the help is shown only inside function calls. If set to 't', 'ElDoc' shows help string whenever the point is on a symbol, otherwise (the default), shows only when the point is in a function call, i.e. after ''(''. -- User Option: ess-eldoc-abbreviation-style The variable determines how the doc string should be abbreviated to fit into minibuffer. Posible values are 'nil', 'mild', 'normal', 'strong' and 'aggressive'. Please see the documentation of the variable for more details. The default filter is 'normal'. Ess-eldoc also honors the value of 'eldoc-echo-area-use-multiline-p', which if set to 'nil', will cause the truncation of doc string indifferent of the value of 'ess-eldoc-abbreviation-style'. This way you can combine different filter levels with the truncation.  File: ess.info, Node: ESS Flymake, Next: Handy commands, Prev: ESS ElDoc, Up: Extras 11.2 Flymake ============ The minor mode 'flymake-mode' provides on-the-fly syntax checking. ESS provides support for flymake in R-mode in Emacs versions 26 and newer. It is enabled by default, to disable it you may set 'ess-use-flymake' to 'nil'. In order to use it, you may need to install the 'lintr' R package, available from CRAN. -- User Option: ess-use-flymake When non-nil, use flymake. If ''process', only use flymake when the buffer has an inferior process running. -- User Option: ess-r-flymake-linters This variable describes the linters to use. It can either be a string with an R expression to be used as-is or a list of strings where each element is passed to 'lintr::with_defaults'. See the help page for 'lintr::default_linters' for information on available linters and their defaults. -- User Option: ess-r-flymake-lintr-cache When 't' (the default), lintr uses a cache. Change to 'nil' to disable lintr's caching mechanism.  File: ess.info, Node: Handy commands, Next: Highlighting, Prev: ESS Flymake, Up: Extras 11.3 Handy commands =================== -- Command: ess-handy-commands Request and execute a command from 'ess-handy-commands' list. -- User Option: ess-handy-commands An alist of custom ESS commands available for call by 'ess-handy-commands' and 'ess-smart-comma' function. Currently contains: change-directory 'ess-change-directory' help-index 'ess-display-index' help-object 'ess-display-help-on-object' vignettes 'ess-display-vignettes' objects[ls] 'ess-execute-objects' search 'ess-execute-search' set-width 'ess-execute-screen-options' install.packages 'ess-install.packages' library 'ess-library' setRepos 'ess-setRepositories' sos 'ess-sos' Handy commands: 'ess-library', 'ess-install.packages', etc - ask for item with completion and execute the correspond command. 'ess-sos' is a interface to 'findFn' function in package 'sos'. If package 'sos' is not found, ask user for interactive install.  File: ess.info, Node: Highlighting, Next: Parens, Prev: Handy commands, Up: Extras 11.4 Syntactic highlighting of buffers ====================================== ESS provides Font-Lock (*note Using Multiple Typefaces: (emacs)Faces.) patterns for inferior R Mode, S Mode, and R Transcript Mode buffers. The font-lock patterns are defined by the following variables, which you may modify if desired: -- User Option: inferior-R-font-lock-keywords Font-lock patterns for inferior *R* processes. (There is a corresponding 'inferior-S-font-lock-keywords' for *S* processes.) The default value highlights prompts, inputs, assignments, output messages, vector and matrix labels, and literals such as 'NA' and 'TRUE'. -- User Option: ess-R-font-lock-keywords Font-lock patterns for ESS R programming mode. (There is a corresponding 'ess-S-font-lock-keywords' for S buffers.) The default value highlights function names, literals, assignments, source functions and reserved words.  File: ess.info, Node: Parens, Next: Graphics, Prev: Highlighting, Up: Extras 11.5 Parenthesis matching ========================= Emacs has facilities for highlighting the parenthesis matching the parenthesis at point. This feature is very useful when trying to examine which parentheses match each other. This highlighting also indicates when parentheses are not matching. You may activate it putting this in your Emacs configuration file: (show-paren-mode)  File: ess.info, Node: Graphics, Next: Imenu, Prev: Parens, Up: Extras 11.6 Using graphics with ESS ============================ One of the main features of R is its ability to generate high-resolution graphics plots. When using R in a windowing environment, no additional configuration is necessary; plots will be shown in a new (non-Emacs) window. If not using a windowing environment or S, ESS provides a number of features for dealing with such plots. * Menu: * printer:: The printer() graphics driver * X11:: The X11() (and other X Windows based) driver * winjava:: Java Graphics Device  File: ess.info, Node: printer, Next: X11, Up: Graphics 11.6.1 Using ESS with the 'printer()' driver -------------------------------------------- This is the simplest (and least desirable) method of using graphics within ESS. S's 'printer()' device driver produces crude character based plots which can be contained within the ESS process buffer itself. To start using character graphics, issue the S command printer(width=79) (the 'width=79' argument prevents Emacs line-wrapping at column 80 on an 80-column terminal. Use a different value for a terminal with a different number of columns.) Plotting commands do not generate graphics immediately, but are stored until the 'show()' command is issued, which displays the current figure.  File: ess.info, Node: X11, Next: winjava, Prev: printer, Up: Graphics 11.6.2 Using ESS with windowing devices --------------------------------------- Of course, the ideal way to use graphics with ESS is to use a windowing system. Under X Windows, or X11, this requires that the DISPLAY environment variable be appropriately set.  File: ess.info, Node: winjava, Prev: X11, Up: Graphics 11.6.3 Java Graphics Device --------------------------- S+6.1 and newer on Windows contains a java library that supports graphics. Send the commands: library(winjava) java.graph() to start the graphics driver. This allows you to use ESS for both interaction and graphics within S-PLUS. (Thanks to Tim Hesterberg for this information.)  File: ess.info, Node: Imenu, Next: Toolbar, Prev: Graphics, Up: Extras 11.7 Imenu ========== Imenu is an Emacs tool for providing mode-specific buffer indexes. In some of the ESS editing modes (currently SAS and R), support for Imenu is provided. For example, in R mode buffers, the menubar should display an item called "Imenu-R". Within this menubar you will then be offered bookmarks to particular parts of your source file (such as the starting point of each function definition). Imenu works by searching your buffer for lines that match what ESS thinks is the beginning of a suitable entry, for example the beginning of a function definition. To examine the regular expression that ESS uses, check the value of 'imenu-generic-expression'. This value is set by various ESS variables such as 'ess-imenu-S-generic-expression'.  File: ess.info, Node: Toolbar, Next: Xref, Prev: Imenu, Up: Extras 11.8 Toolbar ============ The R and S editing modes have support for a toolbar. This toolbar provides icons to act as shortcuts for starting new S/R processes, or for evaluating regions of your source buffers. The toolbar should be present if your Emacs can display images. *Note Customization::, for ways to change the toolbar.  File: ess.info, Node: Xref, Next: Rdired, Prev: Toolbar, Up: Extras 11.9 Xref ========= Xref is an Emacs interface that supports finding "identifiers," usually function definitions in ESS's view. ESS ships with support for Xref in Emacs versions 25.1 and higher. *Note (emacs)Xref:: for how to use this feature.  File: ess.info, Node: Rdired, Next: Rutils, Prev: Xref, Up: Extras 11.10 Rdired ============ Ess-rdired provides a dired-like buffer for viewing, editing and plotting objects in your current R session. If you are used to using the dired (directory editor) facility in Emacs, this mode gives you similar functionality for R objects. Start an R session with 'M-x R' and then store a few variables, such as: s <- sin(seq(from=0, to=8*pi, length=100)) x <- c(1, 4, 9) y <- rnorm(20) z <- TRUE Then use 'M-x ess-rdired' to create a buffer listing the objects in your current environment and display it in a new window: mode length s numeric 100 x numeric 3 y numeric 20 z logical 1 Type 'C-h m' or '?' to get a list of the keybindings for this mode. For example, with your point on the line of a variable, 'p' will plot the object, 'v' will view it, and 'd' will mark the object for deletion ('x' will actually perform the deletion).  File: ess.info, Node: Rutils, Next: Org, Prev: Rdired, Up: Extras 11.11 Rutils ============ Ess-rutils builds up on ess-rdired, providing key bindings for performing basic R functions in the inferior-ESS process buffer, such as loading and managing packages, object manipulation (listing, viewing, and deleting), and alternatives to 'help.start()' and 'RSiteSearch()' that use the 'browse-url' Emacs function. The library can be loaded using 'M-x load-file', but the easiest is to include: (require 'ess-rutils) in your Emacs configuration file. Once R is started with 'M-x R', and if the value of the customizable variable 'ess-rutils-keys' is true, several key bindings become available in iESS process buffers: -- Command: ess-rutils-local-pkgs 'C-c C-. l' List all packages in all available libraries. -- Command: ess-rutils-repos-pkgs 'C-c C-. r' List available packages from repositories listed by 'getOptions(``repos'')' in the current R session. -- Command: ess-rutils-update-pkgs LIB REPOS 'C-c C-. u' Update packages in a particular library LIB and repository REPOS. -- Command: ess-rutils-apropos 'C-c C-. a' Search for a string using apropos. -- Command: ess-rutils-rm-all 'C-c C-. m' Remove all R objects. -- Command: ess-rutils-objs 'C-c C-. o' Manipulate R objects; wrapper for 'ess-rdired'. -- Command: ess-rutils-load-wkspc 'C-c C-. w' Load a workspace file into R. -- Command: ess-rutils-save-wkspc 'C-c C-. s' Save a workspace file. -- Command: ess-change-directory 'C-c C-. d' Change the working directory for the current R session. -- Command: ess-rutils-html-docs 'C-c C-. H' Use 'browse-url' to navigate R html documentation. See the submenu 'Rutils' under the iESS menu for alternative access to these functions. The function 'ess-rutils-rsitesearch' is provided without a particular key binding. This function is useful in any Emacs buffer, so can be bound to a user-defined key: (eval-after-load "ess-rutils" '(global-set-key [(control c) (f6)] 'ess-rutils-rsitesearch)) Functions for listing objects and packages ('ess-rutils-local-pkgs', 'ess-rutils-repos-pkgs', and 'ess-rutils-objs') show results in a separate buffer and window, in 'ess-rutils-mode', providing useful key bindings in this mode (type '?' in this buffer for a description).  File: ess.info, Node: Org, Next: Sweave and AUCTeX, Prev: Rutils, Up: Extras 11.12 Interaction with Org mode =============================== Org-mode () now supports reproducible research and literate programming in many languages (including R) - see chapter 14 of the Org manual (). For ESS users, this offers a document-based work environment within which to embed ESS usage. R code lives in code blocks of an Org document, from which it can be edited in ess-mode, evaluated, extracted ("tangled") to pure code files. The code can also be exported ("woven") with the surrounding text to several formats including HTML and LaTeX. Results of evaluation including figures can be captured in the Org document, and data can be passed from the Org document (e.g. from a table) to the ESS R process. (This section contributed by Dan Davison and Eric Schulte.)  File: ess.info, Node: Sweave and AUCTeX, Prev: Org, Up: Extras 11.13 Support for Sweave in ESS and AUCTeX ========================================== ESS provides support for writing and processing Sweave (), building up on Emacs' ess-noweb-mode for literate programming. When working on an Sweave document, the following key bindings are available: -- Command: ess-swv-weave CHOOSE 'M-n s' Run Sweave on the current .Rnw file. If CHOOSE is non-'nil', offer a menu of available weavers. -- Command: ess-swv-latex 'M-n l' Run LaTeX after Sweave'ing. -- Command: ess-swv-PS 'M-n p' Generate and display a postscript file after LaTeX'ing. -- Command: ess-swv-PDF PDFLATEX-CMD 'M-n P' Generate and display a PDF file after LaTeX'ing. Optional argument PDFLATEX-CMD is the command to use, which by default, is the command used to generate the PDF file is the first element of 'ess-swv-pdflatex-commands'. -- User Option: ess-swv-pdflatex-commands Commands used by 'ess-swv-PDF' to run a version of pdflatex; the first entry is the default command. Sweave'ing with 'ess-swv-weave' starts an inferior-ESS process, if one is not available. Other commands are available from the 'Sweaving, Tangling, ...' submenu of the Noweb menu. AUCTeX () users may prefer to set the variable 'ess-swv-plug-into-AUCTeX-p' (available from the "ESS Sweave" customization group) to t. Alternatively, the same can be achieved by activating the entry "AUCTeX Interface" from the 'Sweaving, Tangling, ...' submenu, which toggles this variable on or off. When the interface is activated, new entries for Sweave'ing and LaTeX'ing thereafter are available from AUCTeX's "Command" menu. Sweave'ing can, thus, be done by 'C-c C-c Sweave RET' without an inferior-ESS process. Similarly, LaTeX'ing can be done by 'C-c C-c LaTeXSweave RET'. In both cases, the process can be monitored with 'C-c C-l' ('TeX-recenter-output-buffer'). Open the viewer with 'C-c C-v' ('TeX-view'), as usual in AUCTeX.  File: ess.info, Node: ESS for R, Next: ESS for SAS, Prev: Extras, Up: Top 12 Overview of ESS features for the S family ******************************************** * Menu: * ESS(R)--Editing files:: * iESS(R)--Inferior ESS processes:: * Philosophies for using ESS(R):: * Example ESS usage::  File: ess.info, Node: ESS(R)--Editing files, Next: iESS(R)--Inferior ESS processes, Prev: ESS for R, Up: ESS for R 12.1 ESS[R]-Editing files ========================= ESS[R] mode should be automatically turned on when visiting a file ending with an R or S suffix (*.R, *.S, *.s, etc), which enables the features discussed previously. Alternatively, type 'M-x R-mode' to put the current buffer into R mode. However, one will have to start up an inferior process to take advantage of the interactive features.  File: ess.info, Node: iESS(R)--Inferior ESS processes, Next: Philosophies for using ESS(R), Prev: ESS(R)--Editing files, Up: ESS for R 12.2 iESS[R]-Inferior ESS processes =================================== To start up iESS mode for R, use: M-x R M-x S+3 M-x S4 M-x S+5 M-x S+6 (for R, S-PLUS 3.x, S4, S+5, S+6 or or S+7, respectively. This assumes that you have access to each). In the case that you wish to pass command line arguments to the starting R process, call it with the universal prefix. To set command line arguments that apply to all future iESS sessions, set the variable 'inferior-R-args'. Note that R has some extremely useful command line arguments. For example, '--vanilla' will ensure R starts up without loading in any init files. If you have other versions of R or S available on the system, ESS is also able to start those versions. How this exactly works depend on which OS you are using (details below). The general principle, regardless of OS, is that ESS searches the paths listed in the variable 'exec-path' for R binaries. If ESS cannot find your R binaries, on Unix you can change the unix environment variable 'PATH', as this variable is used to set 'exec-path'. R on GNU/Linux systems and other Unix-like systems (macOS): If you have "R-1.8.1" on your 'exec-path', it can be started using 'M-x R-1.8.1'. By default, ESS will find versions of R beginning "R-1", "R-2", "R-3", "R-devel", or "R-patched". If your versions of R are called other names, consider renaming them with a symbolic link or change the variable 'ess-r-versions'. To see which functions have been created for starting different versions of R, type 'M-x R-' and then hit [Tab]. These other versions of R can also be started from the "ESS->Start Process->Other" menu. R on Windows systems: If you have "rw1081" on your 'exec-path', it can be started using 'M-x rw1081'. By default, ESS will find versions of R located in directories parallel to the version of R in your 'PATH'. If your versions of R are called other names, you will need to change the variable 'ess-rterm-versions'. To see which functions have been created for starting different versions of R, type 'M-x rw' and then hit [Tab]. These other versions of R can also be started from the "ESS->Start Process->Other" menu. Once ESS has found these extra versions of R, it will then create a new function, called 'M-x R-newest', which will call the newest version of R that it found. (ESS examines the date in the first line of information from 'R --version' to determine which is newest.) S on Unix systems: If you have "Splus7" on your 'exec-path', it can be started using 'M-x Splus7'. By default, ESS will find all executables beginning "Splus" on your path. If your versions of S are called other names, consider renaming them with a symbolic link or change the variable 'ess-s-versions'. To see which functions have been created for starting different versions of Splus, type 'M-x Splus' and then hit [Tab]. These other versions of Splus can also be started from the "ESS->Start Process->Other" menu. A second mechanism is also available for running other versions of Splus. The variable 'ess-s-versions-list' is a list of lists; each sublist should be of the form: (DEFUN-NAME PATH ARGS). DEFUN-NAME is the name of the new emacs function you wish to create to start the new S process; PATH is the full path to the version of S you want to run; ARGS is an optional string of command-line arguments to pass to the S process. Here is an example setting: (setq ess-s-versions-list '( ("Splus64" "/usr/local/bin/Splus64") ("Splus64-j" "/usr/local/bin/Splus64" "-j"))) which will then allow you to do 'M-x Splus64-j' to start Splus64 with the corresponding command line arguments. If you change the value of either 'ess-r-versions' or 'ess-s-versions-list', you should put them in your Emacs configuration file before ess-site is loaded, since the new Emacs functions are created when ESS is loaded. Sqpe (S-Plus running inside an Emacs buffer) on Windows systems: If you have an older version of S-Plus (S-Plus 6.1 for example) on your system, ir can be started inside an Emacs buffer with 'M-x splus61'. By default, ESS will find versions of S-Plus located in the installation directories that Insightful uses by default. If your versions of S-Plus are anywhere else, you will need to change the variable 'ess-SHOME-versions'. To see which functions have been created for starting different versions of S-Plus, type 'M-x spl' and then hit [Tab]. These other versions of S-Plus can also be started from the "ESS->Start Process->Other" menu.  File: ess.info, Node: Philosophies for using ESS(R), Next: Example ESS usage, Prev: iESS(R)--Inferior ESS processes, Up: ESS for R 12.3 Philosophies for using ESS[R] ================================== There are two philosophies for using ESS. Most modern best practices prefer the first. ESS is configured for the first, and this is what the manual focuses on. 1: The source code is real. Objects are realizations of the source code. Source for EVERY user modified object is placed in a particular directory or directories, for later editing and retrieval. 2: R objects are real. Source code is a temporary realization of the objects. Dumped buffers should not be saved. _We_strongly_discourage_this_approach_. However, if you insist, add the following lines to your Emacs configuration file: (setq ess-keep-dump-files nil) (setq ess-delete-dump-files t) (setq ess-mode-silently-save nil)  File: ess.info, Node: Example ESS usage, Prev: Philosophies for using ESS(R), Up: ESS for R 12.4 Example ESS usage ====================== We present some basic examples for using ESS to interact with R These are just a subset of approaches, many better approaches are possible. Contributions of examples of how you work with ESS are appreciated (especially since it helps us determine priorities on future enhancements)! Comments as to what should be happening are prefixed by "##". 1: ## Data Analysis Example ## Load the file you want to work with C-x C-f myfile.R ## Edit as appropriate, then start and switch to an R buffer C-c C-z ## A new buffer *R* will appear. R will have been started ## in this buffer. The buffer is in iESS [R] mode. ## Return to the script (prefix with C-c if you have pressed other keys) C-z ## Send regions, lines, or the entire file contents to R. For regions, ## highlight a region with keystrokes or mouse and then send with: C-c C-r ## Re-edit myfile.R as necessary to correct any difficulties. Add ## new commands here. Send them to R by region with C-c C-r, or ## one line at a time with C-c C-n. ## Save the revised myfile.R with C-x C-s. ## Save the entire *R* interaction buffer with C-c C-s. You ## will be prompted for a file name. The recommended name is ## myfile.Rout. With this suffix, the file will come up in ESS ## Transcript mode the next time it is accessed from Emacs. 2: ## Program revision example (source code is real) ## Start R in a process buffer (this will be *R*) M-x R ## Load the file you want to work with C-x C-f myfile.R ## edit program, functions, and code in myfile.R, and send revised ## functions to R when ready with C-c C-f ## or highlighted regions with C-c C-r ## or individual lines with C-c C-n ## or load the entire buffer with C-c M-l ## save the revised myfile.R when you have finished C-c C-s  File: ess.info, Node: ESS for SAS, Next: ESS for BUGS, Prev: ESS for R, Up: Top 13 ESS for SAS ************** * Menu: * ESS(SAS)--Design philosophy:: * ESS(SAS)--Editing files:: * ESS(SAS)--TAB key:: * ESS(SAS)--Batch SAS processes:: * ESS(SAS)--Function keys for batch processing:: * iESS(SAS)--Interactive SAS processes:: * iESS(SAS)--Common problems:: * ESS(SAS)--Graphics:: * ESS(SAS)--Windows:: ESS[SAS] was designed for use with SAS. It is descended from emacs macros developed by John Sall for editing SAS programs and 'SAS-mode' by Tom Cook. Those editing features and new advanced features are part of ESS[SAS]. The user interface of ESS[SAS] has similarities with ESS[S] and the SAS Display Manager.  File: ess.info, Node: ESS(SAS)--Design philosophy, Next: ESS(SAS)--Editing files, Prev: ESS for SAS, Up: ESS for SAS 13.1 ESS[SAS]-Design philosophy =============================== ESS[SAS] was designed to aid the user in writing and maintaining SAS programs, such as 'FOO.sas'. Both interactive and batch submission of SAS programs is supported. ESS[SAS] was written with two primary goals. 1. The emacs text editor provides a powerful and flexible development environment for programming languages. These features are a boon to all programmers and, with the help of ESS[SAS], to SAS users as well. 2. Although a departure from SAS Display Manager, ESS[SAS] provides similar key definitions to give novice ESS[SAS] users a head start. Also, inconvenient SAS Display Manager features, like remote submission and syntax highlighting, are provided transparently; appealing to advanced ESS[SAS] users.  File: ess.info, Node: ESS(SAS)--Editing files, Next: ESS(SAS)--TAB key, Prev: ESS(SAS)--Design philosophy, Up: ESS for SAS 13.2 ESS[SAS]-Editing files =========================== ESS[SAS] is the mode for editing SAS language files. This mode handles: * proper indenting, generated by both and . * color and font choices based on syntax. * ability to save and submit the file you are working on as a batch SAS process with a single keypress and to continue editing while it is runs in the background. * capability of killing the batch SAS process through the '*shell*' buffer or allow the SAS process to keep on running after you exit emacs. * single keypress navigation of '.sas', '.log' and '.lst' files ('.log' and '.lst' files are refreshed with each keypress). * ability to send the contents of an entire buffer, a highlighted region, or a single line to an interactive SAS process. * ability to switch between processes which would be the target of the buffer (for the above). ESS[SAS] is automatically turned on when editing a file with a '.sas' suffix (or other extension, if specified via 'auto-mode-alist'). The function keys can be enabled to use the same function keys that the SAS Display Manager does. The interactive capabilities of ESS require you to start an inferior SAS process with 'M-x SAS' (*Note iESS(SAS)--Interactive SAS processes::.) At this writing, the indenting and syntax highlighting are generally correct. Known issues: for multiple line '*' or '%*' comments, only the first line is highlighted; for '.log' files, only the first line of a 'NOTE:', 'WARNING:' or 'ERROR:' message is highlighted; unmatched single/double quotes in 'CARDS' data lines are *NOT* ignored; in an iterative 'DO' statement, 'TO' and 'BY' are not highlighted.  File: ess.info, Node: ESS(SAS)--TAB key, Next: ESS(SAS)--Batch SAS processes, Prev: ESS(SAS)--Editing files, Up: ESS for SAS 13.3 ESS[SAS]- key ======================= Two options. The key is bound by default to 'sas-indent-line'. This function is used to syntactically indent SAS code so 'PROC' and 'RUN' are in the left margin, other statements are indented 'sas-indent-width' spaces from the margin, continuation lines are indented 'sas-indent-width' spaces in from the beginning column of that statement. This is the type of functionality that emacs provides in most programming language modes. This functionality is activated by placing the following line in your initialization file prior to a 'require'/'load': (setq ess-sas-edit-keys-toggle nil) ESS provides an alternate behavior for that makes it behave as it does in SAS Display Manager, i.e. move the cursor to the next stop. The alternate behavior also provides a "TAB" backwards, 'C-', that moves the cursor to the stop to the left and deletes any characters between them. This functionality is obtained by placing the following line in your initialization file prior to a 'require'/'load': (setq ess-sas-edit-keys-toggle t) Under the alternate behavior, is bound to 'M-x tab-to-tab-stop' and the stops are defined by 'ess-sas-tab-stop-list'.  File: ess.info, Node: ESS(SAS)--Batch SAS processes, Next: ESS(SAS)--Function keys for batch processing, Prev: ESS(SAS)--TAB key, Up: ESS for SAS 13.4 ESS[SAS]-Batch SAS processes ================================= Submission of a SAS batch job is dependent on your environment. 'ess-sas-submit-method' is determined by your operating system and your shell. It defaults to ''sh' unless you are running Windows or Mac Classic. Under Windows, it will default to ''sh' if you are using a UNIX-imitating shell; otherwise ''ms-dos' for an MS-DOS shell. On macOS, it will default to ''sh', but under Mac Classic, it defaults to ''apple-script'. You will also set this to ''sh' if the SAS batch job needs to run on a remote machine rather than your local machine. This works transparently if you are editing the remote file via ange-ftp/EFS or tramp. Note that 'ess-sas-shell-buffer-remote-init' is a Local Variable that defaults to '"ssh"' which will be used to open the buffer on the remote host and it is assumed that no password is necessary, i.e. you are using 'ssh-agent'/'ssh-add' or the equivalent (see the discussion about Local Variables below if you need to change the default). However, if you are editing the file locally and transferring it back and forth with Kermit, you need some additional steps. First, start Kermit locally before remotely logging in. Open a local copy of the file with the 'ess-kermit-prefix' character prepended (the default is '"#"'). Execute the command 'M-x ess-kermit-get' which automatically brings the contents of the remote file into your local copy. If you transfer files with Kermit manually in a '*shell*' buffer, then note that the Kermit escape sequence is 'C-q C-\ c' rather than 'C-\ c' which it would be in an ordinary terminal application, i.e. not in an emacs buffer. Lastly, note that the remote Kermit command is specified by 'ess-kermit-command'. The command used by the 'SUBMIT' function key ( or ) to submit a batch SAS job, whether local or remote, is 'ess-sas-submit-command' which defaults to 'sas-program'. 'sas-program' is '"invoke SAS using program file"' for Mac Classic and '"sas"' otherwise. However, you may have to alter 'ess-sas-submit-command' for a particular program, so it is defined as buffer-local. Conveniently, it can be set at the end of the program: endsas; Local variables: ess-sas-submit-command: "sas8" End: The command line is also made of 'ess-sas-submit-pre-command', 'ess-sas-submit-post-command' and 'ess-sas-submit-command-options' (the last of which is also buffer-local). Here are some examples for your '~/.emacs' or '~/.xemacs/init.el' file (you may also use 'M-x customize-variable'): ;'sh default (setq ess-sas-submit-pre-command "nohup") ;'sh default (setq ess-sas-submit-post-command "-rsasuser &") ;'sh example (setq-default ess-sas-submit-command "/usr/local/sas/sas") ;'ms-dos default (setq ess-sas-submit-pre-command "start") ;'ms-dos default (setq ess-sas-submit-post-command "-rsasuser -icon") ;Windows example (setq-default ess-sas-submit-command "c:/progra~1/sas/sas.exe") ;Windows example (setq-default ess-sas-submit-command "c:\\progra~1\\sas\\sas.exe") There is a built-in delay before a batch SAS job is submitted when using a UNIX-imitating shell under Windows. This is necessary in many cases since the shell might not be ready to receive a command. This delay is currently set high enough so as not to be a problem. But, there may be cases when it needs to be set higher, or could be set much lower to speed things up. You can over-ride the default in your '~/.emacs' or '~/.xemacs/init.el' file by: (setq ess-sleep-for 0.2) For example, '(setq ess-sas-global-unix-keys t)' keys shown, '(setq ess-sas-global-pc-keys t)' in parentheses; ESS[SAS] function keys are presented in the next section. Open the file you want to work with 'C-x C-f foo.sas'. 'FOO.sas' will be in ESS[SAS] mode. Edit as appropriate, then save and submit the batch SAS job. () The job runs in the '*shell*' buffer while you continue to edit 'FOO.sas'. If 'ess-sas-submit-method' is ''sh', then the message buffer will display the shell notification when the job is complete. The ''sh' setting also allows you to terminate the SAS batch job before it is finished. () Terminating a SAS batch in the '*shell*' buffer. kill PID You may want to visit the '.log' (whether the job is still running or it is finished) and check for error messages. The '.log' will be refreshed and you will be placed in it's buffer. You will be taken to the first error message, if any. () Goto the next error message, if any. () Now, 'refresh' the '.lst' and go to it's buffer. () If you wish to make changes, go to the '.sas' file with. () Make your editing changes and submit again. ()  File: ess.info, Node: ESS(SAS)--Function keys for batch processing, Next: iESS(SAS)--Interactive SAS processes, Prev: ESS(SAS)--Batch SAS processes, Up: ESS for SAS 13.5 ESS[SAS]-Function keys for batch processing ================================================ The setup of function keys for SAS batch processing is unavoidably complex, but the usage of function keys is simple. There are five distinct options: Option 1 (default). Function keys in ESS[SAS] are not bound to elisp commands. This is in accordance with the GNU Elisp Coding Standards (GECS) which do not allow function keys to be bound so that they are available to the user. Options 2-5. Since GECS does not allow function keys to be bound by modes, these keys are often unused. So, ESS[SAS] provides users with the option of binding elisp commands to these keys. Users who are familiar with SAS will, most likely, want to duplicate the function key capabilities of the SAS Display Manager. There are four options (noted in parentheses). a. SAS Display Manager has different function key definitions for UNIX (2, 4) and Windows (3, 5); ESS[SAS] can use either. b. The ESS[SAS] function key definitions can be active in all buffers (global: 4, 5) or limited (local: 2, 3) only to buffers with files that are associated with ESS[SAS] as specified in your 'auto-mode-alist'. The distinction between local and global is subtle. If you want the ESS[SAS] definitions to work when you are in the '*shell*' buffer or when editing files other than the file extensions that ESS[SAS] recognizes, you will most likely want to use the global definitions. If you want your function keys to understand SAS batch commands when you are editing SAS files, and to behave normally when editing other files, then you will choose the local definitions. The option can be chosen by the person installing ESS for a site or by an individual. a. For a site installation or an individual, place *ONLY ONE* of the following lines in your initialization file prior to a 'require'/'load'. ESS[SAS] function keys are available in ESS[SAS] if you choose either 2 or 3 and in all modes if you choose 4 or 5: ;;2; (setq ess-sas-local-unix-keys t) ;;3; (setq ess-sas-local-pc-keys t) ;;4; (setq ess-sas-global-unix-keys t) ;;5; (setq ess-sas-global-pc-keys t) The names '-unix-' and '-pc-' have nothing to do with the operating system that you are running. Rather, they mimic the definitions that the SAS Display Manager uses by default on those platforms. b. If your site installation has configured the keys contrary to your liking, then you must call the appropriate function. (load "ess-site") ;; local-unix-keys (ess-sas-global-pc-keys) Finally, we get to what the function keys actually do. You may recognize some of the nicknames as SAS Display Manager commands (they are in all capitals). UNIX PC Nickname 'refresh' revert the current buffer with the file of the same name if the file is newer than the buffer 'SUBMIT' save the current '.sas' file (which is either the '.sas' file in the current buffer or the '.sas' file associated with the '.lst' or '.log' file in the current buffer) and submit the file as a batch SAS job 'PROGRAM' switch buffer to '.sas' file 'LOG' switch buffer to '.log' file, 'refresh' and goto next error message, if any 'OUTPUT' switch buffer to '.lst' file and 'refresh' 'filetype-1' switch buffer to 'filetype-1' (defaults to '.txt') file and 'refresh' 'shell' switch buffer to '*shell*' 'VIEWTABLE' open an interactive 'PROC FSEDIT' session on the SAS dataset near point toggle-log toggle ESS[SAS] for '.log' files; useful for certain debugging situations 'filetype-2' switch buffer to 'filetype-2' (defaults to '.dat') file and 'refresh' viewgraph open a 'GSASFILE' near point for viewing either in emacs or with an external viewer 'C-' 'C-' rtf-portrait create an MS RTF portrait file from the current buffer with a file extension of '.rtf' 'C-' 'C-' rtf-landscape create an MS RTF landscape file from the current buffer with a file extension of '.rtf' 'C-' 'C-' submit-region write region to 'ess-temp.sas' and submit 'C-' 'C-' append-to-log append 'ess-temp.log' to the current '.log' file 'C-' 'C-' append-to-output append 'ess-temp.lst' to the current '.lst' file 'C-' 'C-' 'INSIGHT' open an interactive 'PROC INSIGHT' session on the SAS dataset near point 'C-''C-'toggle-listing toggle ESS[SAS] for '.lst' files; useful for toggling read-only 'SUBMIT', 'PROGRAM', 'LOG' and 'OUTPUT' need no further explanation since they mimic the SAS Display Manager commands and related function key definitions. However, six other keys have been provided for convenience and are described below. 'shell' switches you to the '*shell*' buffer where you can interact with your operating system. This is especially helpful if you would like to kill a SAS batch job. You can specify a different buffer name to associate with a SAS batch job (besides '*shell*') with the buffer-local variable 'ess-sas-shell-buffer'. This allows you to have multiple buffers running SAS batch jobs on multiple local/remote computers that may rely on different methods specified by the buffer-local variable 'ess-sas-submit-method'. performs the 'refresh' operation on the current buffer. 'refresh' compares the buffer's last modified date/time with the file's last modified date/time and replaces the buffer with the file if the file is newer. This is the same operation that is automatically performed when 'LOG', 'OUTPUT', 'filetype-1' or are pressed. 'filetype-1' switches you to a file with the same file name as your '.sas' file, but with a different extension ('.txt' by default) and performs 'refresh'. You can over-ride the default extension; for example in your '~/.emacs' or '~/.xemacs/init.el' file: (setq ess-sas-suffix-1 "csv") ; for example will prompt you for the name of a permanent SAS dataset near point to be opened for viewing by 'PROC FSEDIT'. You can control the SAS batch command-line with 'ess-sas-data-view-submit-options'. For controlling the SAS batch commands, you have the global variables 'ess-sas-data-view-libname' and 'ess-sas-data-view-fsview-command' as well as the buffer-local variable 'ess-sas-data-view-fsview-statement'. If you have your SAS 'LIBNAME' defined in '~/autoexec.sas', then the defaults for these variables should be sufficient. Similarly, 'C-' will prompt you for the name of a permanent SAS dataset near point to be opened for viewing by 'PROC INSIGHT'. You can control the SAS batch command-line with 'ess-sas-data-view-submit-options'. For controlling the SAS batch commands, you have the global variables 'ess-sas-data-view-libname' and 'ess-sas-data-view-insight-command' as well as the buffer-local variable 'ess-sas-data-view-insight-statement'. toggles ESS[SAS] mode for '.log' files which is off by default (technically, it is 'SAS-log-mode', but it looks the same). The syntax highlighting can be helpful in certain debugging situations, but large '.log' files may take a long time to highlight. is the same as 'filetype-1' except it is '.dat' by default. will prompt you for the name of a 'GSASFILE' near the point in '.log' to be opened for viewing either with emacs or with an external viewer. Depending on your version of emacs and the operating system you are using, emacs may support '.gif' and '.jpg' files internally. You may need to change the following variables for your own situation. 'ess-sas-graph-view-suffix-regexp' is a regular expression of supported file types defined via file name extensions. 'ess-sas-graph-view-viewer-default' is the default external viewer for your platform. 'ess-sas-graph-view-viewer-alist' is an alist of exceptions to the default; i.e. file types and their associated viewers which will be used rather than the default viewer. (setq ess-sas-graph-view-suffix-regexp (concat "[.]\\([eE]?[pP][sS]\\|" "[pP][dD][fF]\\|[gG][iI][fF]\\|[jJ][pP][eE]?[gG]\\|" "[tT][iI][fF][fF]?\\)")) ;; default (setq ess-sas-graph-view-viewer-default "kodakimg") ;; Windows default (setq ess-sas-graph-view-viewer-default "sdtimage") ;; Solaris default (setq ess-sas-graph-view-viewer-alist '(("[eE]?[pP][sS]" . "gv") ("[pP][dD][fF]" . "gv")) ;; default w/ gv 'C-' produces US landscape by default, however, it can produce A4 landscape (first line for "global" key mapping, second for "local"): (global-set-key [(control f2)] 'ess-sas-rtf-a4-landscape) (define-key sas-mode-local-map [(control f2)] 'ess-sas-rtf-a4-landscape)  File: ess.info, Node: iESS(SAS)--Interactive SAS processes, Next: iESS(SAS)--Common problems, Prev: ESS(SAS)--Function keys for batch processing, Up: ESS for SAS 13.6 iESS[SAS]-Interactive SAS processes ======================================== Inferior ESS (iESS) is the method for interfacing with interactive statistical processes (programs). iESS[SAS] is what is needed for interactive SAS programming. iESS[SAS] works best with the SAS command-line option settings '"-stdio -linesize 80 -noovp -nosyntaxcheck"' (the default of 'inferior-SAS-args'). '-stdio' required to make the redirection of stdio work '-linesize 80' keeps output lines from folding on standard terminals '-noovp' prevents error messages from printing 3 times '-nosyntaxcheck' permits recovery after syntax errors To start up iESS[SAS] mode, use: M-x SAS The '*SAS:1.log*' buffer in 'ESStr' mode corresponds to the file 'FOO.log' in SAS batch usage and to the 'SAS: LOG' window in the SAS Display Manager. All commands submitted to SAS, informative messages, warnings, and errors appear here. The '*SAS:1.lst*' buffer in 'ESSlst' mode corresponds to the file 'FOO.lst' in SAS batch usage and to the 'SAS: OUTPUT' window in the SAS Display Manager. All printed output appears in this window. The '*SAS:1*' buffer exists solely as a communications buffer. The user should never use this buffer directly. Files are edited in the 'FOO.sas' buffer. The 'C-c C-r' key in ESS[SAS] is the functional equivalent of bringing a file into the 'SAS: PROGRAM EDITOR' window followed by 'SUBMIT'. For example, open the file you want to work with. C-x C-f foo.sas 'FOO.sas' will be in ESS[SAS] mode. Edit as appropriate, and then start up SAS with the cursor in the 'FOO.sas' buffer. M-x SAS Four buffers will appear on screen: Buffer Mode Description 'FOO.sas' 'ESS[SAS]' your source file '*SAS:1*' 'iESS[SAS:1]' iESS communication buffer '*SAS:1.log*' 'Shell ESStr SAS log information []' '*SAS:1.lst*' 'Shell ESSlst SAS listing information []' If you would prefer each of the four buffers to appear in its own individual frame, you can arrange for that. Place the cursor in the buffer displaying 'FOO.sas'. Enter the sequence 'C-c C-w'. The cursor will normally be in buffer 'FOO.sas'. If not, put it there and 'C-x b FOO.sas'. Send regions, lines, or the entire file contents to SAS (regions are most useful: a highlighted region will normally begin with the keywords 'DATA' or 'PROC' and end with 'RUN;'), 'C-c C-r'. Information appears in the log buffer, analysis results in the listing buffer. In case of errors, make the corrections in the 'FOO.sas' buffer and resubmit with another 'C-c C-r'. At the end of the session you may save the log and listing buffers with the usual 'C-x C-s' commands. You will be prompted for a file name. Typically, the names 'FOO.log' and 'FOO.lst' will be used. You will almost certainly want to edit the saved files before including them in a report. The files are read-only by default. You can make them writable by the emacs command 'C-x C-q'. At the end of the session, the input file 'FOO.sas' will typically have been revised. You can save it. It can be used later as the beginning of another iESS[SAS] session. It can also be used as a batch input file to SAS. The '*SAS:1*' buffer is strictly for ESS use. The user should never need to read it or write to it. Refer to the '.lst' and '.log' buffers for monitoring output! Troubleshooting: *Note iESS(SAS)--Common problems::.  File: ess.info, Node: iESS(SAS)--Common problems, Next: ESS(SAS)--Graphics, Prev: iESS(SAS)--Interactive SAS processes, Up: ESS for SAS 13.7 iESS[SAS]-Common problems ============================== 1. iESS[SAS] does not work on Windows. In order to run SAS inside an emacs buffer, it is necessary to start SAS with the '-stdio' option. SAS does not support the '-stdio' option on Windows. 2. If 'M-x SAS' gives errors upon startup, check the following: * you are running Windows: see 1. * 'ess-sas-sh-command' (from the ESS 'etc' directory) needs to be executable; too check, type 'M-x dired'; if not, fix it as follows, type 'M-:', then at the minibuffer prompt 'Eval:', type '(set-file-modes "ess-sas-sh-command" 493)'. * 'sas' isn't in your executable path; to verify, type 'M-:' and at the minibuffer prompt 'Eval:', type '(executable-find "sas")' 3. 'M-x SAS' starts SAS Display Manager. Probably, the command 'sas' on your system calls a shell script. In that case you will need to locate the real 'sas' executable and link to it. You can execute the UNIX command: find / -name sas -print Now place a soft link to the real 'sas' executable in your '~/bin' directory, with for example cd ~/bin ln -s /usr/local/sas9/sas sas Check your 'PATH' environment variable to confirm that '~/bin' appears before the directory in which the 'sas' shell script appears.  File: ess.info, Node: ESS(SAS)--Graphics, Next: ESS(SAS)--Windows, Prev: iESS(SAS)--Common problems, Up: ESS for SAS 13.8 ESS[SAS]-Graphics ====================== Output from a SAS/GRAPH 'PROC' can be displayed in a SAS/GRAPH window for SAS batch on Windows or for both SAS batch and interactive with XWindows on UNIX. If you need to create graphics files and view them with , then include the following (either in 'FOO.sas' or in '~/autoexec.sas'): filename gsasfile 'graphics.ps'; goptions device=ps gsfname=gsasfile gsfmode=append; 'PROC PLOT' graphs can be viewed in the listing buffer. You may wish to control the vertical spacing to allow the entire plot to be visible on screen, for example: proc plot; plot a*b / vpos=25; run;  File: ess.info, Node: ESS(SAS)--Windows, Prev: ESS(SAS)--Graphics, Up: ESS for SAS 13.9 ESS[SAS]-Windows ===================== * iESS[SAS] does not work on Windows. *Note iESS(SAS)--Common problems::. * ESS[SAS] mode for editing SAS language files works very well. *Note ESS(SAS)--Editing files::. * There are two execution options for SAS on Windows. You can use batch. *Note ESS(SAS)--Batch SAS processes::. Or you can mark regions with the mouse and submit the code with 'submit-region' or paste them into SAS Display Manager.  File: ess.info, Node: ESS for BUGS, Next: ESS for JAGS, Prev: ESS for SAS, Up: Top 14 ESS for BUGS *************** ESS[BUGS] provides 5 features. First, BUGS syntax is described to allow for proper fontification of statements, distributions, functions, commands and comments in BUGS model files, command files and log files. Second, ESS creates templates for the command file from the model file so that a BUGS batch process can be defined by a single file. Third, ESS provides a BUGS batch script that allows ESS to set BUGS batch parameters. Fourth, key sequences are defined to create a command file and submit a BUGS batch process. Lastly, interactive submission of BUGS commands is also supported. 14.1 ESS[BUGS]-Model files ========================== Model files with the '.bug' extension are edited in ESS[BUGS] mode. Three keys are bound for your use in ESS[BUGS], 'F2', 'C-c C-c' and '='. 'F2' performs the same action as it does in ESS[SAS], *Note ESS(SAS)--Function keys for batch processing::. 'C-c C-c' performs the function 'ess-bugs-next-action' which you will use a lot. Pressing it in an empty buffer for a model file will produce a template for you. '=' inserts the set operator, '<-'. 14.2 ESS[BUGS]-Command files ============================ Files ending in '.bmd' are used for BUGS command files. When you have finished editing your model file and press 'C-c C-c', a command file is created if one does not already exist. When you are finished editing your command file, pressing 'C-c C-c' again will submit your command file as a batch job. 14.3 ESS[BUGS]-Log files ======================== The '.bog' extension is used for BUGS log files. The command line generated by ESS creates the '.bog' transcript file.  File: ess.info, Node: ESS for JAGS, Next: Mailing lists/bug reports, Prev: ESS for BUGS, Up: Top 15 ESS for JAGS *************** ESS[JAGS] provides 4 features. First, JAGS syntax is described to allow for proper fontification of statements, distributions, functions, commands and comments in JAGS model files, command files and log files. Second, ESS creates templates for the command file from the model file so that a JAGS batch process can be defined by a single file. Third, ESS provides a JAGS batch script that allows ESS to set JAGS batch parameters. Fourth, key sequences are defined to create a command file and submit a JAGS batch process. 15.1 ESS[JAGS]-Model files ========================== Files with the '.jag' extension are edited in ESS[JAGS] mode. Three keys are bound for your use in ESS[JAGS], 'F2', 'C-c C-c' and '='. 'F2' performs the same action as it does in ESS[SAS], *Note ESS(SAS)--Function keys for batch processing::. 'C-c C-c' performs the function 'ess-bugs-next-action' which you will use a lot. Pressing it in an empty buffer for a model file will produce a template for you. '=' inserts the set operator, '<-'. The first press of 'C-c C-c' will set up a template, including some necessary file-local variables in an empty buffer. These variables are 'ess-jags-chains', 'ess-jags-monitor', 'ess-jags-thin', 'ess-jags-burnin' and 'ess-jags-update'; they appear in the 'Local Variables' section. When you are finished editing your model file, pressing 'C-c C-c' will perform the necessary actions to build your command file for you. The 'ess-jags-chains' variable is the number of chains that you want to initialize and sample from; defaults to 1. The 'ess-jags-monitor' variable is a list of variables that you want monitored: encase each variable in double quotes. When you press 'C-c C-c', the appropriate statements are created in the command file to monitor the list of variables. By default, no variables are explicitly monitored which means JAGS will implicitly monitor all "default" variables. The 'ess-jags-thin' variable is the thinning parameter. By default, the thinning parameter is set to 1, i.e. no thinning. The 'ess-jags-burnin' variable is the number of initial samples to discard. By default, the burnin parameter is set to 10000. The 'ess-jags-update' variable is the number of post-burnin samples to keep. By default, the update parameter is set to 10000. Both 'ess-jags-burnin' and 'ess-jags-update' are multiplied by 'ess-jags-thin' since JAGS does not do it automatically. 15.2 ESS[JAGS]-Command files ============================ Files ending in '.jmd' are for JAGS command files. For your '.jmd' file, there is only one variable, 'ess-jags-command', in the 'Local Variables' section. When you have finished editing your model file and press 'C-c C-c', a command file is created if one does not already exist. When you are finished editing your command file, pressing 'C-c C-c' again will submit your command file as a batch job. The 'ess-jags-command' variable allows you to specify a different JAGS program to use to run your model; defaults to "jags". 15.3 ESS[JAGS]-Log files ======================== The '.jog' extension is used for JAGS log files. You may find 'F2' useful to refresh the '.jog' if the batch process over-writes or appends it.  File: ess.info, Node: Mailing lists/bug reports, Next: Customization, Prev: ESS for JAGS, Up: Top 16 Bugs and Bug Reporting, Mailing Lists **************************************** * Menu: * Bugs:: * Reporting Bugs:: * Mailing Lists:: * Help with Emacs::  File: ess.info, Node: Bugs, Next: Reporting Bugs, Up: Mailing lists/bug reports 16.1 Bugs ========= * Commands like 'ess-display-help-on-object' and list completion cannot be used while the user is entering a multi-line command. The only real fix in this situation is to use another ESS process. * The 'ess-eval-' commands can leave point in the ESS process buffer in the wrong place when point is at the same position as the last process output. This proves difficult to fix, in general, as we need to consider all _windows_ with 'window-point' at the right place. * It's possible to clear the modification flag (say, by saving the buffer) with the edit buffer not having been loaded into S. * Backup files can sometimes be left behind, even when 'ess-keep-dump-files' is 'nil'. * Passing an incomplete S expression to 'ess-execute' causes ESS to hang. * The function-based commands don't always work as expected on functions whose body is not a parenthesized or compound expression, and don't even recognize anonymous functions (i.e. functions not assigned to any variable). * Multi-line commands could be handled better by the command history mechanism. * Changes to the continutation prompt in R (e.g. 'options(continue = " ")') are not automatically detected by ESS. Hence, for now, the best thing is not to change the continuation prompt. If you do change the continuation prompt, you will need to change accordingly the value of 'inferior-ess-secondary-prompt' in 'R-customize-alist'.  File: ess.info, Node: Reporting Bugs, Next: Mailing Lists, Prev: Bugs, Up: Mailing lists/bug reports 16.2 Reporting Bugs =================== Please send bug reports, suggestions etc. to , or post them on our github issue tracker (https://github.com/emacs-ess/ESS/issues) The easiest way to do this is within Emacs by typing 'M-x ess-submit-bug-report' This also gives the maintainers valuable information about your installation which may help us to identify or even fix the bug. If Emacs reports an error, backtraces can help us debug the problem. Type "M-x set-variable RET debug-on-error RET t RET". Then run the command that causes the error and you should see a *Backtrace* buffer containing debug information; send us that buffer. Note that comments, suggestions, words of praise and large cash donations are also more than welcome.  File: ess.info, Node: Mailing Lists, Next: Help with Emacs, Prev: Reporting Bugs, Up: Mailing lists/bug reports 16.3 Mailing Lists ================== There is a mailing list for discussions and announcements relating to ESS. Join the list by sending an e-mail with "subscribe ess-help" (or "help") in the body to ; contributions to the list may be mailed to . Rest assured, this is a fairly low-volume mailing list. The purposes of the mailing list include * helping users of ESS to get along with it. * discussing aspects of using ESS on Emacs and XEmacs. * suggestions for improvements. * announcements of new releases of ESS. * posting small patches to ESS.  File: ess.info, Node: Help with Emacs, Prev: Mailing Lists, Up: Mailing lists/bug reports 16.4 Help with Emacs ==================== Emacs is a complex editor with many abilities that we do not have space to describe here. If you have problems with other features of Emacs (e.g. printing), there are several sources to consult, including the Emacs FAQs (try 'M-x view-emacs-faq') and EmacsWiki (). Please consult them before asking on the mailing list about issues that are not specific to ESS.  File: ess.info, Node: Customization, Next: Indices, Prev: Mailing lists/bug reports, Up: Top Appendix A Customizing ESS ************************** ESS can be easily customized to your taste simply by including the appropriate lines in your Emacs configuration file. There are numerous variables which affect the behavior of ESS in certain situations which can be modified to your liking. Keybindings may be set or changed to your preferences, and for per-buffer customizations hooks are also available. Most of these variables can be viewed and set using the Custom facility within Emacs. Type 'M-x customize-group RET ess RET' to see all the ESS variables that can be customized. Variables are grouped by subject to make it easy to find related variables.  File: ess.info, Node: Indices, Prev: Customization, Up: Top Indices ******* * Menu: * Key index:: * Function and program index:: * Variable index:: * Concept index::  File: ess.info, Node: Key index, Next: Function and program index, Up: Indices Key index ========= [index] * Menu: * ,: Handy commands. (line 6) * {: Indenting. (line 57) * }: Indenting. (line 57) * C-c C-. a: Rutils. (line 31) * C-c C-. d: Rutils. (line 46) * C-c C-. H: Rutils. (line 49) * C-c C-. l: Rutils. (line 20) * C-c C-. m: Rutils. (line 34) * C-c C-. o: Rutils. (line 37) * C-c C-. r: Rutils. (line 23) * C-c C-. s: Rutils. (line 43) * C-c C-. u: Rutils. (line 27) * C-c C-. w: Rutils. (line 40) * C-c C-b: Evaluating code. (line 66) * C-c C-c: Other. (line 9) * C-c C-c <1>: Evaluating code. (line 39) * C-c C-e C-d: Edit buffer. (line 9) * C-c C-e C-s: Styles. (line 15) * C-c C-e s: Styles. (line 15) * C-c C-f: Evaluating code. (line 52) * C-c C-j: Evaluating code. (line 45) * C-c C-o C-c: Roxygen. (line 45) * C-c C-o C-h: Roxygen. (line 72) * C-c C-o C-o: Roxygen. (line 37) * C-c C-o C-r: Roxygen. (line 51) * C-c C-o C-t: Roxygen. (line 59) * C-c C-o n: Roxygen. (line 69) * C-c C-o p: Roxygen. (line 66) * C-c C-q: Hot keys. (line 71) * C-C C-r: Evaluating code. (line 59) * C-c C-s: Hot keys. (line 34) * C-c C-t C-s: Namespaced Evaluation. (line 36) * C-c C-v: Hot keys. (line 66) * C-c C-w: Clean. (line 11) * C-c C-x: Hot keys. (line 24) * C-c C-z: Other. (line 13) * C-c M-b: Evaluating code. (line 69) * C-c M-f: Evaluating code. (line 55) * C-c M-j: Evaluating code. (line 48) * C-c M-l: Hot keys. (line 50) * C-c M-r: Evaluating code. (line 62) * C-c RET: Resubmit. (line 14) * C-c `: Error Checking. (line 9) * C-j: Indenting. (line 64) * C-M-a: Other edit buffer commands. (line 10) * C-M-e: Other edit buffer commands. (line 14) * C-M-h: Other edit buffer commands. (line 18) * C-M-q: Indenting. (line 53) * C-M-x: Evaluating code. (line 36) * C-RET: Evaluating code. (line 32) * ESC C-a: Other edit buffer commands. (line 10) * ESC C-e: Other edit buffer commands. (line 14) * ESC C-h: Other edit buffer commands. (line 18) * ESC C-q: Indenting. (line 53) * M-;: Indenting. (line 69) * M-?: Object names. (line 34) * M-C-q: Indenting. (line 53) * M-n l: Sweave and AUCTeX. (line 16) * M-n P: Sweave and AUCTeX. (line 22) * M-n s: Sweave and AUCTeX. (line 12) * M-RET: Resubmit. (line 10) * RET: Command-line editing. (line 10) * RET <1>: Resubmit. (line 18) * TAB: Indenting. (line 35)  File: ess.info, Node: Function and program index, Next: Variable index, Prev: Key index, Up: Indices Function and program index ========================== [index] * Menu: * backward-kill-word: Command-line editing. (line 22) * comint-backward-matching-input: Process buffer motion. (line 31) * comint-bol: Command-line editing. (line 31) * comint-copy-old-input: Transcript resubmit. (line 16) * comint-delete-output: Last command. (line 24) * comint-dynamic-complete: Object names. (line 13) * comint-forward-matching-input: Process buffer motion. (line 32) * comint-history-isearch-backward-regexp: Command History. (line 32) * comint-interrupt-subjob: Other. (line 8) * comint-kill-input: Command-line editing. (line 26) * comint-next-input: Command History. (line 18) * comint-next-matching-input-from-input: Command History. (line 45) * comint-next-prompt: Process buffer motion. (line 15) * comint-previous-input: Command History. (line 14) * comint-previous-matching-input-from-input: Command History. (line 41) * comint-previous-prompt: Process buffer motion. (line 11) * comint-show-output: Last command. (line 20) * dump(): Edit buffer. (line 35) * ess-change-directory: Rutils. (line 45) * ess-cleanup: Hot keys. (line 71) * ess-cleanup <1>: Help. (line 163) * ess-describe-help-mode: Help. (line 21) * ess-display-help-on-object: Hot keys. (line 65) * ess-display-help-on-object <1>: Help. (line 8) * ess-display-help-on-object <2>: Help. (line 25) * ess-dump-object-into-edit-buffer: Edit buffer. (line 8) * ess-electric-brace: Indenting. (line 56) * ess-eval-buffer: Evaluating code. (line 65) * ess-eval-buffer-and-go: Evaluating code. (line 68) * ess-eval-function: Evaluating code. (line 51) * ess-eval-function-and-go: Evaluating code. (line 54) * ess-eval-line: Evaluating code. (line 44) * ess-eval-line-and-go: Evaluating code. (line 47) * ess-eval-line-and-step: Help. (line 106) * ess-eval-region: Evaluating code. (line 58) * ess-eval-region <1>: Help. (line 111) * ess-eval-region-and-go: Evaluating code. (line 61) * ess-eval-region-or-function-or-paragraph: Evaluating code. (line 35) * ess-eval-region-or-function-or-paragraph-and-step: Evaluating code. (line 38) * ess-eval-region-or-line-and-step: Evaluating code. (line 31) * ess-execute-objects: Hot keys. (line 23) * ess-execute-search: Hot keys. (line 33) * ess-goto-beginning-of-function-or-para: Other edit buffer commands. (line 9) * ess-goto-end-of-function-or-para: Other edit buffer commands. (line 13) * ess-handy-commands: Handy commands. (line 6) * ess-handy-commands <1>: Handy commands. (line 6) * ess-indent-command: Roxygen. (line 90) * ess-indent-exp: Indenting. (line 52) * ess-indent-or-complete: Indenting. (line 34) * ess-list-object-completions: Object names. (line 33) * ess-load-file: Hot keys. (line 49) * ess-load-file <1>: Loading. (line 11) * ess-mark-function: Other edit buffer commands. (line 17) * ess-parse-errors: Hot keys. (line 54) * ess-parse-errors <1>: Error Checking. (line 9) * ess-quit: Hot keys. (line 70) * ess-quit <1>: Help. (line 163) * ess-R-complete-object-name: Roxygen. (line 80) * ess-r-set-evaluation-env: Namespaced Evaluation. (line 35) * ess-remote: ESS processes on Remote Computers. (line 9) * ess-request-a-process: Multiple ESS processes. (line 18) * ess-resynch: Object names. (line 53) * ess-roxy-hide-all: Roxygen. (line 71) * ess-roxy-next-entry: Roxygen. (line 68) * ess-roxy-preview-HTML: Roxygen. (line 58) * ess-roxy-preview-Rd: Roxygen. (line 50) * ess-roxy-previous-entry: Roxygen. (line 65) * ess-roxy-toggle-roxy-region: Roxygen. (line 44) * ess-roxy-update-entry: Roxygen. (line 36) * ess-rutils-apropos: Rutils. (line 30) * ess-rutils-html-docs: Rutils. (line 48) * ess-rutils-load-wkspc: Rutils. (line 39) * ess-rutils-local-pkgs: Rutils. (line 19) * ess-rutils-objs: Rutils. (line 36) * ess-rutils-repos-pkgs: Rutils. (line 22) * ess-rutils-rm-all: Rutils. (line 33) * ess-rutils-rsitesearch: Rutils. (line 58) * ess-rutils-save-wkspc: Rutils. (line 42) * ess-rutils-update-pkgs: Rutils. (line 26) * ess-set-style: Styles. (line 14) * ess-skip-to-help-section: Help. (line 55) * ess-skip-to-next-section: Help. (line 46) * ess-skip-to-previous-section: Help. (line 46) * ess-smart-comma: Handy commands. (line 6) * ess-submit-bug-report: Reporting Bugs. (line 6) * ess-switch-to-end-of-ESS: Help. (line 117) * ess-switch-to-inferior-or-script-buffer: Other. (line 12) * ess-swv-latex: Sweave and AUCTeX. (line 15) * ess-swv-PDF: Sweave and AUCTeX. (line 21) * ess-swv-PS: Sweave and AUCTeX. (line 18) * ess-swv-weave: Sweave and AUCTeX. (line 11) * ess-tracebug: ESS tracebug. (line 6) * ess-transcript-clean-region: Clean. (line 10) * ess-transcript-copy-command: Resubmit. (line 13) * ess-transcript-send-command: Resubmit. (line 9) * ess-transcript-send-command-and-move: Resubmit. (line 17) * ess-use-ido, ess-completing-read: Minibuffer completion. (line 6) * fill-paragraph: Roxygen. (line 94) * getting started with tracebug: Getting started with tracebug. (line 6) * inferior-ess-send-input: Command-line editing. (line 9) * mark-paragraph: Roxygen. (line 85) * move-beginning-of-line: Roxygen. (line 97) * newline-and-indent: Roxygen. (line 101) * objects(): Hot keys. (line 24) * printer(): printer. (line 11) * q(): Hot keys. (line 71) * R: Starting up. (line 11) * S: Starting up. (line 11) * search(): Hot keys. (line 34) * search() <1>: Object names. (line 20) * source(): Evaluating code. (line 18) * source() <1>: Loading. (line 11) * STERM: Statistical Process running in ESS?. (line 6)  File: ess.info, Node: Variable index, Next: Concept index, Prev: Function and program index, Up: Indices Variable index ============== [index] * Menu: * ac-source-R: Auto-complete. (line 6) * ac-source-R-args: Auto-complete. (line 6) * ac-source-R-objects: Auto-complete. (line 6) * comint-delimiter-argument-list: History expansion. (line 28) * comint-input-ring-size: Command History. (line 9) * comment-column: Indenting. (line 24) * ess-ask-about-transfile: Customizing startup. (line 30) * ess-ask-about-transfile <1>: Saving transcripts. (line 12) * ess-ask-for-ess-directory: Customizing startup. (line 7) * ess-default-style: Styles. (line 21) * ess-delete-dump-files: Source Files. (line 12) * ess-directory: Source Directories. (line 48) * ess-dump-filename-template: Source Directories. (line 9) * ess-eldoc-abbreviation-style: ESS ElDoc. (line 24) * ess-eldoc-show-on-symbol: ESS ElDoc. (line 18) * ess-eval-visibly: Evaluating code. (line 14) * ess-execute-in-process-buffer: Hot keys. (line 13) * ess-first-tab-never-complete: Indenting. (line 46) * ess-first-tab-never-complete <1>: Object names. (line 6) * ess-function-template: Edit buffer. (line 17) * ess-handy-commands: Handy commands. (line 6) * ess-handy-commands <1>: Handy commands. (line 9) * ess-indent-with-fancy-comments: Indenting. (line 27) * ess-keep-dump-files: Source Files. (line 26) * ess-plain-first-buffername: Multiple ESS processes. (line 14) * ess-r-flymake-linters: ESS Flymake. (line 16) * ess-r-flymake-lintr-cache: ESS Flymake. (line 23) * ess-R-font-lock-keywords: Highlighting. (line 19) * ess-search-list: Source Directories. (line 62) * ess-source-directory: Source Directories. (line 22) * ess-style-alist: Styles. (line 29) * ess-switch-to-end-of-proc-buffer: Other. (line 21) * ess-swv-pdflatex-commands: Sweave and AUCTeX. (line 27) * ess-tab-complete-in-script: Indenting. (line 42) * ess-use-eldoc: ESS ElDoc. (line 13) * ess-use-flymake: ESS Flymake. (line 12) * iESS program arguments: Customizing startup. (line 42) * inferior-ess-program: Customizing startup. (line 42) * inferior-R-font-lock-keywords: Highlighting. (line 12) * Rd-indent-level: R documentation files. (line 85) * Rd-mode-hook: R documentation files. (line 82) * Rd-to-help-command: R documentation files. (line 89)  File: ess.info, Node: Concept index, Prev: Variable index, Up: Indices Concept Index ============= [index] * Menu: * aborting R commands: Other. (line 9) * aborting S commands: Other. (line 9) * arguments to R program: Customizing startup. (line 45) * arguments to S program: Customizing startup. (line 45) * authors: Credits. (line 6) * auto-complete: Auto-complete. (line 6) * autosaving: Source Files. (line 83) * bug reports: Reporting Bugs. (line 6) * bugs: Bugs. (line 6) * changing ESS processes: Multiple ESS processes. (line 6) * cleaning up: Hot keys. (line 71) * comint: Credits. (line 6) * command history: Command History. (line 6) * command line arguments: iESS(R)--Inferior ESS processes. (line 16) * command-line completion: Object names. (line 6) * command-line editing: Command-line editing. (line 6) * commands: Entering commands. (line 6) * comments: Source Files. (line 41) * comments in R: Indenting. (line 18) * company: Company. (line 6) * completion in edit buffer: Other edit buffer commands. (line 24) * completion of object names: Object names. (line 6) * completion on file names: Object names. (line 40) * completion on lists: Object names. (line 38) * completion, when prompted for object names: Edit buffer. (line 14) * creating new objects: Edit buffer. (line 14) * credits: Credits. (line 6) * customization: Customization. (line 6) * data frames: Object names. (line 21) * deleting output: Last command. (line 24) * directories: Starting up. (line 11) * dump file directories: Source Directories. (line 20) * dump file names: Source Directories. (line 6) * dump files: Edit buffer. (line 27) * dump files <1>: Source Files. (line 10) * echoing commands when evaluating: Evaluating code. (line 18) * edit buffer: Edit buffer. (line 6) * editing commands: Command History. (line 6) * editing functions: Editing objects. (line 6) * editing transcripts: Saving transcripts. (line 18) * ElDoc: ESS ElDoc. (line 6) * emacsclient: Emacsclient. (line 6) * entering commands: Entering commands. (line 6) * errors: Error Checking. (line 6) * ESS commands blocking Emacs: Evaluating code. (line 18) * ess developer: Namespaced Evaluation. (line 6) * ESS process buffer: Starting up. (line 17) * ESS process directory: Starting up. (line 11) * ESS tracebug: ESS tracebug. (line 6) * ESS-elsewhere: ESS processes on Remote Computers. (line 9) * ess-roxy: Roxygen. (line 6) * evaluating code with echoed commands: Evaluating code. (line 18) * evaluating R expressions: Evaluating code. (line 29) * evaluating S expressions: Evaluating code. (line 29) * finding function definitions: Xref. (line 6) * flymake: ESS Flymake. (line 6) * font-lock mode: Highlighting. (line 7) * formatting source code: Indenting. (line 32) * graphics: Graphics. (line 6) * Handy commands: Handy commands. (line 6) * help files: Help. (line 6) * highlighting: Highlighting. (line 7) * historic backups: Source Files. (line 41) * hot keys: Hot keys. (line 43) * icicles: Icicles. (line 6) * IDO completions: Minibuffer completion. (line 6) * indenting: Indenting. (line 32) * installation: Installation. (line 6) * interactive use of R: Introduction. (line 31) * interactive use of S: Introduction. (line 31) * interrupting R commands: Other. (line 9) * interrupting S commands: Other. (line 9) * introduction: Introduction. (line 6) * keyboard short cuts: Hot keys. (line 43) * killing temporary buffers: Hot keys. (line 71) * killing the ESS process: Hot keys. (line 71) * lists, completion on: Object names. (line 38) * motion in transcript mode: Transcript Mode. (line 17) * multi-line commands, resubmitting: Transcript resubmit. (line 33) * multiple ESS processes: Multiple ESS processes. (line 6) * multiple inferior processes: Multiple ESS processes. (line 6) * multiple interactive processes: Multiple ESS processes. (line 6) * new objects, creating: Edit buffer. (line 14) * objects: Hot keys. (line 24) * pages in the process buffer: Transcript. (line 24) * paging commands in help buffers: Help. (line 28) * paragraphs in the process buffer: Transcript. (line 13) * parsing errors: Error Checking. (line 6) * process buffer: Starting up. (line 17) * process names: Multiple ESS processes. (line 8) * programming in R: Introduction. (line 43) * programming in S: Introduction. (line 43) * project work in R: Source Files. (line 41) * project work in S: Source Files. (line 41) * quitting from ESS: Hot keys. (line 71) * re-executing commands: Command History. (line 6) * reading long command outputs: Last command. (line 19) * remote Computers: ESS processes on Remote Computers. (line 9) * reverting function definitions: Edit buffer. (line 27) * roxy: Roxygen. (line 6) * Roxygen: Roxygen. (line 6) * running R: Starting up. (line 6) * running S: Starting up. (line 6) * S+elsewhere: ESS processes on Remote Computers. (line 9) * search list: Hot keys. (line 34) * search list <1>: Source Directories. (line 55) * sending input: Entering commands. (line 6) * starting directory: Starting up. (line 11) * starting ESS: Starting up. (line 6) * STERM: Statistical Process running in ESS?. (line 6) * temporary buffers: Help. (line 162) * temporary buffers, killing: Hot keys. (line 71) * tracebug tutorial: Getting started with tracebug. (line 6) * tramp support: ESS processes on Remote Computers. (line 9) * transcript: Transcript. (line 9) * transcript file: Customizing startup. (line 34) * transcript file names: Saving transcripts. (line 13) * transcript mode motion: Transcript Mode. (line 17) * transcripts of R sessions: Introduction. (line 38) * transcripts of S sessions: Introduction. (line 38) * using ESS interactively: Introduction. (line 31) * using R interactively: Introduction. (line 31) * using S interactively: Introduction. (line 31) * winjava: winjava. (line 6) * working directory: Starting up. (line 11) * working directory <1>: Source Directories. (line 55) * X Windows: X11. (line 6) * xref: Xref. (line 6)  Tag Table: Node: Top268 Node: Introduction2906 Node: Features5659 Node: Current Features6495 Node: New features9946 Node: Credits23693 Node: Manual27310 Node: Installation29976 Node: Installing from a third-party repository30913 Node: Installing from source31860 Node: Activating and Loading ESS33452 Node: Check Installation34526 Node: Interactive ESS34746 Node: Starting up35560 Node: Multiple ESS processes36304 Node: ESS processes on Remote Computers37385 Node: Customizing startup41488 Node: Entering commands44105 Node: Command-line editing45263 Node: Transcript46496 Node: Last command48265 Node: Process buffer motion49691 Node: Transcript resubmit51194 Node: Saving transcripts53159 Node: Command History54949 Node: Saving History58358 Node: History expansion59119 Node: Hot keys62330 Node: Statistical Process running in ESS?66400 Node: Emacsclient67679 Node: Other68471 Node: Evaluating code69490 Node: Transcript Mode73171 Node: Resubmit74324 Node: Clean75387 Node: Editing objects76383 Node: Edit buffer77501 Node: Loading79547 Node: Error Checking80574 Node: Indenting81623 Node: Styles84812 Node: Other edit buffer commands87247 Node: Source Files88903 Node: Source Directories93507 Node: Help96660 Node: Completion100758 Node: Object names100991 Node: Function arguments103664 Node: Minibuffer completion104203 Node: Auto-complete104683 Node: Company106230 Node: Icicles106609 Node: Developing with ESS107929 Node: ESS tracebug108375 Node: Getting started with tracebug111382 Node: Editing documentation113540 Node: R documentation files114090 Node: Roxygen118017 Node: Namespaced Evaluation122352 Node: Extras124350 Node: ESS ElDoc125374 Node: ESS Flymake126870 Node: Handy commands127964 Node: Highlighting129161 Node: Parens130196 Node: Graphics130672 Node: printer131343 Node: X11132099 Node: winjava132438 Node: Imenu132850 Node: Toolbar133697 Node: Xref134105 Node: Rdired134428 Node: Rutils135482 Node: Org137876 Node: Sweave and AUCTeX138821 Node: ESS for R140947 Node: ESS(R)--Editing files141247 Node: iESS(R)--Inferior ESS processes141766 Node: Philosophies for using ESS(R)146515 Node: Example ESS usage147442 Node: ESS for SAS149663 Node: ESS(SAS)--Design philosophy150386 Node: ESS(SAS)--Editing files151339 Node: ESS(SAS)--TAB key153193 Node: ESS(SAS)--Batch SAS processes154559 Node: ESS(SAS)--Function keys for batch processing159585 Node: iESS(SAS)--Interactive SAS processes169071 Node: iESS(SAS)--Common problems172825 Node: ESS(SAS)--Graphics174348 Node: ESS(SAS)--Windows175131 Node: ESS for BUGS175709 Node: ESS for JAGS177465 Node: Mailing lists/bug reports180817 Node: Bugs181081 Node: Reporting Bugs182706 Node: Mailing Lists183599 Node: Help with Emacs184346 Node: Customization184878 Node: Indices185652 Node: Key index185827 Node: Function and program index191105 Node: Variable index200744 Node: Concept index204232  End Tag Table  Local Variables: coding: utf-8 End: